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Preface

What we have to learn to do

We learn by doing...

- Aristotle, Ezhics

Why Another
Programming
Language
Book?

Writing a book about designing and implementing representations and
search algorithms in Prolog, Lisp, and Java presents the authors with a
number of exciting opportunities.

The first opportunity is the chance to compare three languages that give
very different expression to the many ideas that have shaped the evolution
of programming languages as a whole. These core ideas, which also
support modern Al technology, include functional programming, list
processing, predicate logic, declarative representation, dynamic binding,
meta-linguistic abstraction, strong-typing, meta-circular definition, and
object-oriented design and programming. Lisp and Prolog are, of course,
widely recognized for their contributions to the evolution, theory, and
practice of programming language design. Java, the youngest of this trio, is
both an example of how the ideas pioneered in these carlier languages
have shaped modern applicative programming, as well as a powerful tool
for delivering Al applications on personal computers, local networks, and
the world wide web.

The second opportunity this book affords is a chance to look at Artificial
Intelligence from the point of view of the craft of programming. Although
we sometimes are tempted to think of Al as a theoretical position on the
nature of intelligent activity, the complexity of the problems Al addresses
has made it a primary driver of progress in programming languages,
development environments, and software engineering methods. Both Lisp
and Prolog originated expressly as tools to address the demands of
symbolic computing. Java draws on object-orientation and other ideas that
can trace their roots back to Al programming. What is more important, Al
has done much to shape our thinking about program organization, data
structures, knowledge representation, and other elements of the software
craft. Anyone who understands how to give a simple, elegant formulation
to unification-based pattern matching, logical inference, machine learning
theoties, and the other algorithms discussed in this book has taken a large
step toward becoming a master programmer.

The book’s third, and in a sense, unifying focus lies at the intersection of
these points of view: how does a programming language’s formal structure
interact with the demands of the art and practice of programming to

Xi
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The Design of
this Book

create the idioms that define its accepted use. By idiom, we mean a set of
conventionally accepted patterns for using the language in practice.
Although not the only way of using a language, an idiom defines patterns
of use that have proven effective, and constitute a common understanding
among programmers of how to use the language. Programming language
idioms do much to both enable, as well as support, ongoing
communication and collaboration between programmers.

These, then, ate the three points of view that shape our discussion of Al
programming. It is our hope that they will help to make this book more
than a practical guide to advanced programming techniques (although it is
certainly that). We hope that they will communicate the intellectual depth
and pleasure that we have found in mastering a programming language
and using it to create elegant and powerful computer programs.

There are five sections of this book. The first, made up of a single chapter,
lays the conceptual groundwork for the sections that follow. This first
chapter provides a general introduction to programming languages and
style, and asks questions such as “What is a master programmer?” What is a
programming language idiom?,” and “How are identical design patterns
implemented in different languages?” Next, we introduce a number of
design patterns specific to supporting data structures and search strategies
for complex problem solving. These patterns are discussed in a “language
neutral” context, with pointers to the specifics of the individual
programming paradigms presented in the subsequent sections of our
book. The first chapter ends with a short historical overview of the
evolution of the logic-based, functional, and object-oriented approaches to
computer programming languages.

Part II of this book presents Prolog. For readers that know the rudiments
of first-order predicate logic, the chapters of Part II can be seen as a
tutorial introduction to Prolog, the language for programming in logic.
For readers lacking any knowledge of the propositional and predicate
calculi we recommend reviewing an introductory textbook on logic.
Alternatively, Luger (2005, Chapter 2) presents a full introduction to both
the propositional and predicate logics. The Luger introduction includes a
discussion, as well as a pseudo code implementation, of unification, the
pattern-matching algorithm at the heart of the Prolog engine.

The design patterns that make up Part II begin with the “flat” logic-based
representation for facts, rules, and goals that one might expect in any
relational data base formalism. We next show how recursion, supported by
unification-based pattern matching, provides a natural design pattern for
tree and graph search algorithms. We then build a seties of abstract data
types, including sets, stacks, queues, and priority queues that support
patterns for search. These are, of course, abstract structures, crafted for
the specifics of the logic-programming environment that can search across
state spaces of arbitrary content and complexity. We then build and
demonstrate the “production system” design pattern that supports rule
based programming, planning, and a large number of other Al
technologies. Next, we present structured representations, including
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semantic networks and frame systems in Prolog and demonstrate
techniques for implementing single and multiple inheritance
representation and search. Finally, we show how the Prolog design
patterns presented in Part II can support the tasks of machine learning
and natural language understanding.

Lisp and functional programming make up Part III. Again, we present the
material on Lisp in the form of a tutorial introduction. Thus, a
programmer with little or no experience in Lisp is gradually introduced to
the critical data structures and search algorithms of Lisp that support
symbolic computing. We begin with the (recursive) definition of symbol-
expressions, the basic components of the Lisp language. Next we present
the “assembly instructions” for symbol expressions, including car, cdr, and
cons. We then assemble new patterns for Lisp with cond and defun.
Finally, we demonstrate the creation and/or evaluation of symbol
expressions with quote and eval. Of course, the ongoing discussion of
variables, binding, scope, and closures is critical to building more complex
design patterns in Lisp.

Once the preliminary tools and techniques for Lisp are presented, we
describe and construct many of the design patterns seen eatlier in the
Prolog section. These include patterns supporting breadth-first, depth-
first, and best-first search as well as meta-interpreters for rule-based
systems and planning. We build and demonstrate a recursion-based
unification algorithm that supports a logic interpreter in Lisp as well as a
stream processor with delayed evaluation for handling potentially infinite
structures. We next present data structures for building semantic networks
and object systems. We then present the Common Lisp Object system
(CLOS) libraries for building object and inheritance based design patterns.
We close Part III by building design patterns that support decision-tree
based machine learning.

Java and its idioms are presented in Part IV. Because of the complexities
of the Java language, Part IV is not presented as a tutorial introduction to
the language itself. It is expected that the reader has completed at least an
introductory course in Java programming, or at the very least, has seen
object-oriented programming in another applicative language such as
C++, C#, or Objective C. But once we can assume a basic understanding
of Java tools, we do provide a tutorial introduction to many of the design
patterns of the language.

The first chapter of Part IV, after a brief overview of the origins of Java,
goes through many of the features of an object-oriented language that will
support the creation of design patterns in that environment. These
features include the fundamental data structuring philosophy of
encapsulation, polymorphism, and inheritance. Based on these concepts
we briefly address the analysis, iterative design, programming and test
phases for engineering programs. After the introductory chapter we begin
pattern building in Java, first considering the representation issue and how
to represent predicate calculus structures in Java. This leads to building
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Using this Book

patterns that support breadth-first, depth-first, and best-first search. Based
on patterns for search, we build a production system, a pattern that
supports the rule-based expert system. Our further design patterns
support the application areas of natural language processing and machine
learning. An important strength that Java offers, again because of its
object-orientation and modularity is the use of public domain (and other)
libraries available on the web. We include in the Java section a number of
web-supported Al algorithms, including tools supporting work in natural
language, genetic and evolutionary programming (a-life), natural language
understanding, and machine learning (WEKA).

The final component of the book, Part V, brings together many of the
design patterns introduced in the eatlier sections. It also allows the authors
to reinforce many of the common themes that are, of necessity,
distributed across the various components of the presentation, We
conclude with general comments supporting the craft of programming.

This book is designed for three primary purposes. The first is as a
programming language component of a general class in Artificial
Intelligence. From this viewpoint, the authors see as essential that the Al
student build the significant algorithms that support the practice of AL
This book is designed to present exactly these algorithms. However, in the
normal lecture/lab approach taken to teaching Artificial Intelligence at the
University level, we have often found that it is difficult to cover more than
one language per quarter or semester course. Therefore we expect that the
various parts of this material, those dedicated to either Lisp, Prolog, or
Java, would be used individually to support programming the data
structures and algorithms presented in the Al course itself. In a more
advanced course in Al it would be expected that the class cover more than
one of these programming paradigms.

The second use of this book is for university classes exploring
programming paradigms themselves. Many modern computer science
departments offer a final year course in comparative programming
environments. The three languages covered in our book offer excellent
examples on these paradigms. We also feel that a paradigms course should
not be based on a rapid survey of a large number of languages while doing
a few “finger exercises” in each. Our philosophy for a paradigms course is
to get the student more deeply involved in fewer languages, and these
typically representing the declarative, functional, and object-oriented
approaches to programming. We also feel that the study of idiom and
design patterns in different environments can greatly expand the skill set
of the graduating student. Thus, our philosophy of programming is built
around the language idioms and design patterns presented in Part I and
summarized in Part V. We see these as an exciting opportunity for
students to appreciate the wealth and diversity of modern computing
environments. We feel this book offers exactly this opportunity.

The third intent of this book is to offer the professional programmer the
chance to continue their education through the exploration of multiple
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programming idioms, patterns, and paradigms. For these readers we also
feel the discussion of programming idioms and design patterns presented
throughout our book is important. We are all struggling to achieve the
status of the master programmer.
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PART I: Language Idioms and the

Master Programmer

all good things - trout as well as eternal salvation - come by grace and grace comes by art and art does not

come easy...

- Norman Mactean, (1989) A River Runs Through It

Language and
Idioms

The Master
Programmer

In defining a programming language idiom, an analogy with natural
language use might help. If I ask a friend, “Do you know what time it is?”
or equivalently “Do you have a watch?”, I would be surprised if she simply
said “yes” and turned away. These particular forms for asking someone for
the time of day are idiomatic in that they carry a meaning beyond their
literal interpretation. Similarly, a programming language idiom consists of
those patterns of use that good programmers accept as elegant, expressive
of their design intent, and that best harness the language’s power. Good
idiomatic style tends to be specific to a given language or language
paradigm: the way experienced programmers organize a Prolog program
would not constitute accepted Java style.

Language idioms serve two roles. The first is to enhance communication
between programmers. As experienced programmers know, we do not
simply write code for a compiler; we also write it for each other. Writing in
a standard idiom makes it easier for other people to understand our intent,
and to maintain and/or extend our code. Second, a language’s idiom helps
us to make sure we fully use the power the language designers have
afforded us. People design a language with certain programming styles in
mind. In the case of Java, that style was object-otriented programming, and
getting full benefit of such Java features as inheritance, scoping, automatic
garbage collection, exception handling, type checking, packages, interfaces,
and so forth requires writing in an object-oriented idiom. A primary goal of
this book is to explore and give examples of good idioms in three diverse
language paradigms: the declarative (logic-based), functional, and object-
oriented.

The goal of this book is to develop the idea and describe the practice of
the master programmer. This phrase carries a decidedly working class
connotation, suggesting the kind of knowledge and effort that comes
through long practice and the transmission of tools and skills from master
to student through the musty rituals of apprenticeship. It certainly suggests
something beyond the immaculate formalization that we generally associate
with scientific disciplines. Indeed, most computer science curricula
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Part I Introduction

downplay this craft of programming, favoring discussions of computability
and complexity, algorithms, data structures, and the software engineer’s
formalist longings. In reality, the idea of programming as a craft that
demands skill and dedication is widely accepted in practical circles. Few
major successful programming projects have existed that did not owe
significant components of that success to the craftsmanship of such
individuals.

But, what then, do master programmers know?

The foundation of a master programmer’s knowledge is a strong
understanding of the core domains of computer science. Although working
programmers may not spend much (or any) time developing and
publishing theorems, they almost always have a deep, intuitive grasp of
algorithms, data structures, logic, complexity, and other aspects of the
theory of formal systems. We could compare this to a master weldet’s
understanding of metallurgy: she may not have a theoretician’s grasp of
metallic crystalline structure, but her welds do not crack. This book
presumes a strong grounding in these computer science disciplines.

Master programmers also tend to be language fanatics, exhibiting a fluency
in several programming languages, and an active interest in anything new
and unusual. We hope that our discussion of three major languages will
appeal to the craftsman’s fascination with their vatious tools and
techniques. We also hope that, by contrasting these three major languages
in a sort of “comparative language” discussion, we will help programmers
refine their understanding of what a language can provide, and the needs
that continue to drive the evolution of programming languages.



Chapter
Objectives

Idioms, Patterns, and Programming

This chapter introduces the ideas that we use to organize our thinking about
languages and how they shape the design and implementation of programs.
These are the ideas of language, idiom, and design pattern.

1.1 Introduction

Chapter _
Contents 12 Selec.ted Examples of Al Language I.dloms _
1.3 A Brief History of Three Programming Paradigms
1.4 A Summary of our Task
1.1 Introduction
Idioms and

Patterns

As with any craft, programming contains an undeniable element of
experience. We achieve mastery through long practice in solving the
problems that inevitably arise in trying to apply technology to actual
problem situations. In writing a book that examines the implementation of
major Al algorithms in a trio of languages, we hope to support the reader’s
own experience, much as a book of musical etudes helps a young musician
with their own exploration and development.

As important as computational theory, tools, and expetrience are to a
programmet’s growth, there is another kind of knowledge that they only
suggest. This knowledge comes in the form of pattern languages and
idioms, and it forms a major focus of this book. The idea of pattern
languages originated in architecture (Alexander et al. 1977) as a way of
formalizing the knowledge an architect brings to the design of buildings
and cities that will both support and enhance the lives of their residents. In
recent years, the idea of pattern languages has swept the literature on
software design (Gamma, et al. 1995; Coplein & Schmidt 1995; Evans
2003), as a way of capturing a mastet’s knowledge of good, robust program
structure.

A design pattern describes a typical design problem, and outlines an
approach to its solution. A pattern language consists of a collection of
related design patterns. In the book that first proposed the use of pattern
languages in architecture, Christopher Alexander et al. (1977, page x) state
that a pattern

describes a problem which occurs over and over again in onr environment, and
then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same way
twice.

Design patterns capture and communicate a form of knowledge that is
essential to creating computer programs that users will embrace, and that
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Sample Design
Patterns

programmers will find to be elegant, logical, and maintainable. They
address programming and languages, not in terms of Turing completeness,
language paradigms, compiler semantics, or any of the other qualities that
constitute the core of computer science, but rather as tools for practical
problem solving. To a large extent, you can think of this book as
presenting a pattern language of the core problems of Al programming,
and examples — the patterns — of their solution.

Idioms ate a form and structure for knowledge that helps us bridge the
differences between patterns as abstract descriptions of a problem and its
solutions and an understanding of how best to implement that solution in a
given programming language. A language idiom is the expression of a
design pattern in a given language. In this sense, design patterns + idioms =
quality programs.

Consider, for example, the simple, widely used design pattern that we can
call map that applies some operator O to every element of a list L. We can
express this pattern in a pseudo code function as follows:

map (operator O, list L)

{
if (L contains no elements) quit;
h €& the first element of L.
apply O to h;
map(O, L minus h);

}

This map function produces a stream of results: O applied to each element
of the list L. As our definition of pattern specifies, this describes a solution
to a recurring problem, and also fosters unlimited variations, depending on
the type of the elements that make up the list L, and the nature of the
operator, O.

Now, let us consider a fragment of Lisp code that implements this same
map pattern, where £ is the mapped operator (in Lisp a function) and
list is the list:

(defun map (f list)
(cond ((null list) nil)
(t (cons (apply f (car list))
(map £ (cdr list))))))

This function map, created by using the built-in Lisp defun function, not
only implements the map pattern, but also illustrates elements of the Lisp
programming idiom. These include the use of the operators car and ¢dr to
separate the list into its head and tail, the use of the cons operator to place
the results into a new list, and also the use of recursion to move down the
list. Indeed, this idiom of recursively working through a list is so central to
Lisp, that compiler writers are expected to optimize this sort of tail
recursive structure into a more efficient iterative implementation.

Let us now compare the Lisp map to a Java implementation that
demonstrates how idioms vary across languages:
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public Vector map(Vector 1)

{
Vector result = new Vector();
Iterator iter = l.iterator();
while(iter.hasNext())
{

result.add(f(iter.next));

}
return result;

}

The most striking difference between the Java version and the Lisp version
is that the Java version is iterative. We could have written our list search in
a recursive form (Java supportts recursion, and compilers should optimize it
where possible), but Java also offers us iterators for moving through lists.
Since the authors of Java provide us with list iterators, and we can assume
they are implemented efficiently, it makes sense to use them. The Java
idiom differs from the Lisp idiom accordingly.

Furthermore, the Java version of map creates the new variable, result.
When the iterator completes its task, result will be a vector of
elements, each the result of applying £ to each element of the input list
(vector). Finally, result must be explicitly returned to the external
environment. In Lisp, however, the resulting list of mapped elements is the
result of invoking the function map (because it is returned as a direct
result of evaluating the map function).

Finally, we present a Prolog version of map. Of course in Prolog, map will
be a represented as a predicate. This predicate has three arguments, the
first the function, £, which will be applied to every element of the list that
is the second argument of the predicate. The third argument of the
predicate map is the list resulting from applying £ to each element of the
second argument. The pattern [X|Y] is the Prolog list representation,
where X is the head of the list (car in Lisp) and Y is the list that is the rest
of the list (cdr in Lisp). The is operator binds the result of £ applied to
H to the variable NH. As with Lisp, the map relationship is defined
recursively, although no tail recursive optimization is possible in this case.
Further clarifications of this Prolog specification are presented in Part II.

map(f, [ 1, [ 1)-
map(f, [H|T], [NH|NT]):-
NH is f(H), map(f, T, NT).

In the three examples above we see a very simple example of a pattern
having different idioms in each language, the eval/>assign pattern. This
pattern evaluates some expression and assigns the result to a variable. In
Java, as we saw above, = simply assigns the evaluated expression on its
right-hand-side to the variable on its left. In Lisp this same activity requires
the cons of an apply of £ to an element of the list. The resulting
symbol expression is then simply returned as part of the evaluated function
map. In Prolog, using the predicate representation, there are similar
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1.2

Symbolic
Computing:

The Issue of
Representation

Search

differences between assignment (based on unification with patterns such as
[H|T] and =) and evaluation (using is or making £ be a goal).

Understanding and utilizing these idioms is an essential aspect of mastering
a programming language, in that they represent expected ways the language
will be used. This not only allows programmers more easily to understand,
maintain, and extend each othet’s code, but also allows us to remain
consistent with the language designer’s assumptions and implementation
choices.

Selected Examples of AI Language Idioms

We can think of this book, then, as presenting some of the most important
patterns supporting Artificial Intelligence programming, and demonstrating
their implementation in the appropriate idioms of three major languages.
Although most of these patterns were introduced in this book’s companion
volume, Artificial Intelligence: Structures and Strategies for Complex: Problem Solving
(Luger 2009), it is worthwhile to summarize a subset of them briefly in this
introduction.

Artificial Intelligence rests on two basic ideas: first, representation or the use
of symbol structures to represent problem solving knowledge (state), and
second, search, the systematic consideration of sequences of operations on
these knowledge structures to solve complex problems. Symbolic
computing embraces a family of patterns for representing state and then
manipulating these (symbol) structures, as opposed to only performing
arithmetic calculations on states. Symbolic computing methods are the
foundation of artificial intelligence: in a sense, everything in this book rests
upon them. The recursive list-handling algorithm described above is a
fundamental symbolic computing pattern, as are the basic patterns for tree
and graph manipulation. Lisp was developed expressly as a language for
symbolic computing, and its s-expression representation (see Chapter 11)
has proved general, powerful and long-lived.

As we develop the examples of this book, pay close attention to how these
simple patterns of list, tree, and graph manipulation combine to form the
mote complex, problem specific patterns described below.

Search in Al is also fundamental and complementary to representation (as
is emphasized throughout our book. Prolog, in fact, incorporates a form of
search directly into its language semantics. In addition to forming a
foundation of Al, search introduces many of its thorniest problems. In
most interesting problems, search spaces tend to be intractable, and much
of Al theory examines the use of heuristics to control this complexity. As
has been pointed out from the very beginnings of Al (Feigenbaum and
Feldman 1963, Newell and Simon 1976) support of intelligent search
places the greatest demands on Al programming.

Search related design patterns and problems we will examine in this book
include implementations of the basic search algorithms (breadth-first,
depth-first, and best-first), management of search history, and the recovery
of solution paths with the use of those histories.

A particularly interesting search related problem is in the representation
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and generation of problem states. Conceptually, Al search algorithms are
general: they can apply to any search space. Consequently, we will define
general, reusable search “frameworks” that can be applied to a range of
problem representations and operations for generating new states. How
the different programming paradigms address this issue is illuminating in
terms of their language-based idioms.

Lisp makes no syntactic distinction between functions and data structures:
both can be represented as symbol expressions (see s-expression, Chapter
11), and both can be handled identically as Lisp objects. In addition, Lisp
does not enforce strong typing on s-expressions. These two properties of
the language allow us to define a general search algorithm that takes as
parameters the starting problem state, and a list of Lisp functions, often
using the map design pattern described eatlier, for producing child states.

Prolog includes a list representation that is very similar to lists in Lisp, but
differs in having built-in search and pattern matching in a language
supporting direct representation of predicate calculus rules. Implementing
a generalized search framework in Prolog builds on this language’s unique
idioms. We define the operators for generating states as rules, using pattern
matching to determine when these rules apply. Prolog offers explicit meta-
level controls that allow us to direct the pattern matching, and control its
built-in search.

Java presents its own unique idioms for generalizing search. Although Java
provides a “reflection” package that allows us to manipulate its objects,
methods, and their parameters directly, this is not as simple to do as in Lisp
or Prolog. Instead, we will use Java interface definitions to specify the
methods a state object must have at a general level, and define search
algorithms that take as states instances of any class that instantiates the
appropriate interface (see Chapters 22-24).

These three approaches to implementing search are powerful lessons in the
differences in language idioms, and the way they relate to a common set of
design patterns. Although each language implements search in a unique
manner, the basic search algorithms (breadth-, depth-, or best-first) behave
identically in each. Similarly, each search algorithm involves a number of
design patterns, including the management of problem states on a list, the
ordering of the state list to control search, and the application of state-
transition operators to a state to produce its descendants. These design
patterns are clearly present in all algorithms; it is only at the level of
language syntax, semantics, and idioms that these implementations differ.

Pattern matching is another support technology for Al programming that
spawns a number of useful design patterns. Approaches to pattern
matching can vary from checking for identical memory locations, to
comparing simple regular-expressions, to full pattern-based unification
across predicate calculus expressions, see Luger (2009, Section 2.3). Once
again, the differences in the way each language implements pattern
matching illustrate critical differences in their semantic structure and
associated idioms.

Prolog provides unification pattern matching directly in its interpreter:
unification and search on Predicate Calculus based data structures are the



8 PartI: Language Idioms and the Master Programmer

Structured
Types and
Inheritance
(Frames)

Meta-Linguistic
Abstraction

basis of Prolog semantics. Here, the question is not how to implement
pattern matching, but how to use it to control search, the flow of program
execution, and the use of variable bindings to construct problem solutions
as search progresses. In this sense, Prolog gives rise to its own very unique
language idioms.

Lisp, in contrast, requires that we implement unification pattern matching
ourselves. Using its basic symbolic computing capabilities, Lisp makes it
straightforward to match recursively the tree structures that implicitly
define predicate calculus expressions. Here, the main design problem
facing us is the management of variable bindings across the unification
algorithm. Because Lisp is so well suited to this type of implementation,
we can take its implementation of unification as a “reference
implementation” for understanding both Prolog semantics, and the Java
implementation of the same algorithm.

Unlike Lisp, which allows us to use nested s-expressions to define tree
structures, Java is a strongly typed language. Consequently, our Java
implementation will depend upon a number of user-created classes to
define expressions, constants, variables, and variable bindings. As with our
implementation of search, the differences between the Java and Lisp
implementations of pattern matching are interesting examples of the
differences between the two languages, their distinct idioms, and their
differing roles in Al programming.

Although the basic symbolic structures (lists, trees, etc.) supported by all
these languages are at the foundation of Al programming, a major focus of
Al work is on producing representations that reflect the way people think
about problems. This leads to more complex structures that reflect the
organization of taxonomies, similarity relationships, ontologies, and other
cognitive structures. One of the most important of these comes from
frame theory (Minsky 1975; Luger 2009, Section 7.1), and is based on
structured data types (collections of individual attributes combined in a
single object or frame), explicit relationships between objects, and the use of
class inheritance to capture hierarchical organizations of classes and their
attributes.

These representational principles have proved so effective for practical
knowledge representation that they formed the basis of object-otriented
programming: Smalltalk, the CommonLisp Object System libraries
(CLOS), C++, and Java. Just as Prolog bases its organization on predicate
calculus and search, and Lisp builds on (functional) operations on symbolic
structures, so Java builds directly on these ideas of structured
representation and inheritance.

This approach of object-otiented programming undetlies a large number of
design patterns and their associated idioms (Gamma, et al. 1995; Coplein &
Schmidt 1995), as merited by the expressiveness of the approach. In this
book, we will often focus on the use of structured representations not
simply for design of program code, but also as a tool for knowledge
representation.

Meta-linguistic abstraction is one of the most powerful ways of organizing
programs to solve complex problems. In spite of its imposing title, the
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idea behind meta-linguistic abstraction is straightforward: rather than trying
to write a solution to a hard problem in an existing programming language,
use that language to create another language that is better suited to solving
the problem. We have touched on this idea briefly in this introduction in
our mention of general search frameworks, and will develop it throughout
the book (e.g., Chapters 5, 15, 20).

One example of meta-linguistic abstraction that is central to Al is the idea
of an inference engine: a program that takes a declarative representation of
domain knowledge in the form of rules, frames or some other
representation, and applies that knowledge to problems using general
inference algorithms. The commonest example of an inference engine is
found in a rule-based expert system shell. We will develop such a shell,
EXSHELL in Prolog (Chapter 6), Lisp-shell in Lisp (Chapter 17), and an
equivalent system in Java (Chapter 20), providing similar semantics in all
three language environments. This will be a central focus of the book, and
will provide an in-depth comparison of the programming idioms supported
by each of these languages.

This discussion of Al design patterns and language idioms has proceeded
from simple features, such as basic, list-based symbol processing, to more
powerful Al techniques such as frame representations and expert system
shells. In doing so, we are adopting an organization parallel to the
theoretical discussion in Artificial Intelligence: Strategies and Structures for
Complex Problem Solving (Luger 2009). We are building a set of tools for
programming at what Allen Newell (1982) has called the &nowledge level.

Figure 1.1 Levels of a Knowledge-Based System, adapted from Newell
(1982).

Allen Newell (1982) has distinguished between the &nowledge level and the
symbol level in describing an intelligent system. As may be seen in Figure 1.1
(adapted from Newell, 1982), the symbol level is concerned with the
particular formalisms used to represent problem solving knowledge, for
example the predicate calculus. Above this symbol level is the knowledge
level concerned with the knowledge content of the program and the way in
which that knowledge is used.

The distinction between the symbol and knowledge level is reflected in the



10 Part I: Language Idioms and the Master Programmer

architectures of expert systems and other knowledge-based programs (see
Chapters 6, 15, and 25). Since the user will understand these programs in
terms of their knowledge content, these programs must preserve two
invariants: first, as just noted, there must be a knowledge-level
characterization, and second, there must be a clear distinction between this
knowledge and its control. We see this second invariant when we utilize the
production system design pattern in Chapters 6, 15, and 25. Knowledge level
concerns include questions such as: What queries will be made of the
system? What objects and/or relations are important in the domain? How
is new knowledge added to the system? Will information change over time?
How will the system need to reason about its knowledge? Does the
problem domain include missing or uncertain information?

The symbol level, just below the knowledge level, defines the knowledge
representation language, whether it be direct use of the predicate calculus
or production rules. At this level decisions are made about the structures
required to represent and organize knowledge. This separation from the
knowledge level allows the programmer to address such issues as
expressiveness, efficiency, and ease of programming, that are not relevant
to the programs higher level intent and behavior.

The implementation of the algorithm and data structure level constitutes a still
lower level of program organization, and defines an additional set of design
considerations. For instance, the behavior of a logic-based or function-
based program should be unaffected by the use of a hash table, heap, or
binary tree for implementing its symbol tables. These are implementation
decisions and invisible at higher levels. In fact, most of the techniques used
to implement representation languages for Al are common computer
science techniques, including binary trees and tables and an important
component of the knowledge-level design hypothesis is that they be hidden
from the programmer.

In thinking of knowledge level programming, we are defining a hierarchy
that uses basic programming language constructs to create more
sophisticated symbol processing languages, and uses these symbolic
languages to capture knowledge of complex problem domains. This is a
natural hierarchy that moves from machine models that reflect an
undetlying computer architecture of variables, assignments and processes,
to a symbolic layer that works with more abstract ideas of symbolic
representation and inference. The knowledge level looks beyond symbolic
form to the semantics of problem solving domains and their associated
knowledge relationships.

The importance of this multi-level approach to system design cannot be
overemphasized: it allows a programmer to ignore the complexity hidden
at lower levels and focus on issues appropriate to the current level of
abstraction. It allows the theoretical foundations of artificial intelligence to
be kept free of the nuances of a particular implementation or programming
language. It allows us to modify an implementation, improving its
efficiency or porting it to another machine, without affecting its
specification and behavior at higher levels. But the Al programmer begins
addressing the problem-solving task from the programming language level.
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In fact, we may characterize the programmer’s ability to use design patterns
and their associated idioms as her ability to bridge and link the algorithms
and data structures afforded by different language paradigms with the
symbol level in the process of building expressive knowledge-intensive
programs.

To a large extent, then, our goal in writing this book is to give the reader
the intellectual tools for programming at the knowledge level. Just as an
experienced musician thinks past the problems of articulating individual
notes and chords on their instrument to the challenges of harmonic and
thythmic structure in a composition, or an architect looks beyond the
layout of floor plans to ways buildings will interact with their occupants
over time, we believe the goal of a programmer’s development is to think
of computer programs in terms of the knowledge they incorporate, and the
way they engage human beings in the patterns of their work,
communication and relationships. Becoming the “master programmer” we
mentioned earlier in this introduction requires the ability to think in terms
of the human activities a program will support, and simultaneously to
understand the many levels of abstraction, algorithms, and data structures
that lie between those activities and the comparatively barren structures of
the “raw” programming language

A Brief History of Three Programming Paradigms

We conclude this chapter by giving a brief description of the origins of the
three programming languages we present. We also give a cursory
description of the three paradigms these languages represent. These details
are precursors of and an introduction to the material presented in the next
three parts of this book.

Like Lisp, Prolog gains much of its power and elegance from its
foundations in mathematics. In the case of Prolog, those foundations are
predicate logic and resolution theorem proving. Of the three languages
presented in this book, Prolog may well seem unusual to most
programmers in that it is a declarative, rather than procedural, language. A
Prolog program is simply a statement, in first-order predicate calculus, of
the logical conditions a solution to a problem must satisfy. The declarative
semantics do not tell the computer what to do, only the conditions a
solution must satisfy. Execution of a Prolog program relies on search to
find a set of variable bindings that satisfy the conditions stated in the
particular goals required by the program. This declarative semantics makes
Prolog extremely powerful for a large class of problems that are of
particular interest to Al. These include constraint satisfaction problems,
natural language parsing, and many search problems, as will be
demonstrated in Part II.

A logic program is a set of specifications in formal logic; Prolog uses the
first-order predicate calculus. Indeed, the name itself comes from
programming in logic. An interpreter executes the program by
systematically making inferences from logic specifications. The idea of
using the representational power of the first-order predicate calculus to
express specifications for problem solving is one of the central

11
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contributions Prolog has made to computer science in general and to
artificial intelligence in particular. The benefits of using first-order
predicate calculus for a programming language include a clean and elegant
syntax and a well-defined semantics.

The implementation of Prolog has its roots in research on theorem proving
by J.A. Robinson (Robinson 1965), especially the creation of algorithms for
resolution refutation systems. Robinson designed a proof procedure called
resolution, which is the primary method for computing with Prolog. For a
mote complete description of resolution refutation systems and of Prolog
as Horn clause refutation, see Luger (2009, Chapter 14).

Because of these features, Prolog has proved to be a useful vehicle for
investigating such experimental programming issues as automatic code
generation, program vetification, and design of high-level specification
languages. As noted above, Prolog and other logic-based languages support
a declarative programming style—that is, constructing a program in terms
of high-level descriptions of a problem’s constraints—rather than a
procedural programming style—writing programs as a sequence of
instructions for performing an algorithm. This mode of programming
essentially tells the computer “what is true” and “what needs to be proven
(the goals)” rather than “how to do it.” This allows programmers to focus
on problem solving as creating sets of specifications for a domain rather
than the details of writing low-level algorithmic instructions for “what to
do next.”

The first Prolog program was written in Marseille, France, in the early
1970s as part of a project in natural language understanding (Colmerauer,
Kanoui et al. 1973, Roussel 1975, Kowalski 1979). The theoretical
background for the language is discussed in the work of Kowalski, Hayes,
and others (Hayes 1977, Kowalski 1979, Kowalski 1979, Lloyd 1984). The
major development of the Prolog language was carried out from 1975 to
1979 at the Department of Artificial Intelligence of the University of
Edinburgh. The people at Edinburgh responsible for the first “road
worthy” implementation of Prolog were David H.D. Warren and Fernando
Pereira. They produced the first Prolog interpreter robust enough for
delivery to the general computing community. This product was built using
the “C” language on the DEC-system 10 and could operate in both
interpretive and compiled modes (Warren, Pereira, et al. 1979).

Further descriptions of this eatly code and comparisons of Prolog with
Lisp may be found in Warren et al. (Warren, Pereira, et al. 1977). This
“Warren and Pereira” Prolog became the early standard. The book
Programming in Prolog (Clocksin and Mellish 1984, now in its fifth edition)
was created by two other researchers at the Department of Artificial
Intelligence, Bill Clocksin and Chris Mellish. This book quickly became the
chief vehicle for delivering Prolog to the computing community. We use
this standard, which has come to be known as Edinburgh Prolog. In fact,
all the Prolog code in this book may be run on the public domain
interpreter SWI-Prolog (to find, Google on swi-prolog).

Lisp was arguably the first programming language to ground its semantics
in mathematical theory: the theory of partial recursive functions (McCarthy
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1960, Church 1941). In contrast to most of its contemporaries, which
essentially presented the architecture of the underlying computer in a
higher-level form, this mathematical grounding has given Lisp unusual
power, durability and influence. Ideas such as list-based data structures,
functional programming, and dynamic binding, which are now accepted
features of mainstream programming languages can trace their origins to
earlier work in Lisp. Meta-circular definition, in which compilers and
interpreters for a language are written in a core version of the language
itself, was the basis of the first, and subsequent Lisp implementations. This
approach, still revolutionary after more than fifty years, replaces
cumbersome language specifications with an elegant, formal, public,
testable meta-language kernel that supports the continued growth and
refinement of the language.

Lisp was first proposed by John McCarthy in the late 1950s. The language
was originally intended as an alternative model of computation based on
the theory of recursive functions. In an early paper, McCarthy (McCarthy
1960) outlined his goals: to create a language for symbolic rather than
numeric computation, to implement a model of computation based on the
theory of recursive functions (Church 1941), to provide a clear definition
of the language’s syntax and semantics, and to demonstrate formally the
completeness of this computational model. Although Lisp is one of the
oldest computing languages still in active use (along with FORTRAN and
COBOL), the careful thought given to its original design and the
extensions made to the language through its history have kept it in the
vanguard of programming languages. In fact, this programming model has
proved so effective that a number of other languages have been based on
functional programming, including SCHEME, SML-NJ, FP, and OCAML.
In fact, several of these newer languages, e¢.g., SCHEME and SML-NJ,
have been designed specifically to reclaim the semantic clarity of the eatlier
versions of Lisp.

The list is the basis of both programs and data structures in Lisp: Lisp is an
acronym for list processing. Lisp provides a powerful set of list-handling
functions implemented internally as linked pointer structures. Lisp gives
programmers the full power and generality of linked data structures while
freeing them, with real-time garbage collection, from the responsibility for
explicitly managing pointers and pointer operations.

Originally, Lisp was a compact language, consisting of functions for
constructing and accessing lists (car, cdr, cons), defining new functions
(defun), detecting equality (eq), and evaluating expressions (quote,
eval). The only means for building program control were recursion and a
single conditional. More complicated functions, when needed, were
defined in terms of these primitives. Through time, the best of these new
functions became part of the language itself. This process of extending the
language by adding new functions led to the development of numerous
dialects of Lisp, often including hundreds of specialized functions for data
structuring, program control, real and integer arithmetic, input/output
(I/0), editing Lisp functions, and tracing program execution. These
dialects are the vehicle by which Lisp has evolved from a simple and
elegant theoretical model of computing into a rich, powerful, and practical

13
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environment for building large software systems. Because of the
proliferation of eatly Lisp dialects, the Defense Advanced Research
Projects Agency in 1983 proposed a standard dialect for the language,
known as Common Lisp.

Although Common Lisp has emerged as the lingua franca of Lisp dialects,
a number of simpler dialects continue to be widely used. One of the most
important of these is SCHEME, an elegant rethinking of the language that
has been used both for Al development and for teaching the fundamental
concepts of computer science. The dialect we use throughout the
remainder of our book is Common Lisp. All our code may be run on a
current public domain interpreter built by Carnegie Mellon University,
called CMUCL (Google CMUCL).

Java is the third language considered in this book. Although it does not
have Lisp or Prolog’s long historical association with Artificial Intelligence,
it has become extremely important as a tool for delivering practical Al
applications. There are two primary reasons for this. The first is Java’s
elegant, dynamic implementation of object-oriented programming, a
programming paradigm with its roots in Al, that has proven its power for
use building Al programs through Smalltalk, Flavors, the Common Lisp
Object System (CLOS), and other object-oriented systems. The second
reason for Java’s importance to Al is that it has emerged as a primary
language for delivering tools and content over the world-wide-web. Java’s
ease of programming and the large amounts of reusable code available to
programmers greatly simplify the coding of complex programs involving
Al techniques. We demonstrate this in the final chapters of Part I'V.

Object-oriented programming is based on the idea that programs can be
best modularized in terms of objects: encapsulated structures of data and
functionality that can be referenced and manipulated as a unit. The power
of this programming model is enhanced by inheritance, or the ability to
define sub-classes of more general objects that inherit and modify their
functionality, and the subtle control object-oriented languages provide over
the scoping of variables and functions alike.

The first language to build object-oriented representations was created in
Norway in the 1960s. Simula-67 was, appropriately, a simulation language.
Simulation is a natural application of object-oriented programming that
language objects are used to represent objects in the domain being
simulated. Indeed, this ability to easily define isomorphisms between the
representations in an object-otiented program and a simulation domain has
carried over into modern object-oriented programming style, where
programmers are encouraged to model domain objects and their
interactions directly in their code.

Perhaps the most elegant formulation of the object-oriented model is in
the Smalltalk programming language, built at Xerox PARC in the early
1970s. Smalltalk not only presented a very pure form of object-oriented
programming, but also used it as a tool for graphics programming. Many of
the ideas now central to graphics interfaces, such as manipulable screen
objects, event driven interaction, and so on, found their eatly
implementation in the Smalltalk language. Other, later implementations of
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object-programming include C++, Objective C, C#, and the Common
Lisp Object System. The success of the model has made it rare to find a
programming language that does not incorporate at least some object-
oriented ideas.

Our first introduction of object-oriented languages is with the Common
Lisp Object System in Chapter 18 of Part III. However, in Part IV, we
have chosen Java to present the use of object-oriented tools for Al
programming. Java offers an elegant implementation of object-orientation
that implements single inheritance, dynamic binding, interface definitions,
packages, and other object concepts in a language syntax that most
programmers will find natural. Java is also widely supported and
documented.

The primary reason, however, for including Java in this book is its great
success as a practical programming language for a large number and vatiety
of applications, most notably those on the world-wide-web. One of the
great benefits of object-oriented programming languages is that the ability
to define objects combining data and related methods in a single structure
encourages the development of reusable software objects.

Although Java is, at its core, a relatively simple language, the efforts of
thousands of programmers have led to large amounts of high-quality, often
open source, Java code. This includes code for networking, graphics,
processing html and XML, security, and other techniques for programming
on the world-wide-web. We will examine a number of public domain Java
tools for Al, such as expert system rule engines, machine learning
algorithms, and natural language parsers. In addition, the modularity and
control of the object-oriented model supports the development of large
programs. This has led to the embedding of Al techniques in larger and
indeed more ordinary programs. We see Java as an essential language for
delivering Al in practical contexts, and will discuss the Java language in this
context. In this book we refer primarily to public domain interpreters most
of which are easily web accessible.

A Summary of Our Task

We hope that in reading this introductory chapter, you have come to see
that our goal in writing this book is not simply to present basic
implementation strategies for major Artificial Intelligence algorithms.
Rather, our goal is to look at programming languages as tools for the
intellectual activities of design, knowledge modeling, and system
development.

Computer programming has long been the focus both for scientific theory
and engineering practice. These disciplines have given us powerful tools
for the definition and analysis of algorithms and for the practical
management of large and small programming projects. In writing this
book, it has been our overarching goal to provide a third perspective on
programming languages: as tools for the art of designing systems to
supportt people in their thinking, communication, and work.

It is in this third perspective that the ideas of idioms and patterns become

15
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important. It is not our goal simply to present examples of artificial
intelligence algorithms that can be reused in a narrow range of situations.
Our goal is to use these algorithms — with all their complexity and
challenges — to help programmers build a repertoire of patterns and idioms
that can serve well across a wide range of practical problem solving
situations. The examples of this book are not ends in themselves; they are
only small steps in the maturation of the master programmer. Our goal is
to see them as starting points for developing programmers’ skills. We hope
you will share our enthusiasm for these remarkable artist’s tools and the
design patterns and idioms they both enable and support.



PART II: Programming in Prolog

The only way to rectify onr reasonings is to make them as tangible as those of the mathematicians, so that
we can find our error at a glance, and when there are disputes among persons we can simply say, “Let us
calenlate. .. to see who is right.”

—Leibniz, The Art of Discovery

As an implementation of logic programming, Prolog makes many
important contributions to Al problem solving. First and foremost, is its
direct and transparent representation and interpretation of predicate
calculus expressions. The predicate calculus has been an important
representational scheme in Al from the beginning, used everywhere from
automated reasoning to robotics research. A second contribution to Al is
the ability to create meta-predicates or predicates that can constrain,
manipulate, and interpret other predicates. This makes Prolog ideal for
creating meta-interpreters or interpreters written in Prolog that can
interpret subsets of Prolog code. We will do this many times in the
following chapters, writing interpreters for expert rule systems, exshell,
interpreters for machine learning using version space search and
explanation based learning models, and deterministic and stochastic natural
language parsers.

Most importantly Prolog has a declarative semantics, a means of directly
expressing problem relationships in Al. Prolog also has built-in unification,
some high- powered techniques for pattern matching and a depth-first left
to right search. For a full description of Prolog representation, unification,
and search as well as Prolog interpreter compared to an automated
theorem prover, we recommend Luger (2009, Section 14.3) or references
mentioned in Chapter 10. We will also address many of the important
issues of Prolog and logic programming for artificial intelligence
applications in the chapters that make up Part 1.

In Chapter 2 we present the basic Prolog syntax and several simple
programs. These programs demonstrate the use of the predicate calculus as
a representation language. We show how to monitor the Prolog
environment and demonstrate the use of the e with Prolog’s built in
depth-first left-to-right search. We also present simple structured
representations including semantic nets and frames and present a simple
recursive algorithm that implements inheritance search.

In Chapter 3 we create abstract data types (ADTs) in Prolog. These ADTs
include stacks, guenes, priority quenes, and sets. These data types are the basis
for many of the search and control algorithms in the remainder of Part II.
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In particular, they are used to build a production systemr in Chapter 4, which
can perform depth-first, breadth-first, and best-first ot henristic search. They also
are critical to algorithms later in Part II including building planners,
parsers, and algorithms for machine learning.

In Chapter 5 we begin to present the family of design patterns expressed
through building meta-interpreters. But first we consider a number of
important Prolog meta-predicates, predicates whose domains of interpretation
are Prolog expressions themselves. For example, atom(X) succeeds if X is
bound to an atom, that is if X is instantiated at the time of the atom(X)
test. Meta-predicates may also be used for imposing type constraints on
Prolog interpretations, and we present a small database that enforces
Prolog typing constraints.

In Chapter 6 meta-predicates are used for designing meta-interprefers in
Prolog. We begin by building a Prolog interpreter in Prolog. We extend
this interpreter to rule-based expert system processing with exshell and
then build a robot planner using add- and delete-lists along the lines of the
older STRIPS problem solver (Fikes and Nilsson 1972, Nilsson 1980).

In Chapter 7 we demonstrate Prolog as a language for machine learning,
with the design of meta-interpreters for version space search and explanation-
based learning. In Chapter 8 we build a number of natural language
parsers/generators in Prolog, including context-free, context-sensitive,
probabilistic, and a recursive descent semantic net parser.

In Chapter 9 we present the Earley parser, a form of chart parsing, an
important contribution to interpreting natural language structures. The
Earley algorithm is built on ideas from dynamic programming (Luger 2009,
Section 4.1.2 and 15.2.2) where the chart captures sub-parse components
as they are generated while the algorithm moves across the words of the
sentence. Possible parses of the sentence are retrieved from the chart after
completion of its left-to-right generation of the chart.

Part II ends with Chapter 10 where we return to the discussion of the
general issues of programming in logic, the design of meta-interpreters, and
issues related to procedural versus declarative representation for problem
solving. We end Chapter 10 presenting an extensive list of references on
the Prolog language.
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2.1

Prolog and
Logic

Introduction: Logic-Based Representation

Prolog is a computer language that uses many of the representational
strengths of the First-Order Predicate Calculus (Luger 2009, Chapter 2).
Because Prolog has this representational power it can express general
relationships between entities. This allows expressions such as “all females
are intelligent” rather than the limited representations of the propositional
calculus: “Kate is intelligent”, “Sarah is intelligent”, “Karen is intelligent”,
and so on for a very long time!

As in the Predicate Calculus, predicates offer the primary (and only)
representational structure in Prolog. Predicates can have zero or more
arguments, where their arty is the number of arguments. Functions may
only be represented as the argument of a predicate; they cannot be a
program statement in themselves. Prolog predicates have the usual and,
or, not and implies connectives. The predicate representation along
with its connectives is presented in Section 2.2.
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2.2

Facts, Rules
and
Connectives

Prolog also takes on many of the declarative aspects of the Predicate
Calculus in the sense that a program is simply the set of all true predicates
that describe a domain. The Prolog interpreter can be seen as a “theorem
prover” that takes the uset’s query and determines whether or not it is true,
as well as what variable substitutions might be required to make the query
true. If the query is not true in the context of the program’s specifications,
the interpreter says “no.”

Prolog Syntax

Although there are numerous dialects of Prolog, the syntax used
throughout this text is that of the original Warren and Pereira C-Prolog as
described by Clocksin and Mellish (2003). We begin with the set of
connectives that can take atomic predicates and join them with other
expressions to make more complex relationships. There are, because of the
usual keyboard conventions, a number of differences between Prolog and
predicate calculus syntax. In C-Prolog, for example, the symbol :- replaces
the € of first-order predicate calculus. The Prolog connectives include:

ENGLISH PREDICATE CALCULUS Prolog
and A :

or v ;

only if < -

not ~ not

In Prolog, predicate names and bound variables are expressed as a
sequence of alphanumeric characters beginning with an alphabetic.
Variables are represented as a string of alphanumeric characters beginning
(the first character, at least) with an uppercase alphabetic. Thus:

likes (X, susie).
or, bettet,
likes (Everyone, susie).

could represent the fact that “everyone likes Susie.” Note that the scope of
all variables is universal to that predicate, i.e., when a vatiable is used in a
predicate it is understood that it is true for all the domain elements within
its scope. For example,

likes(george, Y), likes(susie, Y).
represents the set of things (or people) liked by BOTH George and Susie.

Similarly, suppose it was desired to represent in Prolog the following
relationships: “George likes Kate and George likes Susie.” This could be
stated as:

likes(george, kate), likes(george, susie).
Likewise, “George likes Kate or George likes Susie™:

likes(george, kate); likes(george, susie).
Finally, “George likes Susie if George does not like Kate”:

likes(george, susie) :- not(likes(george, kate)).
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These examples show how the predicate calculus connectives ate expressed
in Prolog. The predicate names (likes), the number or order of parameters,
and even whether a given predicate always has the same number of
parameters are determined by the design requirements (the implicit
“semantics”) of the problem.

The form Prolog expressions take, as in the examples above, is a restricted
form of the full predicate calculus called the “Horn Clause calculus.” There
are many reasons supporting this restricted form, most important is the
power and computational efficiency of a resolution refutation system. For details
see Luger (2009, Chapter 14).

A Prolog program is a set of specifications in the first-order predicate
calculus describing the objects and relations in a problem domain. The set
of specifications is referred to as the database for that problem. The Prolog
interpreter responds to questions about this set of specifications. Queries to
the database are patterns in the same logical syntax as the database entries.
The Prolog interpreter uses pattern-directed search to find whether these
queties logically follow from the contents of the database.

The interpreter processes queries, searching the database in left to right
depth-first order to find out whether the query is a logical consequence of
the database of specifications. Prolog is primarily an interpreted language.
Some versions of Prolog run in interpretive mode only, while others allow
compilation of part or all of the set of specifications for faster execution.
Prolog is an interactive language; the user enters queries in response to the
Prolog prompt, “?-.
Let us describe a “world” consisting of George’s, Kate’s, and Susie’s likes
and dislikes. The database might contain the following set of predicates:

likes(george, kate).

likes(george, susie).

likes(george, wine).

likes(susie, wine).

likes(kate, gin).

likes(kate, susie).
This set of specifications has the obvious interpretation, or mapping, into

the world of George and his friends. That world is a mode/ for the database
(Luger 2009, Section 2.3). The interpreter may then be asked questions:

?- likes(george, kate).
Yes
?- likes(kate, susie).
Yes

?- likes(george, X).

X = kate
7
X = Susie
7
X = wine
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i
no
?- likes(george, beer).
no

Note first that in the request 1ikes(george, X), successive user
prompts (;) cause the interpreter to return all the terms in the database
specification that may be substituted for the X in the query. They ate
returned in the order in which they are found in the database: kate before
susie before wine. Although it goes against the philosophy of
nonprocedural specifications, a determined order of evaluation is a
property of most interpreters implemented on sequential machines.

To summarize: further responses to queries are produced when the user
prompts with the ; (or). This forces the rejection of the current solution
and a backtrack on the set of Prolog specifications for answers. Continued
prompts force Prolog to find all possible solutions to the query. When no
further solutions exist, the interpreter responds no.

This example also illustrates the closed world assumption ot negation as failure.
Prolog assumes that “anything is false whose opposite is not provably
true.” For the query 1ikes (george, beer), the interpreter looks for
the predicate likes(george, beer) or some rule that could
establish 1ikes (george, beer). Failing this, the request is false.
Prolog assumes that all knowledge of the wozld is present in the database.

The closed wotld assumption introduces a number of practical and
philosophical difficulties in the language. For example, failure to include a
fact in the database often means that its truth is unknown; the closed world
assumption treats it as false. If a predicate were omitted or there were a
misspelling, such as 1ikes (george, beeer), the response remains
no. Negation-as-failure issue is an important topic in Al research. Though
negation-as-failure is a simple way to deal with the problem of unspecified
knowledge, more sophisticated approaches, such as multi-valued logics
(true, false, unknown) and nonmonotonic reasoning (see Luger
2009, Section 9.1), provide a richer interpretive context.

The Prolog expressions just seen are examples of fact specifications. Prolog
also supports rule predicates to describe relationships between facts. We use
the logical implication :— . For rules, only one predicate is permitted on
the left-hand side of the 7/ symbol : -, and this predicate must be a positive
literal, which means it cannot have not in front of it. All predicate calculus
expressions that contain logical implication must be reduced to this form,
referred to as Homn clause logic. In Horn clause form, the left-hand side
(conclusion) of an implication must be a single positive literal. The Horn
clause calenlus is equivalent to the full first-order predicate calculus for proofs
by refutation (Luger 2009, Chapter 14).

Suppose we add to the specifications of the previous database a rule for
determining whether two people are friends. This may be defined:

friends (X, Y) :- likes(X, Z), likes(Y, Z2).
This expression might be interpreted as “X and Y are friends if there exists
a Z such that X likes Z and Y likes Z.” Two issues are important here. First,
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because neither the predicate calculus nor Prolog has global variables, the
scopes (extent of definition) of X, Y, and Z are limited to the friends
rule. Second, values bound to, or unified with, X, Y, and Z are consistent
across the entire expression. The treatment of the friends rule by the
Prolog interpreter is seen in the following example.

With the friends rule added to the set of specifications of the preceding
example, we can query the interpreter:

?- friends(george, susie).
yes

To solve this query, Prolog searches the database using the backtrack
algorithm. Briefly, backtrack examines each predicate specification in the
order that it was placed in the Prolog. If the variable bindings of the
specification satisfy the query it accepts them. If they don’t, the interpreter
goes on to the next specification. If the interpreter runs into a dead end,
i.e., no variable substitution satisfies it, then it backs up looking for other
variable bindings for the predicates it has already satisfied. For example,
using the predicate specifications of our current example, the query
friends(george, susie) is unified with the conclusion of the rule
friends(X, Y) :- likes(X, Z), likes(Y, Z), with X as
george and Y as susie. The interpreter looks for a Z such that
likes(george, 1Z) is true and uses the first fact, with Z as kate.

The interpreter then tries to determine whether likes(susie,
kate) is true. When it is found to be false, using the closed world
assumption, this value for Z (kate) is rejected. The interpreter backtracks
to find a second value for Z. likes (george, Z) then matches the
second fact, with Z bound to susie. The interpreter then tries to match
likes(susie, susie). When this also fails, the interpreter goes
back to the database for yet another value for Z. This time wine is found
in the third predicate, and the interpreter goes on to show that
likes(susie, wine) is true. In this case wine is the binding that
ties george and susie.

It is important to state the relationship between universal and existential
quantification in the predicate calculus and the treatment of variables in a
Prolog program. When a variable is placed in the specifications of a Prolog
database, it is universally quantified. For example, 1ikes (susie, Y)
means, according to the semantics of the previous examples, “Susie likes
everyone.” In the course of interpreting a query, any term, or list, or
predicate from the domain of ¥, may be bound to Y. Similarly, in the rule
friends(X, Y) :- likes(X, Z), likes(Y, Z),anyX,Y,
and Z that meets the specifications of the expression are used.

To represent an existentially quantified variable in Prolog, we may take two
approaches. First, if the existential value of a variable is known, that value
may be entered directly into the database. Thus, likes(george,
wine) is an instance of 1ikes (george, Z).

Second, to find an instance of a variable that makes an expression true, we
query the interpreter. For example, to find whether a Z exists such that
likes(george, Z) is true, we put this query to the interpreter. It will
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2.3

find whether a value of Z exists under which the expression is true. Some
Prolog interpreters find all existentially quantified values; C-Prolog requires
repeated user prompts (;), as shown previously, to get all values.

Creating, Changing, and Tracing a Prolog Computation

In building a Prolog program the database of specifications is created first.
In an interactive environment the predicate assert can be used to add
new predicates to the set of specifications. Thus:

?- assert(likes(david, sarah)).

adds this predicate to the computing specifications. Now, with the query:
?- likes(david, X).
X = sarah.

is returned. assert allows further control in adding new specifications to
the database: asserta (P) asserts the predicate P at the beginning of all
the predicates P, and assertz (P) adds P at the end of all the predicates
named P. This is important for search priorities and building heuristics. To
remove a predicate P from the database retract (P) is used. (It should
be noted that in many Prologs assert can be unpredictable in that the
exact entry time of the new predicate into the environment can vary
depending on what other things are going on, affecting both the indexing
of asserted clauses as well as backtracking.)

It soon becomes tedious to create a set of specifications using the
predicates assert and retract. Instead, the good programmer takes
her favorite editor and creates a file containing all the Prolog program’s
specifications. Once this file is created, call it myfile, and Prolog is
called, then the file is placed in the database by the Prolog command
consult. Thus:

?- consult(myfile).
yes
integrates the predicates in myfile into the database. A short form of the

consult predicate, and better for adding multiple files to the database,
uses the list notation, to be seen shortly:

?- [myfile].
yes

If there are any syntax errors in your Prolog code the consult operator
will describe them at the time it is called.

The predicates read and write are important for user/system
communication. read (X) takes the next term from the current input
stteam and binds it to X. Input expressions are terminated with a “.”
write(X) puts X in the output stream. If X is unbound then an integer
preceded by an underline is printed (_69). This integer represents the
internal bookkeeping on variables necessary in a theorem-proving
environment (see Luger 2009, Chapter 14).

The Prolog predicates see and tell are used to read information from
and place information into files. see (X) opens the file X and defines the
current input stream as originating in X. If X is not bound to an available
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file see(X) fails. Similarly, tell (X) opens a file for the output stream.
If no file X exists, tell (X) creates a file named by the bound value of X.
seen(X) and told(X) close the respective files.

A number of Prolog predicates are important in helping keep track of the
state of the Prolog database as well as the state of computing about the
database; the most important of these are 1isting, trace, and spy. If
we use listing(predicate name) where predicate name is
the name of a predicate, such as friends (above), all the clauses with
that predicate name in the database are returned by the interpreter. Note
that the number of arguments of the predicate is not indicated; in fact, all
uses of the predicate, regardless of the number of arguments, are returned.

trace allows the user to monitor the progress of the Prolog interpreter.
This monitoring is accomplished by printing to the output file every goal
that Prolog attempts, which is often more information than the user wants
to have. The tracing facilities in Prolog are often rather cryptic and take
some study and experience to understand. The information available in a
trace of a Prolog program usually includes the following:

The depth level of recursive calls (marked left to right on line).
When a goal is tried for the first time (sometimes call is used).
When a goal is successfully satisfied (with an exit).

When a goal has further matches possible (a retry).

When a goal fails because all attempts to satisfy it have failed
The goal notrace stops the exhaustive tracing.

When a more selective trace is required the goal spy is useful. This
predicate takes a predicate name as argument but sometimes is defined as a
prefix operator where the predicate to be monitored is listed after the
operator. Thus, spy member causes the interpreter to print to output all
uses of the predicate member. spy can also take a list of predicates
followed by their arities: spy[member/2, append/3] monitors
member with two arguments and append with three. nospy removes
these spy points.

Lists and Recursion in Prolog

The previous subsections presented Prolog syntax with several simple
examples. These examples introduced Prolog as an engine for computing
with predicate calculus expressions (in Horn clause form). This is
consistent with all the principles of predicate calculus inference presented
in Luger (2009, Chapter 2). Prolog uses unification for pattern matching
and returns the bindings that make an expression true. These values are
unified with the variables in a particular expression and are not bound in
the global environment.

Recursion is the primary control mechanism for Prolog programming. We
will demonstrate this with several examples. But first we consider some
simple list-processing examples. The list is a data structure consisting of
ordered sets of elements (or, indeed, lists). Recursion is the natural way to
process the list structure. Unification and recursion come together in list
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processing in Prolog. The set of elements of a list are enclosed by brackets,
[ ], and are separated by commas. Examples of Prolog lists are:
(1, 2, 3, 4]
[[george, kate], [allen, amy], [richard, shirley]]
[tom, dick, harry, fred]

[ ]

The first elements of a list may be separated from the tail of the list by the
bar operator, |. The tail of a list is the list with its first element removed.
For instance, when the list is [tom,dick,harry,fred], the first
clement is tom and the tail is the list [dick, harry, fred]. Using
the vertical bar operator and unification, we can break a list into its
components:

If [tom, dick, harry, fred] is matched to [X | Y],

then X = tom and Y = [dick, harry, fred].

If [tom,dick,harry,fred] is matched to the pattern
[X, Y | 2], then X = tom , Y = dick , and 2z =
[harry, fred].

If [tom, dick, harry, fred] is matched to [X, Y, Z |
W], then X = tom, Y = dick, Z2 = harry, and W =
[fred].

If [tom, dick, harry, fred] is matched to [W, X, Y,
Z | V], then W = tom, X = dick, Y = harry, Z = fred,
and V. = [ ].

[tom, dick, harry, fred] will not match [V, W, X, Y,
z | ul.

[tom, dick, harry, fred] will match [tom, X |
[harry, fred]], to give X = dick.

Besides “tearing lists apart” to get at particular elements, unification can be
used to “build” the list structure. For example, if X = tom, ¥ =
[dick] when L unifies with [X | Y], then L will be bound to [tom,
dick]. Thus terms separated by commas before the | are all elements of
the list, and the structure after the | is always a list, the tail of the list.

Let’s take a simple example of recursive processing of lists: the member
check. We define a predicate to determine whether an item, represented by
X, is in a list. This predicate member takes two arguments, an element and
a list, and is true if the element is a member of the list. For example:

?- member(a, [a, b, ¢, d, e]).
yes

?- member(a, [1, 2, 3, 4]).

no

?- member(X, [a, b, c]).

X = a

7
X =D

~e

>
I
Q
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4

no
To define member recursively, we first test if X is the first item in the list:
member (X, [X | T]).

This tests whether X and the first element of the list are identical. Not that
this pattern will match no matter what X is bound to: an atom, a list,
whatevet! If the two are not identical, then it is natural to check whether X
is an element of the rest (T) of the list. This is defined by:

member (X, [Y | T]) :- member(X, T).

The two lines of Prolog for checking list membership are then:
member (X, [X | T]).
member (X, [Y | T]) :- member(X, T).

This example illustrates the importance of Prolog’s built-in order of search
with the terminating condition placed before the recursive call, that is, to be
tested before the algorithm recurs. If the order of the predicates is reversed,
the terminating condition may never be checked. We now trace
member (c, [a,b,c]), with numbering:
1: member (X, [X | T1).
2: member (X, [Y | T]) :- member(X, T).
?- member(c, [a, b, c]).
call 1. fail, since c <> a
call 2. X =¢, ¥Y=a, T = [b, c],
member(c, | [b,c])?
call 1. fail, since ¢ <> Db
call 2. X =¢, Y=Db, T = [c],
member(c, | [c])?
call 1. success, ¢ = c
yes (to second call 2.)
yes (to first call 2.)
yes
Good Prolog style suggests the use of anonymons variables. These serve as an
indication to the programmer and interpreter that certain variables are used
solely for pattern-matching purposes, with the variable binding itself not
part of the computation process. Thus, when we test whether the element
X is the same as the first item in the list we usually say: member (X,
[X| _1). The use of the _ indicates that even though the tail of the list
plays a crucial part in the unification of the query, the content of the tail of
the list is unimportant. In the member check the anonymous variable
should be used in the recutsive statement as well, where the value of the
head of the list is unimportant:

member (X, [X | _1).
member(X, [_ | T]) :- member(X, T).
Writing out a list one element to a line is a nice exercise for understanding

both lists and recursive control. Suppose we wish to write out the list
[a,b,c,d]. We could define the recursive command:

writelist([ 1).
writelist([H | T]) :- write(H), nl, writelist(T).
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2.5

Semantic Nets
in Prolog

This predicate writes one element of the list on each line, as nl requires the
output stream controller to begin a new line.

If we wish to write out a list in reversed order the recursive predicate must
come before the write command. This guarantees that the list is
traversed to the end before any element is written. At that time the last
element of the list is written followed by each preceding element as the
recursive control comes back up to the top. A reverse write of a list would

be:

reverse _writelist([ ]).
reverse writelist([H | T]) :- reverse writelist(T),
write(H), nl.
The reader should run writelist and reverse writelist with
trace to obsetrve the behavior of these predicates.

Structured Representations and Inheritance Search

Structured representations are an important component of the Al
representational toolkit (Collins and Quillian 1969, Luger 2009). They also
support many of the design patterns mentioned in Chapter 1. In this and
the following section we consider two structured representations, the
semantic net, and frames that are used almost ubiquitously in Al. We now
propose a simple semantic network representational structure in Prolog and
use recursive search to implement inheritance. Our language ignores the
important distinction between classes and instances. This restriction
simplifies the implementation of inheritance.

In the semantic net of Figure 2.1, nodes represent individuals such as the
canary tweety and classes such as ostrich, crow, robin, bird,
and vertebrate. isa links represent the class hierarchy relationship.
We adopt canonical forms for the data relationships within the net. We use
an isa(Type, Parent) predicate to indicate that Type is a member
of Parent and a hasprop(Object, Property, Value)
predicate to represent property relations. hasprop indicates that
Object has Property with Value. Object and Value are nodes in
the network, and Property is the name of the link that joins them.

A partial list of predicates describing the bird hierarchy of Figure 2.1 is:

isa(canary, bird). hasprop(tweety, color, white)
isa(robin, bird). hasprop(robin, color, red).
isa(ostrich, bird). hasprop(canary, color, yellow).
isa(penguin, bird). hasprop(penguin, color, brown).
isa(bird, animal). hasprop(bird, travel, fly).
isa(fish, animal). hasprop(ostrich, travel, walk).
isa(opus, penguin). hasprop(fish, travel, swim).

isa(tweety, canary). hasprop(robin, sound, sing).
hasprop(canary, sound, sing).
hasprop(bird, cover, feathers).

hasprop(animal, cover, skin).



Frames in
Prolog

Chapter 2 Prolog: Representation 29

Figure 2.1 A semantic net for a bird hierarchy reflecting the Prolog code.

We create a recursive search algorithm to find whether an object in our
semantic net has a particular property. Properties are stored in the net at
the most general level at which they are true. Through inheritance, an
individual or subclass acquires the properties of its superclasses. Thus the
property £1y holds for bird and all its subclasses. Exceptions are located
at the specific level of the exception. Thus, ostrich and penguin
travel by walking instead of flying. The hasproperty predicate begins
search at a particular object. If the information is not directly attached to
that object, hasproperty follows isa links to superclasses. If no more
superclasses exist and hasproperty has not located the property, it
fails.

hasproperty(Object, Property, Value) :-
hasprop(Object, Property, Value).
hasproperty(Object, Property, Value) :-
isa(Object, Parent),
hasproperty(Parent, Property, Value).
hasproperty searches the inheritance hierarchy in a depth-first fashion.

In the next section, we show how inheritance can be applied to a frame-
based representation with both single and multiple-inheritance relations.

Semantic nets can be partitioned, with additional information added to
node descriptions, to give them a frame-like structure (Minsky 1975, Luger
2009). We present the bird example again using frames, where each frame
represents a collection of relationships of the semantic net and the isa
slots of the frame define the frame hierarchy as in Figure 2.2.

The first slot of each of the frames name that node, for example,
name (tweety) or name(vertebrate). The second slot gives the
inheritance links between that node and its parents. Because our example
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has a tree structure, each node has only one link, the isa predicate with
one argument. The third slot in the node’s frame is a list of features that
describe that node. In this list we use any Prolog predicate such as f1lies,
feathers, or color (brown). The final slot in the frame is the list of
exceptions and default values for the node, again either a single word or
predicate indicating a property.

In our frame language, each frame organizes its slot names into lists of
properties and default values. This allows us to distinguish these different
types of knowledge and give them different behaviors in the inheritance
hierarchy. Although our implementation allows subclasses to inherit
properties from both lists, other representations are possible and may be
useful in certain applications. We may wish to specify that only default
values are inhetrited. Or we may wish to build a third list containing the
properties of the class itself rather than the members, sometimes called ¢/ass
values. For example, we may wish to state that the class canary names a
species of songbird. This should not be inherited by subclasses or
instances: tweety does not name a species of songbird. Further
extensions to this example are suggested in the exercises.

We now represent the relationships in Figure 2.2 with the Prolog fact
predicate frame with four arguments. We may use the methods suggested
in Chapter 5 to check the parameters of the frame predicate for appropriate
type, for instance, to ensure that the third frame slot is a list that contains
only values from a fixed list of properties.

frame (name(bird),
isa(animal),
[travel(flies), feathers],
[ 1)
frame (name (penguin),
isa(bird),
[color (brown) ],
[travel(walks)]).
frame (name(canary),
isa(bird),
[color(yellow), call(sing)],
[size(small)]).
frame (name (tweety),
isa(canary),
[ 1,
[color(white)]).

Once the full set of descriptions and inheritance relationships are defined
for the frame of Figure 2.2, we create procedures to infer properties from
this representation:
get (Prop, Object) :-
frame(name(Object), , List of properties, ),

member (Prop, List of properties).
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name: bird name: animal

isa: animal isa: animate

properties: flies properties: eats
feathers skin

default: default:

name: canary name: tweety

isa: bird isa: canary

properties: color(yellow) properties:
sound(sing)

default: size(small) default: color(white)

Figure 2.2 A frame system reflecting the Prolog code in the text.
get (Prop, Object) :-
frame(name(Object), ,  List of defaults),
member (Prop, List of defaults).
get (Prop, Object) :-
frame(name(Object), isa(Parent), , ),
get(Prop, Parent).
If the frame structure allows multiple inheritance of properties, we make
this change both in our representation and in our search strategy. First, in
the frame representation we make the argument of the isa predicate a list
of superclasses of the Object. Thus, cach superclass in the list is a parent

of the entity named in the first argument of frame. If opus is a
penguin and a cartoon_char we represent this:

frame (name(opus),
isa([penguin, cartoon_char]),
[color(black)],
[ 1).

Now, we test for properties of opus by recurring up the isa hierarchy
for both penguin and cartoon_char. We add the following get
definition between the third and fourth get predicates of the previous
example.
get (Prop, Object) :-
frame(name(Object), isa(List), _, _),
get multiple(Prop, List).
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We define get_multiple by:
get multiple(Prop, [Parent _]) :-
get (Prop, Parent).
get multiple(Prop, [_ Rest]) :-
get multiple(Prop, Rest).

With this inheritance preference, properties of penguin and its
superclasses will be examined before those of cartoon_char.

Finally, any Prolog procedure may be attached to a frame slot. As we have
built the frame representation in our examples, this would entail adding a
Prolog rule, or list of Prolog rules, as a parameter of frame. This is
accomplished by enclosing the entire rule in patentheses, as we will see for
rules in exshell in Chapter 6, and making this structure an argument of
the frame predicate. For example, we could design a list of response rules
for opus, giving him different responses for different questions.

This list of rules, each rule in parentheses, would then become a parameter
of the frame and, depending on the value of X passed to the opus frame,
would define the appropriate response. More complex examples could be
rules describing the control of a thermostat or creating a graphic image
appropriate to a set of values. Examples of this are presented in both Lisp
(Chapter 17) and Java (Chapter 21) where attached procedures, often called
methods, play an important role in object-oriented representations.

Exercises

1. Create a relational database in Prolog. Represent the data tuples as facts
and the constraints on the data tuples as rules. Suitable examples might be
from stock in a department store or records in a personnel office.

2. Write the “member check” program in Prolog. What happens when an
item is not in the list? Query to the “member” specification to break a list
into its component elements.

3. Design a Prolog program unique (Bag, Set) that takes a bag (a list
that may contain duplicate elements) and returns a sef (no elements are
repeated).

4. Write a Prolog program to count the elements in a list (a list within the
list counts as one element). Write a program to count the atoms in a list
(count the elements within any sublist). Hint: several meta-predicates such
as atom( ) can be helpful.

5. Implement a frame system with inheritance that supports the definition
of three kinds of slots: properties of a class that may be inherited by
subclasses, properties that are inherited by instances of the class but not by
subclasses, and properties of the class and its subclasses that are not
inherited by instances (class properties). Discuss the benefits, uses, and
problems with this distinction.
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Abstract Data Types and Search

Prolog’s graph search representations were described and built:
Lists
A recursive tree-walk algorithm
The cut predicate, |, for Prolog was presented:
Controls the interpreter’s backtracking
Limits variable instantiations, and thus
May prevent the interpreter from computing good solutions
Demonstrated procedural abstraction and information hiding with Abstract Data
Types
The stack operators
The queue operators
The priority queue operators
Sets

3.1 Recursive Search in Prolog
3.2 Using cut to Control Search in Prolog
3.3 Abstract Data Types in Prolog

3.1

Recursion-
Based Graph
Search

Introduction

We next introduce the 3 x 3 knight’s tour problem, create a predicate
calculus based representation of problem states, and a recursive search of
its state space. The chess knight can move on a restricted board as on any
regular chessboard: two squares one direction (horizontally or vertically)
and one in the other (vertically or horizontally). Thus, the knight can go
from square 1 to either square 6 or 8 or from square 9 to either 2 or 4. We
ask if the knight can generate a sequence on legal moves from one square
to another on this restricted chessboard, from square 1 to 9, for example.
The knight’s moves are represented in Prolog using move facts, Figure 3.1.

The path predicate defines an algorithm for a path between its two
arguments, the present state, X, and the goal that it wants to achieve, Y. To
do this it first tests whether it is where it wants to be, path(Z, Z), and
if not, looks for a state, W, to move to

The Prolog search defined by path is a recursive, depth-first, left-to-right,
tree walk. As shown in Section 2.3, assert is a built-in Prolog predicate
that always succeeds and has the side effect of placing its argument in the
database of specifications. The been predicate is used to record each state
as it is visited and then not (been (X)) determines, with each new state
found whether that state has been previously visited, thus avoiding looping
within the search space.
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Figure 3.1. The 3 x 3 chessboard and set of legal moves expressed as
Prolog facts.

path(z, Z).
path(X, Y) :-
move (X, W), not(been(W)), assert(been(W)),
path(w, Y).
This use of the been predicate violates good programming practice in that
it uses global side-effects to control search. been (3), when asserted into

the database, is a fact available to any other predicate and, as such, has
global extension. We created been to modify the program execution.

A more sophisticated method for control of search is to create a list that
keeps track of visited states. We create this list and make it the third
argument of the path predicate. As each new state is encountered, the
member predicate, Section 2.3, checks whether or not it is already a visited
state. If the state is not a member of the list we put it on this list in the
order in which it was encountered, the most recent state encountered the
head of the list. If the new state is on the list of already visited states, the
path predicate backtracks looking for new non-visited states. This
approach remedies the problems of using global been (W) . The following
clauses implement depth-first left-to right graph search with backtracking.
path(z, Z, L).
path(X, Y, L) :-
move (X, Z), not(member(z, L)),
path(z, ¥, [Z]|L]).

The third parameter of path is the variable representing the list of visited
states. When a new state not already on the list of visited states L, it is
placed on the front of the state list [Z | L] for the next path call. It
should be noted that all the parameters of path are local and their current
values depend on where they are called in the graph search. Each
successful recursive call adds a state to this list. If all continuations from a
certain state fail, then that particular path call fails and the interpreter
backs up to the parent call. Thus, states are added to and deleted from this
state list as the backtracking search moves through the graph.

When the path call finally succeeds, the first two parameters are identical
and the third parameter is the list of states visited, in reverse order. Thus
we can print out the steps of the solution. The call to the Prolog interpreter
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path(X,Y,[X]), where X and Y are replaced by numbers between 1
and 9, finds a path from state X to state Y, if the path exists. The third
parameter initializes the path list with the starting state X. Note that there is
no typing distinction in Prolog: the first two parameters are any
representation of states in the problem space and the third is a list of states.
Unification makes this generalization of pattern matching across data types
possible. Thus, path is a general depth-first search algorithm that may be
used with any graph. In Chapter 4 we use this algorithm to implement a
solution to the farmer, wolf, goat, and cabbage problem, with different
state specifications of state in the call to path.

We now present a solution for the 3 x 3 knight’s tour. (It is an exercise to
solve the full 8 x 8 knight’s tour problem in Prolog. We refer to the two
parts of the path algorithm by number:
l. is path(z, 2, L).
2. is path(X, Y, L) :-
move (X, Z), not(member(z, L)),

path(z, Y, [Z | L]).

?- path(1, 3, [1]).
path(1l, 3, [1]) attempts to match 1. fail 1<>3.
path(1, 3, [1]) matches 2. X=1, Y=3, L=[1]
move(l, Z) matches, Z=6,
not (member(6,[1]) )=true,
call path(6, 3, [6,1]
path(6, 3, [6,1]) trys to match 1. fail 6<>3.
path(6, 3, [6,1]) calls 2. X=6, ¥Y=3, L=[6, 1].
move(6, Z) matches, Z=7,
not (member (7, [6,1]))=true,
call path(7, 3, [7,6,1])
path(7, 3, [7,6,1]) trys to match 1. fail 7<>3.
path(7, 3, [7,6,1]) in 2: X=7, ¥Y=3, L=[7,6,1].
move(7, Z) matches Z=6,
not (member(6, [7,6,1])) fails, backtrack!
move(7, Z) matches, Z = 2,
not (member (2, [7,6,1])) is true
call path(2, 3, [2,7,6,1])
path(2, 3, [2,7,6,1]) attempts 1, fail, 2 <> 3.
path matches 2, X in 2: Y is 3, L is [2, 7, 6, 1]
move(2, Z) matches, Z=7,
not (member(..)) fails, backtrack!
move(2, Z) matches Z=9,
not (member(..)) is true,
call path(9, 3, [9,2,7,6,1])
path(9, 3, [9,2,7,6,1]) fails 1, 9<>3.
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3.2

path matches 2, X=9, Y=3, L=[9,2,7,6,1]
move(9, Z) matches Z = 4,
not (member(..)) is true,
call path(4, 3, [4,9,2,7,6,1])
path(4, 3, [4,9,2,7,6,1])fails 1, 4<>3.
path matches 2, X=4, Y=3, L is [4,9,2,7,6,1]
3,

move(4, Z) matches Z
not (member(..)) true,
call path(3, 3, [3,4,9,2,7,6,1])

path(3, 3, [3,4,9,2,7,6,1]) attempts 1, true, 3=3

The recursive path call then returns yes for each of its calls.

In summary, the recursive path call is a she// or general control structure
for search in a graph: in path (X, Y, L), Xis the present state; Y is the
goal state. When X and Y are identical, the recursion terminates. L is the
list of states on the current path towards state ¥, and as each new state Z is
found with the call move (X, 2) itis placed on front of the list: [Z |
L]. The state list is checked, using not (member (Z, L)), to be sutre
the path does not loop.

In Chapter 4, we generalize this approach creating a closed list that retains
all the states visited and does not remove visited states when the path
predicate backtracks from a state that has no “useful” children. The
difference between the state list L in the path call above and the closed
set in Chapter 4 is that closed records all states visited, while the state list L
keeps track of only the present path of states.

Using cut to Control Search in Prolog

The predicate ¢ut is tepresented by an exclamation point, |. The syntax for
cut is that of a goal with no arguments. Cut has several side effects: first,
when originally encountered it always succeeds, and second, if it is “failed
back to” in backtracking, it causes the entire goal in which it is contained to
fail. For a simple example of the effect of the cut, we create a two-move
path call from the knight’s tour example that we just presented. Consider
the predicate path2:

path2 (X, Y) :- move(X, Z), move(Z, Y).
There is a two-move path between X and Y if there exists an intermediate

state Z between them. For this example, assume part of the knight’s tour
database:

move(l, 8).

move(6, 7).

move(6, 1).

move(8, 3).

move(8, 1).

The interpreter finds all the two-move paths from 1; there are four:

?- path2(1, wW).

W=7
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7
w=1
r

W =3
7
w=1
7

no

When path2 is altered with cut, only two answers result:
path2(X, Y¥) :- move(X, Z), !, move(Z, Y)
?- path2(1, wW).

W=7
7

w=1
7

no

The no response happens because variable Z takes on only one value (the
first value it is bound to), namely 6. Once the first subgoal succeeds, Z is
bound to 6 and the cut is encountered. This prohibits further backtracking
using the first move subgoal and allowing any further bindings for the
variable Z.

There are several justifications for the use of cut in Prolog programming.
First, as this example demonstrated, it allows the programmer to control
precisely the shape of the search tree. When further (exhaustive) search is
not required, the tree can be explicitly pruned at that point. This allows
Prolog code to have the flavor of function calling: when one set of values
(bindings) is “returned” by a Prolog predicate (or set of predicates) and the
cut is encountered, the interpreter does not search for any other
unifications. Thus, if that set of values does not lead to a solution then no
further values are attempted. Of course, in the context of the mathematical
foundations of the predicate calculus itself, cut may prevent the
computation of possible interpretations of the particular predicate calculus
and as a result eliminate a possible answer or mode/, (Luger 2009, Sections
2.3,14.3).

A second use of the cut controls recursive calls. For example, in the path
call:

path(z, %, L).

path(X, Z, L) :- move(X, Y), not(member(Y, L)),

path(Y, 2, [Y|L]),!.

The addition of cut means that (at most) one solution to the graph search
is produced. This single solution is produced because further solutions
occur after the clause path(Z, Z, L) is satisfied. If the user asks for
more solutions, path(z, Z, L) fails, and the second path call is
reinvoked to continue the (exhaustive) search of the graph. When the cut is
placed after the recursive path call, the call cannot be reentered (backed
into) for further search.

Important side effects of the cut are to make the program run faster and to
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consetve memory locations. When cut is used within a predicate, the
pointers in memory needed for backtracking to predicates to the left of the
cut are not created. This is, of course, because they will never be needed.
Thus, cut produces the desired solution, and only the desired solution, with
a more efficient use of memory.

The cut can also be used with recursion to reinitialize the path call for
further search within the graph. This will be demonstrated with the general
search algorithms presented in Chapter 4. For this purpose we also need to
develop several abstract data types.

3.3 Abstract Data Types (ADTs) in Prolog

The ADT Stack

Programming, in almost any environment, is enhanced by creatin
8 g y y 8
procedural abstractions and by hiding information. Because the se, stack,
quene, and priority guene data structures are important support constructs for
graph search algorithms, a major component of Al problem solving, we
build them in Prolog in the present section. We will use these ADT's in the
design of the Prolog search algorithms presented in Chapter 4.

Since lists, recursion, and pattern matching, as emphasized throughout this
book, are the primary tools for building and searching graph structures.
These are the pieces with which we build our ADTs. All list handling and
recursive processing that define the ADT are “hidden” within the ADT
abstraction, quite different than the normal static data structure.

A stack is a linear structure with access at one end only. Thus all elements
must be added to, pashed, and removed, popped, from the structure at that
access end. The stack is sometimes referred to as a last-in-first-out (LIFO)
data structure. We will see its use with depth-first search in Chapter 4. The
operators that we will define for a stack are:

1. Test whether the stack is empty.

2. Push an element onto the stack.

3. Pop or remove, the top element from the stack.

4. Peek (often called Top) to see the top element on the stack

without popping it.

5. Member_ stack, checks whether an element is in the stack.

6. Add list to stack, adds a list of elements to the stack.
Operators 5 and 6 may be built from 1-4.
We now build these operators in Prolog, using the list primitives:

1. empty stack([ ]).

This predicate can be used either to test a stack to see whether it is empty or
to generate a new empty stack.

2-4. stack(Top, Stack, [Top | Stack]).

This predicate performs the push, pop, and peek predicates depending on the
variable bindings of its arguments. For instance, push produces a new stack as
the third argument when the first two arguments are bound. Likewise, pop
produces the top element of the stack when the third argument is bound to
the stack. The second argument will then be bound to the new stack, once the
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top element is popped. Finally, if we keep the stack as the third argument, the
first argument lets us peek at its top element.
5. member stack(Element, Stack) :-

member (Element, Stack).
This allows us to determine whether an element is a member of the stack. Of
course, the same result could be produced by creating a recursive call that
pecked at the next element of the stack and then, if this element did not match
Element, popped the stack. This would continue until the empty stack
predicate was true.
6. add_list to stack(List, Stack, Result) :-
append(List, Stack, Result).

List is added to Stack to produce Result, a new stack. Of course,
the same result could be obtained by popping List (until empty) and
pushing each element onto a temporary stack. We would then pop the
temporary stack and push each element onto the Stack until
empty stack is true for the temporary stack. append is described in
detail in Chapter 10.

A final predicate for printing a stack in reverse order is
reverse_ print_ stack. This is very useful when a stack has, in
reversed order, the current path from the start state to the present state of
the graph search. We will see several examples of this in Chapter 4.

reverse_print stack(S) :-
empty stack(S).

reverse_print stack(S) :-
stack(E, Rest, 9),
reverse print stack(Rest),
write(E), nl.

A guene is a first-in-first-out (FIFO) data structure. It is often characterized
as a list where elements are taken off or dequened from one end and
elements are added to or enguened at the other end. The queue is used for
defining breadth-first search in Chapter 4. The queue operators are:

l. empty queue([ 7).
This predicate tests whether a queue is empty or initializes a new empty queue.
2. enqueue(E, [ ], [E]).
enqueue(E, [H | T], [H | Tnew]) :-
enqueue(E, T, Tnew).

This recursive predicate adds the element E to a queue, the second argument.
The new augmented queue is the third argument.

3. dequeue(E, [E | T], T).

This predicate produces a new queue, the third argument, which is the result
of taking the next element, the first argument, off the original queue, the
second argument.

4, dequeue(E, [E | T], ).

This predicate lets us peek at the next element, E, of the queue.
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The ADT
Priority Queue

The ADT Set

5. member queue(Element, Queue) :-
member (Element, Queue).
This tests whether Element is a member of Queue.
6. add_list to queue(List, Queue, Newqueue) :-
append(Queue, List, Newqueue).

This predicate enqueues an entire list of elements. Of course, 5 and 6 can
be created using 1-4; append is presented in Chapter 10.

A priority quene otrders the elements of a regular queue so that each new
element added to the priority queue is placed in its sorted order, with the
“best” element first. The deguene operator removes the “best” sorted
element from the priority queue. We will use the priority queue in the
design of the best-first search algorithm in Chapter 4.

Because the priority queue is a sorted queue, many of its operators are the
same as the queue operators, Iin particular, empty queue,
member queue, and dequeue (the “best” of the sorted elements will
be next for the dequeue). enqueue in a priority queue is the
insert pg operator, as each new item is placed in its proper sorted
order.

insert pqg(State, [ ], [State]) :- !.
insert pqg(State, [H | Tail], [State, H | Tail]) :-
precedes (State, H).
insert pqg(State, [H | T], [H | Tnew]) :-
insert pqg(State, T, Tnew).
precedes (X, Y) :- X < Y. % < depends on problem
The first argument of this predicate is the new element that is to be
inserted. The second argument is the previous priority queue, and the third
argument is the augmented priority queue. The precedes predicate
checks that the order of elements is preserved. Another priotity queue
operator is insert_ list pq. This predicate is used to merge an
unsorted list or set of elements into the priority queue, as is necessary when
adding the children of a state to the priority queue for best-first search,
Chapter 4. insert_list pq uses insert_ pg to put each individual
new item into the priority queue:
insert_list pg([ 1, L, L).
insert list pq([State | Tail], L, New L) :-
insert pg(State, L, L2),
insert list pg(Tail, L2, New L).
Finally, we describe the ADT set. A sezis a collection of elements with no
element repeated. Sets can be used for collecting all the children of a state

or for maintaining the set of all states visited while executing a search
algorithm.

In Prolog a set of elements, e.g., {a,b}, may be represented as a list,
[a,b], with the order of the list not important. The set operators include
empty_ set, member set, delete if in, and
add if not in. We also include the traditional operators for



Chapter 3: Abstract Data Types and Search

combining and comparing sets, including union, intersection,
set difference, subset, and equal set.

empty set([ ]).

member_set(E, S) :-

member (E, S).

delete if in set(E, [ 1, [ 1).

delete if in set(E, [E | T], T) :- !.

delete if in set(E, [H | T], [H

T new]) :-
delete if in set(E, T, T new), !.
add_if not_in set(X, S, S) :-
member (X, S), !.
add if not in set(X, S, [X | S]).
union([ ], S, S).
union([H | T], S, S _new) :-
union(T, S, S2),
add_if not_in set(H, S2, S new),!.
subset ([ 1, _).
subset([H | T], S) :-
member_set(H, S),
subset (T, S).
intersection([ 1, _, [ 1).
intersection([H | T], S, [H | S _new]) :-
member_set(H, S),
intersection(T, S, S_new), !.
intersection([_ | Tl1, S, S_new) :-
intersection(T, S, S_new), !.
set _difference([ 1, _, [ 1)-.
set difference([H | T], S, T new) :-
member_set(H, S),
set_difference(T, S, T new), !.
set difference([H | T], S, [H | T new]) :-
set_difference(T, S, T new), !.
equal_ set(S1l, S2) :-
subset(S1, S2),
subset (S2, S1).

In Chapters 4 and 5 we use many of these abstract data types to build more
complex graph search algorithms and meta-interpreters in Prolog. For
example, the stack and queue ADTSs are used to build the “open” list that
organizes depth-first and breadth-first search. The set ADTSs coordinate
the “closed” list that helps prevent cycles in a search.
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Exercises

1. Write Prolog code to solve the full 8 X 8 knight’s tour problem. This will
require a lot of effort if all the move (X, Y) facts on the full chessboard
are itemized. It is much better to create a set of eight predicates that
capture the general rules for moving the knight on the full chessboard. You
will also have to create a new representation for the squares on the boatd.
Hint: consider a predicate containing the two element order pair, for
example, state(Row, Column).

2. Take the path algorithm presented for the knight’s tour problem in the
text. Rewrite the path call of the recursive code given in Section 3.1 to
the following form:

path(X, Y) :- path(X, W), move(W, Y).
Examine the trace of this execution and describe what is happening.

3. Create a three step path predicate for the knight’s tour:
path3(X, Y¥) :- move(X, Z), move(Z, W), move (W, Y).

Create a tree that demonstrates the full search for the path3 predicate.
Place the cut operator between the second and third move predicates.
Show how this prunes the tree. Next place the cut between the first and
second move predicates and again demonstrate how the tree is pruned.
Finally, put two cuts within the path3 predicate and show how this
prunes the search.

4. Write and test the ADTs presented in Section 3.3. trace will let you
monitor the Prolog environment as the ADT's execute.
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Depth-, Breadth-, and Best-First Search
Using the Production System Design
Pattern

A production system was defined and examples given:

Production rule sets
Control strategies
A production system written in Prolog was presented:

A rule set and control strategy for the Farmer Wolf, Goat, and Cabbage
problem
Search strategies for the production system created using Abstract Data Types
Depth-first search and the stack operators

Breadth-first search and the queue operators

Best first search and the priority queue operators

Sets were used for the closed list in all searches

4.1 Production System Search in Prolog
4.2 A Production System Solution to the Farmer, Wolf, Goat, Cabbage Problem
4.3 Designing Alternative Search Strategies

4.1

The Production
System

Production System Search in Prolog

The production system (Luger 2009, Section 6.2) is a model of computation that has
proved particularly important in Al, both for implementing search algorithms
and for modeling human problem solving behavior. A production system
provides pattern-directed control of a problem-solving process and consists of a
set of production rules, a working memory, and a recognize—act control cycle.

A production system 1s defined by:

The set of production rules. These are often simply called productions. A production is
a condition—action pair and defines a single chunk of problem-solving
knowledge. The condition part of the rule is a pattern that determines when
that rule may be applied by matching data in the working memory. The
action part of the rule defines the associated problem-solving step.

Working memory contains a description of the current state of the world in a reasoning
process. This description is a pattern that, in data-driven reasoning, is matched
against the condition part of a production to select appropriate problem-
solving actions. The actions of production rules are specifically designed to
alter the contents of working memory, leading to the next phase of the
recognize-act cycle.

The recognize—act cycle. The control structure for a production system is simple:
working memory is initialized with the beginning problem description. The
current state of the problem solving is maintained as a set of patterns in
working memory. These patterns are matched against the conditions of the
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Example 4.1:
The Knight's
Tour Revisited

production rules; this produces a subset of the production rules, called the
conflict set, whose conditions match the patterns in working memory. One of
the productions in the conflict set is then selected (conflict resolution) and the
production is fired. After the selected production rule is fired, the control
cycle repeats with the modified working memory. The process terminates
when the contents of working memory do not match any rule conditions.

Conflict resolution chooses a rule from the conflict set for firing. Conflict
resolution strategies may be simple, such as selecting the first rule whose
condition matches the state of the world, or may involve complex rule
selection heuristics. The pure production system model has no mechanism
for recovering from dead ends in the search; it simply continues until no
more productions are enabled and halts. Many practical implementations
of production systems allow backtracking to a previous state of working
memory in such situations. A schematic drawing of a production system is
presented in Figure 4.1.

Figure 4.1. The production system. Control loops from the
working memory through the production rules until no rule
matches a working memory pattern.

The 3 x 3 knight’s tour problem may be solved with a production system,
Figure 4.1. Each move can be represented as a rule whose condition is the
location of the knight on a particular square and whose action moves the
knight to another square. Sixteen productions, presented in Table 4.1,
represent all possible moves of the knight.

We next specify a recursive procedure to implement a control algorithm for
the production system. We will use the recursive path algorithm of Section
3.1, where the third argument of the path predicate is the list of already
visited states. Because path(Z, Z, L) will unify only with predicates
whose first two arguments are identical, such as path(3, 3, _) or
path(5, 5, _), it defines the desited terminating condition. If
path(X, X, L) does not succeed we look at the production rules for a
next state and then recur.
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RULE # CONDITION ACTION
1 knight on square 1 move knight to square 8
2 knight on square 1 move knight to square 6
3 knight on square 2 move knight to square 9
4 knight on square 2 move knight to square 7
5 knight on square 3 move knight to square 4
6 knight on square 3 move knight to square 8
7 knight on square 4 move knight to square 9
8 knight on square 4 move knight to square 3
9 knight on square 6 move knight to square 1
10 knight on square 6 move knight to square 7
11 knight on square 7 move knight to square 2
12 knight on square 7 move knight to square 6
13 knight on square 8 move knight to square 3
14 knight on square 8 move knight to square 1
15 knight on square 9 move knight to square 2
16 knight on square 9 move knight to square 4

45

Table 4.1. Production rules for the 3 x 3 knight tour problem.

The general recursive path definition is given by two predicate calculus
formulas:
path(z, Z, L).
path(X, Y, L) :-
move (X, Z), not(member(z, L)),
path(z, Y, [2 | L]).
Working memory, represented by the parameters of the recursive path
predicate, contains both the current board state and the goal state. The
control regime applies rules until the current state equals the goal state and
then halts. A simple conflict resolution scheme would fire the first rule that
did not cause the search to loop. Because the search may lead to dead ends
(from which every possible move leads to a previously visited state and thus
a loop), the control regime must also allow backtracking; an execution of
this production system that determines whether a path exists from square 1
to square 2 is charted in Table 4.2.

Production systems are capable of generating infinite loops when searching
a state space graph. These loops are particularly difficult to spot in a
production system because the rules can fire in any order. That is, looping
may appear in the execution of the system, but it cannot easily be found
from a syntactic inspection of the rule set.
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4.2

Example 4.2: The
Farmer, Wolf,
Goat, and
Cabbage Problem

LOOP CURRENT GOAL CONFLICT RULES USE RULE

0 1 2 1,2 1

1 8 2 13, 14 13
2 3 2 5,6 5

3 4 2 7,8 7

4 9 2 15, 16 15
5 2 2 No Rules Match Halt

Table 4.2. The iterations of the production system finding a path from

square 1 to square 2.
For example, with the “move” rules of the knight’s tour problem ordered as
in Table 4.1 and a conflict resolution strategy of selecting the first match, the
pattern move (2, X) would match with move (2, 9), indicating a
move to square 9. On the next iteration, the pattern move (9, X) would
match with move (9, 2), taking the search back to square 2, causing a
loop. The not (member (Z, L)) will check the list of visited states. The
actual conflict resolution strategy was therefore: select the first matching move that
leads to an wnvisited state. In a production system, the proper place for
recording such case-specific data as a list of previously visited states is not a
global closed list but within the working memory itself, as we see in the next
sections where the parameters of the path call make up the content of
working memory.

A Production System Solution to the FWGC Problem

In Section 4.1 we described the production system and demonstrated a
simple depth-first search for the restricted Knight’s Tour problem. In this
section we write a production system solution to the farmer, wolf, goat, and
cabbage (FWGC) problem. In Section 4.3 we use the simple abstract data
types created in Chapter 3 to create depth-, breadth-, and best-first solutions
for production system problems. The FWGC problem is stated as follows:

A farmer with his wolf, goat, and cabbage come to the edge of a
river they wish to cross. There is a boat at the river’s edge, but, of
course, only the farmer can row. The boat also can carry only two
things (including the rower) at a time. If the wolf is ever left alone
with the goat, the wolf will eat the goat; similarly, if the goat is left
alone with the cabbage, the goat will eat the cabbage. Devise a
sequence of crossings of the river so that all four characters arrive
safely on the other side of the river.

We now create a production system solution to this problem. First, we
observe that the problem may be represented as a search through a graph.
To do this we consider the possible moves that might be available at any
time in the solution process. Some of these moves are eventually ruled out
because they produce states that are unsafe (something will be eaten).

For the moment, suppose that all states are safe, and simply consider the
graph of possible states. We often take this approach to problem solving,
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relaxing various constraints so that we can see the general structure of the
search problem. After we have described the full graph then it is often
straightforward to add constraints that prohibit parts of the graph — the
“illegal” states — from further exploration. The boat can be used in four
ways: to carry the farmer and wolf, the farmer and goat, the farmer and
cabbage, or the farmer alone. A state of the world is some combination of
the characters on the two banks. Several states of the search are represented
in Figure 4.2. States of the world may be represented using the predicate,
state(F, W, G, C), with the location of the farmer as first
parameter, location of the wolf as second parameter, the goat as third, and
the cabbage as fourth. We assume that the river runs “north to south” and
that the characters are on either the east, e, or west, w, bank. Thus,
state(w, w, w, w) has all characters on the west bank to start the
problem.

Figure 4.2. State representation and sample crossings of the F, W, G, C
problem.

It must be pointed out that these choices are conventions that have been
arbitrarily chosen by the authors. Indeed, as researchers in Al continually
point out, the selection of an appropriate representation is often the most
critical aspect of problem solving. These conventions are selected to fit the
predicate calculus representation in Prolog. Different states of the world atre
created by different crossings of the river, represented by changes in the
values of the parameters of the state predicate, as in Figure 4.2. Other
representations are certainly possible.

We next describe a general graph for this river-crossing problem. For the
time being, we ignore the fact that some states are unsafe. In Figure 4.3 we
see the beginning of the graph of possible moves back and forth across the
river. Since the farmer always rows, it is not necessary to have a separate
representation for the location of the boat. Figure 4.3 represents part of the
graph that is to be searched for a solution path.
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The recursive path call described in Section 4.1 provides the control
mechanism for the production system search. The production rules change
state in the search. We define these #f... #ben... rules in Prolog form. We take
a direct approach here requiring that the pattern for the present state and the
pattern for the next state both be placed in the head of the Horn clause, or
to the left of :-. These are the arguments to the move predicate.

Figure 4.3. The beginning portion of the state space graph in the
FWGC problem, including unsafe states.

The constraints that the production rule requires to fire and return the next
state are placed to the right of :-. As shown in the following example, these
conditions are expressed as unification constraints. The first rule is for the
farmer to take the wolf across the river. This rule must account for both the
transfer from east to west and the transfer from west to east, and it must not
be applicable when the farmer and wolf are on opposite sides of the river.
Thus, it must transform state(e, e, G, C) to state(w, w, G,
C) and state(w, w, G, C) to state(e, e, G, C). It must
also fail for state(e, w, G, C) and state(w, e, G, C).The
variables G and C represent the fact that the third and fourth parameters can
be bound to either @ or w. Whatever their values, they remain the same after
the move of the farmer and wolf to the other side of the river. Some of the
states produced may indeed be “unsafe.”

The following rule operates only when the farmer and wolf are in the same
location and takes them to the opposite side of the river. Note that the goat
and cabbage do not change their present location, whatever it might be.

move (state(X, X, G, C), state(Y, Y, G, C)) :-
opp(X, Y).
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opp(e, w).

opp(w, €).
This rule fires when a state (the present location in the graph) is presented to
the first parameter of move in which the farmer and wolf are at the same
location. When the rule fires, a new state, the second parameter of move, is
produced with the value of X opposite, opp, the value of Y. Two conditions
are satisfied to produce the new state: first, that the values of the first two
parameters are the same and, second, that both of their new locations ate
opposite their old.

The first condition was checked implicitly in the unification process, in that
move is not matched unless the first two parameters are the same. This test
may be done explicitly by using the following rule:
move (state(F, W, G, C), state(Z, Z, G, C)) :-
F =W, opp(F, Z2).

This equivalent move rule first tests whether F and W are the same and, only
if they are (on the same side of the river), assigns the opposite value of F to
Z. Note that Prolog can do “assignment” by the binding of variable values in

unification. Bindings are shared by all occurrences of a variable in a clause,
and the scope of a variable is limited to the clause in which it occurs.

Pattern matching, a powerful tool in Al programming, is especially
important in pruning search. States that do not fit the patterns in the rule are
automatically pruned. In this sense, the first version of the move rule offers
a more efficient representation because unification does not even consider
the state predicate unless its first two parameters are identical.

Next, we create a predicate to test whether each new state is safe, so that
nothing is eaten in the process of crossing the river. Again, unification plays
an important role in this definition. Any state where the second and third
parameters are the same and opposite the first parameter is unsafe: the
wolf eats the goat. Alternatively, if the third and fourth parameters are the
same and opposite the first parameter, the state is unsafe: the goat cats
the cabbage. These unsafe situations may be represented with the
following rules.

unsafe(state(X, Y, ¥, C)) :- opp(X, Y).

unsafe(state(X, W, ¥, Y)) :- opp(X, Y).
Several points should be mentioned. First, if a state is to be not unsafe (i.c.,
safe), according to the definition of not in Prolog, neither of these unsafe
predicates can be true. Thus, neither of these predicates can unify with the
current state or, if they do unify, their conditions are not satisfied. Second,
not in Prolog is not exactly equivalent to the logical ~ of the first-order
predicate calculus; not is rather “negation by failure of its opposite.” The
reader should test a number of states to verify that unsafe does what it is
intended to do. Now, not unsafe is added to the previous production
rule:

move(state(X, X, G, C), state(Y, Y, G, C)) :-
opp(X, Y), not(unsafe(state(Y, ¥, G, C))).
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The not unsafe test calls unsafe, as mentioned above, to see whether
the generated state is an acceptable new state in the search. When all
criteria are met, including the check in the path algorithm that the new
state is not a member of the visited-state list, path is (recursively) called on
this state to go deeper into the graph. When path is called, the new state is
added to the visited-state list.

In a similar fashion, we can create the three other production rules to
represent the farmer taking the goat, cabbage, and himself across the river.
We have added a writelist command to each production rule to print a
trace of the current rule. The reverse_print stack command is
used in the terminating condition of path to print out the final solution

path.

Finally, we add a fifth “pseudorule” that always fires, because no conditions
are placed on it, when all previous rules have failed; it indicates that the
path call is backtracking from the current state, and then that rule itself
fails. This pseudorule is added to assist the user in seeing what is going on as
the production system is running. We now present the full production
system program in Prolog to solve the farmer, wolf, goat, and cabbage
problem. The Prolog predicates unsafe, writelist, and the ADT
stack predicates of Section 3.3.1, must also be included:

move (state(X, X, G, C), state(Y, ¥, G, C)) :-
opp(X, Y), not(unsafe(state(Y, Y, G, C))),
writelist([ try farmer - wolf’, Y, Y, G, C]).
move (state(X, W, X, C), state(Y, W, ¥, C)) :-
opp(X, Y), not(unsafe(state(Y, W, Y, C))),
writelist([ try farmer - goat’, ¥, W, ¥, C]).
move (state(X, W, G, X), state(Y, W, G, Y)) :-
opp(X, Y), not(unsafe(state(Y, W, G, Y))),
writelist([ try farmer - cabbage’, Y, W, G, Y]).
move (state(X, W, G, C), state(Y, W, G, C)) :-
opp(X, Y), not(unsafe(state(Y, W, G, C))),
writelist([ try farmer by self’, Y, W, G, C]).

move (state(F, W, G, C), state(F, W, G, C)) :-
writelist([ ~BACKTRACK at:’, F, W, G, C]), fail.

path(Goal, Goal, Been_stack) :-
write( Solution Path Is: ‘ ), nl,

reverse_print stack(Been_stack).

path(State, Goal, Been_stack) :-
move(State, Next state),
not (member stack(Next state, Been_ stack)),
stack(Next_state, Been_stack, New_been_ stack),
path(Next_ state, Goal, New been stack), !.
opp(e, w)-.
opp(w, €).
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The code is called by requesting go, which initializes the recursive path
call. To make running the program easier, we can create a predicate, called
test, that simplifies the input:
go(Start, Goal) :-
empty stack(Empty been_ stack),
stack(Start, Empty_been_stack, Been_stack),
path(Start, Goal, Been_stack).
test :- go(state(w,w,w,w), state(e,e,e,e)).
The algorithm backtracks from states that allow no further progress. You
may also use trace to monitor the various variable bindings local to each
call of path. It may also be noted that this program is a general program
for moving the four creatures from any (legal) position on the banks to any
other (legal) position, including asking for a path from the goal back to the
start state. Other interesting features of production systems, including the
fact that different orderings of the rules can produce different searches
through the graph, are presented in the exercises. A partial trace of the
execution of the F, W, G, C program, showing only rules actually used to
generate new states, is presented next:
?- test.
try farmer takes goat e
try farmer takes self w
try farmer takes wolf e

o 0 £ =

s O 0O 0
£ € € £

try farmer takes goat w

try farmer takes cabbage e e w e

try farmer takes wolf ww w e

try farmer takes goat e w e e

BACKTRACK from e,w,e,e
BACKTRACK from w,w,w,e

try farmer takes self we w e

try farmer takes goat e e e e

Solution Path Is:

state(w,w,w,w)

state(e,w,e,w)

state(w,w,e,w)

state(e,e,e,w)

state(w,e,w,w)

state(e,e,w,e)

state(w,e,w,e)

state(e,e,e,e)
In summary, this Prolog program implements a production system solution
to the farmer, wolf, goat, and cabbage problem. The move rules make up
the content of the production memory. The working memory is represented

by the arguments of the path call. The production system control
mechanism is defined by the recursive path call. Finally, the ordering of
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4.3

Depth-first
Search

rules for generation of children from each state (conflict resolution) is
determined by the order in which the rules are placed in the production
memory. We next present depth-, breadth-, and best-first search algorithms
for production system based graph search.

Designing Alternative Search Strategies

As the previous subsection demonstrated, Prolog itself uses depth-first
search with backtracking. We now show how alternative search strategies
can be implemented in Prolog. Our implementations of depth-first, breadth-
first, and best-first search use gper and closed lists to record states in the
search. The open list contains all potential next states in the search. How the
open list is maintained, as a stack, as a queue, or as a priority queue,
determines which particular state is next, that is, search is in either depth-
first, breadth-first, or as best-first modes. The closed set keeps track of all
the states that have been previously visited, and is used primarily to
preventing looping in the graph as well as to keep track of the current path
through the space. The details of how the open and closed data structures
organize a search space can be found in Luger (2009, Chapter 3 and 4).
When search fails at any point we do not backtrack. Instead, open and
closed ate updated within the path call and the search continues with these
revised values. The cut is used to keep Prolog from storing the old versions
of the open and closed lists.

Because the values of variables are restored when recursion backtracks, the
list of visited states in the depth-first path algorithm of Section 4.2 records
states only if they are on the current path to the goal. Although the testing
each “new” state for membership in this list prevents loops, it still allows
branches of the space to be reexamined if they are reached along paths
generated earlier but abandoned at that time as unfruitful. A more efficient
implementation keeps track of all the states that have ever been
encountered. This more complete collection of states made up the members
of the set we call ¢losed (see Luger 2009, Chapter 3), and Closed_set in
the following algorithm.

Closed_set holds all states on the current path plus the states that were
rejected when the algorithm determined they had no usable children; thus, it
no longer represents the path from the start to the current state. To capture
this path information, we create the ordered pair [State, Parent] to
keep track of each state and its parent; the Start state is represented by
[Start, nil]. These state—parent pairs will be used to re-create the
solution path from the Closed_set.

We now present a shell structure for depth-first search in Prolog, keeping
track of both open and closed and checking each new state to be sure it was
not previously visited. path has three arguments, the Open_stack,
Closed_set, maintained as a set, and the Goal state. The current state,
State, is the next state on the Open_stack. The stack and set operators
are found in Section 3.3.

Search starts by calling a go predicate that initializes the path call. Note
that go places the Start state with the nil parent, [Start, nil],
alone on Open_stack; the Closed_set is empty:
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go(Start, Goal) :-
empty stack(Empty open),
stack([Start, nil], Empty open, Open_stack),
empty set(Closed _set),
path(Open_stack, Closed_set, Goal).
The three-argument path call is:
path(Open_stack, , ) :-
empty stack(Open_stack),
write(’No solution found with these rules’).
path(Open_stack, Closed_set, Goal) :-
stack([State, Parent], _, Open_stack),
State = Goal,
write( A Solution is Found!’), nl,
printsolution([State, Parent], Closed_set).
path(Open_stack, Closed_set, Goal) :-

stack([State, Parent], Rest_open_stack,
Open_stack),

get children(State, Rest open stack, Closed_set,
Children),

add_list to_stack(Children, Rest open_stack,
New_open_stack),

union([[State, Parent]], Closed_set,
New_closed_set),

path(New_open_stack, New closed_set, Goal), !.
get children(State, Rest open stack, Closed_set,
Children) :-

bagof (Child, moves(State, Rest open_ stack,
Closed_set, Child), Children).

moves (State, Rest open_ stack, Closed set, [Next,
State]) :-

move (State, Next),
not (unsafe(Next)), % test depends on problem
not (member stack([Next, ], Rest open_ stack)),
not (member set([Next, ], Closed_set)).
We assume a set of move rules appropriate to the problem, and, if
necessary, an unsafe predicate:
move (Present state, Next state) :- .. % test rules
move (Present state, Next state) :- ..

The first path call terminates search when the Open_stack is empty,
which means there are no more states on the open list to continue the
search. This usually indicates that the graph has been exhaustively searched.
The second path call terminates and prints out the solution path when the
solution is found. Since the states of the graph search are maintained as
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[State, ©Parent] pairs, printsolution will go to the
Closed_set and recursively rebuild the solution path. Note that the
solution is printed from start to goal.

printsolution([State, nil], ) :- write(State), nl.
printsolution([State, Parent], Closed_set) :-
member_ set([Parent, Grandparent], Closed_set),
printsolution([Parent, Grandparent], Closed_set),
write(State), nl.

The third path call uses bagof, a Prolog built-in predicate standard to most
interpreters. bagof lets us gather all the unifications of a pattern into a
single list. The second parameter to bagof is the pattern predicate to be
matched in the database. The first parameter specifies the components of
the second parameter that we wish to collect. For example, we may be
interested in the values bound to a single variable of a predicate. All bindings
of the first parameter resulting from these matches are collected in a list, the
bag, and bound to the third parametet.

In this program, bagof collects the states reached by firing 4/ of the
enabled production rules. Of course, this is necessary to gather all
descendants of a particular state so that we can add them, in proper order, to
open. The second argument of bagof, a new predicate named moves,
calls the move predicates to generate all the states that may be reached using
the production rules. The arguments to moves are the present state, the
open list, the closed set, and a variable that is the state reached by a good
move. Before returning this state, moves checks that the new state, Next,
is not a member of cither rest_open_stack, open once the present
state is removed, or closed_set. bagof calls moves and collects all
the states that meet these conditions. The third argument of bagof
represents the new states that are to be placed on the Open_stack.

For some Prolog interpreters, bagof fails when no matches exist for the
second argument and thus the third argument, List, is empty. This can be
remedied by substituting (bagof(X, moves(S, T, C, X),
List); List = [ ]) forthe current calls to bagof in the code.
Finally, because the states of the search atre represented as state—parent pairs,
member check predicates, e.g., member set, must be revised to reflect
the structure of pattern matching. We test if a state—parent pair is identical
to the first element of the list of state—parent pairs and then recur if it isn’t:

member set([State, Parent], [[State, Parent]| ]).

member set(X, [_|T]) :- member set(X, T).

We now present the she// of an algorithm for breadth-first search using
explicit open and closed lists. This algorithm is called by:

go(Start, Goal) :-
empty dqueue(Empty open_ dqueue),

enqueue([Start, nil], Empty open queue,
Open_dqueue),

empty set(Closed _set),
path(Open_gqueue, Closed_set, Goal).
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Start and Goal have their obvious values. The shell can be used with the
move rules and unsafe predicates for any search problem. Again we create
the ordered pair [ State, Parent], as we did with depth-first search,
to keep track of each state and its parent; the start state is represented by
[Start, nil]. This will be used by printsolution to re-create the
solution path from the Closed_set. The first parameter of path is the
Open_dueue, the second is the Closed set, and the third is the
Goal. Don’t care variables, those whose values are not used in a clause, are
written as “_”.

path(Open_gqueue, , ) :-

empty dqueue(Open_dqueue),

write(’'Graph searched, no solution found.’).

path(Open_gqueue, Closed _set, Goal) :-
dequeue([State, Parent], Open_queue, ),
State = Goal,
write(’Solution path is: ‘), nl,
printsolution([State, Parent], Closed_set).

path(Open_gqueue, Closed _set, Goal) :-
dequeue([State, Parent], Open_gqueue,
Rest_open_dueue),

get children(State, Rest open queue,
Closed_set, Children),

add_list to_queue(Children, Rest_open_dgueue,
New_open_dueue),

union([[State, Parent]], Closed_set,
New_closed_set),

path(New_open_queue, New_closed_set, Goal), !.

get children(State, Rest open queue, Closed_set,
Children) :-
bagof (Child, moves(State, Rest open_ queue,
Closed_set, Child), Children).
moves (State, Rest open queue, Closed_set, [Next,
State]) :-
move (State, Next),
not (unsafe(Next)), $test depends on problem
not (member queue([Next, ], Rest open queue)),
not (member set([Next, ], Closed _set)).

This algorithm is a shell in that no move rules are given. These must be
supplied to fit the specific problem domain, such as the FWGC problem of
Section 4.2. The queue and set operators are found in Section 3.3.

The first path termination condition is defined for the case that path is
called with its first argument, Open_queue, empty. This happens only
when no more states in the graph remain to be searched and the solution
has not been found. A solution is found in the second path predicate when
the head of the open queue and the Goal state are identical. When
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path does not terminate, the third call, with bagof and moves
predicates, gathers all the children of the current state and maintains the
queue. (The detailed actions of these two predicates were described in
Section 4.3.2.) In order to recreate the solution path, we saved each state as a
state—parent pair, [State, Parent]. The start state has the parent
nil. As noted in Section 4.3.1, the state—parent pair representation makes
necessary a slightly more complex pattern matching in the member,
moves, and printsolution predicates.

Obur shell for best-first search is a modification of the breadth-first algorithm
in which the open queue is replaced by a priority queue, ordered by heutistic
merit, which supplies the current state for each new call to path. In our
algorithm, we attach a heuristic measure permanently to each new state on
open and use this measure for ordering the states on open. We also retain
the parent of each state. This information is used by printsolution, as
in depth- and breadth-first search, to build the solution path once the goal is
found.

To keep track of all required search information, each state is represented as
a list of five elements: the state description, the parent of the state, an integer
giving the depth in the graph of the state’s discovery, an integer giving the
heuristic measure of the state, and the integer sum of the third and fourth
elements. The first and second elements are found in the usual way; the third
is determined by adding one to the depth of its parent; the fourth is
determined by the heuristic measure of the particular problem. The fifth
element, used for ordering the states on the open_pq,is £(n) = g(n)
+ h(n). A justification for using this approach to order states for heuristic
search, usually referred to as the A Algorithm, is presented in Luger (2009,
Chapter 4).

As before, the move rules are not specified; they are defined to fit the
specific problem. The ADT operators for set and priority guene are presented
in Section 3.3. heuristic, also specific to each problem, is a measure
applied to each state to determine its heuristic weight, the value of the
fourth parameter in its descriptive list.

This best-first search algorithm has two termination conditions and is called
by:
go(Start, Goal) :-
empty set(Closed _set),
empty_pg(Open),
heuristic(Start, Goal, H),
insert pg([Start, nil, 0, H, H], Open, Open pdg),
path(Open_pqg, Closed_set, Goal).

nil is the parent of Start and H its heuristic evaluation. The code for
best-first search is:

path(Open_pq, _,_) :-

empty_pg(Open_pq),
write(’'Graph searched, no solution found.’).
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path(Open_pqg, Closed_set, Goal) :-
dequeue_pqg([State, Parent, , , ], Open_pqgq, ),
State = Goal,

write(’'The solution path is: ‘), nl,
printsolution([State, Parent, , , 1,
Closed _set).

path(Open_pqg, Closed_set, Goal) :-

dequeue_pg([State, Parent, D, H, S], Open_pqg,
Rest_open pq),

get children([State, Parent, D, H, S],
Rest_open pqg, Closed_set, Children, Goal),

insert list pg(Children, Rest open pq,
New_open_pqg),

union([[State, Parent, D, H, S]], Closed_set,
New_closed_set),

path(New_open pq, New closed set, Goal), !.

get_children is a predicate that generates all the children of State. It
uses bagof and moves predicates as in the previous searches, with details
carlier this Section. A set of move rules, a safe check for legal moves, and
a heuristic must be specifically defined for each application. The
member check must be specifically designed for five element lists.
get children([State, ,D, , _1,Rest _open pqg,
Closed_set,Children,Goal) :-
bagof (Child, moves([State, , D, , _1,
Rest_open_pq, Closed_set, Child,Goal),
Children).

moves([State, _, Depth, _, 1, Rest open pq,
Closed_set, [Next,State,New D,H,S], Goal) :-

move (State, Next),

not (unsafe(Next)), % application specific
not (member pg([Next, , , _, _1,Rest open pq)),
not (member set([Next, , , , _1,Closed set)),

New D is Depth + 1,

heuristic(Next, Goal, H), % application specific

S is New D + H.
printsolution prints the solution path, recursively finding state—parent
pairs by matching the first two elements in the state description with the
first two elements of the five element lists that make up the Closed_set.

printsolution([State, nil, , , 1, _) :-
write(State), nl.

printsolution([State, Parent, , , ], Closed_set):-
member_set([Parent, Grandparent, , , _1,
Closed_set),
printsolution([Parent, Grandparent, , , 1,

Closed_set),
write(State), nl.
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In Chapter 5 we further generalize the approach taken so far in that we
present a set of built-in Prolog meta-predicates, predicates like bagof, that
explicitly manipulate other Prolog predicates. This will set the stage for
creating meta-interpreters in Chapter 6.

Exercises

1. Take the path algorithm presented for the knight’s tour problem in the
text. Rewrite the path call in the recursive code to the following form:

path(X, Y) :- path(X, W), move(W, Y).
Examine the trace of this execution and describe what is happening.

2. Write the Prolog code for the farmer, wolf, goat, and cabbage problem,
Section 4.2:

A. Execute this code and draw a graph of the search space.

B. Alter the rule ordering to produce alternative solution paths.

C. Use the shell in the text to produce a breadth-first problem.

D. Describe a heuristic that might be appropriate for this problem.
E. Build the heuristic search solution.

3. Do A - E as in Exercise 2 to create a production system solution for the
Missionary and Cannibal problem. Hint: you may want the is operator,
see Section 5.3.

Three missionaries and three cannibals come to the bank of a
river they wish to cross. There is a boat that will hold only
two, and any of the group is able to row. If there are ever
more missionaries than cannibals on any side of the river the
cannibals will get converted. Devise a series of moves to get
all the people across the river with no conversions.

4. Use and extend your code to check alternative forms of the missionary
and cannibal problem—for example, when there are four missionaries and
four cannibals and the boat holds only two. What if the boat can hold
three? Try to generalize solutions for the whole class of missionary and
cannibal problems.

5. Write a production system Prolog program to solve the full 8§ x 8§
Knight’s Tour problem. Do tasks A - E as described in Exercise 2.

6. Do A - E as in Exercise 2 above for the Water Jugs problem:

There are two jugs, one holding 3 and the other 5 gallons of
water. A number of things can be done with the jugs: they can
be filled, emptied, and dumped one into the other either until
the poured-into jug is full or until the poured-out-of jug is
empty. Devise a sequence of actions that will produce 4
gallons of water in the larger jug. (Hint: use only integers.)
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Meta-Linguistic Abstraction, Types, and
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A number of Prolog meta-predicates are presented, including:
Atom
clause
univ (=..)
call
The type system for Prolog:
Programmer implements typing as needed
Types as run time constraints rather than enforced at compile time
Unification and variable binding explained
Evaluation versus unification
is vetsus =
Difference lists demonstrated

5.1 Meta-Predicates, Types, and Unification
5.2 Types in Prolog
5.3 Unification: The Engine for Variable Binding and Evaluation

5.1

Meta-Logical
Predicates

Meta-Interpreters, Types, and Unification

In this chapter we first consider a set of powerful Prolog predicates, called
meta-predicates. These predicates take as their scope other predicates in the
Prolog environment. Thus they offer tools for building meta-interpreters,
interpreters in a language that are able to interpret specifications in that
language. An example will be to build a rule interpreter in Prolog, an
interpreter that can manipulate and interpret rule sets, specified in Prolog
syntax. These interpreters can also be used to query the user, offer
explanations of the interpreter’s decisions, implement multi-valued or
fuzzy logics, and run any Prolog code.

In Section 5.1 we introduce a useful set of meta-predicates. In Section 5.2
we discuss data typing for Prolog and describe how type constraints can
be added to a prolog system. An example of a typed relational database in
Prolog is given. Finally, in Section 5.3, we discuss unification and
demonstrate with difference lists how powerful this can be.

Meta-logical constructs extend the expressive power of any programming
environment. We refer to these predicates as mefa because they ate
designed to match, query, and manipulate other predicates that make up
the specifications of the problem domain. That is, they can be used to
reason about Prolog predicates rather than the terms or objects these
other predicates denote. We need meta-predicates in Prolog for (at least)
five reasons:
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To determine the “type” of an expression;

To add “type” constraints to logic programming applications;
To build, take apart, and evaluate Prolog structures;

To compare values of expressions;

To convert predicates passed as data to executable code.

We have actually seen a number of meta-predicates already. In Chapter 2
we described how global structures, which are those that can be accessed
by the entire clause set, are entered into a Prolog program. The command
assert(C) adds the clause C to the current set of clauses. There are
dangers associated with programming with predicates such as assert
and retract. Because these predicates are able to create and remove
global structures, they can introduce side effects into the program, and
may cause other problems associated with poorly structured programs.
Yet, it is sometimes necessaty to use global structures to draw on the
power of Prolog’s built-in database and pattern matching. We do this
when creating semantic nets and frames in a Prolog environment, as in
Section 2.4. We may also use global structures to describe new results as
they are found with a rule-based expert system shell, as in Section 6.2. We
want this information to be global so that other predicates (rules) may
access it when appropriate.

Other meta-predicates that are useful for manipulating representations
include:

var (X) succeeds only when X is an unbound variable.
nonvar (X) succeeds only when X is bound to a nonvatiable term.
=.. creates a list from a predicate term.

For example, foo(a, b, c¢) =.. Y unifies Y with [foo, a, b,
c]. The head of the list Y is the predicate name, and its tail is the
predicate’s arguments. =. . also can be used to bind alternative variable
patterns, of course. Thus,if X =.. [foo, a, b, c] succeeds, then
X has the value foo(a, b, c).

functor (A, B, C) succeeds with A a term whose principal
functor has name B and arity C.

For example, functor(foo(a, b), X, Y) will succeed with
variables X = foo and Y = 2. functor (A, B, C) can also be used
with any of its arguments bound in order to produce the others, such as all
the terms with a certain name and/or arity.

clause(A, B) unifies B with the body of a clause whose head is A.

For example, if p(X) :- dg(X) exists in the database, then
clause(p(a), Y) will succeed with Y = g(a). This is useful for
controlling rule chaining in an interpreter, as seen in Chapter 6.

any_predicate(.., X, ..) :- X executes predicate X, the
argument of any predicate.

Thus a predicate, here X, may be passed as a parameter and executed at
any desired time. call (X), where X is a clause, also succeeds with the
execution of predicate X.
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This short list of meta-logical predicates will be very important in building
and interpreting Al data structures. Because Prolog can manipulate its
own structures in a straightforward fashion, it is easy to implement
interpreters that modify the Prolog semantics, as we see next.

Types in Prolog

For a number of problem-solving applications, the unconstrained use of
unification can introduce unintended error. Prolog is an untyped language,
in that unification simply matches patterns, without restricting them
according to data type. For example, append(nil, 6, 6) can be
inferred from the definition of append, as we will see in Chapter 10.
Strongly typed languages such as Pascal have shown how type checking
helps programmers avoid these problems. Researchers have proposed
adding types to Prolog (Neves et al. 1986, Mycroft and O’Keefe 1984).

Typed data are particularly appropriate in a relational database (Neves et
al. 1986, Malpas 1987). The rules of logic can be used as constraints on the
data and the data can be typed to enforce consistent and meaningful
interpretation of the queries. Suppose that a department store database has
inventory, suppliers, supplier inventory, and other
appropriate relations. We define a database as relations with named fields
that can be thought of as sets of tuples. For example, inventory might
consist of 4-tuples, where:

< Pname, Pnumber, Supplier, Weight > inventory
only when Supplier is the supplier name of an inventory item

numbered Pnumber that is called Pname and has weight Weight.
Suppose further:

< Supplier, Snumber, Status, Location > suppliers

only when Supplier is the name of a supplier numbered Snumber
who has status Status and lives in city Location. Suppose finally:

< Supplier, Pnumber, Cost, Department >
supplier inventory

only if Supplier is the name of a supplier of part number Pnumber in
the amount of Cost to department Department.

We may define Prolog rules that implement various queries and perform
type checking across these relationships. For instance, the query “are there
suppliers of part number 1 that live in London?” is given in Prolog as:
?- getsuppliers(Supplier,1l, london).
The rule:
getsuppliers(Supplier, Pnumber, City) :-
cktype(City, suppliers, city),
suppliers(Supplier, _, _,City),
cktype (Pnumber, inventory, number),
supplier inventory(Supplier, Pnumber, , ),

cktype(Supplier, inventory, name).
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implements this query and also enforces the appropriate constraints actoss
the tuples of the database. First the variables Pnumber and City are
bound when the query unifies with the head of the rule; the predicate
cktype tests that Supplier is an element of the set of suppliers, that
1 is a legitimate inventory number, and that london is a suppliers’ city.

We define cktype to take three arguments: a value, a relation name, and
a field name, and to check that each value is of the appropriate type for
that relation. For example, we may define lists of legal values for
Supplier, Pnumber, and City and enforce data typing by requiring
member checks of candidate values across these lists. Alternatively, we
may define logical constraints on possible values of a type; for example,
we may require that inventory numbers be less than 1000.

We should note the differences in type checking between standard
languages such as Pascal and Prolog. We might define a Pascal data type
for suppliers as:
type supplier = record

sname: string;

snumber: integer;

status: boolean;

location: string

end

The Pascal programmer defines new types, here supplier, in terms of
already defined types, such as boolean or integer. When the
programmer uses variables of this type, the compiler automatically
enforces type constraints on their values.

In Prolog, we can represent the supplier relation as instances of the form:

supplier (sname(Supplier),
snumber (Snumber),
status(Status),
location(Location)).

We then implement type checking by wusing rules such as
getsuppliers and cktype. The distinction between Pascal and
Prolog type checking is clear and important: the Pascal type declaration
tells the compiler the form for both the entire structure (record) and the
individual components (boolean, integer, string) of the data
type. In Pascal we declare variables to be of a particular type (record)
and then create procedures to access these typed structures.

procedure changestatus (X: supplier);
begin
if X.status then.
Because it is nonprocedural, Prolog does not separate the declaration from

the use of data types, and type checking is done as the program is
executing. Consider the rule:
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supplier name(supplier(sname(Supplier),
snumber (Snumber),
status(true),
location (london))) :-

integer (Snumber), write(Supplier).

supplier_name takes as argument an instance of the supplier
predicate and writes the name of the Supplier. However, this rule will
succeed only if the supplier’s number is an integer, the status is active
(true), and the supplier lives in london. An important part of this type
check is handled by the unification algorithm (status and
location) and the rest is the built-in system-predicate integer.
Further constraints could restrict values to be from a particular list; for
example, Snumber could be constrained to be from a list of supplier
numbers. We define constraints on database queries using rules such as
cktype and supplier name to implement type checking when the
program is executed.

So far, we have seen three ways that data may be typed in Prolog. First,
and most powerful, is the program designer’s use of unification and
syntactic patterns to constrain variable assignment. Second, Prolog itself
provides predicates to do limited type checking. We saw this with meta-
predicates such as var (X), clause(X,Y), and integer (X). The
third use of typing occurred in the inventory example where rules checked
lists of legitimate Supplier, Pnumbers, and Cities to enforce type
constraints.

A fourth, and more radical approach is the complete predicate and data
type check proposed by Mycroft and O’Keefe (1984). Here all predicate
names are typed and given a fixed arity. Furthermore, all variable names
are themselves typed. A strength of this approach is that the constraints
on the constituent predicates and variables of the Prolog program are
themselves enforced by a (meta) Prolog program. Even though the result
may be slower program execution, the security gained through total type
enforcement may justify this cost.

To summarize, rather than providing built-in type checking as a default,
Prolog allows run-time type checking under complete programmer
control. This approach offers a number of benefits for Al programmers,
including the following:

1. The programmer is not forced to adhere to strong type
checking at all times. This allows us to write predicates that
work across any type of object. For example, the member
predicate performs general member checking, regardless of
the type of elements in the list.

2. User flexibility with typing helps exploratory programming.
Programmers can relax type checking in the early stages of
program development and introduce it to detect errors as
they come to better understand the problem.

3. Al representations seldom conform to the built-in data types
of languages such as Pascal, C++, or Java. Prolog allows
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5.3

types to be defined using the full power of predicate
calculus. The database example showed this flexibility.

4. Because type checking is done at run time rather than
compile time, the programmer determines when the
program should perform a check. This allows programmers
to delay type checking until it is necessary or until certain
variables have become bound.

5. Programmer control of type checking at run time also
suppotts the creation of programs that build and enforce
new types during execution. This can be of use in a learning
or a natural language processing program, as we see In
Chapters 7, 8, and 9.

In the next section we take a closer look at unification in Prolog. As we
noted earlier, unification is the technical name for pattern matching,
especially when applied to expressions in the Predicate Calculus. The
details for implementing this algorithm may be found in Luger (2009,
Section 2.3). In Prolog, unification is implemented with backtracking that
supportts full systematic instantiation of all values defined for the problem
domain. To master the art of Prolog programming the sequential actions
of the interpreter, sometimes referred to as Prolog’s “procedural
semantics” must be fully understood.

Unification, Engine of Variable Binding and Evaluation

An important feature of Prolog programming is the interpretet’s behavior
when considering a problem’s specification and faced with a particular
query. The query is matched with the set of specifications to see under
what constraints it might be true. The interpretet’s action, left-to-right
depth first backtracking across all specified variable bindings, is a variation
of the search of a resolution-based reasoning system.

But Prolog is NOT a full mathematically sound theorem prover, as it lacks
several important constraints, including the occurs check, and Prolog also
suppotts the use of cut. For details see Luger 2009, Section 14.3). The
critical point is that Prolog performs a systematic search across database
entries, rather than, as in traditional languages, a sequential evaluation of
statements and expressions. This has an important result: variables are
bound (assigned values or instantiated) by wwification and not by an
evaluation process, unless, of course, an evaluation is explicitly requested.
This paradigm for programming has several implications.

The first and perhaps most important result is the relaxation of the
requirement to specify variables as input or output. We saw this power
briefly with the member predicate in Chapter 2 and will see it again with
the append predicate in Chapter 10. append can cither join lists
together, test whether two lists are correctly appended, or break a list into
parts consistent with the definition of append. We use unification as a
constraint handler for parsing and generating natural language sentences in
Chapters 7 and 8.

Unification is also a powerful technique for rule-based and frame-based
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expert systems. All production systems require a form of this matching,
and it is often necessary to write a unification algorithm in languages that
don’t provide it, see, for example, Section 15.1 for a Lisp implementation
of unification.

An important difference between unification-based computing and the use
of more traditional languages is that unification performs syntactic
matches (with appropriate parameter substitutions) on structures. It does
not evaluate expressions. Suppose, for example, we wished to create a
successor predicate that succeeds if its second argument is the
arithmetic successor of its first argument. Not understanding the
unification/evaluation paradigm, we might be tempted to define
successor:

successor (X, Y) := Y =X + 1.

This will fail because the = operator does not evaluate its arguments but
only attempts to unify the expressions on either side. This predicate
succeeds if Y unifies with the structure X + 1. Because 4 does not unify
with 3 + 1, the call successor (3, 4) fails! On the other hand,
demonstrating the power of unification, = can test for equivalence, as
defined by determining whether substitutions exist that can make a7y two
expressions equivalent. For example, whether:

friends (X, Y) = friends(george, kate).

In order to correctly define successor (and other related arithmetic
predicates), we need to be able to evaluate arithmetic expressions. Prolog
provides an operator, 1s, for just this task. 1s evaluates the expression on
its right-hand side and attempts to unify the result with the object on its
left. Thus:

X is Y + Z.

unifies X with the value of Y added to Z. Because it performs arithmetic
evaluation, if Y and Z do not have values (are not bound at execution
time), the evaluation of 1s causes a run-time error. Thus, X is Y + Z
cannot (as one might think with a declarative programming language) give
a value to Y when X and Z are bound. Therefore programs must use 1 s to
evaluate expressions with arithmetic operators, +,—, *, /, and mod.

Finally, as in the predicate calculus, variables in Prolog may have one and
only one binding within the scope of a single expression. Once given a
value, through local assignment or unification, variables can never take on
a new value, except through backtracking in the and/or search space of
the current interpretation. Upon backtracking, all the instances of the
variable within the scope of the expression take on the new value. Thus,
is cannot function as a traditional assighment operator; and expressions
suchas X is X + 1 will always fail.

Using is, we now propetly define successor (X, Y) where the
second argument has a numeric value that is one more than the first:

successor (X, Y) :—= Y is X + 1.

successor will now have the correct behavior as long as X is bound to

A n1imerie vrahie at the time that the eann~rrocanr rrodicate ic rallad
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successor can be used either to compute Y, given X, or to test values
assigned to X and Y:

?- successor (3, X).
X =4

Yes

?- successor (3, 4).
Yes

?- successor (4, 2).
No

?- successor (Y, 4).

failure, error in arithmetic expression
since Y is not bound at the time that successor is called.

As this discussion illustrates, Prolog does not evaluate expressions as a
default as in traditional languages such as C++ and Java. The programmer
must explicitly call for evaluation and assignment using is. Explicit
control of evaluation, as also found in Lisp, makes it easy to treat
expressions as data, passed as parameters, and creating or modifying them
as needed within the program. This feature, like the ability to manipulate
predicate calculus expressions as data and execute them using call,
greatly simplifies the development of different interpreters, such as the
expert system shell of the next chapter.

We close this discussion of the power of unification-based computing
with an example that does string catenation through the use of difference
lsts. As an alternative to the standard Prolog list notation, we can
represent a list as the difference of two lists. For example, [a, b] is
equivalentto [a, b | [ 1 1] — [ lor[a, b, c] — [c].
This representation has certain expressive advantages over the traditional
list syntax. When the list [a, b] is represented as the difference [a, b
| Y] — Y, it actually describes the potentially infinite class of all lists
that have a and b as their first two elements. Now this representation has
an interesting property, namely addition:

X —2 =X—-Y+Y—12

We can use this property to define the following single-clause logic
program where X — Y is the first list, Y — Z is the second list, and X —
Z is the result of catenating them, as in Figure 5.1: We create the predicate
catenate that takes two list X and Y and creates Z:

catenate(X — ¥, Y — Z, X — Z).

This operation joins two lists of any length in constant time by unification
on the list structures, rather than by repeated assignment based on the
length of the lists (as with append, Chapter 10). Thus, the catenate
call gives:

?- catenate ([a, b Y] —- Y, [1, 2, 3] — [ ], W).
Y = [1, 2, 3]
W=[a, b, 1, 2] 3]_[]
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Figure 5.1 Tree diagrams: list catenation using difference lists.

As may be seen in Figure 5.1, the (subtree) value of Y in the second
parameter is unified with both occurrences of Y in the first parameter of
catenate. This demonstrates the power of unification, not simply for
substituting values for variables but also for matching general structures:
all occurrences of Y take the value of the entire subtree. The example also
illustrates the advantages of an appropriate representation. Thus difference
lists represent a whole class of lists, including the desired catenation.

In this section we have discussed a number of idiosyncrasies and
advantages of Prolog’s unification-based approach to computing.
Unification is at the heart of Prolog’s declarative semantics. For a more
complete discussion of Prolog’s semantics see Luger (2009, Section 14.3).

In Chapter 6 we use Prolog’s declarative semantics and unification-based
pattern matching to design three meta-interpreters: Prolog in Prolog, the
shell for an expert system, and a planner.
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Exercises

1. Create a type check that prevents the member check predicate (that
checks whether an item is a member of a list of items) from crashing when
called on member (a, a). Will this “fix”” address the append (nil,
6, 6) anomaly thatis described in Chapter 9? Test it and see.

2. Create the “inventory supply” database of Section 5.2. Build type checks
for a set of six useful queries on these data tuples.

3. Is the difference list catenate really a linear time append (Chapter
10)? Explain.
4. Explore the powers of unification. Use trace to see what happens
when you query the Prolog interpreter as follows. Can you explain what is
happening?

aa X =X +1

b: X is X + 1

¢ X = foo(X)
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Three Meta-Interpreters: Prolog in Prolog,
EXSHELL, and a Planner

Prolog’s meta-predicates used to build three meta-interpreters

Prolog in Prolog

An expert system shell: exshell

A planner in Prolog
The Prolog in Prolog interpreter:

Left-to-right and depth-first search

Solves for a goal look first for facts, then rules, then ask user
exshell performed, using a set of solve predicates:

Goal-driven, depth-first search

Answers how (rule stack) and why (proof tree)

Pruned search paths using the Stanford certainty factor algebra
The Prolog planner

Uses an add and delete list to generate new states

Performs depth-first and left-to-right search for a plan

Chapter 6.1 An Introduction to Meta-Interpreters: Prolog in Prolog
Contents 6.2 A Shell for a Rule-Based Expert System
6.3 A Prolog Planner
6.1 An Introduction to Meta-Interpreters: Prolog in Prolog
Meta [n both Lisp and Prolog, it is easy to write programs that manipulate
Interpreters

expressions written in that language’s syntax. We call such programs meta-
interpreters. In an example we will explore throughout this book, an expert
system shell interprets a set of rules and facts that describe a particular
problem. Although the rules of a problem situation are written in the
syntax of the underlying language, the meta-interpreter redefines their
semantics. The “tools” for supporting the design of a meta-interpreter in
Prolog were the meta predicates presented in Chapter 5.

In this chapter we present three examples of meta-interpreters. As our first
example, we define the semantics of pure Prolog using the Prolog language
itself. This is not only an elegant statement of Prolog semantics, but also
will serve as a starting point for more complex meta-interpreters. solve
takes as its argument a Prolog goal and processes it according to the
semantics of Prolog:

solve(true) :-1!.

solve(not A) :- not(solve(A)).

solve((A, B)) :-!, solve(A), solve(B).

solve(A) :- clause(A, B), solve(B).
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The first solve predicate checks to see if its argument is a fact and true.
The second checks to determine whether the argument of solve is false
and makes the appropriate change. The third solve predicate sees if the
argument of the solve predicate is the and of two predicates and then
calls solve on the first followed by calling solve on the second.
Actually, the third solve can handle any number of anded goals, calling
solve on the first and then calling solve on the set of anded
remaining goals. Finally, when the three previous attempts have failed,
solve, using the clause metapredicate, finds a rule whose head is the
goal and then calls solve on the body of that rule. solve implements
the same left-to-right, depth-first, goal-directed search as the built-in
Prolog interpreter.

If we assume the following simple set of assertions,

P(X, Y) = q(X), r(Y).

g(X) := s(X).

r(X) :- t(X).

s(a).

t(b).

t(c).
solve has the behavior we would expect of Prolog:

?- solve(p(a, b)).

Yes

?- solve(p(X, Y)).

X =a, Y = b;

X =a, Y =c;

No

?- solve(p(f, g9)).

no
The ability easily to write meta-interpreters for a language has certain
theoretical advantages. For example, McCarthy wrote a simple Lisp meta-
interpreter as part of a proof that the Lisp language is Turing complete
(McCarthy 1960). From a more practical standpoint, we can use meta-
interpreters to extend or modify the semantics of the underlying language
to better fit our application. This is the programming methodology of weta-

linguistic abstraction, the creation of a high-level language that is designed to
help solve a specific problem.

For example, we can extend the standard Prolog semantics so as to ask the
user about the truth-value of any goal that does not succeed (using the four
solve predicates above) in the knowledge base. We do this by adding the
following clauses to the end of the previous definitions of solve:

solve(A) :- askuser(A).
askuser(A) :- write(d),

write(’? Enter true if the goal is true, false
otherwise’), nl.

read(true).
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Because we add this definition to the end of the other solve rules, it is
called only if all of these earlier solve rules fail. solve then calls
askuser to query the user for the truth value of the goal (A). askuser
prints the goal and instructions for answering. read (true) attempts to
unify the user’s input with the term true, failing if the user enters false
(or anything that does not unify with true). In this way we have changed
the semantics of solve and extended the behavior of Prolog. An
example, using the simple knowledge base defined above, illustrates the
behavior of the augmented definition of solve:

?- solve(p(f, g9)).

s(f)? Enter true if the goal is true, false
otherwise

true.

t(g)? Enter true if the goal is true, false
otherwise

true.

yes

<

Another extension to the meta-interpreter allows it to respond to “why”
queries. When the interpreter asks the user a question, the user can
respond with why; the appropriate response to this query is the current
rule that the program is trying to solve. We implement this by storing the
stack of rules in the current line of reasoning as the second parameter to
solve. Whenever solve calls clause to solve a goal, it places the
selected rule on the stack. Thus, the rule stack records the chain of rules
from the top-level goal to the current subgoal.

Because the user may now enter two valid responses to a query, askuser
calls respond, which cither succeeds if the user enters true (as before)
or prints the top rule on the stack if the user enters why. respond and
askuser are mutually recursive, so that after printing the answer to a
why query, respond calls askuser to query the user about the goal
again. Note, however, that respond calls askuser with the tail of the
rule stack. Thus, a series of why queries will simply chain back up the rule
stack until the stack is empty — the search is at the root node of the tree —
letting the user trace the entire line of reasoning.
solve(true, _) :-!.
solve(not(A), Rules) :- not(solve(A, Rules)).
solve((A, B), Rules) :- !,
solve(A, Rules), solve(B, Rules).
solve(A, Rules) :-
clause(A, B), solve(B, [(A :- B) | Rules]).
solve(A, Rules) :- askuser(A, Rules).
askuser (A, Rules) :-
write(A),

write(’? Enter true if goal is true,
false otherwise’),nl,

read(Answer), respond(Answer, A, Rules).
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respond(true, _, ).
respond(why, A, [Rule | Rules]) :-
write(Rule), nl,
askuser (A, Rules).
respond(why, A, [ ]) :- askuser(A, [ 1).
For example, suppose we run solve on the simple database introduced
earlier in the section:
?- solve(p(f, 9), [ 1)-
s(f)? Enter true if goal is true, false otherwise
why.
a(f) :- s(f)
s(f)? Enter true if goal is true, false otherwise
why.
p(f,9) :- (a(f), r(9))
s(f)? Enter true if goal is true, false otherwise
true.
t(g)? Enter true if goal is true, false otherwise
true.
yes
Note how successive why queries actually trace back up the full line of

reasoning.

A further useful extension to the solve predicate constructs a proof tree
for any successful goal. The ability to build proof trees provides expert
system shells with the means of responding to “how” queries; it is also
important to any algorithm, such as explanation-based learning (Chapter 7),
that reasons about the results of a problem solver.

We may modify the pure Prolog interpreter to build a proof tree recursively
for a goal as it solves that goal. In the definition that follows, the proof is
returned as the second parameter of the solve predicate. The proof of
the atom true is that atom; this halts the recursion. In solving a goal A
using a rule A := B, we construct the proof of B and return the structure
(A :- ProofB). In solving a conjunction of two goals, A and B, we
simply conjoin the proof trees for each goal: (ProofA, ProofB).

The definition of a meta-interpreter that supports the construction of the
proof trees is:
solve(true, true) :-!.
solve(not(A), not ProofA) :-
not(solve(A, ProofA)).
solve( (A, B), (ProofA, ProofB)) :-
solve(A, ProofA), solve(B, ProofB).
solve(A, (A :- ProofB)) :-
clause(A, B), solve(B, ProofB).
solve(A, (A :- given)) :-
askuser ().
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askuser (A, Proof) :-
write(A),

write(’enter true if goal is true,
false otherwise’),
read(true).

Running this on our simple database gives the results:
?- solve(p(a, b), Proof).

Proof = p(a, b) :-
((a(a) :-

(s(a) :-

true)),
r(b) :-
(t(b) :-
true)))

In the next section, we use these same techniques to implement an expert
system shell. exshell uses a knowledge base in the form of rules to
solve problems. It asks the user for needed information, keeps a record of
case-specific data, responds to how and why queties, and implements the
Stanford certainty factor algebra (Luger 2009, Section 9.2.1). Although this
program, exshell, is much more complex than the Prolog meta-
interpreters discussed above, it is just an extension of this methodology. Its
heart is a solve predicate implementing a back-chaining search.

A Shell for a Rule-Based Expert System

In this section we present the key predicates used in the design of an
interpreter for a goal-driven, rule-based expert system. At the end of this
section, we demonstrate the performance of exshell using an
automotive diagnostic knowledge base. If the reader would prefer to read
through this trace before examining exshell’s key predicates, we
encourage looking ahead.

An exshell knowledge base consists of rules and specifications of
queries that can be made to the user. Rules are represented using a two-
parameter rule predicate of the form rule(R, CF). The first
parameter is an assertion to the knowledge base, written using standard
Prolog syntax. Assertions may be Prolog rules, of the form (G :- P),
where G is the head of the rule and P is the conjunctive pattern under
which G is true. The first argument to the rule predicate may also be a
Prolog fact. CF is the confidence the designer has in the rule’s conclusions.
exshell implements the certainty factor algebra of MYCIN, (Luger
2009, Section 9.2.1), and we include a brief overview of the Stanford
algebra here. Certainty factors (CFs) range from +100, a fact that is true, to
—100, something that is known to be false. If the CF is around 0, the truth
value is unknown. Typical rules from a knowledge base for diagnosing
automotive failures are:

rule((bad_component(starter) :-

(bad_system(starter_system),
lights(come _on))), 50).

rule(fix(starter, ‘replace starter’),100).
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Thits first rule states that if the bad system is shown to be the starter system
and the lights come on, then conclude that the bad component is the
starter, with a certainty of 50. Because this rule contains the symbol 2 - it
must be surrounded by parentheses. The second rule asserts the fact that
we may fix a broken starter by replacing it, with a certainty factor of 100.
exshell uses the rule predicate to retrieve those rules that conclude
about a given goal, just as the simpler versions of solve in Section 6.1
used the built-in clause predicate to retrieve rules from the global
Prolog database.

exshell supports user queries for unknown data. However, because we
do not want the interpreter to ask for every unsolved goal, we allow the
programmer to specify exactly what information may be obtained from
asking. We do this with the askable predicate:

askable(car_starts).

Here askable specifies that the interpreter may ask the user for the truth
of the car_starts goal when nothing is known or can be concluded
about that goal.

In addition to the programmer-defined knowledge base of rules and
askables, exshell maintains its own trecord of case-specific data.
Because the shell asks the user for information, it needs to remember what
it has been told; this prevents the program from asking the same question
twice during a consultation (decidedly non-expert behavior!).

The heart of the exshell meta-interpreter is a predicate of four
arguments called, surprisingly, solve. The first of these arguments is the
goal to be solved. On successfully solving the goal, exshell binds the
second argument to the (accumulated) confidence in the goal as computed
from the knowledge base. The third argument is the rule stack, used in
responding to why queries, and the fourth is the cutoff threshold for the
certainty factor algebra. This allows pruning of the search space if the
confidence falls below a specified threshold.

In attempting to satisfy a goal, G, solve first tries to match G with any
facts that it already has obtained from the user. We represent known facts
using the two-parameter known(A, CF) predicate. For example,
known(car_starts, 85) indicates that the user has already told us
that the car starts, with a confidence of 85. If the goal is unknown, solve
attempts to solve the goal using its knowledge base. It handles the negation
of a goal by solving the goal and multiplying the confidence in that goal by
—1. It solves conjunctive goals in left-to-right order. If G is a positive literal,
solve tries any rule whose head matches G. If this fails, solve queries the
user. On obtaining the user’s confidence in a goal, solve asserts this
information to the database using a known predicate.

% Case 1l: truth value of goal is already known
solve(Goal, CF, _, Threshold) :

known (Goal, CF), !,

above threshold(CF, Threshold).
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% Case 2: negated goal

solve(not(Goal), CF, Rules, Threshold) :-!,
invert threshold(Threshold, New_ threshold),
solve(Goal, CF_goal, Rules, New_threshold),
negate cf(CF_goal, CF).

% Case 3: conjunctive goals

solve((Goal _1,Goal _2), CF, Rules, Threshold) :- !
solve(Goal 1, CF_1, Rules, Threshold),
above threshold(CF_1, Threshold),
solve(Goal 2, CF_2, Rules, Threshold),
above threshold(CF_2, Threshold),
and_cf(CF_1, CF_2, CF).

% Case 4: back chain on a rule in knowledge base

solve(Goal, CF, Rules, Threshold) :-
rule((Goal :- (Premise)), CF_rule),

4

solve(Premise, CF_premise, [rule((Goal :-
Premise), CF_rule)|Rules], Threshold),
rule cf(CF_rule, CF_premise, CF),
above threshold(CF, Threshold).
% Case 5: fact assertion in knowledge base
solve(Goal, CF, _, Threshold) :-
rule(Goal, CF),
above threshold(CF, Threshold).
% Case 6: ask user
solve(Goal, CF, Rules, Threshold) :-
askable(Goal),
askuser (Goal, CF, Rules), !,
assert (known(Goal, CF)),
above threshold(CF, Threshold).
We start a consultation using a two-argument version of solve. The first
argument is the top-level goal in the knowledge base, and the second is a
variable that will be bound to the confidence in the goal’s truth as inferred
from the knowledge base. solve/2 (solve with arity of 2) prints a set
of instructions to the user, calls retractall (known( , )) to clean
up any residual information from previous uses of exsﬁefl, and calls
solve/4 initialized with appropriate values:
solve(Goal, CF) :-
print_instructions,
retractall(known(_, _)),
solve(Goal, CF, [ ], 20).
print_instructions gives allowable responses to an exshell query:
print_instructions :- nl,
write('Response must be either:’), nl,
write(’Confidence in truth of query.’), nl,
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write(’A number between —100 and 100.’), nl,

write(’why.’), nl,

write(’'how(X), where X is a goal’), nl.
The next set of predicates computes certainty factors. Again, exshell
uses a form of the Stanford certainty factor algebra. Briefly, the certainty
factor of the and of two goals is the minimum of the certainty factors of
the individual goals; the certainty factor of the negation of a fact is —1 times
the certainty of that fact. Confidence in a fact concluded using a rule equals
the certainty of the premise multiplied by the certainty factor in the rule.
above_ threshold determines whether the value of a certainty factor
is too low given a particular threshold. exshell uses the
threshold value to prune a goal if its certainty gets too low.

Note that we define above_ threshold separately for negative and
positive values of the threshold. A positive threshold enables us to
prune if the goal’s confidence is less than threshold. However, a
negative threshold indicates that we are trying to prove a goal false.
Thus for negative goals, we prune search if the value of the goal’s
confidence is greater than the threshold. invert threshold is
called to multiply threshold by 1.

and cf(A, B, A) :- A = < B.
and cf(A, B, B) :- B < A.
negate cf(CF, Negated CF) :-
Negated CF is - 1 * CF.
rule cf(CF_rule, CF_premise,CF) :-
CF is (CF_rule * CF_premise/100).
above threshold(CF, T) :-
T >=20, CF >= T.
above threshold(CF, T) :-
T < 0, CF =< T.
invert_ threshold(Threshold, New_threshold) :-
New_threshold is —1 * Threshold.
askuser writes out a query and reads the uset’s Answer; the respond
predicates take the appropriate action for each user input.
askuser(Goal, CF, Rules) :-
nl, write('User query:’),
write(Goal), nl, write(’'?’),
read(Answer),
respond(Answer, Goal, CF, Rules).
The user can respond to this query with a CF between 100 and —100, for
confidence in the goal’s truth, why to ask why the question was asked, or
how (X) to inquire how result X was established. The response to why is
the rule currently on top of the rule stack. As with our implementation of
Prolog in Prolog in Section 6.1, successive why queries will pop back up

the rule stack, enabling the user to reconstruct the entire line of reasoning.
If the user answer matches how (X), respond calls build proof to
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build a proof tree for X and write proof to print that proof in a
readable form. There is a “catchall” respond for unknown input values.

% Case 1l: user enters a valid confidence factor
respond(CF, , CF, _) :-
number (CF),
CF =< 100, CF >= —100.
% Case 2: user enters a why query
respond(why, Goal, CF, [Rule | Rules]) :-
write rule(Rule),
askuser (Goal, CF, Rules).
respond(why, Goal, CF, [ ]) :-
write(’'Back to top of rule stack.’),
askuser(Goal, CF, [ 1).
% Case 3: user enters a how query. Build/print proof
respond(how(X), Goal, CF, Rules) :-
build proof (X, CF_X, Proof), !,
write(X), write(’concluded with certainty’),
write(CF_X), nl, nl,
write(’'The proof is ‘), nl, nl,
write proof (Proof, 0), nl, nl,
askuser (Goal, CF, Rules).
% User enters how query, could not build proof
respond(how(X), Goal, CF, Rules) :-
write(’'The truth of ‘), write(X), nl,
write(’is not yet known.’), nl,
askuser (Goal, CF, Rules).
% Case 4: User presents unrecognized input
respond(_, Goal, CF, Rules) :-
write('Unrecognized response.’), nl,
askuser (Goal, CF, Rules).
build proof is parallel to solve/4, but build proof does not
ask the user for unknowns, as these were already saved as part of the case-
specific data. build_proof constructs a proof tree as it proves the goal.
build_ proof(Goal, CF, (Goal, CF :- given)) :-
known(Goal, CF), !.
build_ proof(not Goal, CF, not Proof) :- !,
build_ proof(Goal, CF_goal, Proof),
negate cf(CF_goal, CF).

build proof((Goal_1, Goal 2), CF,
(Proof_1, Proof 2)) :- !,

build proof(Goal 1, CF_1, Proof 1),
build proof(Goal 2, CF_2, Proof 2),
and_cf(CF_1, CF_2, CF).
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build_proof(Goal, CF, (Goal, CF :- Proof)) :-
rule((Goal :- Premise), CF_rule),
build_ proof (Premise, CF_premise, Proof),
rule cf(CF_rule, CF_premise, CF).
build_proof(Goal, CF, (Goal, CF :- fact)) :-
rule(Goal, CF).
The final predicates create a user interface. The interface requires the bulk
of the code! First, we define a predicate write rule:
write rule(rule((Goal :- (Premise)), CF)) :-
write(Goal), write(':-'), nl,
write premise(Premise), nl,
write('CF = ‘), write(CF), nl.
write rule(rule(Goal, CF)) :-
write(Goal), nl, write('CF = '), write(CF), nl.
write_ premise writes the conjuncts of a rule premise:
write premise((Premise 1, Premise 2)) :- !,
write premise(Premise 1),
write premise(Premise_ 2).
write premise(not Premise) :- !,
write(’’), write(not), write('’),
write(Premise), nl.
write premise(Premise) :-
write(’’), write(Premise), nl.
write_proof prints proof, using indents to show the tree’s structure:
write proof((Goal, CF :- given), Level) :-
indent(Level), write(Goal), write(’ CF= ‘),
write(CF),write(’ given by the user’), nl, !.
write proof((Goal, CF :- fact), Level) :-
indent(Level), write(Goal), write(’ CF = ‘),
write(CF),

write(’ was a fact of knowledge base’), nl, !.

write proof((Goal, CF :- Proof), Level) :-
indent(Level), write(Goal), write(’ CF = ‘),
write(CF), write(’ :-'), nl, New_ level is

Level + 1,write proof(Proof,New level), !.
write proof(not Proof, Level) :-
indent(Level), write((not)), nl,

New level is Level + 1,

write proof (Proof, New level), !.
write proof((Proof 1, Proof 2),Level) :-

write proof(Proof 1, Level),

write proof(Proof 2, Level), !.

indent (0).
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indent(1l) :-
write(’’), 1 new is 1 — 1, indent(l _new).

As an illustration of the behavior of exshell, consider the following
sample knowledge base for diagnosing car problems. The top-level goal is
fix/1. The knowledge base decomposes the problem solution into finding
the bad_system, finding the bad_component within that system,
and finally linking the diagnosis to Advice for its solution. Note that the
knowledge base is incomplete; there are sets of symptoms that it cannot
diagnose. In this case, exshell simply fails. Extending the knowledge
base to some of these cases and adding a rule that succeeds if all other rules
fail are interesting challenges and left as exercises. The following set of
rules is segmented to show reasoning on each level of the search tree
presented in Figure 6.1. The top segment, rule( (fix (Advice), is at
the root of the tree:

rule((fix(Advice) :- % Top-level query

(bad_component(X), fix(X,Advice))), 100).
rule( (bad_component (starter) :-

(bad_system(starter_system),
lights(come _on))), 50).

rule( (bad_component (battery) :-

(bad_system(starter_system),
not lights(come on))), 90).

rule( (bad_component(timing) :-

(bad_system(ignition_system),
not tuned_recently)), 80).

rule( (bad_component(plugs) :-

(bad_system(ignition_system),
plugs(dirty))), 90).
rule((bad _component(ignition wires) :-

(bad_system(ignition_system),
not plugs(dirty), tuned recently)), 80).
rule((bad_system(starter_system) :-

(not car_starts, not turns_over)), 90).
rule((bad_system(ignition_ system) :-

(not car_starts, turns_over, gas_in carb)),80).
rule((bad_system(ignition_ system) :-

(runs(rough), gas_in carb)), 80).
rule((bad _system(ignition_ system) :-

(car_starts, runs(dies), gas_in carb)), 60).

rule(fix(starter, ‘replace starter’), 100).
rule(fix(battery, ‘replace/recharge battery’), 100).
rule(fix(timing, ‘get the timing adjusted’), 100).
rule(fix(plugs, ‘replace spark plugs’), 100).

rule(fix(ignition wires, ‘check ignition’),100).

askable(car_starts). % May ask user about goal
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askable(turns_over).
askable(lights(_)).
askable(runs(_)).
askable(gas_in carb).
askable(tuned_recently).
askable(plugs(_)).
Next we demonstrate, exshell using this knowledge base. Figure 6.1

presents the trace and the search space: solid lines are searched, dotted
lines are not searched, and bold lines indicate the solution.

?- solve(fix(X), CF).

Response must be either:
A confidence in the truth of the query.
This is a number between —100 and 100.
why.
how(X), where X is a goal

User query:car_starts

? =100.
User query:turns_over
? 85.
User query:gas_in carb
? 75.
User query:tuned recently
? =90.
X = ‘get the timing adjusted’ CF = 48.0

We now run the problem again using how and why queries. Compare the
responses with the corresponding subtrees and search paths of Figure 6.1:

?- solve(tix(X), CF).

Figure 6.1. The graph searched in an automotive diagnosis consultation;
dashed lines are branches not examined, bold lines indicate the solution.
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Response must be either:
A confidence in the truth of the query.
This is a number between —100 and 100.
why.
how(X), where X is a goal

User query:car_starts

? =100.

User query:turns_over

? why.

bad_system(starter_ system):-
not car_starts
not turns_over
CF = 90

User query:turns_over

? why.

bad_component(starter):-
bad_system(starter_ system)
lights(come_on)
CF = 50

User query:turns_over
? why.

fix(_0):-
bad_component (starter)
fix(starter, 0)
CF = 100

User query:turns_over

? why.

Back to top of rule stack.
User query:turns_over

? 85.

User query:gas_in carb

? 75.

User query:tuned recently
? why.

bad component(timing):-
bad system(ignition_system)
not tuned_recently
CF = 80

User query:tuned recently
? how(bad system(ignition_ system)).

bad system(ignition_system) was concluded with
certainty 60.0

The proof is

bad system(ignition_system) CF= 60.0 :-

81

not car_starts CF = —100 was given by the user

turns_over CF = 85 was given by the user
gas_in carb CF = 75 was given by the user

User query:tuned recently
? =90.
X = ‘get the timing adjusted’ CF = 48.0
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6.3 A Prolog Planner

For the third meta-interpreter of Chapter 6 we present a predicate calculus-
based planning algorithm. In many ways this approach to planning is
similar to early work in planning at SRI-International (Fikes and Nilsson
1971, Fikes et al. 1972). Our planner is predicate calculus based in that the
PC representation is used to describe both the states of the planning world
(the state descriptions) as well as the rules for changing the state of the
world. In this section we create a Prolog version of that algorithm.

We represent the states of the world, including the start and goal, as
lists of predicates that have interpretations as states of the world. Thus, the
start and goal states are each described as a list of predicates:

start = [handempty, ontable(b), ontable(c), on(a,b),
clear(c), clear(a)]

goal = [handempty, ontable(a), ontable(b), on(c,b),
clear(a), clear(c)]

These states are seen, with a portion of the search space, in Figure 6.2.

The moves in this blocks world are described using an add and delete list.
The add and delete list describes how the list of predicates describing a
new state of the solution is created from the list describing the previous
state: some predicates are added to the state list and others are deleted. The
move predicates for state change have three arguments. First is the move
predicate name with its arguments. The second argument is the list of
preconditions: the predicates that must be true of the description of the
present state of the wortld for the move rule to be applied to that state.
The third argument is the list containing the add and delete predicates: the
predicates that are added to and/or deleted from the state of the world to
create the new state of the world that results from applying the move rule.
Notice how useful the ADT set operators of union, intersection, set
difference, etc., are in manipulating the preconditions and the predicates in
the add and delete list.

Four of the moves within this blocks world may be described:

move (pickup(X), [handempty, clear(X), on(X,Y)],
[del (handempty), del(clear (X)), del(on(X,Y)),
add(clear(Y)), add(holding(X))])-.

move (pickup(X), [handempty, clear(X), ontable(X)],
[del (handempty), del(clear (X)),

del (ontable(X)), add(holding(X))]).

move (putdown (X), [holding(X)],
[del (holding (X)), add(ontable(X)),
add(clear (X)), add(handempty)]).

move (stack(X,Y), [holding(X), clear(Y)],
[del (holding (X)), del(clear(Y)),
add (handempty),add(on(X,Y)),add(clear(X))]).
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Figure 6.2. The start and goal states along with the initial portion of the
search space for the blocks world planner.

Finally, we present the recursive controller for the plan generation. The
first plan predicate gives the successful termination conditions (goal state
description) for the plan when the Goal is produced. The final plan
predicate states that after exhaustive search, no plan is possible. The
recursive plan generator:

1. Searches for a move relationship.

2. Checks, using the subset operator, whether the state’s
Preconditions are met.

3. The change state predicate produces a new
Child_state using the add and delete list.

member stack makes sure the new state has not been visited
before.

4. The stack operator pushes the new Child_ state onto
the New_move_ stack.
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5. The stack operator pushes the original Name state onto the
New been stack.

6. The recursive plan call searches for the next state using the
Child state and an updated New move_ stack and
Been stack.

A number of supporting utilities, built on the stack and set ADTs of
Section 3.3 are included. Of course, the search being stack-based, is depth-
first with backtracking and terminates with the first path found to a goal. It
is left as an exercise to build other search strategies for planning, e.g.,
breadth-first and best-first planners.

plan(State, Goal, _, Move_stack) :-
equal_ set(State, Goal),
write('moves are’), nl,
reverse_print stack(Move_stack).
plan(State, Goal, Been_stack, Move_ stack) :-
move (Name, Preconditions, Actions),
conditions_met (Preconditions, State),
change state(State, Actions, Child_state),
not (member_ stack(Child_state, Been_stack)),
stack(Name, Been_stack, New_been stack),
stack(Child state, Move_stack, New move_ stack),

plan(Child_state, Goal, New been stack,
New_move_stack), !.

plan(_, _, _) =:-
write(’No plan possible with these moves!’).
conditions met (P, S) :-
subset (P, S).
change_ state(S, [ 1, S).
change state(S, [add(P) | T], S _new) :-
change state(S, T, S2),
add_if not in set(P, S2, S new), !.
change state(S, [del(P) | T], S _new) :-
change state(S, T, S2),
delete if in set(P, S2, S _new), !.
reverse_print stack(S) :-
empty stack(S).
reverse_print stack(S) :-
stack(E, Rest, S),
reverse_print stack(Rest), write(E), nl.

Finally, we create a go predicate to initialize the arguments for plan, as
well as a test predicate to demonstrate an easy method to save repeated
creation of the same input string.
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go(Start, Goal) :-
empty stack(Move_ stack),
empty stack(Been_stack),
stack(Start, Been_stack, New_been_ stack),

plan(Start, Goal, New been stack, Move_ stack).

test :-
go(
[handempty, ontable(b), ontable(c),
on(a,b), clear(c), clear(a)l],

[handempty, ontable(a), ontable(b), on(c,b),
clear(a), clear(c)]

) -
In Chapter 7 we present two machine learning algorithms in Prolog, version
space search and explanation based learning.

Exercises

1. Extend the meta-interpreter for Prolog in Prolog (Section 6.1) to include
or and the cut.

2. Further complete the rules used with the exshell cars example in the
text. You might add several new sets of rules for the transmission, cooling
system, and brakes.

3. Create a knowledge base for a new domain for the expert system
exshell.

4. exshell currently allows the user to respond to queries by entering a
confidence in the query’s truth, a why query, or a how query. Extend the
respond predicate to allow the user to answer with y if the query is true,
n if it is false. These responses correspond to having certainty factors of
100 and -100.

5. As currently designed, if exshell cannot solve a goal using the rule base,
it fails. Extend exshell so if it cannot prove a goal using the rules, and if it
is not askable, it will call that goal as a Prolog query. Adding this option
requires changes to both the solve and build_proof predicates.

6. Add a predicate that that exshell does not just fail if it cannot find a
solution recommendation. This could be a solve predicate at the very
end of all solve predicates that prints out some message about the state
of the problem solving, perhaps by binding X, and linking it to some
Advice, and then succeeds. This an important consideration,
guaranteeing that exshell terminates gracefully.

7. Finish the code for the planner of Section 6.3. Add code for a situation
that requires a new set of moves and has new objects in the domain, such
as adding pyramids or spheres that cannot be stacked on.

8. Add appropriate predicates and ADTs to plan to implement a breadth-
first search controller for the planner of Section 6.3.
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9. Design a best-first search controller for the planner of Section 6.3. Add
heuristics to the search of your planning algorithm. Can you specify a
heuristic that is admissible (Luger 2009, Section 4.3)?
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Chapter 7.1 Machine Learning: Version Space Search
Contents 7 Explanation Based Learning in Prolog
7.1 Machine Learning: Version Space Search
In this section and the next, we implement two machine learning
algorithms: version space search and explanation-based learning. The algorithms
themselves are presented in detail in Luger (2009, Chapter 10). In this
chapter, we first briefly summarize them and then implement them in
Prolog. Prolog is wused for machine learning because, as these
implementations illustrate, in addition to the flexibility to respond to novel
data elements provided by its powerful built-in pattern matching, its meta-
level reasoning capabilities simplify the construction and manipulation of
new representations.
The Version 750 space  search (Mitchell 1978, 1979, 1982) illustrates the
Spa:fgts)t:iat:"cnl: implementation of inductive learning as search through a concept space. A

concept space is a state space representation of all possible generalizations
from data in a problem domain. Version space search takes advantage of
the fact that generalization operations impose an ordering on the concepts
in a space, and then uses this ordering to guide the search.

Generalization and specialization are the most common types of operations for
defining a concept space. The primary generalization operations used in
machine learning and expressed in the predicate calculus (Luger 2009,
Chapter 2) are:

Replacing constants with variables. For example:

color(ball,red)
generalizes to

color(X,red)
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Dropping conditions from a conjunctive expression.

shape (X, round) Asize(X, small) Acolor(X, red)
generalizes to

shape (X, round) A color(X,red)
Adding a disjunct to an expression.

shape(X,round) A size(X,small) A color(X,red)
generalizes to

shape (X,round) A size(X,small) A (color(X,red) Vv

color(X,blue))

Replacing a property with its parent in a class hierarchy. If
primary_ color is a superclass of red, then

color(X,red)

generalizes to

color (X, primary color)

We may think of generalization in set theoretic terms: let P and Q be the
sets of sentences matching the predicate calculus expressions p and d,
respectively. Expression p is more general than q iff Q € P. In the above
examples, the set of sentences that match color (X, red) contains the
set of elements that match color (ball, red). Similarly, in example
2, we may think of the set of round, red things as a superset of the set of
small, red, round things. Note that the “more general than” relationship
defines a partial ordering on the space of logical sentences. We express this
using the “>” symbol, where p > g means that p is more general than q.
This ordering is a powerful source of constraints on the search performed
by a learning algorithm.

We formalize this relationship through the notion of covering. 1If concept p
is more general than concept g, we say that p covers gq. We define the
covers relation: let p(x) and g (x) be descriptions that classify objects as
being positive examples of a concept. In other words, for an object X,
p(xX) 2 positive(x) and q(xX) = positive(x). p covers g
iff g(x)> positive(x) is a logical consequence of p(x) =2
positive(x).
For example, color (X, Y) covers color(ball, Z), which in turn
covers color (ball, red). As a simple example, consider a domain
of objects that have properties and values:

Sizes = {large, small}

Colors = {red, white, blue}

Shapes = {ball, brick, cube}
These objects can be represented using the predicate obj(Sizes,
Color, Shapes). The generalization operation of replacing constants
with variables defines the space of Figure 7.1. We may view inductive

learning as searching this space for a concept that is consistent with all the
training examples.
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Figure 7.1. An example concept space.

We next present the candidate elimination algorithm (Mitchell 1982) for
searching the concept space. This algorithm relies on the notion of a version
space, which is the set of all concept descriptions consistent with the
training examples. This algorithm works by reducing the size of the version
space as more examples become available. The first two versions of this
algorithm reduce the version space in a specific to general direction and a
general to specific direction, respectively. The third version, called candidate
elimination, combines these approaches into a bi-directional search. These
versions of the candidate elimination algorithm are data driven; they
generalize based on regularities found in the training data. Also, in using
training data of known classification, these algorithms perform a variety of
supervised learning.

Version space search uses both positive and negative examples of the
target concept. Although it is possible to generalize from positive examples
only, negative examples are important in preventing the algorithm from
over generalizing. Not only must the learned concept be general enough to
cover all positive examples; it also must be specific enough to exclude all
negative examples. In the space of Figure 7.1, one concept that would
cover all sets of exclusively positive instances would simply be obj (X,
Y, Z).However, this concept is probably too general, because it implies
that all instances belong to the target concept. One way to avoid
overgeneralization is to generalize as little as possible to cover positive
examples; another is to use negative instances to eliminate overly general
concepts. As Figure 7.2 illustrates, negative instances prevent
overgeneralization by forcing the learner to specialize concepts in order to
exclude negative instances. The algorithms of this section use both of these
techniques.

We define specific to general search, for hypothesis set S, as:



90

Part II: Programming in Prolog

Figure 7.2. The role of negative examples in preventing
overgeneralization.

Begin
Initialize S to first positive training instance;

N is the set of all negative instances seen so far;
For each positive instance p
Begin
For every s in S, if s does not match p,
Replace s with its most specific
generalization that matchs p;
Delete from S all hypotheses more general than
some other hypothesis in S;
Delete from S all hypotheses that match a prev-
iously observed negative instance in N;
End;
For every negative instance n
Begin
Delete all members of S that match n;
Add n to N to check future hypotheses
for overgeneralization;
End;
End

Specific to general search maintains a set, S, of hypotheses, or candidate
concept definitions. To avoid overgeneralization, these candidate
definitions are the maximally specific generalizations from the training data. A
concept, ¢, is maximally specific if it covers all positive examples, none of
the negative examples, and for any other concept, c¢’, that covers the
positive examples, ¢ < c¢’. Figure 7.3 shows an example of applying this
algorithm to the version space of Figure 7.1. The specific to general
version space search algorithm is built in Prolog in Section 7.1.2.

We may also search the space in a general to specific direction. This algorithm
maintains a set, G, of maximally general concepts that cover all of the positive and
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none of the negative instances. A concept, c, is maximally general if it covers
none of the negative training instances, and for any other concept, c’, that
covers no negative training instance, ¢ > c’. In this algorithm, which we
leave as an exercise, negative instances will lead to the specialization of
candidate concepts while the algorithm uses positive instances to eliminate
ovetly specialized concepts.

Figure 7.3. Specific to general version space search learning the concept
“ball.”

The candidate elimination algorithm combines these two approaches into a bi-
directional search. This bi-directional approach has a number of benefits
for learning. The algorithm maintains two sets of candidate concepts: G,
the set of maximally general candidate concepts, and S, the set of
maximally specific candidates. The algorithm specializes G and generalizes
S until they converge on the target concept. The algorithm is described:

Begin
Initialize G to the most general concept in space;
Initialize S to first positive training instance;
For each new positive instance p
Begin
Delete all members of G that fail to match p;
For every s in S, if s does not match p,
replace s with its most specific
generalizations that match p;

Delete from S any hypothesis more general than
some other hypothesis in S;

Delete from S any hypothesis more general than
some hypothesis in G;
End;
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For each new negative instance n
Begin
Delete all members of S that match n;
For each g in G that matches n, replace g with

its most general specializations that do
not match n;

Delete from G any hypothesis more specific than
some other hypothesis in G;

Delete from G any hypothesis more specific than
some hypothesis in S;

End;

If G = S and both are singletons, then the algorithm
has found a single concept that is consistent
with all the data;

If G and S become empty, then there is no concept
that covers all positive instances and none of
the negative instances;

End
Figure 7.4 illustrates the behavior of the candidate elimination algorithm in
searching the version space of Figure 7.1. Note that the figure does not
show those concepts that were produced through generalization or
specialization but eliminated as ovetly general or specific. We leave the
elaboration of this part of the algorithm as an exercise and show a partial
implementation in the next section.

Figure 7.4. The candidate elimination algorithm learning the concept “red
ball.”
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We first implement the specific to general search and then the full bi-
directional candidate elimination algorithm. We also give hints on how to
construct the general to specific version space search. These search
algorithms are independent of the representation used for concepts, as long
as that representation supports appropriate generalization and
specialization operations. We use a representation of objects as lists of
features. For example, we describe a small, red, ball with the list:

[small, red, ball]

We represent the concept of all small, red things by including a variable in
the list:

[small, red, X]

This representation we call a_feature vector, It is less expressive than full logic,
e.g., it cannot represent the class “all red or green balls.” However, it
simplifies generalization, and provides a strong inductive bias (Luger 2009,
Section 10.4). We generalize a feature vector by substituting a variable for a
constant, for example, the most specific common generalization of
[small, red, ball] and [small, green, ball] is
[small, X, balll]. This vector will cover both of the specializations
and is the most specific vector to do so.

We define one feature vector as covering another if the first is either identical
to or more general than the second. Note that unlike unification, covers
is asymmetrical: values exist for which X covers Y, but Y does not cover X.
For example, [X, red, ball] covers [large, red, ball] but
the reverse is not true. We next define the predicate covers for feature
VeCtors as:

covers([ 1, [ 1).

covers([Hl | T1], [H2 | T2]) :-
var(Hl), var(H2), covers(Tl, T2).
% variables cover each other

covers([H1 | T1], [H2 | T2]) :-
var(Hl), atom(H2), covers(Tl, T2).
% a variable covers a constant

covers([H1 | T1], [H2 | T2]) :-
atom(H1l), atom(H2), H1 = H2,
covers(Tl, T2).
% matching constants

We next need to determine whether one feature vector is strictly more
general than another; ie., the vectors are not identical. We define the
more_general/2 predicate as:

more _general (X, Y) :- not(covers(Y,X)),covers(X,Y).

We implement generalization of feature vectors as a predicate,
generalize with three arguments, where the first argument is a feature
vector representing an hypothesis (this vector may contain variables), the
second argument is an instance, containing no variables. generalize
binds its third argument to the most specific generalization of the
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hypothesis that covers the instance. generalize recursively scans the
feature vectors, comparing corresponding elements. If two elements
match, the result contains the value of the hypotheses vector in that
position; if two elements do not match, it places a variable in the
corresponding position of the generalized feature vector. Note the use of
the expression not(Feature \= Inst prop), in the second
definition of generalize; this double negative enables us to test if two
atoms will unify without actually performing the unification and forming
any unwanted variable bindings. We define generalize:

generalize([ 1, [ 1, [ 1)-

generalize([Feature | Rest],[Inst prop | Rest inst],
[Feature | Rest gen]) :-

not (Feature \= Inst prop),
generalize(Rest, Rest _inst, Rest gen).
generalize([Feature | Rest],[Inst prop | Rest inst],
[_ | Rest _gen]) :-
Feature \= Inst_prop,
generalize(Rest, Rest _inst, Rest gen).

These predicates define the essential operations on feature vector
representations. The remainder of the implementation that follows is
independent of any specific representation, and may be adapted to a variety
of representations and generalization operators.

As discussed in Section 7.1, we may search a concept space in a specific to
general direction by maintaining a list H of candidate hypotheses. The
hypotheses in H are the most specific concepts that cover all the positive
examples and none of the negative examples seen so far. The heart of the
algorithm is process with five arguments. The first argument to
process is a training instance, positive(X) or negative(X),
indicating that X is a positive or negative example. The second and third
arguments are the current list of hypotheses and the list of negative
instances. On completion, process binds its fourth and fifth arguments
to the updated lists of hypotheses and to the negative examples,
respectively.

The first clause in the definition below initializes an empty hypothesis set
to the first positive instance. The second handles positive training instances
by generalizing candidate hypotheses to cover the instance. It then deletes
all over-generalizations by removing those that are more general than some
other hypothesis and eliminating any hypothesis that covers some negative
instance. The third clause in the definition handles negative examples by
deleting any hypothesis that covers those instances.

process(positive(Instance), [ ], N, [Instance], N).
process(positive(Instance), H, N, Updated H, N) :-
generalize set(H, Gen_H, Instance),

delete(X, Gen_H, (member(Y, Gen_H),
more _general(X, Y)), Pruned_H),

delete(X, Pruned H, (member(Y, N),
covers(X, Y)), Updated H).
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process(negative(Instance), H, N, Updated H,
[InstanceN]) :-

delete(X, H, covers(X, Instance), Updated H).
process(Input, H, N, H, N):- %Catches bad input

Input \= positive(_ ),

Input \= negative(_),

write(’'Enter either positive(Instance) or

negative(Instance) ‘), nl.
An interesting aspect of this implementation is the delete predicate, a
generalization of the usual process of deleting all matches of an element
from a list. One of the arguments to delete is a test that determines
which elements to remove from the list. Using bagof, delete matches
its first argument (usually a variable) with each element of its second
argument (this must be a list). For each such binding, it then executes the
test specified in argument three: this test is any sequence of callable Prolog
goals. If a list element causes this test to fail, delete includes that
element in the resulting list. It returns the result in its final argument. The
delete predicate is an excellent example of the power of meta reasoning
in Prolog: by letting us pass in a specification of the elements we want to
remove from a list, delete gives us a general tool for implementing a
range of list operations. Thus, delete lets us define the various filters
used in process/5 in an extremely compact fashion. We define
delete:
delete(X, L, Goal, New_L) :-
(bagof (X, (member(X, L), not(Goal)), New L);
New L = [ ]).

Generalize_ set is a straightforward predicate that recursively scans a
list of hypotheses and generalizes each one against a training instance. Note
that this assumes that we may have multiple candidate generalizations at
one time. In fact, the feature vector representation of Section 7.1.1 only
allows a single most specific generalization. However, this is not true in
general and we have defined the algorithm for the general case.

generalize set([ 1, [ 1, _)-.

generalize_ set([Hypothesis Rest],
Updated_H, Instance):-

not (covers (Hypothesis, Instance)),

(bagof (X, generalize(Hypothesis, Instance, X),
Updated_head); Updated head = [ ]),

generalize_ set(Rest, Updated_rest, Instance),
append(Updated head, Updated _rest, Updated H).

generalize set([Hypothesis | Rest],
[Hypothesis | Updated rest], Instance) :-

covers (Hypothesis, Instance),
generalize set(Rest, Updated_rest, Instance).

specific_to_general implements a loop that reads and processes training
instances:
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specific to general(H, N) :-
write('H = '), write(H), nl, write(’'N = ‘'),
write(N), nl,
write(’Enter Instance: ‘), read(Instance),
process(Instance, H, N, Updated H, Updated N),
specific_to general(Updated H, Updated N).

The following transcript illustrates the execution of this algorithm.

?- specific_to _general([], [])-.

H=11]

N =11

Enter Instance: positive([small, red, ball]).

H [[small, red, ball]]

N =11

Enter Instance: negative([large, green, cube]).

H [[small, red, ball]]

N

Enter Instance: negative([small, blue, brick]).

H = [[small, red, ball]]

[[large, green, cube]]

N = [[small, blue, brick], [large, green, cube]]
Enter Instance: positive([small, green, ball]).
H = [[small, 66, ball]]

N = [[small, blue, brick], [large, green, cube]]
Enter Instance: positive([large, blue, ball]).

H [[_116, 66, ball]]

N [[small, blue, brick], [large, green, cube]]

The second version of the algorithm searches in a general to specific
direction, as described in Section 7.1.1. In this version, the set of candidate
hypotheses are initialized to the most general possible concept. In the case
of the feature vector representation, this is a list of variables. It then
specializes candidate concepts to prevent them from covering negative
instances. In the feature vector representation, this involves replacing
variables with constants. When given a new positive instance, it eliminates
any candidate hypothesis that fails to cover that instance.

We implement this algorithm in a way that closely parallels the specific to
general search just described, including the use of the general delete
predicate to define the various filters of the list of candidate concepts. In
defining a general to specific search, process will have six arguments. The
first five reflect the specific to general version: the first a training instance
of the form positive(Instance) or negative(Instance);
the second is a list of candidate hypotheses; these are the most general
hypotheses that cover no negative instances. The third argument is the list
of positive examples, used to delete any overly specialized candidate
hypothesis. The fourth and fifth arguments are the updated lists of
hypotheses and positive examples, respectively. The sixth argument is a list
of allowable variable substitutions for specializing concepts.
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Specialization by substituting a constant for a variable requires the
algorithm to know the allowable constant values for each field of the
feature vector. These values will have to be passed in as the sixth argument
of process. In our example of [Size, Color, Shape] vectors, a
sample list of types might be: [[small, medium, large],
[red, white, blue], [ball, brick, cube]]. Note that
the position of each sublist determines the position in a feature vector
where those values are used; for example, the first sublist defines allowable
values for the first position of a feature vector. We leave construction of
this algorithm as an exercise. For guidance we include a run of our
implementation:
?- general_to_specific([[_, _, _11, [ 1.

[[small, medium, large],
[red, blue, green],
[ball, brick, cube]]).

H=1[[_0, 1, _2]]

P=11

Enter Instance: positive([small, red, ball]).
H=11[_0, 1, _2]]

P = [[small, red, ball]]

Enter Instance; negative([large, green, cube]).

H = [[small, 89, 90], [ 79, red, 807,
[ 69, 70, ball]]

P = [[small, red, ball]]

Enter Instance: negative([small, blue, brick]).
H [[_79, red, _80]1,[_69, 70, ball]]

P [[small, red, ball]]

Enter Instance: positive([small, green, ball]).
H=[[_69, 70,ball]]

P = [[small, green, ball], [small, red, ball]]

The full candidate elimination algorithm, as described in Section 7.1.1, is a
combination of the two single direction searches. As before, the heart of
the algorithm is the definition of process, with six arguments. The first
argument to process is a training instance. Arguments two and three are
G and S, the sets of maximally general and maximally specific hypotheses
respectively. The fourth and fifth arguments are bound to the updated
versions of these sets. The sixth argument of process lists allowable
variable substitutions for specializing feature vectors.

On positive instances, process generalizes S, the set of most specific
generalizations, to cover the training instance. It then eliminates any
elements of S that have been over generalized. It also eliminates any
elements of G that fail to cover the training instance. It is interesting to
note that an element of S is overly general if there is no element of G that
covers it; this is true because G contains those candidate hypotheses that
are both maximally general and cover no negative instances. process
uses delete to eliminate these hypotheses.
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On a negative training instance, process specializes all hypotheses in G
to exclude that instance. It also eliminates any candidates in S that cover
the negative instance. As discussed above, specialization of feature vectors
requires replacing variables with constants. This requires that we pass a list
of allowable substitutions as the sixth argument to process. We define
process:
process(negative(Instance), G, S, Updated G,
Updated_S, Types) :-
delete(X, S, covers(X, Instance), Updated_S),
specialize_set (G, Spec_G, Instance, Types),
delete(X, Spec_G, (member(Y, Spec_G),
more _general(Y, X)), Pruned G),

delete(X, Pruned G, (member(Y, Updated S),
not(covers(X, Y))), Updated G).

process(positive(Instance), G, [ 1,
Updated_ G, [Instance], ) :- %Initialize S
delete(X, G, not(covers(X, Instance)),
Updated_G).
process(positive(Instance), G, S,
Updated_G, Updated_S, ) :-
delete(X, G, not(covers(X, Instance)),
Updated_G),
generalize set(S, Gen_S, Instance),
delete(X, Gen_S, (member(Y, Gen_S),
more _general(X, Y)), Pruned_S),
delete(X, Pruned_ S, not((member(Y, Updated G),
covers(Y, X))), Updated S).
process(Input, G, P, G, P,_) :-
Input \= positive(_), Input \= negative(_ ),
write( Enter a positive(Instance) or
negative(Instance): ‘), nl.
generalize set generalizes all members of a set of candidate
hypotheses to cover a training instance. It is identical to the version defined
for the specific to general search. specialize_ set takes a set of
candidate hypotheses and computes all maximally general specializations of
those hypotheses that exclude (do not covet) a training instance. Note the
use of bagof to get all specializations.
specialize set([ 1, [ 1, _, _)-
specialize set([HypothesisRest],
Updated_H, Instance, Types) :-
covers (Hypothesis, Instance),
(bagof (Hypothesis, specialize(Hypothesis,
Instance,Types), Updated head) ;
Updated_head = [ 1),
specialize set(Rest, Updated rest, Instance,
Types),
append(Updated head, Updated_rest, Updated H).
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specialize set([HypothesisRest],
[HypothesisUpdated rest],Instance,Types):-

not (covers(Hypothesis, Instance)),

specialize set(Rest, Updated rest,
Instance, Types).

specialize finds an element of a feature vector that is a variable. It
binds that variable to a constant value that it selects from the list of
allowable values, and which does not match the training instance. Recall
that specialize_set called specialize with bagof to get all
specializations. If we call specialize once, it will substitute a constant
into the first variable; bagof causes it to produce all specializations.

specialize([Prop_ ], [Inst prop_ 1,
[Instance_values_]) :-

var (Prop), member (Prop, Instance_ values),
Prop \= Inst prop.
specialize([_Tail], [_Inst tail], [_Types]) :-
specialize(Tail, Inst_tail, Types).
The definitions of generalize, more general, covers, and
delete are the same as in the specific to general algorithm defined

above. candidate elim implements a top-level read-process loop,
printing out the current G set, the S set, and calls process on the input:

candidate _elim([G],[S],_) :-
covers(G,S),covers(S,G),
write(’'target concept is: ‘), write(G),nl.
candidate _elim(G, S, Types) :-
write(’'G= ‘), write(G), nl, write(’'S= ‘),
write(S), nl, write('Enter Instance: ‘),
read(Instance),

process(Instance, G, S, Updated G,
Updated_S, Types),

candidate_elim(Updated G, Updated S, Types).
To conclude this section we present a trace of the candidate elimination

algorithm. Note initializations of G, S, and the list of allowable
substitutions:

?- candidate elim([[_, _, _11, [ 1.
[[small, medium, large],
[red, blue, green],
[ball, brick, cube]]).

G= [[_0, _1, _21]]

S= [ 1

Enter Instance: positive([small, red, ball]).
G= [[_0, 1, _21]]

S= [[small, red, ball]]

Enter Instance: negative([large, green, cube]).

G= [[small, 96, 971, [_86, red, 871,
[ 76, _77, ball]]
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7.2

The Explanation
Based Learning
Algorithm

S= [[small, red, ball]]

Enter Instance: negative([small, blue, brick]).
G= [[_86, red, 871, [_76, _77, ball]l]

S= [[small, red, ball]]

Enter Instance: positive([small, green, ball]).
G= [[_76, _77, ball]l]

S= [[small, 351, ball]]

Enter Instance: positive([large, red, ball]).

target concept is: [_76, 77, ball] yes
Explanation Based Learning in Prolog

In this section, we describe briefly the algorithms for explanation-based
learning, Section 7.2.1 and then present a Prolog implementation of the
explanation-based learning in Section 7.2.2. Our implementation is based
upon Kedar-Cabelli and McCarty’s formulation (Kedar-Cabelli and
McCarty 1987; Luger 2009, Section 10.5.2), called prolog ebg, and
illustrates the power of unification in Prolog. Even though it is quite
difficult to implement explanation-based learning in many languages, the
Prolog version is fairly simple.

Explanation-based learning uses an explicitly represented domain theory
to construct an explanation of a training example, usually a proof that the
example logically follows from the theory. By generalizing from the
explanation of the instance, rather than from the instance itself,
explanation-based learning filters noise, selects relevant aspects of
experience, and organizes training data into a coherent structure.

There are several alternative formulations of this idea. For example, the
STRIPS program for representing general operators for planning (see
Section 6.3) has exerted a powerful influence on this research (Fikes et al.
1972). Meta-DENDRAL established the power of theory-based
interpretation of training instances (Luger 2009, Section 10.5.1). A number
of authors (DeJong and Mooney 1986, Minton 1988) have proposed
alternative  formulations of this idea. The Explanation-Based
Generalization algorithm of Mitchell et al. (1986) is also typical of the
genre. In this section, we examine a variation of the explanation-based
learning (EBL) algorithm developed by DeJong and Mooney (1980).

EBL begins with:

1. A target concept. The learner’s task is to determine an effective
definition of this concept. Depending upon the specific
application, the target concept may be a classification, a
theorem to be proven, a plan for achieving a goal, or a heuristic
for a problem solver.

2. A training example, an instance of the target.

A domain theory, a set of rules and facts that are used to explain
how the training example is an instance of the goal concept.

4. Operationality criteria, some means of describing the form
concept definitions may take.
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To illustrate EBL, we present an example of learning about when an object
is a cup. This is a variation of a problem explored by Winston et al. (1983)
and adapted to explanation-based learning by Mitchell et al. (1986). The
target concept is a rule that may be used to infer whether an object is a cup;
again, we adopt a predicate calculus representation:

premise(X) 2> cup(X)
where premise is a conjunctive expression containing the variable X.

Assume a domain theory that includes the following rules about cups:
liftable(X) A holds_liquid(X) = cup(X)

part(Z, W) a concave(W) A points up(W) ->
holds_liquid(Z)

light(Y) »~ part(Y, handle) > liftable(Y)
small(A) > light(A)

made_of (A, feathers) - light(A)
The training example is an instance of the goal concept. That is, we are
given:

cup(objl)

small(objl)

part(objl, handle)

owns (bob, objl)

part(objl, bottom)

part(objl, bowl)

points_up(bowl)

concave (bowl)

color(objl, red)
Finally, assume the operationality criteria require that target concepts be
defined in terms of observable, structural properties of objects, such as
part and points_up. We may provide domain rules that enable the

learner to infer whether a description is operational, or we may simply list
operational predicates.

A theorem prover constructs an explanation of why the example is an
instance of the training concept: a proof that the target concept logically
follows from the example, as in Figure 7.5. Note that this explanation
eliminates such irrelevant concepts as color (objl, red) from the
training data and captures (only) those aspects of the example known to be
relevant to the goal.

The next stage of explanation-based learning generalizes the explanation to
produce a concept definition that may be used to recognize other cups.
EBL accomplishes this by substituting variables for those constants in the
proof tree that depend solely on the particular training instance, as may be
seen in Figure 7.5 (bottom). Based on the generalized tree, EBL defines a
new rule whose conclusion is the root of the tree and whose premise is the
conjunction of the leaves:
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Figure 7.5. A specific (top) and generalized (bottom) proof that an object,
X, is a cup.

small (X) A~ part(X, handle) A part(X, W) A concave(W)
A points up(W) = cup(X).

In constructing a generalized proof tree, our goal is to substitute variables
for those constants that are part of the training instance while at the same
time retaining those constants and constraints that are part of the domain
theory. In this example, the constant handle originated in the domain
theory rather than the training instance. We have retained it as an essential
constraint in the acquired rule.

We may construct a generalized proof tree in a number of ways using a
training instance as a guide. Mitchell et al. (1986) accomplish this by first
constructing a proof tree that is specific to the training example and
subsequently generalizing the proof through a process called goal regression.
Goal regression matches the generalized goal (in our example, cup (X))
with the root of the proof tree, replacing constants with variables as
required for the match. The algorithm applies these substitutions
recursively through the tree until all appropriate constants have been
generalized. See Mitchell et al. (1986) for a detailed description of this
process. We next implement the explanation based learning algorithm in
Prolog.
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Instead of building an explanation structure and maintaining separate sets
of specific and general substitutions as done in Section 7.2.1, our algorithm
will build both the proof of the training instance and the generalized proof
tree concurrently.

For this example, we represent proof trees as we did in exshell (Section
6.2). When prolog_ebg discovers a fact, it returns this fact as the leaf of
a proof tree. The proof of conjunctive goals is the conjunction of the proof
of the conjuncts. The proof of a goal that requires rule chaining is
represented as (Goal :— Proof), where Proof becomes bound to
the proof tree for the rule premise.

The heart of the algorithm is prolog_ ebg. This predicate takes four
arguments: the first is the goal being proved in the training example, the
second is the generalization of that goal. If the domain theory enables a
proof of the specific goal, it binds the third and fourth arguments to a
proof tree for the goal and the generalization of that proof. For instance,
implementing the cup example from Section 7.2.1, we would call
prolog ebg with the arguments:

prolog ebg(cup(objl), cup(X), Proof, Gen proof).

We assume that Prolog has the domain theory and training instance of
Section 7.2.1. When prolog ebg succeeds; Proof and Gen proof
are the proof trees of Figure 7.5.

prolog _ebg is a straightforward variation of the exshell meta-
interpreter of Section 6.2. The primary difference is that prolog_ebg
solves the goal and the generalized goal in parallel. A further interesting
aspect of the algorithm is the use of the predicate duplicate to create
two versions of each rule: the first version is the rule as it appears in the
domain theory, the second binds variables in the rule to the values in the
training instance. We define prolog_ebg:
prolog ebg(A, GenA, A, GenA) :- clause(A, true).

prolog ebg((A, B), (GenA, GenB), (AProof, BProof),
(GenAProof, GenBProof)) :- !,

prolog ebg(A, GenA, AProof, GenAProof),
prolog ebg(B, GenB, BProof, GenBProof).

prolog ebg(A, GenA, (A :- Proof), (GenA :-
GenProof)) :-

clause(GenA, GenB),

duplicate((GenA :- GenB), (A :- B)),

prolog ebg(B, GenB, Proof, GenProof).
Duplicate relies upon the behavior of assert and retract to
create a copy of a Prolog expression with all new variables.

duplicate(0ld, New) :-
assert(’'S$marker’ (01d)),
retract(’'S$marker’ (New)).

extract support returns the sequence of the highest level
operational nodes, as defined by the predicate operational. The
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extract support predicate implements a recursive tree walk,
terminating the recursion when it finds nodes in the proof tree that
qualifies as operational.
extract_support(Proof, Proof) :- operational(Proof).
extract_support((A :- _), A) :- operational(Ad).
extract_support((AProof, BProof), (A, B)) :-
extract_support (AProof, A),
extract_support(BProof, B).

extract_support((_ :- Proof), B) :-
extract_support(Proof, B).
The final component of the explanation based generalization algorithm

constructs  the learned rule, wusing the prolog ebg and
extract support predicates:

ebg(Goal, Gen_goal, (Gen_goal :- Premise)) :-
prolog ebg(Goal, Gen_goal, _, Gen_proof),
extract_support(Gen_proof, Premise).

We illustrate the execution of these predicates with the example of learning
structural definitions of cups from Section 7.2.1, as described originally by
Mitchell et al. (1986). We begin with a domain theory for cups and other
physical objects. The theory includes the rules:
cup(X) :- liftable(X), holds_liquid(X).
holds_liquid(Z) :-
part(Z, W), concave(W), points_ up(W).

liftable(Y) :-

light(Y), part(Y, handle).
light(A):- small(A).
light(A):- made_of (A, feathers).

The learner is also given the following example, in which obj1 is known
to be a cup:

small (objl).
part(objl, handle).
owns (bob, objl).
part(objl, bottom).
part(objl, bowl).
points_up(bowl).
concave (bowl).
color(objl, red).
The operationality criteria define predicates that may be used in a rule:
operational(small(_)).

operational(part(_, _)).
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operational(owns(_, _)).
operational (points_up(_)).
operational(concave(_)).

A run of the algorithm on the cup example illustrates the behavior of these
predicates. Of course, symbols such as “_ 0”7 and “_106” indicate specific
variables in Prolog, i.e., all uses of 106 represent the same variable:

?- prolog ebg(cup(objl), cup(X), Proof, Gen proof).

X = 0,

Proof = cup(objl) :-
( (liftable(objl) :-

( (light(objl) :-
small(objl)),
part(objl, handle))),

(holds_liquid(objl) :-
(part(objl, bowl),
concave (bowl),
points_up(bowl))))

Gen_prooof = cup(_0) :-
( (liftable(_0) :-

( (light(_0) :-
small(_0)),
part(_0, handle))),

(holds_liquid(_0) :-
(part(_0, _106),
concave(_106),
points_up(_106))))

When we give extract_ support the generalized proof from the
previous execution of prolog_ebg, it returns the operational nodes of
the proof, in left-to-right order:

?- extract_support((cup(_0) :-
( (liftable(_0) :-
( (light(_0) :-
small(_0)),
part(_0, handle))),
(holds_liquid(_0) :-
(part(_0,_106),
concave(_106),
points_up(_106))))), Premise),
0= _0, 106 = 1,
Premise = (small(_0), part(_O0,handle)), part( 0, 1),
concave(_1), points up(_1)

Finally, ebg uses these predicates to construct a new rule from the
example.

?- ebg(cup(objl), cup(X), Rule).

X = 0,

Rule = cup(_0) :-

((small(_0), part(_0, handle)), part(_0,_110),
concave(_110), points up(_110))

In the next two chapters we address the problem of understanding natural
language. We first, in Chapter 8, discuss issues in semantic (or language
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meaning) representations, building Prolog structures for conceptual
dependencies. We then build several recursive descent patsers to capture
syntactic relationships in sentences. These meta-interpreters demonstrate
context free, context sensitive, deterministic, and probabilistic parsing. In
Chapter 9 we present the Earley parser in Prolog, which uses techniques
from dynamic programming. The FEarley parser is often called a chart
parser.

Exercises

1. The run of the candidate elimination algorithm shown in Figure 7.4 does
not show candidate concepts that were produced but eliminated because
they were either overly general, overly specific, or subsumed by some other
concept. Re-do the execution trace, showing these concepts and the
reasons each was eliminated.

2. Develop a domain theory for explanation-based learning in some
problem area of your choice. Trace the behavior of an explanation-based
learner in applying this theory to several training instances.

3. Implement a general to specific search of the version space using the
feature vector representation of Section 7.2. We can specialize feature
vectors by replacing variables with constants; since this requitres telling the
algorithm of allowable values for each field of the feature vector, we must
pass this in as an extra argument. The following definition of
run_general, the top-level goal, illustrates the necessary initializations
for the example used in the text: objects may be small, medium, or
large, their color may be red, blue, green, and their shape may be
ball, brick, or cube.

run_general :-

general_ to_specific([[_, _, _11, [ 1,
[[small,medium,large], [red,blue,green],
[ball,brick,cube]]).

4. Create another domain theory example, as proposed in exercise 2 above,
and run it with prolog ebg.

5. Extend the definition of ebg so that, after it constructs a new rule, it
asserts it to the logic database where it may be used in future queries. Test
the performance of the resulting system using a theory for a suitably rich
domain. You might do this by constructing a theory for a domain of your
choice, or extending the theory from the cup example to allow it to explain
different types of cups such as Styrofoam cups, cups without handles, etc.
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8.1

Natural Language Understanding in Prolog

Because of its declarative semantics, built-in search, and pattern matching,
Prolog provides an important tool for programs that process natural
language. Indeed, natural language understanding was one of Prolog’s
carliest applications. As we will see with many examples in this chapter, we
can write natural language grammars directly in Prolog, for example,
context-free, context-sensitive, recursive descent semantic network, as well
as stochastic parsers. Semantic representations are also easy to create in
Prolog, as we see for conceptual graphs and case frames in Section 8.2.
Semantic relationships may be captured either using the first-order
predicate calculus or by a meta-interpreter for another representation, as
suggested by semantic networks (Section 2.4.1) or frames (Sections 2.4.2
and 8.1). This not only simplifies programming, but also keeps a close
connection between theories and their implementation.

In Section 8.3 we present a context-free parser and later add context
sensitivity to the parse Section 8.5. We accomplish many of the same
justifications for context sensitivity in patsing, e.g., noun-verb agreement,
with the various probabilistic parsers of Section 8.4. Finally, semantic

107



108

Part II: Programming in Prolog

8.2

inference, using graph techniques including join, restrict, and
inheritance in conceptual graphs, can be done directly in Prolog as
we see in Section 8.5.

Many of the approaches to parsing presented in this chapter have been
suggested by several generations of colleagues and students.

Prolog-Based Semantic Representations

Following on the early work in Al developing representational schemes such
as semantic networks, scripts, and frames (Luger 2009, Section 7.1) a number
of network languages were developed to model the semantics of natural language
and other domains. In this section, we examine a particular formalism to show
how, in this situation, the problems of representing meaning were addressed.
John Sowa’s conceptual graphs (Sowa 1984) is an example of a network
representation language. We briefly introduce conceptual graphs and show
how they may be implemented in Prolog. A more complete introduction to
this representational formalism may be found in Sowa (1984) and Luger (2009,
Section 7.2).

A conceptual graph is a finite, connected, bipartite graph. The nodes of the
graph are either concepts or conceptual relations. Conceptual graphs do not use
labeled arcs; instead the conceptual relation nodes represent relations
between concepts. Because conceptual graphs are bipartite, concepts only
have arcs to relations, and vice versa. In Figure 8.1 dog and brown are
concept nodes and color a conceptual relation. To distinguish these
types of nodes, we represent concepts as boxes and conceptual relations as
ellipses.

Figure 8.1. Conceptual graph relations with different arities.

In conceptual graphs, concept nodes represent either concrete or abstract
objects in the wotld of discourse. Conctrete concepts, such as a cat,
telephone, or restaurant, are characterized by our ability to form an image
of them in our minds. Note that concrete concepts include generic
concepts such as cat or restaurant along with concepts of specific cats and
restaurants. We can still form an image of a generic cat. Abstract concepts
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include things such as love, beauty, and loyalty that do not correspond to
images in our minds.

Conceptual relation nodes indicate a relation involving one or more
concepts. One advantage of formulating conceptual graphs as bipartite
graphs rather than using labeled arcs is that it simplifies the representation
of relations of any number of arcs (arity). A relation of arity n is
represented by a conceptual relation node having n arcs, as shown in
Figure 8.1.

Each conceptual graph represents a single proposition. A  typical
knowledge base will contain a number of such graphs. Graphs may be
arbitrarily complex but must be finite. For example, one graph in Figure
8.1 represents the proposition “A dog has a colot of brown.” Figure 8.2 is
a graph of somewhat greater complexity that represents the sentence
“Mary gave John the book.” This graph uses conceptual relations to
represent the cases of the verb “to give” and indicates the way in which
conceptual graphs are used to model the semantics of natural language.

Figure 8.2. Conceptual graph of “Mary gave John the book.”

Conceptual graphs can be translated directly into predicate calculus and
hence into Prolog. The conceptual relation nodes become the predicate
name, and the arity of the relation indicates the number of arguments of
the predicate. Each Prolog predicate, as with each conceptual graph,
represents a single proposition.

The conceptual graphs of Figure 8.1 may be rendered in Prolog as:

bird(X), flies(X).

dog(X), color (X, Y), brown(Y).

child(X), parents(X, Y, Z), father(Y), mother(z).
where X, ¥, and Z are bound to the appropriate individuals. Type
information can be added to parameters as indicated in Section 5.2. We can
also define the type hierarchy through a variation of isa predicates.

In addition to concepts, we define the relations to be used in conceptual
graphs. For this example, we use the following concepts:

agent links an act with a concept of type animate. agent defines the
relation between an action and the animate object causing the action.

experiencer links a state with a concept of type animate. It defines the
relation between a mental state and its experiencet.

instrument links an act with an entity and defines the instrument used
in an action.
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object links an event or state with an entity and represents the verb—
object relation.

part links concepts of type physobj and defines the relation between
whole and part.

The verb plays a particularly important role in building an interpretation, as it
defines the relationships between the subject, object, and other components of
the sentence. We can represent each verb using a case frame that specifies:

The linguistic relationships (agent, object, instrument, and so on) appropriate
to that particular verb. Transitive verbs, for example, can have a direct object;
intransitive verbs do not.

Constraints on the values that may be assigned to any component of the case
frame. For example, in the case frame for the verb bites, we have asserted that
the agent of biting must be of the type dog. This causes “Man bites dog” to be
rejected as semantically incorrect.

Default values on components of the case frame. In the “bites” frame, we
have a default value of teeth for the concept linked to the instrument relation.

The case frames for the verbs like and bite appear in Figure 8.3.

Figure 8.3. Case frames for the verbs “like” and “bite.”

These verb-based case frames are also easily built in Prolog. Each verb is
paired with a list of the semantic relations assumed to be part of the verb.
These may include agents, instruments, and objects. We next offer
examples of the verbs give and bite from Figure 8.3. For example, the verb
give requires a subject, object, and indirect object. In the English sentence
“John gives Mary the book,” this structure takes on the obvious
assignments. We can define defaults in a case frame by binding the
appropriate variable values. For example, we could give bite a default
instrument of teeth, and, indeed indicate that the instrument for biting,
teeth, belong to the agent! Case frames for these two verbs might be:
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verb(give,
[human (Subject),
agent (Subject, give),
act of giving (give),
object (Object, give),
inanimate (Object),
recipient (Ind obj, give),
human (Ind_obj) 1 ).
verb(bite,
[animate (Subject),
agent (Subject, Action),
act _of biting (Action),
object (Object, Action),
animate (Object),
instrument (teeth, Action),
part_of (teeth, Subject) ] ).

Logic programming also offers a powerful medium for building
grammars as well as representations for semantic meanings. We next
build recursive descent parsers in Prolog, and then add syntactic and
semantic constraints to these parsers.

A Context-Free Parser in Prolog

Consider the subset of English grammar rules below. These rules are
“declarative” in the sense that they simply define relationships among parts
of speech. With this subset of rules a large number of simple sentences can
be judged as well formed or not. The “<—>" indicate that the symbol on
the left hand side can be replaced by the symbol or symbols on the right.
For example, a Sentence can be replaced by a NounPhrase followed
by a VerbPhrase.

Sentence <-> NounPhrase VerbPhrase

NounPhrase <-> Noun

NounPhrase <-> Article Noun

VerbPhrase <-> Verb

VerbPhrase <-> Verb NounPhrase

Adding some vocabulary to the grammar rules:
Article(a)
Article(the)
Noun (man)
Noun (dog)
Verb(likes)
Verb(bites)
These grammar rules have a natural fit to Prolog, for example, a
sentence is a nounphrase followed by a verbphrase:
sentence(Start, End) :-

nounphrase(Start, Rest), verbphrase(Rest, End).



112

Part II: Programming in Prolog

This sentence Prolog rule takes two parameters, each a list; the first list,
Start, is a sequence of words. The rule attempts to determine whether
some initial part of this list is a NounPhrase. Any remaining tail of the
NounPhrase list will match the second parameter and be passed to the
first parameter of the verbphrase predicate. Any symbols that remain
after the verbphrase check are passed back as the second argument of
sentence. If the original list is a sentence, the second argument of
sentence must be empty, [ ].Two alternative Prolog descriptions of
nounphrase and verbphrase parses follow.

Figure 8.4 is the parse tree of “the man bites the dog,” with and
constraints in the grammar reflected by and links in the tree.

Figure 8.4. The and/or parse tree for "The man bites the dog.”

To simplify our Prolog code, we present the sentence as a list: [the,
man, likes, the, dog]. This list is broken up by, and passed to,
the various grammar rules to be examined for syntactic correctness. Note
how the “pattern matching” works on the list in question: pulling off the
head, or the head and second element; passing on what is left over; and so
on. The utterance predicate takes the list to be parsed as its argument
and calls the sentence rule, initializing the second parameter of
sentence to [ ]. The complete grammar is defined:
utterance(X) :- sentence(X, [ ]).
sentence(Start, End) :-
nounphrase(Start, Rest), verbphrase(Rest, End).
nounphrase([Noun | End], End) :-
noun (Noun).
nounphrase([Article, Noun | End], End) :-
article(Article), noun(Noun).
verbphrase([Verb | End], End) :-
verb(Verb).
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verbphrase([Verb | Rest], End) :-
verb(Verb), nounphrase(Rest, End).
article(a).
article(the).
noun(man) .
noun(dog) .
verb(likes).
verb(bites).
Example sentences may be tested for correctness:
?- utterance([the, man, bites, the, dog]).
Yes
?- utterance([the, man, bites, the]).
no

The interpreter can also fill in possible legitimate words to incomplete
sentences:

?- utterance([the, man, likes, X]).

X = man
7

X = dog
7

no

Finally, the same code may be used to generate the set of all well-formed
sentences using this limited dictionary and set of grammar rules:

?- utterance(X).
[man, likes]

7

[man, bites]

4
[man, likes, man]

4
[man, likes, dog]
etc.

If the user continues asking for more solutions, eventually all possible well-
formed sentences that can be generated from the grammar rules and our
vocabulary are returned as values for X. Note that the Prolog search is left-
to-right and depth-first.

The grammar rules specify a subset of legitimate sentences of English. The
Prolog grammar code represents these specifications. The interpreter is
asked questions about them and the answer is a function of the
specifications and the question asked. Since there are no constraints
enforced across the subtrees that make up the full parse of a sentence, see
Figure 8.4, the parser/generator for this grammar is said to be context free.
In Section 8.3 we use probabilistic measures to add constraints both to
particular word combinations and to the structures of the grammar.
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8.4

Probabilistic
Context-Free
Parser

Probabilistic Parsers in Prolog

In this section we extend the context-free grammar of Section 8.2 to
include further syntactic and semantic constraints. For example, we may
want some grammatical structures to be less likely than others, such as a
noun by itself being less likely than an article followed by a noun. Further,
we may want the sentence “The dog bites the widget” to be less likely than
the sentence “The dog bites the man.” Finally, if our vocabulary includes
the verb like (as well as likes), we want “The man likes the dog” to be
acceptable, but “The man like the dog” to fail. The parsers for Sections
8.3.1 and 8.3.2 were suggested by Professor Mark Steedman of the
University of Edinburgh and transformed to the syntax of this book by Dr.
Monique Morin of the University of New Mexico.

We next create two probabilistic parsers in Prolog, first a context free
parser and second, a lexicalized context free parser.

Our first extension is to build a probabilistic context-free parser. To do this, we
add a probabilistic parameter, Prob, to each grammar rule. Note that the
probability that a sentence will be a noun phrase followed by a verb phrase
is 1.0, while the probability that a noun phrase is simply a noun is less than
the probability of it being an article followed by a noun. These probabilities
are reflected in pr facts that are related to each grammar rule, rl, r2, ...,
r5.

The full probability of a particular sentence, Prob, however, is calculated
by combining a number of probabilities: that of the rule itself together with
the probabilities of each of its constituents. Thus, the full probability Prob
of rl is a product of the probabilities that a particular noun phrase is
combined with a particular verb phrase. Further, the probability for the
third rule, r3, will be the product of that type noun phrase occurring (r3)
times the probabilities of the particular article and noun that make up the
noun phrase. These noun/article probabilities are given in the two
argument dictionary “fact” predicates. These probabilities for particular
words might be determined by sampling some corpus of collected
sentences. In the examples that follow we simply made-up these
probabilistic measures.
utterance(Prob, X) :- sentence(Prob, X, [ 1).
sentence(Prob, Start, End) :-
nounphrase(P1, Start, Rest),
verbphrase (P2, Rest, End),
pr(rl, P), Prob is P*P1l*P2.
nounphrase(Prob, [Noun | End], End) :-
noun(P1l, Noun), pr(r2, P), Prob is P*Pl.
nounphrase(Prob, [Article, Noun | End], End) :-
article(P1l, Article), noun(P2,Noun), pr(r3, P),
Prob is P*P1*P2.
verbphrase(Prob, [Verb | End], End) :-
verb(Pl, Verb), pr(r4, P), Prob is P*Pl.
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verbphrase (Prob, [Verb | Rest], End) :-
verb(Pl, Verb),
nounphrase (P2, Rest, End), pr(r5, P),
Prob is P*P1*P2.
pr(rl, 1.0).
pr(r2, 0.3).
pr(r3, 0.7).
pr(r4, 0.2).
pr(r5, 0.8).
article(0.25, a).
article(0.75, the).
noun(0.65, man).
noun(0.35, dog).
verb(0.9, likes).
verb(0.1, bites).
We now run several example sentences as well as offer general patterns of
sentences, i.e., sentences beginning with specific patterns of words such as

“The dog bites...” Finally, we ask for all possible sentences that can be
generated under these constraints.

?- utterance(Prob, [the, man, likes, the, dog]).
Prob = 0.0451474

Yes

?- utterance(Prob, [bites, dog])

No

?- utterance(Prob, [the, man, dog]).

No

?- utterance(Prob, [the, dog, bites, X]).

Prob = 0.0028665

X = man

4

Prob = 0.0015435

X = dog

7

No

?- utterance(Prob, [the, dog, bites, XY]).
Prob = 0.0028665

X = man

4

Prob = 0.0015435
X = dog
Y =11

.
4



116

A Probabilistic
Lexicalized
Context Free
Parser

Part II: Programming in Prolog

Prob = 0.00167212
X = a

Y = [man] ;

etc.

?- utterance(Prob, X).
Prob = 0.0351
X = [man, likes]

4
Prob =
X =

0.0039
[man, bites]

4
Prob =
X =

0.027378
[man, likes, man]

4
Prob =
X =

0.014742

[man, likes, dog]

etc.

We next demonstrate a probabilistic lexicalized context-free parser. This is a
much more constrained system in which the probabilities, besides giving
measures for the various grammatical structures and individual words as in
the previous section, also describe the possible combinations of words
(thus, it is a probabilistic /exicalized parser). For example, we now measure
the likelihood of both noun-verb and verb-object word combinations.
Constraining noun-verb combinations gives us much of the power of the
context-sensitive parsing that we see next in Section 8.4, where noun-verb
agreement is enforced by the constraints across the subtrees of the parse.

utterances in the language by determining a probabilistic measure for their
occurring. Thus, we can determine that a possible sentence fails for
syntactic or semantic reasons by seeing that it produces a very low or zero
probability measure, rather than by the interpreter simply saying “no.”

In the following grammar we have hard coded the probabilities of various
structure and word combinations. In a real system, lexical information
could be better obtained by sampling approptiate corpora with noun-verb
or verb-object bigrams. We discuss the #-gram approach to language analysis
in Luger (2009, Section 15.4) whete the probability of word combinations
was desctribed (two words—~bigrams, three words—+trigrams, etc.). These
probabilities are usually determined by sampling over a large collection of
sentences, called a corpus. The result was the ability to assess the likelihood
of these word combinations, e.g., to determine the probability of the verb
“bite” following the noun “dogs.”

In the following examples the Prob value is made up of the probabilities
of the particular sentence structure, the probabilities of the verb-noun and
verb-object combinations, and the probabilities of individual words.
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utterance(Prob, X) :-
sentence(Prob, Verb, Noun, X, [ 1).
sentence(Prob, Verb, Noun, Start, End) :-
nounphrase(P1, Noun, Start, Rest),
verbphrase (P2, Verb, Rest, End),
pr(rl, P), % Probability of this structure

pr([rl, Verb, Noun], PrDep),
% Probability of this noun/verb combo

pr(shead, Verb, Pshead),
% Probability this verb heads the sentence

Prob is Pshead*P*PrDep*P1*P2.
nounphrase(Prob, Noun, [Noun | End], End) :-
noun(P1l, Noun), pr(r2, P), Prob is P*Pl.
nounphrase(Prob, Noun, [Article,Noun | End], End) :-
article(P1l, Article), noun(P2,Noun), pr(r3, P),

pr([r3, Noun, Article], PrDep),
% Probability of art/noun combo

Prob is P*PrDep*P1*P2.
verbphrase (Prob, Verb, [Verb | End], End) :-
verb(Pl, Verb), pr(r4, P), Prob is P*Pl.
verbphrase(Prob, Verb, [Verb,Object | Rest], End) :-

verb(P1l, Verb), nounphrase(P2, Object,
Rest, End).

pr([r5, Verb, Object], PrDep),
% Probability of verb/object combo

pr(r5, P), Prob is P*PrDep*P1*P2.
pr(rl, 1.0).
pr(r2, 0.3).
pr(r3, 0.7).
pr(r4, 0.2).

pr(r5, 0.8).
article(1.0, a).

article(1.0, the).
article(1l.0, these).
noun(1l.0, man).

noun(l1.0, dogs).

verb(1l.0, likes).
verb(1.0, bite).

pr(shead, likes, 0.5).
pr(shead, bite, 0.5).
pr([rl, likes, man], 1.0).
pr([rl, likes, dogs], 0.0).
pr([rl, bite, man], 0.0).
pr([rl, bite, dogs], 1.0).
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pr([r3, man, a], O.
the],

these]

pr([r3, man,

pr([r3, man,

pr([r3, dogs, al,

pr([r3, dogs, the],

pr([r3, dogs,
pr([r5, likes, man]
pr([r5, likes,
pr([r5, bite, man],

pr([r5, bite, dogs]

The Prob measure gives the
sentences return No.

?- utterance(Prob,

Prob = 0.03136

?- utterance(Prob,
Prob = 0.0098

?- utterance(Prob,
Prob = 0.0098

?- utterance(Prob,
Prob = 0

?- utterance(Prob,
No

?- utterance(Prob,
Prob = 0

X = likes Y = []

7

Prob = 0.042

X = bite Y = []
7

Prob = 0

X = likes Y = [man]
7

Prob = 0.04032

X = bite Y = [man]
7

Prob = 0.01008

X = bite Y = [dogs]
7

Prob = 0.04704

X = bite Y =

Etc

[a,

these],

dogs],

5).
0.5).
, 0.0).

0.0).

0.6).
0.4).
, 0.2).
0.8).
0.8).

, 0.2).

likelihood of the utterance; words that aren’t

[a, man, likes, these, dogs]).

[a, man, likes, a, man]).

[a, man, likes, a, man]).

[the, dogs, likes, these, man]).

[the, dogs]).

[the, dogs, X | Y])

man]

?- utterance(Prob, X).
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Prob = 0.03

X = [man, likes]

7

Prob = 0

X = [man, bite]

7

Prob = 0.0072

X = [man, likes, man]

7
Prob = 0.0288

X = [man, likes, dogs]

7

Prob = 0.0084

X = [man, likes, a, man]

etc

We next enforce many of the same syntax/semantic relationships seen in
this section by imposing constraints (context sensitivity) across the subtrees
of the parse. Context sensitivity can be used to constrain subtrees to
supportt relationships within a sentence such as article-noun and noun-verb
number agreement.

A Context-Sensitive Parser in Prolog

A context-sensitive parser addresses the issues of the previous section in a
different manner. Suppose we desire to have proper noun—verb agreement
enforced by the grammar rules themselves. In the dictionary entry for each
wortd its singular or plural form can be noted as such. Then in the grammar
specifications for nounphrase and verbphrase a further parameter
is used to signify the Number of each phrase. This enforces the constraint
that a singular noun has to be associated with a singular verb. Similar
constraints for article—noun combinations can also be enforced. The
technique we are using is constraining sentence components by enforcing
variable bindings across the subtrees of the parse of the sentence (note the
and links in the parse tree of Figure 8.4).

Context sensitivity increases the power of a context-free grammar
considerably. These additions are made by directly extending the Prolog
code of Section 8.2:

utterance(X) :- sentence(X, [ 1).

sentence(Start, End) :-
nounphrase(Start, Rest, Number),
verbphrase(Rest, End, Number).

nounphrase([Noun | End], End, Number) :-
noun(Noun, Number).

nounphrase([Article, Noun | End], End, Number) :-

noun (Noun, Number), article(Article, Number).
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8.6

verbphrase([Verb | End], End, Number) :-
verb(Verb, Number).
verbphrase([Verb | Rest], End, Number) :-
verb(Verb, Number), nounphrase(Rest, End, ).

article(a, singular).

article(these, plural).

article(the, singular).

article(the, plural).

noun(man, singular).

noun(men, plural).

noun(dog, singular).

noun(dogs, plural).

verb(likes, singular).

verb(like, plural).

verb(bites, singular).

verb(bite, plural).
We next test some sentences. The answer to the second query is no,
because the subject (men) and the verb (1ikes) do not agree in number.

?- utterance([the, men, like, the, dog]).

Yes

?- utterance([the, men, likes, the, dog]).

no
If we enter the following goal, X returns all verb phrases that complete the
plural “the men ...” with all verb phrases with noun—verb number
agreement. The final query returns all sentences with article—noun as well
as noun—verb agreement.

?- utterance([the, men X]).
?- utterance(X).

In the context-sensitive example we use the parameters of dictionary
entries to introduce more information on the meanings of each of the
words that make up the sentence. This approach may be generalized to a
powerful parser for natural language. More and more information may be
included in the dictionary of the word components used in the sentences,
implementing a knowledge base of the meaning of English words. For
example, men are animate and human. Similarly, dogs may be described as
animate and nonhuman. With these descriptions new rules may be added
for parsing, such as “humans do not bite animate nonhumans” to eliminate
sentences such as [the, man, bites, the, dog]. We add these constraints in
the following section.

A Recursive Descent Semantic Net Parser

We next extend the set of context-sensitive grammar rules to include some
possibilities of semantic consistency. We do this by matching case frames,
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Section 8.1, for the verbs of sentences to semantic descriptions of subjects
and objects. After each match, we constrain these semantic net subgraphs
to be consistent with each other. We do this by performing graph
operations, such as join and restrict, to each piece of the graph as it
is returned up the parse tree.
We first present the grammar rules where the top-level utterance,
returns not just a sentence but also a Sentence graph. Each
component of the grammar, e.g., nounphrase and verbphrase, call
join to merge together the constraints of their respective graphs.
utterance(X, Sentence_graph) :-
sentence(X, [ ], Sentence_graph).
sentence(Start, End, Sentence_graph) :-
nounphrase(Start, Rest, Subject graph),
verbphrase(Rest, End, Predicate graph),

join([agent(Subject graph)], Predicate_graph,
Sentence_graph).

nounphrase([Noun | End], End, Noun phrase graph) :-
noun(Noun, Noun phrase graph).

nounphrase([Article, Noun | End], End,
Noun_phrase graph) :-
article(Article),
noun(Noun, Noun phrase graph).

verbphrase([Verb | End], End, Verb phrase graph) :-
verb(Verb, Verb phrase graph).

verbphrase([Verb | Rest], End, Verb phrase graph) :-
verb(Verb, Verb graph),
nounphrase(Rest, End, Noun phrase graph),

join([object (Noun_ phrase graph)], Verb graph,
Verb phrase graph).

We next present the graph join and restriction operations. These
are meta-predicates since their domain is other Prolog structures. These
utilities propagate constraints across pieces of semantic nets they combine.
join(X, X, X).
join(A, B, C) :-
isframe(A), isframe(B), !,
join_ frames(A, B, C, not joined).
join(A, B, C) :-
isframe(A), is_slot((B), !,
join_slot to frame(B, A, C).
join(A, B, C) :-
isframe(B), is_slot(aA), !,
join_slot to frame(A, B, C).
join(A, B, C) :-
is_slot(A), is_slot(B), !,
join_slots(A, B, C).
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join frames recursively matches each slot (property) of the first frame
to matching slots of the second frame. join_slot_to_frame takes a
slot and a frame and searches the frame for matching slots.
join slots, once slots are matched, unites the two slots, taking the
type hierarchy into account:

join frames([A | B], C, D, OK) :-
join_slot to frame(A, C, E) , !,
join frames(B, E, D, ok).

join frames([ A | B], C, [A | D], OK) :-
join_ frames(B, C, D, OK), !.

join_ frames([], A, A, Ok).

join_slot to frame(A, [B
join_slots(A, B, D).

Ccl, [D | c]) :-

join slot to frame(A, [B | C], [B | D]) :-
join_slot to frame(A, C, D).
join_slots(A, B, D) :-
functor (A, FA, ), functor(B, FB, _),
match _with inheritance(FA, FB, FN),
arg(l, A, Value_a), arg(l, B, Value b),
join(Value_a, Value b, New _value),
D =.. [FN | [New value]].
isframe([_ | _1)-.
isframe([ 1).
is_slot(A) :- functor(a, _, 1).
Finally, we create dictionary entries, the inheritance hierarchy, and verb
case frames. In this example, we use a simple hierarchy that lists all valid
specializations; the third argument to match_with_inheritance is
the common specialization of the first two. A more realistic approach

might maintain a graph of the hierarchies and search it for common
specializations. Implementation of this is left as an exercise.

match _with_ inheritance(X, X, X).

match with inheritance(dog, animate, dog).
match with inheritance(animate, dog, dog).
match with_ inheritance(man, animate, man).
match with inheritance(animate, man, man).
article(a).

article(the).

noun(fido, [dog(fido)]).

noun(man, [man(X)]).

noun(dog, [dog(X)]).

verb(likes, [action([liking(X)]),
agent([animate(X)]), object(animate(Y)])])-.

verb(bites, [action([biting(Y)]),
agent([dog(X)]), object(animate(Z)]1)]).
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We now parse several sentences and print out their Sentence_graph:

?- utterance([the, man, likes, the, dog], X).

X = [action([liking(_54)]), agent([man(_23)1]),
object([dog(_52)]1)].

?- utterance([fido, likes, the, man], X).

X = [action([liking(_62)]), agent([dog(fido)]),
object([man(_70)]1)].

?- utterance([the, man, bites, fido], 2).

no

The first sentence states that some man, with name unknown, likes an
unnamed dog. The last sentence, although it was syntactically correct, did
not meet the semantic constraints, where a dog had to be the agent of
bites. In the second sentence, a particular dog, Fido, likes an unnamed
man. Next we ask whether Fido can bite an unnamed man:

?- utterance([fido, bites, the, man], X).

X = [action([biting(_12)]), agent([dog(fido)]),

object([man(_17)]1)1.

This parser may be extended in many interesting directions, for instance,
by adding adjectives, adverbs, and prepositional phrases, or by allowing
compound sentences. These additions must be both matched and
constrained as they are merged into the sentence graph for the full
sentence. Each dictionary item may also have multiple meanings that are
only accepted as they meet the general requirements of the sentence. In the
next chapter we present the Earley parser for language structures.

Exercises

1. Create a predicate calculus and a Prolog representation for the
Conceptual Graph presented in Figure 8.2, “Mary gave John the book.”
Take this same example and create a general Prolog rule, “X gave Y the Z”
along with a number of constraints, such as “object (Z).” Also create a
number of Prolog facts, such as “object (book)” and show how this
conceptual graph can be constrained by using the Prolog interpreter on
your simple program.

2. Figure 8.3 presents case frames for the verbs 1ike and bite. Write
Prolog specifications that captures the constraints of these representations.
Add other related fact and rules in Prolog and then use the Prolog
interpreter to instantiate the constraints that are implicit in these two verb
case frames.

3. Create a predicate calculus and a Prolog representation for the two
Conceptual Graphs presented in Figure 8.5.

4. Describe an algorithm that could be used to impose graph constraints
across the structures of Figure 8.5. You will have to address the nesting
issue to handle sentences like “Mary believes that John does not like soup.”

5. Create Prolog case frames, similar to those of Section 8.1 for five other
verbs, including like, trade, and pardon.
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6. Write the Prolog code for a subset of English grammar rules, as in the
context-free and context-sensitive parsers in Sections 8.2 and 8.4, adding:

Adjectives and adverbs that modify verbs and nouns, respectively.
Prepositional phrases. (Can you do this with a recursive call?)
Compound sentences (two sentences joined by a conjunction).

7. Extend the stochastic context-free parser of Section 8.3 to include
probabilities for the new sentence structures of Exercise 8. Explore
obtaining probabilities for these sentence structures from a treebank for
natural language processing. Examples may be found on the www.

8. Add probabilities for more word pair relationships as in the lexicalized
context-free parser of Section 8.3.2. Explore the possibility of obtaining
the probabilistic bigram values for the noun—verb, verb—object, and other
word pairs from actual corpus linguistics. These may be found on the www.

9. Many of the simple natural language parsers presented in Chapter 8 will
accept grammatically correct sentences that may not have a commonsense
meaning, such as “the man bites the dog.” These sentences may be
eliminated from the grammar by augmenting the patser to include some
notion of what is semantically plausible. Design a small “semantic
network” (Section 2.4.1) in Prolog to allow you to reason about some
aspect of the possible interpretations of the English grammar rules, such as
when it is reasonable for the man to bite a dog.

10. Rework the semantic net parser of Section 14.3.2 to support richer class
hierarchies. Specifically, rewrite match_with_ inheritance so that
instead of enumerating the common specializations of two items, it
computes this by searching a type hierarchy.

Figure 8.5. Conceptual Graphs to be translated into predicate calculus and
into Prolog.
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9.1

Dynamic Programming Revisited

The dynamic programming (DP) approach to problem solving was
originally proposed by Richard Bellman (1956). The idea is straightforward:
when addressing a large complex problem that can be broken down into
multiple subproblems, save partial solutions as they are generated so that
they can be reused later in the solution process for the full problem. This
“save and reuse of partial solutions” is sometimes called memoizing the
subproblem solutions for later reuse.

There are many examples of dynamic programming in pattern matching
technology, for example, it has been used in determining a difference
measure between two strings of bits or characters. The overall difference
between the strings will be a function of the differences between its
specific components. An example of this is a spell checker going to its
dictionary and suggesting words that are “close” to your misspelled word.
The spell checker determines “closeness” by calculating a difference
measure between your word and words that it has in its dictionary. This
difference is often calculated, using some form of the DP algorithm, as a
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9.2

Memoization
And
Dotted Pairs

function of the differences between the characters in each word. Examples
of the DB comparison of character strings are found in Luger (2009,
Section 4.1.2).

A further example of the use of DP is for recognizing words in speech
understanding as a function of the possible phonemes from an input
stream. As phonemes are recognized (with associated probabilities), the
most appropriate word is often a function of the combined conjoined
probabilistic measures of the individual phones. The DP Viterbi algorithm
can be used for this task (Luger 2009, Section 13.1).

In this section, we present the Earley parser, a use of dynamic
programming to build a context-free parser that recognizes strings of
words as components of syntactically correct sentences. The presentation
and Prolog code of this chapter is based on the efforts of University of
New Mexico graduate student Stan Lee. The pseudo-code of Section 9.2 is
adapted from that of Jurafsky and Martin (2008).

The Earley Parser

The parsing algorithms of Chapter 8 are based on a recursive, depth-first,
and left-to-right search of possible acceptable syntactic structures. This
search approach can mean that many of the possible acceptable partial
parses of the first (left-most) components of the string are repeatedly
regenerated. This revisiting of eatly partial solutions within the full parse
structure is the result of later backtracking requirements of the search and
can become exponentially expensive and costly in large parses. Dynamic
programming provides an efficient alternative where partial parses, once
generated, are saved for reuse in the overall final parse of a string of words.
The first DP-based parser was created by Eartley (1970).

In parsing with Earley’s algorithm the memoization of partial solutions
(partial parses) is done with a data structure called a charz. This is why the
various alternative forms of the Earley approach to parsing are sometimes
called chart parsing. The chart is generated through the use of dotted grammar
rules.

The dotted grammar rule provides a representation that indicates, in the chart,
the state of the parsing process at any given time. Every dotted rule falls into
one of three categories, depending on whether the dot's position is at the
beginning, somewhere in the middle, or at the end of the right hand side,
RHS, of the grammar rule. We refer to these three categories as the znitial,
partial, ot completed parsing stages, respectively:

Initial prediction: Symbol — (@ RHS unseen
Partial parse: Symbol — RHS seen @ RHS unseen
Completed parse: Symbol — RHS seen @

In addition, there is a natural correspondence between states containing
different dotted rules and the edges of the parse tree(s) produced by the
parse. Consider the following very simple grammar, where terminal
symbols are surrounded by quotes, as in “mary”:
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Sentence — Noun Verb
Noun — “mary”

Verb — “runs”

As we perform a top-down, left-to-right parse of this sentence, the
following sequence of states is produced:

Sentence —> ¢ Noun Verb predict: Noun followed by 1erb
Noun — ¢ mary predict:  mary
Noun — mary ° Scanned: mary

Sentence — Noun * Verb completed: Noun;
predict: Verb

Verb — ¢ runs predict: runs
Verb — runs ° Scanned:  runs

Sentence — Noun Verb * completed: 1 erb,
completed: sentence

Note that the scanning and completing procedures deterministically produce a
result. The prediction procedure describes the possible parsing rules that can
apply to the current situation. Scanning and prediction creates the states in
the parse tree of Figure 9.1.

Earley's algorithm operates by generating top-down and left-to-right
predictions of how to parse a given input. Each prediction is recorded as a
state containing all the relevant information about the prediction, where the
key component of each state is a dotted rule. (A second component will be
introduced in the next section.) All of the predictions generated after
examining a particular word of the input are collectively referred to as the

state set. For a given input sentence with n words, Wy towp, atotaln + 1

state sets are generated: [Sg, Sq, .., Spy|. The initial state set, S,
contains those predictions that are made before examining any input words,

S, contains predictions made after examining W4, and so on.

*Noun Verb
S
Noun * Verb Noun Verb®
Noun Verb
mary’ runs®
mary runs

Figure 9.1 The relationship of dotted rules to the generation of a parse
tree.
We refer to the entire collection of state sets as the chart produced by the
parser. Figure 9.1 illustrates the relationship between state set generation
and the examination of input words.
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At this point we need to pause to get our terminology straight. Although,
traditionally, the sets of states that make up each component of the parse
are called state sets, the order of the generation of these states is important.
Thus we call each component of the chart the staze /ist, and desctibe it as

[State;, State,, .., State,]. This also works well with the
Prolog implementation, Section 9.3, where the state lists will be maintained
as Prolog lists. Finally, we describe each state of the state list as a sequence
of specific symbols enclosed by brackets, for example, (§ — * S).

We now consider Earley’s algorithm parsing the simple sentence mary
runs, using the grammar above. The algorithm begins by creating a

dummy start state, ($ — ¢ S), that is the first member of state list Sy.
This state represents the prediction that the input string can be parsed as a

sentence, and it is inserted into Sy prior to examining any input words. A

successful parse produces a final state list S, which is S, in this example,
that contains the state ($§ — S ).

Beginning with S, the parser executes a loop in which each state, S5, in
the current state list is examined 7 order and used to generate new states.
Each new state is generated by one of three procedures that are called the
predictor, scanner, and completer. The approptiate procedure is determined by
the dotted rule in state S, specifically by the grammar symbol (if any)
following the dot in the rule.

In our example, the first state to be examined contains the rule ($ —
S). Since the dot is followed by the symbol S, this state is “expecting” to
see an instance of S occur next in the input. As S is a nonterminal symbol
of the grammar, the predictor procedure generates all states corresponding
to a possible parse of S. In this case, as there is only one alternative for S,
namely that S — Noun Verb, only one state,

(8§ — + Noun Verb), is added to Sj. As this state is expecting a part
of speech, denoted by the nonterminal symbol Noun following the dot,
the algorithm examines the next input word to verify that prediction. This
is done by the scanner procedure, and since the next word matches the
prediction, mary is indeed a Noun, the scanner generates a new state
recording the match: (Noun — mary ). Since this state depends on

input word Wy, it becomes the first state in state list S; rather than being

added to Sy. At this point the chart, containing two state lists, looks as
follows, where after each state we name the procedure that generated it:

So: [($S = * S), dummy start state
(S — ¢ Noun Verb)] predictor
Si: [ (Noun — mary °)] scanner

Each state in the list of states Sy has now been processed, so the algorithm

moves to S; and considers the state (Noun — mary ). Since thisis a
completed state, the completer procedure is applied. For each state
expecting a Noun, that is, has the ¢ Noun pattern, the completer
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generates a new state that records the discovery of a Noun by advancing
the dot over the Noun symbol. In this case, the completer produces the

state (S — * Noun Verb) in S and generates the new state (S —
Noun ¢ Verb) in the list S;. This state is expecting a part of speech,

which causes the scanner to examine the next input word W,. As W, is a
Verb, the Scanner generates the state (Verb — runs ¢) and adds it to

S,, resulting in the following chart:

Syt [ — »Y), start
(S — ¢ Noun Verb)] predictor
Sq: [Noun — mary °), scanner
(S — Noun * Verb)] completer
Sy: [(Vetb — runs *)] scanner

Processing the new state S,, the completer advances the dot in
(5§ — Noun °* Verb) to produce (S — Noun Verb ¢), from
which the completer generates the state ($§ — S *) signifying a
successful parse of a sentence. The final chart for mary runs, with
three state lists, is:

Sg: [($ — * 8S), start
(S — * Noun Verb)] predictor
Syt [ (Noun — mary °), scanner
(S — Noun °* Verb)] completer
Sy: [(Verb — runs °*), scanner
(S — Noun Verb °*), completer
($ —= S *)] completer

To represent computationally the state lists produced by the dotted pair
rules above, we create indices to show how much of the right hand side of
a grammar rule has been parsed. We first describe this representation and
then offer pseudo-code for implementing it within the Earley algorithm.
Each state in the state list is augmented with an index indicating how far
the input stream has been processed. Thus, we extend each state
description to a (dotted rule [i, j|) representation where the /7 j/ pair denotes
how much of right hand side, RHS, of the grammar rule has been seen or
parsed to the present time. For the right hand side of a parsed rule that
includes zero or more seen and unseen components indicated by the °, we
have (8 — Seen °* Unseen, [i,]]), where i is the start of
Seen and J is the position of * in the word sequence.

We now add indices to the parsing states discussed earlier for the sentence
mary runs:

($ = =8, [0, 0])
produced by predictor, i =

(Noun — mary °*, [0,1])
scanner sees word[ 1] between word indices 0 and 1

j = 0, nothing yet parsed
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(S — Noun °* Verb, [0,1])
completer has seen Noun (mary) between chart 0 and 1

(S — Noun Verb ¢, [0,2])
completer has seen sentence S between chart 0 and 2

Thus, the state indexing pattern shows the results produced by each of the
three state generators using the dotted rules along with the word index W;.

To summarize, the three procedures for generating the states of the state
list are: predictor generating states with index [J, J] going into

chart[J], scanner considering word W44 to generate states indexed by
[J, J+1] into chart[j+1], and completer operating on rules with
index [1, J], 1 < J,adding a state entry to chart[j]. Note that a
state from the dotted-rule, [i, J] always goes into the state list
chart[j]. Thus, the state lists include chart[0], ceny
chart[n]for asentence of n words.

Now that we have presented the indexing scheme for representing the
chart, we give the pseudo-code for the Eatley parser. In Section 9.2.3 we
use this code to parse an example sentence and in Section 9.3 we
implement this algorithm in Prolog. We replace the “¢” symbol with “@”
as this symbol will be used for the dot in the Prolog code of Section 9.3.
function EARLEY-PARSE(words, grammar) returns chart
chart := empty

ADDTOCHART(($ — @ S, [0, 0]), chart[0])
% dummy start state

for i from 0 to LENGTH(words) do
for each state in chart[i] do

if rule rhs(state) = .. @ A ..
and A is not a part of speech

then PREDICTOR(State)

else if rule rhs(state) = .. @ L ..
¢ L is part of speech

then ScaANNER(sState)

else OMPLETER ( sState)
% rule rhs = RHS @
end
end

procedure PREDICTOR((A — .. @ B .., [1, 7J1))
for each (B — RHS) in grammar do
ADDTOCHART( (B — @ RHS, [j, Jl1), chart[j])

end

procedure SCANNER((A — .. @ L .., [I, J1))
if (L — word[j]) is_in grammar

then abptocHART((L — word[j] @ , [F, 7 + 11),
chart[j + 1])

end
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procedure COMPLETER((B — .. @, [F, k1))
for each (A — .. @ B .., [1, j]l) in chart[j] do
ADDTOCHART( (A — .. B @ .., [I, k]), chart[k])

end

procedure ADDTOCHART(State, state-list)
if state is not in state-list
then ADDTOEND(state, state-lis

end

Our first example, the Earley parse of the sentence “Mary runs,” was
intended to be simple but illustrative, with the detailed presentation of the
state lists and their indices. We now produce a solution, along with the
details of the chart that is generated, for a more complex sentence, “John
called Mary from Denver”. This sentence is ambiguous (Did John use a
phone while he was in Denver to call, or did John call that Mary that was
from Denver). We present the two different parses of this sentence in
Figure 9.2 and describe how they may both be recovered from the chart
produced by parsing the sentence in an exercise. This retrieval process is
typical of the dynamic programming paradigm where the parsing is done in
a forward left-to-right fashion and then particular parses are retrieved from
the chart by moving backward through the completed chart.

The following set of grammar rules is sufficient for parsing the sentence:

S — NP VP

NP — NP PP

NP — Noun

VP — Verb NP

vPp — VP PP

PP — Prep NP

Noun — “john”

Noun — ‘“mary”

Noun — “denver”

Verb — ‘“called”

Prep — “from”
In Figure 9.2 we present two parse trees for the word string john
called mary from denver. Figure 9.2a shows john called
(mary from denver), where Mary is from Denver, and in Figure
92b john (called mary) (from denver), wherte John is
calling from Denver. We now use the pseudo-code of the function
EARLEY-PARSE to address this string. It is essential that the algorithm not
allow any state to be placed in any state list more than one time, although

the same state may be generated with different predictor/scanner
applications:

1. Insert start state ($ — @ S, [0,0]) into chart[0]

2. Processing state-list S, = chart[0] for (i = 0):
The predictor procedure produces within chart[0]:
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($ - @s, [0,0])) ==>
(S — @ NP VP, [0,0])
(S — @ Np VP, [0,0]) ==>
(NP — @ NP PP, [0,0])
(S — @ Np VP, [0,0]) ==>

(NP — @ Noun, [0,0])
3. Verifying that the next word word[i + 1] =
word[1l] or “john” is a Noun:
The scanner procedure initializes chart[l] by
producing
(NP — @ Noun, [0,0]) ==>
(Noun — john @, [0,1])

4. Processing S; = chart[l] shows the typical start

of a new state list, with the scanner procedure
processing the next word in the word string, and
the algorithm then calling completer.

The completer procedure adds the following states

to chart[1l]:
(NP — Noun @, [0,1])
(S — NP @ VP, [0,1]) from x1
(NP — NP @ PP, [0,1]) from x2

5. The completer procedure ends for S; as no more
states have “dots” to advance, calling predictor:

The predictor procedure generates states based on
all newly-advanced dots:

(VP — @ Verb NP, [1,1]) from x1
(VP — @ VP PP, [1,1]) also from x1
(PP — @ Prep NP, [1,1]) from x2

6. Verifying that the next word, word[i + 1] =
word[2] or “called” is a Verb:

The scanner procedure initializes chart[2] by
producing:
(VP — @ Verb NP, [1,1]) ==>
(Verb — called @, [1,2])

Step 6 (above) initializes chart[2] by scanningword[2] in the word
string; the completer and predictor procedures then finish state list 2.

The function EARLEY-PARSE continues through the generation of
chart[5] as seen in the full chart listing produced next. In the full
listing we have annotated each state by the procedure that generated it. It
should also be noted that several partial parses, indicated by *, are
generated for the chart that are not used in the final parses of the sentence.
Note also that the fifth and sixth states in the state list of chart[1],
indicated by **, which predict two different types of VP beginning at index
1, are instrumental in producing the two different parses of the string of
words, as presented in Figure 9.2.
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start state

01)

(S — @ NP VP, [0,0]) predictor
(NP — @ NP PP, [0,0])* predictor
(NP — @ Noun, [0,0])] predictor
chart[1l]:
[ (Noun — john @, [0,1]) scanner
(NP — Noun @, [0,1]) completer
(S — NP @ VP, [0,1]) completer
(NP — NP @ PP, [O0,1])* completer
(VP — @ Verb NP, [1,1])** predictor
(VP — @ VP PP, [1,1])*%* predictor
(PP — @ Prep NP, [1,1])%*] predictor
chart[2]:
[ (Verb — called @, [1,2]) scanner
(VP — Verb @ NP, [1,2]) completer
(NP— @ NP PP, [2,2]) predictor
(NP — @ Noun, [2,2])] predictor
chart[3]:
[ (Noun — mary @, [2,3]) scanner
(NP — Noun @, [2,3]) completer
(VP — Verb NP @, [1,3]) completer
(NP — NP @ PP, [2,3]) completer
(S — NP VP @, [0,3])* completer
(VP — VP @ PP, [1,3]) completer
(PP — @ Prep NP, [3,3]) predictor
($ = s @, [0,3])*] completer
chart[4]:
[ (Prep — from @, [3,4]) scanner
(PP — Prep @ NP, [3,4]) completer
(NP — @ NP PP, [4,4])* predictor
(NP — @ Noun, [4,4])] predictor
chart[5]:
[ (Noun — denver @, [4,5]) scanner
(NP — Noun @, [4,5]) completer
(PP — Prep NP @, [3,5]) completer
(NP — NP @ PP, [4,5])%* completer
(NP — NP PP @, [2,5]) completer
(VP — VP PP @, [1,5]) completer
(PP — @ Prep NP, [5,5])* predictor
(VP — Verb NP @, [1,5]) completer
(NP — NP @ PP, [2,5])%* completer
(S — NP VP @, [0,5]) completer
(VP — VP @ PP, [1,5])%* completer

($ — s @,

[0,51)]1

completer

133
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9.3

The complete chart generated by the EARLEY-PARSE algorithm contains 39
states separated into six different state lists, charts 0 — 5. The final state list
contains the success state ($ — S @, [0,5]) showing that the
string containing five words has been parsed and is indeed a sentence. As
pointed out earlier, there are states in the chart, ten indicated by *, that are
not part of either of the final parse trees, as seen in Figure 9.2.

The Earley Parser in Prolog

Finally, we present the Eatley parser in Prolog. Our Prolog code, designed
by Stan Lee, a graduate student in Computer Science at the University of
New Mexico, is a direct implementation of the EARLEY-PARSE pseudo-code
given in Section 9.2.2. When looking at the three procedures that follow -
scannet, predictor, and completer — it is important to note that similarity.

The code begins with initialization, including reading in the word string,
parsing, and writing out the chart after it is created:
go :-= go(s).
go(NT) :
input (Words),
earley(NT, Words, Chart),
writesln(Chart).
The earley predicate first generates the start state, StartS for the
parser and then calls the state generator state_gen which produces the
chart, Chart. state gen checks first if the wordlist is exhausted and
terminates if it is, next it checks if the current state list is completed and if

it is, begins working on the next state, otherwise it continues to process the
current state list:

earley(NonTerminal, Words, Chart) :-

StartS = s($, [@, NonTerminal], [0,0]),
initial parser state(Words, StartS, PS),
state_gen(PS, Chart).

state_gen(PS, Chart) :- $Si = [], Words = []
final state_ set done(PS, Chart)
state_gen(PS, Chart) :- $Si = [], Words not []

current_ state_set done(PS, NextPS),
state_gen(NextPS, Chart).
state gen(PS, Chart) :- $Si = [S|Rest]

current_ state_rhs(S, RHS, PS, PS2),

$PS2[Si] = Rest
(
append(_, [@€, A|_], RHS),
rule(a, ) -> %A not a part of speech
predictor (S, A, PS2, NextPS)
H
append(_, [@, L|_], RHS),
lex rule(L, ) -> 3L is part of speech
scanner (S, L, PS2, NextPS)

14
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completer (S, PS2, NextPS) %S is completed state

),
state_gen(NextPS, Chart).

NP
P
NP
Noun
John called Mary from Denver
0 1 2 3 4 5
NP
Prep Noun
John called Mary from Denver
0 1 2 3 4 5

(b)

Figure 9.2. Two different parse trees for the word string representing the
sentence “John called Mary from Denver”. The index
scheme for the word string is below it.

We next present the predictor procedure. This procedure takes a
dotted rule A => ... @ B ... and predicts a new entry into the
state list for the symbol B in the grammar:
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predictor(S, B, PS, NewPS) :-

S =s(_, _» [I,3]1),

Findall
(
s(B, [@ | RHS], [J,J]),
rule(B, RHS),
NewStates
),

add_to_chart (NewStates, PS, NewPS).

The scanner procedure considers the next word in the input string. If it
is a part of speech, Lex, scanner creates a new state list and enters that
part of speech, for example, the state (Noun — denver @,
[4,5]), that begins chart[5] in Section 9.2.3. The scanner
procedure prepares the way for the completer and predictor
procedures. If the next word in the input stream is not the predicted part
of speech, it leaves the chart unchanged:

scanner (S, Lex, PS, NewPS) :-
S =s(_, _r [I,3]),
next_ input(Word, J, Jl, PS),
lex rule(Lex, [Word]), !,
add to_chart( [s(Lex, [Word,@], [J,J1])], PS,
NewPS) .

scanner(_, _, PS, PS).

Finally, the completer procedure takes a completed state S that has
recognized a pattern B, and adds a new state to the list for each preceding
state that is looking for that pattern.

completer (S, PS, NewPS) :-
S =s(B, _, [J,K]),
Findall

(
s(A, BdotRHS, [I,K]),

in_chart( s(A, DotBRHS, [I,J]), PS),
append(X, [@, B|Y], DotBRHS),
append (X, [B, @|Y], BdotRHS % adv dot over B
),
NewStates
),

add_to_chart (NewStates, PS, NewPS).

We next describe the utility predicates that support the three main
procedures just presented. The most important of these are predicates for
maintaining the state of the parser itself. The parser-state, PS, is
represented by a structure ps with five arguments: PS = ps(Words,
I, Si, SNext, Chart). The first argument of ps is the current
string of words maintained as a list and the second argument, I, is the

current index of Words. Si and SNext are the current and next state



Chapter 9 The Earley Parser 137

lists, and Chart is the current chart. Thus, S1 and SNext are always
subsets of the current Chart. Notice that the “assighment” that creates
the next state-list is done with unification (=).

The PS utilities perform initial and final state checks, determine if the
current state list is complete, extract components of the current state and
get the next input value. Parsing is finished when the Word list and the
current state list S1i, the first and third arguments of PS, are both empty. If
Si is empty but the Word list is not, then the next state list becomes the
new current state list and the parser moves to the next index as is seen in
the current state_set_ done predicate:

initial parser state(Words, StartState, InitPS) :-

InitPS = ps(Words, 0, [StartState], [].,
[StartState]).

final state_set done( ps([]l, _, [1, _, FinalChart),
FinalChart).

current state set done( ps([_|Words], I, [
Chart), ps( Words, J, SNext,
Chart)) :-

J is I+1.

], SNext,
(1,

current state rhs(S, RHS, ps(Words, I, [S]|Si],
SNext, Chart), ps(Words, I, Si, SNext,
Chart)) :-

S = s(_, RHS, ).
In the final predicate, S is the first state of the cutrrent state list (the third
argument of ps, maintained as a list). This is removed, and the patterns of

the right hand side of the current dotted grammar rule, RHS, are isolated
for interpretation. The current state list S1i is the tail of the previous list.

More utilities: The next element of Words in PS is between the current
and next indices. The chart is maintained by checking to see if states are
already in its state lists. Finally, there are predicates for adding states to the
current chart.
next input(Word, I, Il, ps([Word| 1, I, , _, _)) :-
Il is I+1.
add_to_chart([], PS, PS).
add_to_chart([S|States], PS, NewPS) :-
in_chart(s, PS),!,
add_to_chart(States, PS, NewPS).
add_to_chart([S|States], PS, NewPS) :-
add_to_state_set(S, PS, NextPS),
add_to_chart(States, NextPS, NewPS).
in_chart(S, ps(_, _, _, _, Chart)) :-
member (S, Chart).
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add_to_state_set(S, PS, NewPS) :-
PS = ps(Words, I, Si, SNext, Chart),
S =s(_, v [_+/31),
add_to_end(S, Chart, NewChart),
(
I == - %S is not a scan
state
add_to_end(S, Si, NewSi),
NewPS = ps(Words, I, NewSi, SNext, NewChart)

~e

add_to_end(S, SNext, NewSNext),
NewPS = ps(Words, I, Si, NewSNext, NewChart)
) -
add_to_end(X, List, NewList) :-
append(List, [X], NewList).
The add_to_state_ set predicate, first places the new state in the
new version of the chart, NewChart. It then checks whether the current
word list index I is the same as the second index J of the pair of indices of
the state being added to the state list, testing whether I == J. When this
is true, that state is added to the end (made the last element) of the current

state list S;. Otherwise, the new state was generated by the scanner
procedure after reading the next word in the input word list. This new
state will begin a new state list, SNext.

Finally, we present the output of the Prolog go and earley predicates
running on the word list “John called Mary from Denver”:

?- listing([input, rule, lex rule]).

input([john, called, mary, from, denver]).

rule(s, [np, vpl).

rule(np, [np, ppl)-

rule(np, [noun]).

rule(vp, [verb, np]).

rule(vp, [vp, ppl)-

rule(pp, [prep, npl).

lex_rule(noun, [john]).

lex rule(noun, [mary]).

lex rule(noun, [denver]).

lex rule(verb, [called]).

lex rule(prep, [from]).

?- go.

s($, (&, s], [0, O])

s(s, [€, np, vpl, [0, 0])

s(np, [€, np, ppl, [0, O])

s(np, [€, noun], [0, 0])

s(noun, [john, @], [0, 1])

s(np, [noun, €], [0, 1])

s(s, [np, &, vpl, [0, 1])

s(np, [np, €, ppl, [0, 11)
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s(vp, (@, verb, np], [1, 1])
s(vp, [@, vp, ppP], [1, 11])
s(pp, (@, prep, npl, [1, 1])
s(verb, [called, @], [1, 2])
s(vp, [verb, @, npl, [1, 2])
s(np, [@, np, ppl, [2, 2])
s(np, [@, noun], [2, 2])
s(noun, [mary, @], [2, 3])
s(np, [noun, @], [2, 3])
s(vp, [verb, np, @], [1, 3])
s(np, [np, @, ppl, [2, 3])
s(s, [np, vp, @], [0, 3])
s(vp, [vp, @, ppl, [1, 31])
s(pp, (@, prep, npl, [3, 31])
s($, [s, @1, [0, 31])

s(prep, [from, @], [3, 41])
s(pp, [prep, @, npl, [3, 4])
s(np, (@, np, ppl, [4, 4])
s(np, [@, noun], [4, 4])
s(noun, [denver, @], [4, 5])
s(np, [noun, @], [4, 5])
s(pp, [prep, np, @], [3, 51])
s(np, [np, @, ppl, [4, 51])
s(np, [np, pPp, @], [2, 5])
s(vp, [vp, PP, @], [1, 5])
s(pp, (@, prep, npl, [5, 51])
s(vp, [verb, np, @], [1, 5])
s(np, [np, @, ppl, [2, 5])
s(s, [np, vp, @], [0, 5])
s(vp, [vp, @, ppl, [1, 51])
s($, [s, @1, [0, 5])

Yes

?2-

We present the Earley parser again in Java, Chapter 30. Although the
control procedures in Java are almost identical to those just presented in
Prolog, it is interesting to compare the representational differences
between declarative and an object-oriented languages.

Next, in the final chapter of Part I, we discuss important features of Prolog
and declarative programming. We present Lisp and functional
programming in Part III.

Exercises

1. Describe the role of the dot within the right hand side of the grammar
rules as they are processed by the Earley parser. How is the location of the
dot changed as the parse proceeds? What does it mean when we say that
the same right hand side of a grammar rule can have dots at different
locations?

2. In the Earley parser the input word list and the states in the state lists
have indices that are related. Explain how the indices for the states of the
state list are created.

3. Describe in your own words the roles of the predictor,
completer, and scanner procedures in the algorithm for Earley
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parsing. What order are these procedures called in when parsing a sentence,
and why is that ordering important? Explain your answers to the order of
procedure invocation in detail.

4. Augment the Earley Prolog parser to consider the sentence “John saw
the burglar with the telescope”. Create two different possible pare trees
from interpreting this string and comment on how the different possible
parses are retrieved them from the chart.

5. Create an 8 — 10 wotd sentence of your own and send it to the Earley
parser. Produce the chart as it changes with each additional word of the
sentence that is scanned.

6. Create a grammar that includes adjectives and adverbs in its list of rules.
What changes are needed for the Earley parser to handle these new rules?
Test the Early parser with sentences that contain adjectives and adverbs.

7. In the case of “John called Mary from Denver” the patser produced two
parse trees. Analyze Figure 9.4 and show which components of the full
parse are shared between both trees and where the critical differences are.

8. Analyze the complexity of the Earley algorithm. What was the cost of
the two parses that we considered in detail in this chapter? What are the
worst- and best-case complexity limits? What type sentences force the
worst case? Alternatively, what types of sentences are optimal?
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10.1 Prolog: Towards a Declarative Semantics

We have now finishing our nine-chapter presentation of Prolog. To
summarize and conclude we describe again the design philosophy
supporting this language paradigm, look at how this influenced the history
of its development, summarize the main language idioms we used in
building our AI applications programs, and mention several modern
extensions of this declarative approach to programming.

Prolog was first designed and used at the University of Marseilles in the
south of France in the early 1970s. The first Prolog interpreter was
intended to analyze French using metamorphosis grammars (Colmerauer 1975).
From Marseilles, the language development moved on to the University of
Edinburgh in Scotland, where at the Artificial Intelligence Department,
Fernando Pereira and David Warren (1980) created definite clause grammars.
In fact, because of the declarative nature of Prolog and the flexibility of
pattern-driven control, tasks in Natural Language Processing, NLP, (Luger
2009, Chapter 15) have always offered a major application domain (see
Chapters 8 and 9). Veronica Dahl (1977), Dahl and McCord (1983),
Michael McCord (1982, 1986), and John Sowa (Sowa 1984, Walker et al.
1987) have all contributed to this research.

Besides NLP, Prolog has supported many research tasks including the
development of eatly expert systems (Bundy et al. 1979). Building Al
representations such as semantic nets, frames, and objects has always been
an important task for Prolog (see especially Knowledge Systems and Prolog by

141
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Adrian Walker, Michael McCotd, John Sowa, and Walter Wilson, 1987, and
Prolog: A Relational Language and Its Applications by John Malpas 1987).

In the remainder of this chapter we discuss briefly declarative
programming, how Prolog relates to theorem proving, and describe again
the Prolog idioms presented in Part II.

In traditional computing languages such as FORTRAN, C, and Java the
logic for the problem’s specification and the control for executing the
solution algorithm are inextricably mixed together. A program in these
languages is simply a sequence of things fo be done to achieve an answer.
This is the accepted notion of applicative ot procedural languages. Prolog,
however, separates the logic or specification for a problem application
from the execution or control of the use of that specification. In artificial
intelligence programs, there are many reasons for this separation, as has
been evident throughout Part II.

Prolog presents an alternative approach to computing. A program, as we
have seen, consists of a set of specifications or declarations of what is true in
a problem domain. The Prolog interpreter, taking a question from the user,
determines whether it is true or false with respect to the set of
specifications, If the query is true, Prolog will return a set of variable
bindings (a model, see 10.2) under which the query is true.

As an example of the declarative/ nonprocedural nature of Prolog, consider
append:

append([ 1, L, L).

append([X | T], L, [X | NL]) :- append(T, L, NL).
append is nonprocedural in that it defines a relationship between lists
rather than a series of operations for joining two lists. Consequently,
different queries will cause it to compute different aspects of this
relationship. We can understand append by tracing its execution in
joining two lists together. If the following call is made, the response is:

?- append([a, bl c]l [dl e]l Y)~
Y = [a, b, ¢, d, e]

The execution of append is not tail recursive, in that the local variable
values are accessed after the recursive call has succeeded. In this case, X is
placed on the head of the list ([X | NLJ) after the recursive call has
finished. This requires that a record of each call be kept on the Prolog
stack. For purposes of reference in the following trace:

1. is append([ ], L, L).

2. is append([X | T]1, L, [X | NL]) :-
append(T, L, NL).

?- append([ar br C]r [dr e]r Y)-

try match 1, fail [a, b, c] /= ]
match 2, X is a, T is [b, c¢], L is [d, e],
call append([b, c], [d, e], NL)
try match 1, fail [b, c] /= [ ]
match 2, X is b, T is [c], L is [d, e],
call append([c], [d, e], NL)
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try match 1, fail [c] [ ]

match 2, X is ¢, T is [ ], L is [d, e],
call append([ ], [d, e], NL)
match 1, L is [d, e]
yes

yes, N is [d, e], [X | NL] is [c, d, e]

yes, NL is [c, d, e], [X | NL] is [b, ¢, d, e]
yes, NL is [b, ¢, d, e],
[X | NL] is [a, b, ¢, d, e]

Y = [a, b, ¢, d, e], yes

In most Prolog programs, the parameters of the predicates seem to be
intended as either “input” or “output”; most definitions assume that
certain parameters be bound in the call and others unbound. This need not
be so. In fact, there is no commitment at all to parameters being input or
output! Prolog code is simply a set of specifications of what is true, a
statement of the logic of the situation. Thus, append specifies a
relationship between three lists, such that the third list is the catenation of
the first onto the front of the second.

To demonstrate this we can give append a different set of goals:
?- append([a, b], [c]l, [a, b, c]).
Yes
?- append([a], [c], [a, b, c]).

No
?- append(X, [br C]r [ar br C])-
X = [a]

?- append(X, Y, [a, b, c]).
X =11

Y = [a, b, c]
X = [a]

Y = [b, c]

X = [a, b]

Y = [c]

~e

X = [a, b, c]
Y [ 1

no
In the last query, Prolog returns all the lists X and Y that, when appended
together, give [a,b,c], four pairs of lists in all. As mentioned above,
append gives a statement of the logic of a relationship that exists among
three lists. What the interpreter produces depends on the query.

The notion of solving a problem based on a set of specifications for
relationships in a problem domain area, coupled with the action of a
theorem prover, is exciting and important. As seen in Part II, it is a
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10.2

valuable tool in areas as diverse as natural language understanding,
databases, expert systems, and machine learning. How the Prolog
interpreter works cannot be fully understood without the concepts of
resolution theorem proving, especially the Horn clause refutation process,
which is presented in Luger (2009, Section 14.2 and Section 14.3) where
Prolog is presented as an instance of a resolution refutation system. In
Section 10.2 we briefly summarize these issues.

Prolog and Automated Reasoning

Prolog’s declarative semantics, with the interpreter determining the truth or
falsity of queries has much of the feel of an automated reasoning system or
theorem prover (Luger 2009, Chapter 14). In fact, Prolog is not a theorem
provet, as it lacks several important features that would make it both sound
(only producing mathematically correct responses) and complete (able to
produce all correct responses consistent with a problem’s specifications).
Many of these features ate not implemented in current versions of Prolog.
In fact, most are omitted to make Prolog a more efficient programming
tool, even when this omission costs Prolog any claim of mathematical
soundness.

In this section we will list several of the key features of automated
reasoning systems that Prolog lacks. First is the oceurs check. Prolog does not
determine whether any expression in the language contains a subset of
itself. For example, the test whether foo(X) = foo(foo(X)) wil
make most Prolog environments get seriously weird. It turns out that the
systematic check of whether any Prolog expression contains a subset of
itself is computationally costly and as a result is ignored.

A second limitation on Prolog is the order constraint. The Prolog inference
system (interpreter) performs a left-to-right depth-first goal reduction on
its specifications. This requires that the programmer order these
specifications appropriately. For example, the termination of a recursive
call must be presented before the recursive expression, otherwise the
recursion will never terminate. The programmer can also organize goals in
the order in which she wishes the interpreter to see them. This can help
create an efficient program but does not support a truly declarative
specification language where non-deterministic goal reduction is a critical
component. Finally, the use of the cut, !, allows the programmer to
further limit the set of models that the interpreter can compute. Again this
limitation promotes efficiency but it is at the cost of a mathematically
complete system.

A third limitation of Prolog is that there is no #nigue name constraint or
closed world assumption. Unique names means that each atom in the prolog
wotld must have one and only one “name” or value; otherwise there must
exist a set of deterministic predicates that can reduce an atom to its unique
(canonical) form. In mathematics, for example, 1, cannot be 1 + 0,0 + 1,
or 0 + 1 + 0, etc. There must be some predicate that can reduce all of these
expressions to one canonical form for that atom.

Further, the closed wotld assumption, requires that all the atoms in a
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domain must be specified; the interpreter cannot return no because some
atom was ignored or misspelled. These requirements in a theorem proving
environment address the negation as failure result that can be so frustrating to
a Prolog programmer. Negation as failure describes the situation where the
interpreter returns no and this indicates either that the query is false or that
the program’s specifications are incorrect. When a true theorem prover
responds no then the query is false.

Even though the Prolog interpreter is not a theorem prover, the intelligent
programmer can utilize many aspects of its declarative semantics to build a
set of clean representational specifications; these are then addressed by an
efficient interpretet. For more discussion of Prolog as theorem proving see
Luger (2009, Section 14.3).

Prolog Idioms and Extensions

We now summarize several of the Prolog programming idioms we have
used in Part II of this presentation. We consider idioms from three
perspectives, from the lowest level of command and specification
instructions, from a middle level of creating program language modules
such as abstract data types, and from the most general level of using meta-
predicates to make new interpreters within Prolog that are able to operate
on specific sets of Prolog expressions.

From the lowest level of designing control and building specifications, we
mention four different idioms that were used throughout Part II as critical
components for constructing Prolog programs. The first idiom is wnification
ot pattern matching. Unification offers a unique power for variable binding
found only in high-level languages. It is particularly powerful for pattern
matching across sets of predicate calculus specifications. Unification offers
an efficient implementation of the if/then/else constructs of lower
level languages: if the pattern matches, perform the associated action,
otherwise consider the next pattern. It is also an important and simplifying
tool for designing meta-interpreters, such as the production system
(Section 4.2). Production rules can be ordered and presented as a set of
patterns to be matched by unification) that will then trigger specific
behaviors. An algorithm for unification can be found in Luger (2009,
Section 2.3). It is interesting to note that unification, a constituent of
Prolog, is explicitly programmed into Lisp (Chapter 15) and Java (Chapter
32 and 33) to support Al programming techniques in these languages.

A second idiom of Prolog is the use of assignment. Assignment is related to
unification in that many variables, especially those in predicate calculus
form, are assigned values through unification. However, when a variable is
to have some value based on an explicit functional calculation, the is
operator must be used. Understanding the specific roles of assignment,
evaluation, and pattern matching is important for Prolog use.

The primary control construct for Prolog is recursion, the third idiom we
mention. Recursion works with unification to evaluate patterns in much
the same way as for, repeat/until, or while constructs are used in
lower level languages. Since many of Als problem solving tasks consist in
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searching indeterminate sized trees or graphs, the naturalness of recursion
makes it an important idiom: until specific criteria are met continue search
over specifications. Of course the lower-level control constructs of for,
repeat, etc, could be built into Prolog, but the idioms for these
constructs is recursion coupled with unification.

Finally, at the predicate creation level of the program, the ordering of
predicate specifications is important for Prolog. The issue is to utilize the
built in depth-first left-to-right goal reduction of the Prolog interpreter.
Understanding the action of the interpreter has important implications for
using the order idiom. Along with order of specifications for efficient
search, of course, is understanding and using wisely the predicate cut, |.

At the middle level of program design, where specifications are clustered to
have systematic program level effects, we mention several idioms. These
were grouped together in our presentation in Section 3.3 under the
construct abstract data types (ADTs). Abstract data types, such as set, stack,
guene, and priority guene were developed in Chapter 3. The abstractions allow
the program designer to use the higher-level constructs of queue, stack, etc.
directly in problem solving. We then used these control abstract data types
to design the search algorithms presented in Chapter 4. They were also
later used in the machine learning and natural language chapters of Part II.
For our Prolog chapters these idioms offer a natural way to exptess
constructs related to graph search.

Finally, at that abstract level where the programmer is directly designing
interpreters we described and used the wmeta-predicate idioms. Meta-
predicates are built into the Prolog environment to assist the program
designer with tools that manipulate other Prolog predicates, as described in
Section 5.1. We demonstrated in Section 5.2 how the meta-predicate
idioms can be used to enforce type constraints within a Prolog
programming environment.

The most important use of meta-predicates, however, is to design meta-
interpreters as we did in the remaining chapters (6 — 9) of Part II. Our
meta-interpreters wetre collected sets of predicates that were used to
interpret other sets of predicate specifications. Example meta-interpreters
included a Prolog interpreter written in Prolog and a production system
interpreter, Exshell, for building rule-based expert systems. The meta-
interpreter is the most powerful use of our idioms, because at this level of
abstraction and encapsulation our interpreters are implementing specific
design patterns.

There are many additional software tools for declarative and logic
programming available. An extension of Prolog’s declarative semantics into
a true resolution-based theorem-proving environment can be found in
Otter McCune and Wos 1997). Otter, originally produced at Argonne
National Laboratories, is a complete automated reasoning system based on
resolution refutation that addresses many of the shortcomings of Prolog
mentioned in Section 10.2, e.g., the occurs check. A current version of
Otter includes Isabelle, written in ML, (Paulson 1989), Tau (Halcomb and
Schulz 2005), and Vampire (Robinson and Voronkov 2001). These
automated reasoning systems are in the public domain and downloadable.
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Ciao Prolog is a modern version of Prolog created in Spain (Mera et al. 2007,
Hermenegildo et al. 2007). Ciao offers a complete Prolog system, but its novel
modular design allows both restricting and extending the language. As a result,
it allows working with fully declarative subsets of Prolog and also to extend
these subsets both syntactically and semantically. Most importantly, these
restrictions and extensions can be activated separately on each program
module so that several extensions can coexist in the same application for
different modules. Ciao also supports (through such extensions) programming
with functions, higher-order (with predicate abstractions), constraints, and
objects, as well as feature terms (records), persistence, several control rules
(breadth-first search, iterative deepening), concuttrency (threads/engines), a
good base for distributed execution (agents), and parallel execution. Libraries
also support WWW programming, sockets, external interfaces (C, Java, TclTk,
relational databases, etc.).

Ehud Shapiro and his colleagues have researched the parallel execution of
Prolog specifications. This is an important extension of the power to be
gained by extending the built in depth-first search with backtracking traditional
Prolog interpreter with parallel execution. For example, if a declarative goal
has a number of or based goals to satisfy, these can be checked in parallel
(Shapiro 1987).

Constraint logic programming is a declarative specification language where
relations between variables can be stated in the form of constraints.
Constraints differ from the common primitives of other programming
languages in that they do not specify a step or sequence of steps to execute but
rather the properties or requirements of the solution to be found. The
constraints used in constraint programming are of various kinds, including
constraint satisfaction problems. Constraints are often embedded within a
programming language or provided via separate software libraries (O’Sullivan
2003, Krzysztof and Wallace 2007).

Recent research has also extended traditional logic programming by adding
distributions to declarative specifications (Pless and Luger 2003,
Chakrabarti et al. 2005, Sakhanenko et al. 2007). This is a natural extension,
in that declarative specifications do not be need to be seen as deterministic,
but may be more realistically cast as probabilistic.

There is ongoing interest in logic-based or pure declarative programming
environments other than Prolog. The Gddel Programming Language, by Hill and
Lloyd (1994), presents the Godel language and Somogyi, Henderson, and
Conway (1995) describe Mercury. Gédel and Mercury are two relatively new
declarative logic-programming environments.

Finally, Prolog is a general-purpose language, and, because of space
limitations, we have been unable to present a number of its important
features and control constructs. We recommend that the interested reader
pursue some of the many excellent texts available including Programming in
Prolog (Clocksin and Mellish 2003), Computing with Logic (Maier and Warren
1988), The Art of Prolog (Sterling and Shapiro 1986), The Craft of Prolog
(O’Keete 1990), Techniques of Prolog Programming (VanLe 1993), Mastering
Prolog (Lucas 1990), ot Adpanced Prolog: Technignes and Examples (Ross 1989),
Knowledge Systems through Prolog (King 1991), and Natural Langnage Processing in
Prolog (Gazdar and Mellish 1989).
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In Part III we present the philosophy and idioms of functional
programming, using the Lisp language. Part IV then presents object-
oriented design and programming with Java, and Part V offers our
summary. As the reader covers the different parts of this book it can be
seen how the different languages are utilized to address many of the same
problems, while the idioms of one programming paradigm may or may not
be suitable to another.



Part III: Programming in Lisp

“The name of the song is called Haddocks’ Eyes.”
“Ob, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what the name is called. The
name really is “T'he Aged Aged Man.”

“Then I onght to have said ‘That's what the song is called’?” Alice corrected berself.

“No, you onghtn’t: that’s quite another thing! The song is called ‘Ways and Means’: but that’s only what
it’s called you know!”

“Well, what is the song, then?” said Alice, who was by this time completely bewildered.
“T was coming to that,” the Knight said.
—Lewis Carroll, Through the Looking Glass

For the almost fifty years of its existence, Lisp has been an important
language for artificial intelligence programming. Originally designed for
symbolic computing, Lisp has been extended and refined over its lifetime
in direct response to the needs of Al applications. Lisp is an imperative
language: Lisp programs describe how to perform an algorithm. This
contrasts with declarative languages such as Prolog, whose programs are
assertions that define relationships and constraints in a problem domain.
However, unlike traditional imperative languages, such as FORTRAN,
C++ or Java, Lisp is functional its syntax and semantics are derived from
the mathematical theory of recursive functions.

The power of functional programming, combined with a rich set of high-
level tools for building symbolic data structures such as predicates, frames,
networks, rules, and objects, is responsible for Lisp’s popularity in the Al
community. Lisp is widely used as a language for implementing Al tools
and models, particularly in the research community, where its high-level
functionality and rich development environment make it an ideal language
for building and testing prototype systems.

In Part III, we introduce the syntax and semantics of Common Lisp, with
particular emphasis on the features of the language that make it useful for
Al programming: the use of lists to create symbolic data structures, and the
implementation of interpreters and search algorithms to manipulate these
structures. Examples of Lisp programs that we develop in Part III include
search engines, pattern matchers, theorem provers, rule-based expert
system shells, semantic networks, algorithms for learning, and object-
oriented simulations. It is not our goal to provide a complete introduction
to Lisp; a number of excellent texts (see the epilogue Chapter 20) do this in
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far greater detail than our space allows. Instead, we focus on using Lisp to
implement the representation languages and algorithms of artificial
intelligence programming.

In Chapter 11 we introduce symbol expressions, usually termed s-expressions,
the syntactic basis for the Lisp language. In Chapter 12, we present lists,
and demonstrate recursion as a natural tool for exploring list structures.
Chapter 13 presents variables in Lisp and discusses bindings, and scope
using Lisp forms including set and let. We then present abstract data
types in Lisp and end the chapter with a production system implementing
depth-first search.

Chapter 14 presents functions for building meta-interpreters, including the
map, filter, and lambda forms. These functions are then used for
building search algorithms in Lisp. As in Prolog, open and closed lists atre
used to design depth-first, breadth-first, and best-first search algorithms.
These search algorithms are designed around the production system
pattern and are in many ways similar to the Prolog search algorithms of
Chapter 4.

Chapter 15 creates a unification algorithm in Lisp in preparation for, in
Chapter 16, logic programming in Lisp. This unification, or general pattern
matching algorithm, supports the design of a read-eval-print loop
that implements embedded interpreters. In Chapter 16 we present a full
interpreter for expressions in a restricted form of the predicate calculus.
This, in turn, sets up the full expert system shell of Chapter 17.

Chapter 17 first presents streams and delayed evaluation as a lead in to
presenting 1isp-shell, a general-purpose expert system shell in Lisp
for problems represented in the predicate calculus. 1isp-shell requires
that the facts and rules of the problem domain to be translated into a
pseudo Horn clause form.

In Chapter 18 we present object-oriented structures built in Lisp. We see
the language as implementing the three components of object-oriented
design: inheritance, encapsulation, and polymorphism. We see this
implemented first in semantic networks and then in the full object system
using the CLOS (Common Lisp Object System) library. We use CLOS to
build a simulation of a heating system for a building.

In Chapter 19 we explore machine learning in Lisp building the full ID3
algorithm and testing it with a “consumer credit” example. Chapter 20
concludes Part III with a discussion of functional programming and a
reference list.
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11.1 Introduction to Symbol Expressions

11.2 Control of Lisp Evaluation: quote and eval

11.3 Programming in Lisp: Creating New Functions

11.4 Program Control in Lisp: Conditionals and Predicates

11.1

The S-
expression

Introduction to Symbol Expressions

The syntactic elements of the Lisp programming language are symbolic
expressions, also known as s-expressions. Both programs and data are
represented as s-expressions: an s-expression may be either an atom or a /list.
Lisp atoms are the basic syntactic units of the language and include both
numbers and symbols. Symbolic atoms are composed of letters, numbers,
and the non-alphanumeric characters.

Examples of Lisp atoms include:
3.1416
100
hyphenated-name
*some-global*
nil
A /list is a sequence of either atoms or other lists separated by blanks and
enclosed in parentheses. Examples of lists include:
(1 2 3 4)
(george kate james joyce)
(a (b c) (d (e £)))
@)

Note that lists may be elements of lists. This nesting may be arbitrarily
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deep and allows us to create symbol structures of any desired form and
complexity. The empty list, “()”, plays a special role in the construction
and manipulation of Lisp data structures and is given the special name
nil. nil is the only s-expression that is considered to be both an atom
and a list. Lists are extremely flexible tools for constructing
representational structures. For example, we can use lists to represent
expressions in the predicate calculus:

(on block-1 table)

(likes bill X)

(and (likes george kate) (likes bill merry))
We use this syntax to represent predicate calculus expressions in the
unification algorithm of this chapter. The next two examples suggest ways
in which lists may be used to implement the data structures needed in a
database application.

((2467 (lovelace ada) programmer)

(3592 (babbage charles) computer-designer))

((key-1 value-1) (key-2 value-2) (key-3 value-3))
An important feature of Lisp is its use of Lisp syntax to represent
programs as well as data. For example, the lists,

(* 79)

(= (+34)7)
may be interpreted as arithmetic expressions in a prefix notation. This is
exactly how Lisp treats these expressions, with (* 7 9) representing the
product of 7 and 9. When Lisp is invoked, the user enters an interactive
dialogue with the Lisp interpreter. The interpreter prints a prompt, in our
examples “>”, reads the user input, attempts to evaluate that input, and, if
successful, prints the result. For example:

> (* 7 9)

63

>

Here, the user enters (* 7 9) and the Lisp interpreter responds with 63,
L.e., the value associated with that expression. Lisp then prints another
prompt and waits for more user input. This cycle is known as the read-eval-
printloop and is the heart of the Lisp interpretet.

When given a list, the Lisp evaluator attempts to interpret the first element
of the list as the name of a function and the remaining elements as its
arguments. Thus, the s-expression (£ X y) is equivalent to the more
traditional looking mathematical function notation f£(x,y). The value
printed by Lisp is the result of applying the function to its arguments. Lisp
expressions that may be meaningfully evaluated are called forms. If the user
enters an expression that may not be correctly evaluated, Lisp prints an
error message and allows the user to trace and correct the problem. A
sample Lisp session appeats below:

> (+ 14 5)
19

> (+12 3 4)
10

> (— (+ 3 4) 7)
0
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> (* (+ 2 5) (=7 (/ 21 7)))
28
> (= (+ 2 3) 5)

(> (* 56) (+45))

Vt V

(a b c)
Error: invalid function: a

Several of the examples above have arguments that are themselves lists, for
example the expression (— (+ 3 4) 7). This indicates the
composition of functions, in this case “subtract 7 from the resu/t of adding
3 to 47. The word “result” is emphasized here to indicate that the
function—is not passed the s-expression “(+ 3 4)” as an argument but
rather the result of evaluating that expression.

In evaluating a function, Lisp first evaluates its arguments and then applies
the function indicated by the first element of the expression to the results
of these evaluations. If the arguments are themselves function expressions,
Lisp applies this rule recursively to their evaluation. Thus, Lisp allows
nested function calls of arbitrary depth. It is important to remember that,
by default, Lisp evaluates everything. Lisp uses the convention that
numbers always evaluate to themselves. If, for example, 5 is typed into the
Lisp interpreter, Lisp will respond with 5. Symbols, such as X, may have a
value bound to them. If a symbol is bound, the binding is returned when the
symbol is evaluated (one way in which symbols become bound is in a
function call; see Section 13.2). If a symbol is unbound, it is an etror to
evaluate that symbol.

For example, in evaluating the expression (+ (* 2 3) (* 3 5)),
Lisp first evaluates the arguments, (* 2 3) and (* 3 5). In
evaluating (* 2 3), Lisp evaluates the arguments 2 and 3, which return
their respective arithmetic values; these values are multiplied to yield 6.
Similarly, (* 3 5) evaluates to 15. These results are then passed to the
top-level addition, which is evaluated, returning 21. A diagram of this
evaluation appears in Figure 11.1.

Figure 11.1. Tree representation of the evaluation of a simple Lisp function

In addition to arithmetic operations, Lisp includes a large number of
functions that operate on lists. These include functions to construct and
combine lists, to access elements of lists, and to test various properties. For
example, 1ist takes any number of arguments and constructs a list of
those elements. nth takes a number and a list as arguments and returns
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S-expressions
Defined

11.2

Using quote
and eval

the indicated element of the list. By convention, nth begins counting with
0. Examples of these and other list manipulation functions include:

> (list 1 2 3 4 5)
(1 23 45)

> (nth 0 “(a b c d))
a
> (nth 2 (list 1 2 3 4 5))
3
> (nth 2 ‘((a 1) (b 2) (c 3) (d 4)))
(c 3)
> (length ‘(a b c d))
4
> (member 7 ‘(1 2 3 4 5))
nil
> (null ( ))
t
DEFINITION

S-EXPRESSION
An s-expression is defined recursively:
An atom is an s-expression.

If s, s,, .., S, are s-expressions, then so is the list (5; s,
. S,).
A /istis a non-atomic s-expression.

A form is an s-expression that is intended to be evaluated. If it is a
list, the first element is treated as the function name and the
subsequent elements are evaluated to obtain the function
arguments.

In evaluating an s-expression:
If the s-expression is a number, return the value of the number.

If the s-expression is an atomic symbol, return the value bound to
that symbol; if it is not bound, it is an error.

If the s-expression is a list, evaluate the second through the last
arguments and apply the function indicated by the first argument
to the results.

Lisp represents both programs and data as s-expressions. Not only does
this simplify the syntax of the language but also, when combined with
the ability to control the evaluation of s-expressions, it makes it easy to
write programs that treat other Lisp programs as data. This simplifies the
implementation of interpreters in Lisp.

Control of Lisp Evaluation

In the previous section, several of the examples included list arguments
preceded by a single quotation mark: ‘. The *, which can also be
represented by the function quote, is a special function which does not
evaluate its argument but prevents evaluation, often because its argument is
to be treated as data rather than as an evaluable form.
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When evaluating an s-expression, Lisp will first try to evaluate all of its
arguments. If the interpreter is given the expression (nth 0 (a b ¢
d)), it will first try to evaluate the argument (a b ¢ d). This
attempted evaluation will result in an error, because a, the first element of
this s-expression, does not represent any known Lisp function. To prevent
this, Lisp provides the user with the built-in function quote. quote
takes one argument and returns that argument without evaluating it. For
example:

> (quote (a b c¢))

(a b c)

> (quote (+ 1 3))

(+ 1 3)
Because quote is used so often, Lisp allows it to be abbreviated by a
single quotation mark. Thus, the preceding examples could be written:

> ‘(a b c)

(a b c)

> (+ 1 3)

(+ 1 3)
In general, quote is used to prevent the evaluation of arguments to a
function when these arguments are intended to be treated as data rather
than evaluable forms. In the eatlier examples of simple arithmetic, quote
was not needed, because numbers always evaluate to themselves. Consider
the effect of quote in the following calls to the 1ist function:

> (list (+ 1 2) (+ 3 4))

(37)

> (list “(+ 1 2) “(+ 3 4))

((+ 1 2) (+ 3 4))
In the first example, the arguments are not quoted; they are therefore
evaluated and passed to 1ist according to the default evaluation scheme.
In the second example, quote prevents this evaluation, with the s-
expressions themselves being passed as arguments to 1ist. Even though
(+ 1 2) is a meaningful Lisp form, quote prevents its evaluation. The
ability to prevent evaluation of programs and manipulate them as data is an
important feature of Lisp.

As a complement to quote, Lisp also provides a function, eval, that
allows the programmer to evaluate an s-expression at will. eval takes one
s-expression as an argument: this argument is evaluated as is usual for
arguments to functions; however, the result is then evaluated agazn and this
final result is returned as the value of eval. Examples of the behavior of
eval and quote:

> (quote (+ 2 3))

(+ 2 3)

> (eval (quote (+ 2 3))) ;eval undoes the effect of quote
5

> (list ‘* 2 5) ;this constructs an evaluable s-expression

(* 25)

> (eval (list ‘* 2 5)) ;this constructs and evaluates the s-
expression

10
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11.3

Using defun

The eval function is precisely what is used in the ordinary evaluation of
s-expressions. By making quote and eval available to the programmer,
Lisp greatly simplifies the development of meta-interpreters: variations on the
standard Lisp interpreter that define alternative or extended behaviors for
the Lisp language. This important programming methodology is illustrated
in the “infix-interpreter” of Section 15.2 and the design of an expert system
shell in Section 17.2.

Programming in Lisp: Creating New Functions

Common Lisp includes a large number of built-in functions, including:

- A full range of arithmetic functions, supporting integer, rational, real
and complex arithmetic.

- A variety of looping and program control functions.

- List manipulation and other data structuring functions.
- Input/output functions.

- Forms for the control of function evaluation.

- Functions for the control of the environment and operating system.

Lisp includes too many functions to list in this chapter; for a more detailed
discussion, consult a specialized Lisp text, the manual for your particular
implementation, or see Chapter 20.

In Lisp, we program by defining new functions, constructing programs
from this already rich repertoire of built-in functions. These new functions
are defined using defun, which is short for define function. Once a function
is defined it may be used in the same fashion as functions that are built into
the language.

Suppose, for example, the user would like to define a function called
square that takes a single argument and returns the square of that
argument. square may be created by having Lisp evaluate the following
expression:
(defun square (x)
(* x x))

The first argument to defun is the name of the function being defined;
the second is a list of the formal parameters for that function, which must
all be symbolic atoms; the remaining arguments are zero or more s-
expressions, which constitute the body of the new function, the Lisp code
that actually defines its behavior. Unlike most Lisp functions, defun does
not evaluate its arguments; instead, it uses them as specifications to create a
new function. As with all Lisp functions, however, defun returns a value,
although the value returned is simply the name of the new function.

The important result of evaluating a defun is the side effect of creating a
new function and adding it to the Lisp environment. In the above example,
square is defined as a function that takes one argument and returns the
result of multiplying that argument by itself. Once a function is defined, it
must be called with the same number of arguments, or “actual parameters,” as
there are formal parameters specified in the defun. When a function is
called, the actual parameters are bound to the formal parameters. The body of
the function is then evaluated with these bindings. For example, the call
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(square 5) causes 5 to be bound to the formal parameter X in the body
of the definition. When the body (* x X) is evaluated, Lisp first evaluates
the arguments to the function. Because x is bound to 5 by the call, this leads
to the evaluation of (* 5 5).

Morte concisely, the syntax of a defun expression is:
(defun <function name>
(<formal parameters>) <function body>)

In this definition, desctriptions of the elements of a form are enclosed in
angle brackets: < >. We use this notational convention throughout this
text to define Lisp forms. Note that the formal parameters in a defun are
enclosed in a list.

A newly defined function may be used just like any built-in function.
Suppose, for example, that we need a function to compute the length of
the hypotenuse of a right triangle given the lengths of the other two sides.
This function may be defined according to the Pythagorean theorem, using
the previously defined square function along with the built-in function
sqgrt. We have added a number of comments to this sample code. Lisp

supports “end of line comments™: it ignores all text from the first “;” to
the end of the same line.

(defun hypotenuse (x y) ; the length of the hypotenuse is
(sqrt (+ (square Xx) ; the square root of the sum of
(square y)))) ; the squares of the other sides.

This example is typical in that most Lisp programs are built up of relatively
small functions, each performing a single well-defined task. Once defined,
these functions are used to implement higher-level functions until the
desired “top-level” behavior has been defined.

Program Control in Lisp: Conditionals and Predicates

Lisp branching is also based on function evaluation: control functions
perform tests and, depending on the results, selectively evaluate alternative
forms. Consider, for example, the following definition of the absolute-
value function (note that Lisp actually has a built-in function, abs, that
computes absolute value):

(defun absolute-value (x)
(cond ((< x 0) (— x)) ;if x < 0, return —x
((>= x 0) x))) ;else return x
This example uses the function, cond, to implement a conditional branch.
cond takes as arguments a number of condition—action pairs:
(cond (< conditionl > < actionl >)
(< condition2 > < action2 >)

(< conditionn > < actionn >))

Conditions and actions may be arbitrary s-expressions, and each pair is
enclosed in parentheses. Like defun, cond does not evaluate all of its
arguments. Instead, it evaluates the conditions in order until one of them
returns a non-nil value. When this occurs, it evaluates the associated action
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and returns this result as the value of the cond expression. None of the
other actions and none of the subsequent conditions are evaluated. If all of
the conditions evaluate to nil, cond returns nil.

An alternative definition of absolute-value is:
(defun absolute-value (x)
(cond ((< x 0) (— x)) ;if x < 0, return —x
(t x))) ;else, return x

This version notes that the second condition, (>= x 0), is always true if
the first is false. The “t” atom in the final condition of the cond
statement is a Lisp atom that roughly corresponds to “true.” By
convention, t always evaluates to itself; this causes the last action to be
evaluated if all preceding conditions return nil. This construct is
extremely useful, as it provides a way of giving a cond statement a default
action that is evaluated if and only if all preceding conditions fail.

Although any evaluable s-expressions may be used as the conditions of a
cond, generally these are a particular kind of Lisp function called a
predicate. A predicate is simply a function that returns a value of either true
or false depending on whether or not its arguments possess some property.
The most obvious examples of predicates are the relational operators
typically used in arithmetic such as =, >, and >=. Here are some examples
of arithmetic predicates in Lisp:

> (=9 (+ 4 5))

t
> (>= 17 4)
t
> (< 8 (+ 4 2))
nil
> (oddp 3) ;oddp tests whether or not its argument is odd
t
> (minusp 6) ;minusp tests whether its argument < 0
nil
> (numberp 17) ;numberp tests whether its argument is numeric
t
> (numberp nil)
nil

(zerop 0) ; zerop istrueifits argument= 0, nil otherwise

>
t
> (plusp 10) ;plusp is true if its argument > 0
t
>

(plusp —2)
nil

Note that the predicates in the above examples do not return “true” or
“false” but rather t or nil. Lisp is defined so that a predicate may return
nil to indicate “false” and anything other than nil (not necessarily t) to
indicate “true.” An example of a function that uses this feature is the
member predicate. member takes two arguments, the second of which
must be a list. If the first argument is a member of the second, member
returns the suffix of the second argument, containing the first argument as
its initial element; if it is not, member returns nil. For example:
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> (member 3 ‘(1 2 3 4 5))

(3 4 5)
One rationale for this convention is that it allows a predicate to return a
value that, in the “true” case, may be of use in further processing. It also
allows any Lisp function to be used as a condition in a cond form.

As an alternative to cond, the 1 f form takes three arguments. The first is
a test. 1f evaluates the test; if it returns a non-nil value, the i1f form
evaluates its second argument and returns the result, otherwise it returns
the result of evaluating the third argument. In cases involving a two-way
branch, the if construct generally provides cleaner, more readable code
than cond. For example, absolute-value could be defined using the
if form:

(defun absolute-value (x)
(if (< x 0) (= x) X))

In addition to if and cond, Lisp offers a wide selection of alternative
control constructs, including iterative constructs such as do and while
loops. Although these functions provide Lisp programmers with a wide
range of control structures that fit almost any situation and programming
style, we will not discuss them in this section; the reader is referred to a
more specialized Lisp text for this information.

One of the more interesting program control techniques in Lisp involves
the use of the logical connectives and, or, and not. not takes one
argument and returns t if its argument is nil and nil otherwise. Both
and and or may take any number of arguments and behave as you would
expect from the definitions of the corresponding logical operators. It is
important to note, however, that and and or are based on conditional
evalnation.

In evaluating an and form, Lisp evaluates its arguments in left-to-right
order, stopping when any one of the arguments evaluates to nil or the
last argument has been evaluated. Upon completion, the and form returns
the value of the last argument evaluated. It therefore returns non-nil only
if all its arguments return non-nil. Similarly, the or form evaluates its
arguments only until a non-nil value is encountered, returning this value
as a result. Both functions may leave some of their arguments unevaluated,
as may be seen by the behavior of the print statements in the following
example. In addition to printing its argument, in some Lisp environments
print returns a value of nil on completion.

> (and (oddp 2) (print “eval second statement”))

nil

> (and (oddp 3) (print “eval second statement”))

eval second statement

> (or (oddp 3) (print “eval second statement”))

t

> (or (oddp 2) (print “eval second statement”))

eval second statement
Because (oddp 2) evaluates to nil in the first expressions, the and
simply returns nil without evaluating the print form. In the second
expression, however, (oddp 3) evaluates to t and the and form then
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evaluates the print. A similar analysis may be applied to the or
examples. It is important to be aware of this behavior, particulatly if some
of the arguments are forms whose evaluations have side effects, such as the
print function. The conditional evaluation of logical connectives makes
them useful in controlling the flow of execution of Lisp programs. For
example, an or form may be used to try alternative solutions to a problem,
evaluating them in order until one of them returns a non-nil result.

Exercises

1. Which of the following are legitimate s-expressions? If any is not,
explain why it isn’t.

(geo rge fred john)

(a b (cd(ef (gh)))

(3 +5)

(quote (eval (+ 2 3)))

(or (oddp 4) (* 4 5 6)
2. Create a small database in Lisp for some application, such as for
professional contacts. Have at least five fields in the data-tuples where at
least one of the fields is itself a list of items. Create and test your own
assess functions on this database.

3. Create a cond form that uses and and or that will test the items in the
database created in exercise 2. Use these forms to test for properties of the
data-tuples, such as to print out the name of a male person that makes
more than a certain amount of money.

4. Create a function called my-member that performs the function of the
member example that was presented in Section 11.4.
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12.1 Functions, Lists, and Symbolic Computing

Symbolic  Ajthough the Chapter 11 introduced Lisp syntax and demonstrated a few
Computing ,¢.f) Lisp functions, it did so in the context of simple arithmetic
examples. The real power of Lisp is in symbolic computing and is based on
the use of lists to construct arbitrarily complex data structures of symbolic
and numeric atoms, along with the forms needed for manipulating them.
We illustrate the ease with which Lisp handles symbolic data structures, as
well as the naturalness of data abstraction techniques in Lisp, with a simple
database example. Our database application requires the manipulation of
employee records containing name, salary, and employee number fields.

These records are represented as lists, with the name, salary, and number fields
as the first, second, and third elements of a list. Using nth, it is possible to
define access functions for the various fields of a data record. For example:

(defun name-field (record)
(nth 0 record))
will have the behavior:
> (name-field ‘((Ada Lovelace) 45000.00 38519))
(Ada Lovelace)

Similarly, the functions salary-field and number-field may be
defined to access the appropriate fields of a data record. Because a name is
itself a list containing two elements, a first name and a last name, it is useful
to define functions that take a name as argument and return either the first
or last name as a result.
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(defun first-name (name)
(nth 0 name))
will have the behavior:

> (first-name (name-field ‘((Ada Lovelace) 45000.00
338519)))

Ada
In addition to accessing individual fields of a data record, it is also
necessary to implement functions to create and modify data records. These
are defined using the built-in Lisp function 1ist. 1ist takes any number
of arguments, evaluates them, and returns a list containing those values as
its elements. For example:

> (list 1 2 3 4)

(123 4)

> (list ‘(Ada Lovelace) 45000.00 338519)

((Ada Lovelace) 45000.00 338519)
As the second of these examples suggests, 1ist may be used to define a
constructor for records in the database:

(defun build-record (name salary emp-number)

(list name salary emp-number))

will have the behavior:
> (build-record ‘(Alan Turing) 50000.00 135772)
((Alan Turing) 50000.00 135772)

Now, using build-record and the access functions, we may construct
functions that return a modified copy of a record. For example
replace-salary will behave:

(defun replace-salary-field (record new-salary)
(build-record (name-field record)

new-salary

(number-field record)))

> (replace-salary-field ‘((Ada Lovelace) 45000.00
338519) 50000.00)

((Ada Lovelace) 50000.00 338519)

Note that this function does not actually update the record itself but
produces a modified copy of the record. This updated version may be
saved by binding it to a global variable using setf (Section 13.1).
Although Lisp provides forms that allow a particular element in a list to be
modified in the original structure (i.e., without making a copy), good Lisp
programming style generally avoids their use, and they are not covered in
this text. For Lisp applications involving all but extremely large structures,
modifications are generally done by creating a new copy of the structure.

In the above examples, we created an abstract data type for employee
records. The various access and update functions defined in this section
implement a specialized language appropriate to the meaning of the
records, freeing the programmer from concerns about the actual list
structures being used to implement the records. This simplifies the
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development of higher-level code, as well as making that code much easier
to maintain and understand.

Generally, Al programs manipulate large amounts of varied knowledge
about problem domains. The data structures used to represent this
knowledge, such as objects and semantic networks, are complex, and
humans generally find it easier to relate to this knowledge in terms of its
meaning rather than the particular syntax of its internal representation.
Therefore, data abstraction techniques, always good practice in computer
science, are essential tools for the Al programmer. Because of the ease
with which Lisp supports the definition of new functions, it is an ideal
language for data abstraction.

Lists as Recursive Structures

In the previous section, we used nth and list to implement access
functions for records in a simple “employee” database. Because all
employee records were of a determinate length (three elements), these two
functions were sufficient to access the fields of records. However, these
functions are not adequate for performing operations on lists of unknown
length, such as searching through an unspecified number of employee
records. To do this, we must be able to scan a list iteratively or recursively,
terminating when certain conditions are met (e.g., the desired record is
found) or the list is exhausted. In this section we introduce list operations,
along with the use of recursion to create list-processing functions.

The basic functions for accessing the components of lists are car and cdr.
car takes a single argument, which must be a list, and returns the first
element of that list. cdr also takes a single argument, which must also be a
list, and returns that list with its first argument removed:

> (car ‘(a b ¢)) ;note that the list is quoted
a

> (cdr ‘(a b c))

(b c)

> (car ‘((a b) (c d))) ;the first element of
(a b) ;a list may be a list

> (cdr ‘((a b) (c d)))
((c d))

> (car (cdr ‘(a b c d)))
b

The way in which car and cdr operate suggests a recursive approach to
manipulating list structures. To perform an operation on each of the elements of a list:

1f the list is empty, quit.

Otherwise, operate on the first element and recurse on the
remainder of the list.

Using this scheme, we can define a number of useful list-handling
functions. For example, Common Lisp includes the predicates member,
which determines whether one s-expression is a member of a list, and
length, which determines the length of a list. We define our own
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versions of these functions: my-member takes two arguments, an
arbitrary s-expression and a list, my—-1list. It returns nil if the s-
expression is not a member of my-1ist; otherwise it returns the list
containing the s-expression as its first element:
(defun my-member (element my-list)
(cond ((null my-list) nil)
((equal element (car my-list)) my-list)
(t (my-member element (cdr my-list)))))
my-member has the behavior:
> (my-member 4 ‘(1 2 3 4 5 6))
(4 5 6)
> (my-member 5 ‘(a b c d))
nil
Similarly, we may define our own versions of length and nth:
(defun my-length (my-list)
(cond ((null my-list) 0)
(t (+ (my-length (cdr my-list)) 1))))
(defun my-nth (n my-list)
(cond ((zerop n) (car my-list))
; zerop tests if argument is zero
(t (my-nth (— n 1) (cdr my-list)))))
It is interesting to note that these examples, though presented here to illustrate
the use of car and cdr, reflect the historical development of Lisp. Early
versions of the language did not include as many built-in functions as
Common Lisp does; programmers defined their own functions for checking
list membership, length, etc. Over time, the most generally useful of these
functions have been incorporated into the language standard. As an easily

extensible language, Common Lisp makes it easy for programmers to create
and use their own library of reusable functions.

In addition to the functions car and cdr, Lisp provides a number of
functions for constructing lists. One of these, 1ist, which takes as
arguments any number of s-expressions, evaluates them, and returns a list
of the results, was introduced in Section 10.1. A more primitive list
constructor is the function cons, that takes two s-expressions as
arguments, evaluates them, and returns a list whose car is the value of the
first argument and whose cdr is the value of the second:

> (cons 1 ‘(2 3 4))

(1 2 3 4)

> (cons ‘(a b) ‘“(c d e))
((a b) ¢ de)

cons bears an inverse relationship to car and cdr in that the car of the
value returned by a cons form is always the first argument to the cons, and
the cdr of the value returned by a cons form is always the second argument
to that form:



Chapter 12 Lists and Recursive Search 165

> (car (cons 1 ‘(2 3 4)))

1
> (cdr (cons 1 ‘(2 3 4)))
(2 3 4)

An example of the use of cons is seen in the definition of the function
filter-negatives, which takes a list of numbers as an argument and
returns that list with any negative numbers removed. filter-negatives
recursively examines each element of the list; if the first element is negative, it
is discarded and the function returns the result of filtering the negative
numbers from the cdr of the list. If the first element of the list is positive, it
is “consed” onto the result of filter-negatives from the rest of the
list:
(defun filter-negatives (number-list)

(cond ((null number-list) nil)
((plusp (car number-list))

(cons (car number-list)
(filter-negatives
(cdr number-list))))
(t (filter-negatives (cdr number-list)))))
This function behaves:
> (filter-negatives ‘(1 -1 2 =2 3 —4))
(1 2 3)
This example is typical of the way cons is often used in recursive functions
on lists. car and cdr tear lists apart and “drive” the recursion; cons
selectively constructs the result of the processing as the recursion “unwinds.”
Another example of this use of cons is in redefining the built-in function
append:
(defun my-append (listl list2)
(cond ((null listl) list2)
(t (cons (car listl)
(my-append (cdr listl) 1list2)))))
which yields the behavior:
> (my-append ‘(1 2 3) ‘(4 5 6))
(12345 6)
Note that the same recursive scheme is used in the definitions of my-
append, my-length, and my-member. Each definition uses the car
function to remove (and process) the first element of the list, followed by a
recursive call on the shortened (tail of the) list; the recursion “bottoms
out” on the empty list. As the recursion unwinds, the cons function
reassembles the solution. This particular scheme is known as cdr recursion,

because it uses the cdr function to lineatly scan and process the elements
of a list.
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12.3

Car/cdr
Recursion and
Nested
Structure

Nested Lists, Structure, and car/cdr Recursion

Although both cons and append may be used to combine smaller lists
into a single list, it is important to note the difference between these two
functions. If cons is called with two lists as arguments, it makes the first
of these a new first element of the second list, whereas append returns a
list whose elements are the elements of the two arguments:

> (cons ‘(1 2) ‘(3 4))

((1 2) 3 4)
> (append ‘(1 2) ‘(3 4))
(1 2 3 4)

The lists (1 2 3 4) and ((1 2) 3 4) have fundamentally different
structures. This difference may be noted graphically by exploiting the
isomorphism between lists and trees. The simplest way to map lists onto trees
is to create an unlabeled node for each list, with descendants equal to the
elements of that list. This rule is applied recursively to the elements of the list
that are themselves lists; elements that are atoms are mapped onto leaf nodes
of the tree. Thus, the two lists mentioned above generate the different tree
structures illustrated in Figure 12.1.

Figure 12.1. Mapping lists onto trees showing structural differences.

This example illustrates the representational power of lists, particulatly as a
means of representing any tree structure such as a search tree or a parse tree
(Figure 16.1). In addition, nested lists provide a way of hierarchically
structuring complex data. In the employee records example of Section 12.1,
the name field was itself a list consisting of a first name and a last name. This
list could be treated as a single entity or its individual components could be
accessed.

The simple cdr-recursive scheme discussed in the previous section is not
sufficient to implement all manipulations on nested lists, because it does not
distinguish between items that are lists and those that are simple atoms.
Suppose, for example, that the length function defined in Section 12.2 is
applied to a nested list structure:

> (length “((1 2) 3 (1 (4 (5)))))
3
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In this example, 1length returns 3 because the list has 3 elements, (1 2),
3,and (1 (4 (5))). This is, of course, the correct and desired behavior
for a length function.

On the other hand, if we want the function to count the number of afoms in
the list, we need a different recursive scheme, one that, in addition to scanning
along the elements of the list, “opens up” non-atomic list elements and
recursively applies itself to the task of counting their atoms. We define this
function, called count-atoms, and observe its behaviot:

(defun count-atoms (my-list)
(cond ((null my-list) 0)
((atom my-list) 1)
(t (+ (count-atoms (car my-list))
(count-atoms
(cdr my-list))))))
> (count-atoms ‘((1 2) 3 (((4 5 (6))))))
6

The above definition is an example of car-cdr recursion. Instead of just
recurring on the cdr of the list, count-atoms also recurs on the car of
its argument, with the + function combining the two components into an
answer. Recursion halts when it encounters an atom or empty list (null).
One way of thinking of this scheme is that it adds a second dimension to
simple c¢dr recursion, that of “going down into” each of the list elements.
Compare the diagrams of calls to length and count-atoms in Figure
12.2. Note the similarity of car-cdr recursion and the recursive definition
of s-expressions given in Section 11.1.1.

Another example of the use of car-cdr recursion is in the definition of
the function flatten. flatten takes as argument a list of arbitrary
structure and returns a list that consists of the same atoms in the same
order but with all the atoms at the same level. Note the similarity between
the definition of flatten and that of count-atoms: both use car-
cdr recursion to tear apart lists and drive the recursion, both terminate
when the argument is either null or an atom, and both use a second
function (append or +) to construct an answer from the results of the
recursive calls.
(defun flatten (1lst)
(cond ((null 1st) nil)
((atom 1lst) (list 1lst))
(t (append (flatten (car 1lst))
(flatten (cdr 1lst))))))
Examples of the behavior of f1latten include:
> (flatten ‘(a (b c) (((d) e £))))
(a bcdef)
> (flatten ‘(a b c)); already flattened
(a b c)
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> (flatten ‘(1 (2 3) (4 (5 6) 7)))
(1234567)

car-cdr recursion is the basis of our implementation of unification in
Section 15.2. In Chapter 13, we introduce variables and design algorithms for
search.

Figure 12.2, Tree representations of linear and tree-recursive functions.

Exercises

1. Create trees, similar to those of Figure 12.1, which show the structures
of the following lists.

(+ 4 (*5 (+6 7 8)))
(+ (* (+ 4 5) 6 7 8))
(+ (* (+ 4 (*56)) 7) 8)
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2. Write a recursive Lisp function that will reverse the elements of a list.
(Do not use the built-in reverse function.) What is the complexity of
your implementation? It is possible to reverse a list in linear time; can you
do so?

3. Write a Lisp function that will take a list nested to any depth and print
the mirror image of that list. For instance, the function should have the
behavior:

> (mirror ‘((a b) (c (d e))))
(((e d) c) (b a))
Note that the mirroring operation operates at all levels of the list’s

representation.

4. Consider the database example of section 12.1. Write a function, £ind,
to return all records that have a given value particular value for a particular
field. To make this more interesting, allow users to specify the fields to be
searched by name. For example, evaluating the expression:

(find ‘salary-field ‘50000.00
‘(((Alan Turing) 50000.00 135772)
((Ada Lovelace) 45000.00 338519)))
should return:
((Alan Turing) 50000.00 135772)
5. The Towers of Hanoi problem is based on the following legend:

In a Far Eastern monastery, there is a puzzle consisting of three
diamond needles and 64 gold disks. The disks are of graduated
sizes. Initially, the disks are all stacked on a single needle in
decreasing order of size. The monks are attempting to move all the
disks to another needle under the following rules:

Only one disk may be moved at a time.
No disk can ever rest on a smaller disk.

Legend has it that when the task has been completed, the universe will end.
Write a Lisp program to solve this problem. For safety’s sake (and to write
a program that will finish in your lifetime) do not attempt the full 64-disk
problem. Four or five disks is more reasonable.
6. Write a compiler for arithmetic expressions of the form:

(op operandl operand2)
where op is either +, —, *, or / and the operands ate cither numbers or
nested expressions. An exampleis (* (+ 3 6) (— 7 9)). Assume
that the target machine has instructions:

(move value register)

(add register-1 register-2)

(subtract register-1 register-2)

(times register-1 register-2)

(divide register-1 register-2)
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All the arithmetic operations will leave the result in the first register
argument. To simplify, assume an unlimited number of registers. Your

compiler should take an arithmetic expression and return a list of these
machine operations.
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13.1 Variables and Datatypes

We begin this chapter by demonstrating the creation of variables using
set and let and discussing the scope of their bindings. We then
introduce datatypes and discuss run-time type checking. We finish this
chapter with a sample search, where we use variables for state and
recursion for generation of the state-space graph.

.. Binding [ isp is based on the theory of recursive functions; early Lisp was the first
Variables USISI:agt example of a functional or applicative programming language. An important
aspect of purely functional languages is the lack of any side effects as a
result of function execution. This means that the value returned by a
function call depends only on the function definition and the value of the
parameters in the call. Although Lisp is based on mathematical functions, it
is possible to define Lisp forms that violate this property. Consider the
following Lisp interaction:

> (f 4)

5

> (f 4)

6

> (f 4)

7
Note that £ does not behave as a true function in that its output is not
determined solely by its actual parameter: each time it is called with 4, it
returns a different value. This implies that f is retaining its state, and that
each execution of the function creates a side effect that influences the

behavior of future calls. £ is implemented using a Lisp built-in function
called set:
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(defun £ (x)
(set ‘inc (+ inc 1))
(+ x inc))

set takes two arguments. The first must evaluate to a symbol; the second
may be an arbitrary s-expression. set evaluates the second argument and
assigns this value to the symbol defined by the first argument. In the above
example, if inc is first set to 0 by the call (set ‘inc 0), cach
subsequent evaluation will increment its parameter by one.

set requires that its first argument evaluate to a symbol. In many cases,
the first argument is simply a quoted symbol. Because this is done so often,
Lisp provides an alternative form, setq, which does not evaluate its first
argument. Instead, setq requires that the first argument be a symbol. For
example, the following forms are equivalent:

> (set ‘x 0)
0
> (setqg x 0)
0

Although this use of set makes it possible to create Lisp objects that are
not pure functions in the mathematical sense, the ability to bind a value to
a variable in the global environment is a useful feature. Many programming
tasks are most naturally implemented using this ability to define objects
whose state persists across function calls. The classic example of this is the
“seed” in a random number generator: each call to the function changes
and saves the value of the seed. Similarly, it would be natural for a database
program (such as was described in Section 11.3) to store the database by
binding it to a variable in the global environment.

So far, we have seen two ways of giving a value to a symbol: explicitly, by
assignment using set or setq, or implicitly, when a function call binds
the calling parameters to the formal parameters in the definition. In the
examples seen so far, all variables in a function body were either bownd or
free. A bound variable is one that appears as a formal parameter in the
definition of the function, while a free variable is one that appears in the
body of the function but is not a formal parameter. When a function is
called, any bindings that a bound variable may have in the global
environment are saved and the variable is rebound to the calling parametet.
After the function has completed execution, the original bindings are
restored. Thus, setting the value of a bound variable inside a function body
has no effect on the global bindings of that variable, as seen in the Lisp
interaction:

> (defun foo (x)
(setg x (+ x 1)) ;increment bound variable x
X) ;return its value.
foo
> (setq y 1)
1
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> (foo y)

2

>y ;note that value of y is unchanged.

1
In the example that began this section, X was bound in the function £,
whereas inc was free in that function. As we demonstrated in the
example, free variables in a function definition are the primary source of
side effects in functions.
An interesting alternative to set and setq is the generalized assignment
function, setf. Instead of assigning a value to a symbol, setf evaluates
its first argument to obtain a memory location and places the value of the
second argument in that location. When binding a value to a symbol,
setf behaves like setq:

> (setqg x 0)

0

> (setf x 0)

0
However, because we may call setf with any form that corresponds to a
memory location, it allows a more general semantics. For example, if we
make the first argument to setf a call to the car function, setf will
replace the first element of that list. If the first argument to setf is a call
to the cdr function, set £ will replace the tail of that list. For example:

> (setf x ‘“(a b c)) ;X is bound to a list.

(a b c)

> x ;The value of x is a list.

(a b c)

> (setf (car x) 1) ;car of x is a memory location.

1

> x ;setf changed value of car of x.

(1 b c)

> (setf (cdr x) ‘(2 3))

(2 3)

> x ;Note that x now has a new tail.

(1 2 3)
We may call setf with most Lisp forms that correspond to a memory
location; these include symbols and functions such as car, cdr, and nth.
Thus, setf allows the program designer great flexibility in creating,
manipulating, and even replacing different components of Lisp data
structures.

let is a useful function for explicitly controlling the binding of
variables. 1et allows the creation of local variables.

As an example, consider a function to compute the roots of a quadratic
equation. The function quad-roots will take as arguments the three
parameters a, b, and c of the equation ax* + bx + c = 0 and
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return a list of the two roots of the equation. These roots will be
calculated from the formula:

X = =b +/- sqrt(b2 — 4ac)

2a
For example:

> (quad-roots 1 2 1)

(=1.0 —-1.0)
> (quad-roots 1 6 8)
(—2.0 —4.0)

In computing quad-roots, the value of
sqrt(b2 — 4ac)

is used twice. For reasons of efficiency, as well as elegance, we should
compute this value only once, saving it in a variable for use in computing
the two roots. Based on this idea, an initial implementation of quad-
roots might be:

(defun quad-roots-1 (a b c¢)
(setq temp (sgrt (— (* b b) (* 4 a ¢c))))
(list (/ (+ (— b) temp) (* 2 a))
(/ (= (= b) temp) (* 2 a))))
Note that the above implementation assumes that the equation does not have
imaginary roots, as attempting to take the square root of a negative number

would cause the sgrt function to halt with an error condition. Modifying the
code to handle this case is straightforward and not relevant to this discussion.

Although, with this exception, the code is correct, evaluation of the function
body will have the side effect of setting the value of temp in the global
environment:

> (quad-roots-1 1 2 1)

(=1.0 —1.0)

> temp

0.0

It is much more desirable to make temp local to the function quad-roots,
thereby eliminating this side effect. This can be done through the use of a 1let
block. A 1et expression has the syntax:

(let (<local-variables>) <expressions>)

where the elements of (<local-variables>) are cither symbolic atoms
ot pairs of the form:

(<symbol> <expression>)

When a 1et form (or block as it is usually called) is evaluated, it establishes a
local environment consisting of all of the symbols in (<local-
variables>). If a symbol is the first element of a pair, the second element
is evaluated and the symbol is bound to this result; symbols that are not
included in pairs are bound to nil. If any of these symbols are already bound
in the global environment, these global bindings are saved and restored when
the 1let block terminates.
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After these local bindings are established, the <expressions> are
evaluated in order within this environment. When the let statement
terminates, it returns the value of the last expression evaluated within the
block. The behavior of the let block is illustrated by the following
example:

> (setqg a 0)

0

> (let ((a 3) b)
(setq b 4)
(+ a b))

7

> a

0

> Db

ERROR — b is not bound at top level.

In this example, before the 1et block is executed, a is bound to 0 and b is
unbound at the top-level environment. When the let is evaluated, a is bound
to 3 and b is bound to nil. The setq assigns b to 4, and the sum of a and
b is returned by the let statement. Upon termination of the let, a and b
are restored to their previous values, including the unbound status of b.
Using the 1et statement, quad-roots can be implemented with no global
side effects:
(defun quad-roots-2 (a b c)
(let (temp) (setq temp (sqrt (— (* b b)
(* 4 ac))))
(list (/ (+ (=b) temp) (* 2 a))
(/ (= (= Db) temp) (* 2 a)))))
Alternatively, temp may be bound when it is declared in the let statement,
giving a somewhat more concise implementation of quad-roots. In this
final version, the denominator of the formula, 2a, is also computed once and
saved in a local variable, denom:
(defun quad-roots-3 (a b c)
(let ((temp (sqgrt (—. (* b b) (* 4 ac))))
(denom (* 2 a)))
(list (/ (+ (— b) temp) denom)
(/ (— (— b) temp) denom))))
In addition to avoiding side effects, quad-roots=-3 is the most efficient of
the three versions, because it does not recompute values unnecessarily.

Lisp provides a number of built-in data types. These include integers,
floating-point numbers, strings, and characters. Lisp also includes such
structured types as arrays, hash tables, sets, and structures. All of these
types include the appropriate operations on the type and predicates for
testing whether an object is an instance of the type. For example, lists are
supported by such functions as 1istp, which identifies an object as a list;
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null, which identifies the empty list, and constructors and accessors such
as list, nth, car, and cdr.

However, unlike such strongly typed languages as C or Pascal, where all
expressions can be checked for type consistency before run time, in Lisp it
is the data objects that are typed, rather than variables. Any Lisp symbol
may bind to any object. This provides the programmer with the power of
typing but also with a great deal of flexibility in manipulating objects of
different or even unknown types. For example, we may bind any object to
any variable at run time. This means that we may define data structures
such as frames, without fully specifying the types of the values stored in
them. To supportt this flexibility, Lisp implements run-time type checking.
So if we bind a value to a symbol, and try to use this value in an erroneous
fashion at run time, the Lisp interpreter will detect an error:

> (setq x ‘a)

a
> (+ x 2)
> > Error: a is not a valid argument to +.
>

> While executing: +

Users may implement their own type checking using either built-in or user-
defined type predicates. This allows the detection and management of type
errors as needed.

The preceding pages are not a complete description of Lisp. Instead, they
are intended to call the readet’s attention to interesting features of the
language that will be of use in implementing AI data structures and
algorithms. These features include:

* The naturalness with which Lisp supports a data abstraction
approach to programming.

* The use of lists to create symbolic data structures.
* The use of cond and recursion to control program flow.

* The recursive nature of list structures and the recursive
schemes involved in their manipulation.

* The use of quote and eval to control function evaluation

* The use of set and let to control variable bindings and side
effects.

The remainder of the Lisp section builds on these ideas to demonstrate the
use of Lisp for typical Al programming tasks such as pattern matching and
the design of graph search algorithms. We begin with a simple example, the
Farmer, Wolf, Goat, and Cabbage problem, where an abstract datatype is
used to describe states of the wortld.
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Search: The Farmer, Wolf, Goat, and Cabbage Problem

To introduce graph search programming in Lisp, we next represent and
solve the farmer, wolf, goat, and cabbage problem:

A farmer with his wolf, goat, and cabbage come to the edge of a
river they wish to cross. There is a boat at the river’s edge, but, of
course, only the farmer can row it. The boat also can carry only
two things (including the rower) at a time. If the wolf is ever left
alone with the goat, the wolf will eat the goat; similarly, if the goat
is left alone with the cabbage, the goat will eat the cabbage. Devise
a sequence of crossings of the river so that all four characters
arrive safely on the other side of the river.

This problem was first presented in Prolog in Section 4.2. The Lisp version
searches the same space and has structural similarities to the Prolog solution;
however, it differs in ways that reflect Lisp’s imperative/functional otientation.
The Lisp solution searches the state space in a depth-first fashion using a list
of visited states to avoid loops.

The heart of the program is a set of functions that define states of the world as
an abstract data type. These functions hide the internals of state representation
from higher-level components of the program. States are represented as lists
of four elements, where each element denotes the location of the farmer, wollf,
goat, or cabbage, respectively. Thus, (e w e w) represents the state in
which the farmer (the first element) and the goat (the third element) are on the
east bank and the wolf and cabbage are on the west. The basic functions
defining the state data type will be a constructor, make-state, which takes
as arguments the locations of the farmer, wolf, goat, and cabbage and returns a
state, and four access functions, farmer-side, wolf-side, goat-
side, and cabbage-side, which take a state and return the location of an
individual. These functions are defined:

(defun make-state (f w g c¢) (list £ w g c))
(defun farmer-side (state)
(nth 0 state))
(defun wolf-side (state)
(nth 1 state))
(defun goat-side (state)
(nth 2 state))
(defun cabbage-side (state)
(nth 3 state))
The rest of the program is built on these state access and construction
functions. In particular, they are used to implement the four possible actions

the farmer may take: rowing across the river alone or with either of the wolf,
goat, or cabbage.

Each move uses the access functions to tear a state apart into its components.
A function called opposite (to be defined shortly) determines the new
location of the individuals that cross the river, and make-state reassembles
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these into the new state. For example, the function farmer-takes-self
may be defined:

(defun farmer-takes-self (state)
(make-state (opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(cabbage-side state)))

Note that farmer-takes-self returns the new state, regardless of whether
it is safe or not. A state is unsafe if the farmer has left the goat alone with the
cabbage or left the wolf alone with the goat. The program must find a solution
path that does not contain any unsafe states. Although this “safe” check may
be done at a number of different stages in the execution of the program, our
approach is to perform it in the move functions. This is implemented by using
a function called safe, which we also define shortly. safe has the following
behavior:
> (safe ‘(w w w w)) ;safe state, return unchanged
(Www w)
> (safe ‘(e w w e)) ;wolf eats goat, return nil
nil
> (safe ‘(w w e e)) ;goat eats cabbage, return nil
nil
safe is used in each move-across-the-river function to filter out the unsafe
states. Thus, any move that moves to an unsafe state will return nil instead
of that state. The recursive path algorithm can check for this nil and use it
to prune that state. In a sense, we are using safe to implement a production
system style condition-check prior to determining if a move rule can be applied.
For a detailed discussion of the production system pattern for computation
see Luger (2009, Chapter 6). Using safe, we next present a final definition
for the four move functions:
(defun farmer-takes-self (state)
(safe
(make-state (opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(cabbage-side state))))

(defun farmer-takes-wolf (state)
(cond ((equal (farmer-side state)
(wolf-side state))
(safe (make-state
(opposite (farmer-side state))
(opposite (wolf-side state))
(goat-side state)
(cabbage-side state))))
(t nil)))
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(defun farmer-takes-goat (state)
(cond ((equal (farmer-side state)
(goat-side state))
(safe (make-state
(opposite (farmer-side state))
(wolf-side state)
(opposite (goat-side state))
(cabbage-side state))))
(t nil)))
(defun farmer-takes-cabbage (state)
(cond ((equal (farmer-side state)
(cabbage-side state))
(safe (make-state
(opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(opposite
(cabbage-side state)))))
(t nil)))
Note that the last three move functions include a conditional test to determine
whether the farmer and the prospective passenger are on the same side of the
river. If they are not, the functions return nil. The move definitions use the
state manipulation functions already presented and a function opposite,
which, for any given side, returns the other side of the river:
(defun opposite (side)
(cond ((equal side ‘e) ‘w)
((equal side ‘w) ‘e)))
Lisp provides a number of different predicates for equality. The most
stringent, eq, is true only if its arguments evaluate to the same object, i.ec.,

point to the same memory location. equal is less strict: it requires that its
arguments be syntactically identical, as in:

> (setqg 11 ‘(1 2 3))

(1 2 3)

> (setqg 12 ‘(1 2 3))
(1 2 3)

> (equal 11 12)

t

> (eq 11 12)

nil

> (setq 13 11)
(1 2 3)

> (eq 11 13)
t
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We define safe using a cond to check for the two unsafe conditions: (1) the
farmer on the opposite bank from the wolf and the goat and (2) the farmer on
the opposite bank from the goat and the cabbage. If the state is safe, it is
returned unchanged; otherwise, safe returns nil:
(defun safe (state)
(cond ((and (equal (goat-side state)
(wolf-side state))
(not (equal (farmer-side state)
(wolf-side state))))
nil)
((and (equal (goat-side state)
(cabbage-side state))
(not (equal (farmer-side state)
(goat-side state))))
nil)
(t state)))

path implements the backtracking search of the state space. It takes as
arguments a state and a goal and first checks to see whether they are
equal, indicating a successful termination of the search. If they are not
equal, path generates all four of the neighboring states in the state space
graph, calling itself recursively on each of these neighboring states in turn to
try to find a path from them to a goal. Translating this simple definition
directly into Lisp yields:

(defun path (state goal)
(cond ((equal state goal) ‘success)
(t (or
(path (farmer-takes-self state) goal)
(path (farmer-takes-wolf state) goal)
(path (farmer-takes-goat state) goal)
(path (farmer-takes-cabbage state)

goal)))))

This version of the path function is a simple translation of the recursive path
algorithm from English into Lisp and has several “bugs” that need to be
corrected. It does, however, capture the essential structure of the algorithm
and should be examined before continuing to correct the bugs. The first test in
the cond statement is necessary for a successful completion of the search
algorithm. When the equal state goal pattern matches, the recursion
stops and the atom success is returned. Otherwise, path generates the
four descendant nodes of the search graph and then calls itself on each of the
nodes in turn.

In particular, note the use of the or form to control evaluation of its
arguments. Recall that an or evaluates its arguments in turn until one of them
returns a non-nil value. When this occurs, the or terminates without
evaluating the other arguments and returns this non-nil value as a result.
Thus, the or not only is used as a logical operator but also provides a way of
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controlling branching within the space to be searched. The or form is used
here instead of a cond because the value that is being tested and the value
that should be returned if the test is non-nil are the same.

One problem with using this definition to change the problem state is that a
move function may return a value of nil if the move may not be made or if it
leads to an unsafe state. To prevent path from attempting to generate the
children of a nil state, it must first check whether the current state is nil. If
it is, path should return nil.

The other issue that needs to be addressed in the implementation of path is
that of detecting potential loops in the search space. If the above
implementation of path is run, the farmer will soon find himself going back
and forth alone between the two banks of the river; that is, the algorithm will
be stuck in an infinite loop between identical states, both of which it has
already visited.

To prevent this looping from happening, path is given a third parameter,
been-1list, a list of all the states that have already been visited. Each time
that path is called recursively on a new state of the world, the parent state
will be added to been-1ist. path uses the member predicate to make
sure the current state is not a member of been-1ist, i.e., that it has not
already been visited. This is accomplished by checking the current problem
state for membership in been-1ist before generating its descendants.
path is now defined:
(defun path (state goal been-1list)
(cond ((null state) nil)
((equal state goal)
(reverse (cons state been-1list)))
((not (member state been-list
:test #’'equal))
(or (path (farmer-takes-self state) goal
(cons state been-list))
(path (farmer-takes-wolf state) goal
(cons state been-list))
(path (farmer-takes-goat state) goal
(cons state been-list))
(path (farmer-takes-cabbage state)
goal
(cons state been-list))))))
In the above implementation, member is a Common Lisp built-in function
that behaves in essentially the same way as the my-member function defined
in Section 12.2. The only difference is the inclusion of :test #'equal in
the argument list. Unlike our “home-grown” member function, the Common
Lisp built-in form allows the programmer to specify the function that is used

in testing for membership. This wrinkle increases the flexibility of the function
and should not cause too much concern in this discussion.

Rather than having the function return just the atom success, it is better to
have it return the actual solution path. Because the series of states on the
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solution path is already contained in the been-1ist, this list is returned
instead. Because the goal is not already on been-1ist, it is consed onto
the list. Also, because the list is constructed in reverse order (with the start
state as the last element), the list is reversed (constructed in reverse order using
another Lisp built-in function, reverse) prior to being returned.

Finally, because the been-1ist parameter should be kept “hidden” from
the user, a top-level calling function may be written that takes as arguments a
start and a goal state and calls path with a nil value of been-1ist:

(defun solve-fwgc (state goal)
(path state goal nil))

Finally, let us compare our Lisp version of the farmer, wolf, goat, and
cabbage problem with the Prolog solution presented in Section 4.2. Not
only does the Lisp program solve the same problem, but it also searches
exactly the same state space as the Prolog version. This underscores the
point that the state space conceptualization of a problem is independent of
the implementation of a program for searching that space. Because both
programs search the same space, the two implementations have strong
similarities; the differences tend to be subtle but provide an interesting
contrast between declarative and procedural programming styles.

States in the Prolog version are represented wusing a predicate,
state(e,e,e,e), and the Lisp implementation uses a list. These two
representations are more than syntactic variations on one another. The Lisp
representation of state is defined not only by its list syntax but also by the
access and move functions that constitute the abstract data type “state.” In the
Prolog version, states are patterns; their meaning is determined by the way in
which they match other patterns in the Prolog rules.

The Lisp version of path is slightly longer than the Prolog version. One
reason for this is that the Lisp version must implement a search strategy,
whereas the Prolog version takes advantage of Prolog’s built-in search
algorithm. The control algorithm is explicit in the Lisp version but is
implicit in the Prolog version. Because Prolog is built on declarative
representation and theorem-proving techniques, the Prolog program is
more concise and has a flavor of describing the problem domain, without
directly implementing the search algorithm. The price paid for this
conciseness is that much of the program’s behavior is hidden, determined
by Prolog’s built-in inference strategies. Programmers may also feel more
pressure to make the problem solution conform to Prolog’s
representational formalism and search strategies. Lisp, on the other hand,
allows greater flexibility for the programmer. The price paid here is that the
programmer cannot draw on a built-in representation or search strategy
and must implement this explicitly.

In Chapter 14 we present higher-level functions, that is, functions that can
take other functions as arguments. This gives the Lisp language much of
the representational flexibility that meta-predicates (Chapter 5) give to
Prolog.
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Exercises

1. Write a random number generator in Lisp. This function must maintain
a global variable, seed, and return a different random number each time the
function is called. For a description of a reasonable random number
algorithm, consult any basic algorithms text.

2. Create an “inventory supply” database. Build type checks for a set of six
useful queries on these data tuples. Compare your results with the Prolog
approach to this same problem as seen in Chapter 5. 2.

3. Write the functions initialize, push, top, pop, and 1list-
stack to maintain a global stack. These functions should behave:

> (initialize)

nil

> (push ‘foo)

foo

> (push ‘bar)

bar

> (top)

bar

> (list-stack)

(bar foo)

> (pop)

bar

> (list-stack)

(foo)

> (pop)

foo

> (list-stack)

()

4. Sets may be represented using lists. Note that these lists should not
contain any duplicate elements. Write your own Lisp implementations of
the set operations of union, intersection, and set difference. (Do not use
Common Lisp’s built-in versions of these functions.)

5. Solve the Water Jug problem, using a production system architecture
similar to the Farmer, Wolf, Goat, and Cabbage problem presented in
Section 13.2.

There are two jugs, one holding 3 gallons and the other 5 gallons
of water. A number of things that can be done with the jugs: they
can be filled, emptied, and dumped one into the other either until
the poured-into jug is full or until the poured-out-of jug is empty.
Devise a sequence of actions that will produce 4 gallons of water
in the larger jug. (Hint: only integer values of water are used.)

6. Implement a depth-first backtracking solution (such as was used to solve
the farmer, wolf, goat, and cabbage problem in Section 13.2) to the
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missionary and cannibal problem:

Three missionaries and three cannibals come to the bank of a river
they wish to cross. There is a boat that will hold only two people,
and any of the group can row it. If there are ever more
missionaries than cannibals on any side of the river the cannibals
will get converted. Devise a series of moves to get everyone across
the river with no conversions.
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14.1 Higher-Order Functions and Abstraction

One of the most powerful techniques that Lisp and other functional
programming languages provide is the ability to define functions that take
other functions as parameters or return them as results. These functions
are called higher-order functions and are an important tool for procedural
abstraction.

Maps and A fi/seris a function that applies a test to the elements of a list, eliminating
Filters those that fail the test. filter-negatives, presented in Section 12.2,
was an example of a filter. Maps takes a list of data objects and applies a
function to each one, returning a list of the results. This idea may be
further generalized through the development of general maps and filters
that take as arguments both lists and the functions or tests that are to be

applied to their elements.

To begin with an example, recall the function filter-negatives
from Section 12.2. This function took as its argument a list of numbers and
returned that list with all negative values deleted. Similarly, we can define a
function to filter out all the even numbers in a list. Because these two
functions differ onfy in the name of the predicate used to filter elements
from the list, it is natural to think of generalizing them into a single
function that takes the filtering predicate as a second parameter:

185
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(defun filter-evens (number-list)
(cond ((null number-list) nil)

((oddp (car number-list))
(cons (car number-list)
(filter-evens
(cdr number-list))))
(t (filter-evens (cdr number-list)))))
This combination of function applications may be defined using a Lisp

form called funcall, which takes as arguments a function and a series of
arguments and applies that function to those arguments:

(defun filter (list-of-elements test)
(cond ((null list-of-elements) nil)
((funcall test (car list-of-elements))
(cons (car list-of-elements)
(filter (cdr list-of-elements)
test)))
(t (filter (cdr list-of-elements)
test))))
The function, £ilter, applies the test to the first element of the list. If
the test returns non-nil, it conses the element onto the tresult of
filter applied to the cdr of the list; otherwise, it just returns the

filtered cdr. This function may be used with different predicates passed in
as parameters to perform a variety of filtering tasks:
> (filter ‘(1 3 =9 5 =2 =7 6) #'plusp)
;Filter out all negative numbers.
(135 6)
> (filter ‘(1 2 3 4 5 6 7 8 9) #'evenp)
;Filter out all odd numbers.
(2 4 6 8)
> (filter ‘(1 a b 3 ¢ 4 7 d) #'numberp)
;Filter out all non-numbers.
(134 7)
When a function is passed as a parameter, as in the above examples, it
should be preceded by a #’ instead of just ‘. The purpose of this
convention is to flag arguments that are functions so that they may be
given appropriate treatment by the Lisp interpreter. In particular, when a
function is passed as an argument in Common Lisp, the bindings of its free
variables (if any) must be retained. This combination of function definition
and bindings of free variables is called a lexzcal closure; the #' informs Lisp
that the lexical closure must be constructed and passed with the function.
More formally, funcall is defined:
(funcall <function> <arg,> <arg,> .. <arg,>)
In this definition, <function> is a Lisp function and <arg,>
<arg,> are zero or more arguments to the function. The result of
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evaluating a funcall is the same as the result of evaluating
<function> with the specified arguments as actual parameters.

apply is a similar function that performs the same task as funcall but
requires that its arguments be in a list. Except for this syntactic difference,
apply and funcall behave the same; the programmer can choose the
function that seems more convenient for a given application. These two
functions are similar to eval in that all three of them allow the user to
specify that the function evaluation should take place. The difference is
that eval requires its argument to be an s-expression that is evaluated;
funcall and apply take a function and its arguments as separate
parameters. Examples of the behavior of these functions include:

> (funcall #'plus 2 3)
(apply #'plus ‘(2 3))
(eval ‘(plus 2 3))

(funcall #'car ‘(a b c))

(apply #'car ‘((a b c)))

o V. o9 vV ooV u VvV u

Another important class of higher-order functions consists of mapping
functions, functions that will apply a given function to all the elements of a
list. Using funcall, we define the simple mapping function map-
simple, which returns a list of the results of applying a functional to all
the elements of a list. It has the behavior:

(defun map-simple (func list)

(cond ((null list) nil)
(t (cons (funcall func (car list))
(map-simple func (cdr list))))))

> (map-simple #'1+ ‘(1 2 3 4 5 6))

(23456 7)

> (map-simple #'listp ‘(1 2 (3 4) 5 (6 7 8)))

(nil nil t nil t)
map-simple is a simplified version of a Lisp built-in function mapcar,
that allows more than one argument list, so that functions of more than
one argument can be applied to corresponding elements of several lists:

> (mapcar #'1+ ‘(1 2 3 4 5 6)) ;Same as map-simple.

(23456 7)

> (mapcar #'+ ‘(1 2 3 4) ‘(5 6 7 8))

(6 8 10 12)

> (mapcar #'max ‘(3 9 1 7) ‘(2 5 6 8))

(3 9 6 8)
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Functional
Arguments and
Lambda
Expressions

mapcar is only one of many mapping functions provided by Lisp, as well
as only one of many higher-order functions built into the language.

In the preceding examples, function arguments were passed by their name
and applied to a series of arguments. This requires that the functions be
previously defined in the global environment. Frequently, however, it is
desirable to pass a function definition directly, without first defining the
function globally. This is made possible through the 1ambda expression.

Essentially, the 1ambda expression allows us to separate a function definition
from the function name. The origin of lambda expressions is in the lambda
caleulns, a mathematical model of computation that provides (among other
things) a particularly thoughtful treatment of this distinction between an object
and its name. The syntax of a 1ambda expression is similar to the function
definition in a defun, except that the function name is replaced by the term
lambda. That is:
(lambda (<formal-parameters>) <body>)

Lambda expressions may be used in place of a function name in a funcall
or apply. The funcall will execute the body of the lambda expression
with the arguments bound to the parameters of the funcall. As with
named functions, the number of formal parameters and the number of actual
parameters must be the same. For example:

> (funcall #’'(lambda (x) (* x x)) 4)

16
Here, x is bound to 4 and the body of the lambda expression is then
evaluated. The result, the square of 4, is returned by funcall. Other
examples of the use of lambda expressions with funcall and apply
include:

> (apply #'(lambda (x y) (+ (* x X) y)) ‘(2 3))

7

> (funcall #'’'(lambda (x) (append X X)) ‘(a b c))

(a bcaboc)

> (funcall #'’'(lambda (x1 x2)

(append (reverse x1) x2)) ‘(a b c) ‘(d e f))
(c badefi)

Lambda expressions may be used in a higher-order function such as
mapcar in place of the names of globally defined functions. For example:

> (mapcar #'(lambda (x) (* x x)) ‘(1 2 3 4 5))

(1 49 16 25)

> (mapcar #'(lambda (x) (* x 2)) ‘(1 2 3 4 5))

(2 4 6 8 10)

> (mapcar #'(lambda (x) (and (> x 0) (< x 10)))
‘(1 24 5 -9 8 23))

(t nil t nil t nil)

Without 1ambda expressions the programmer must define every function in
the global environment using a defun, even though that function may be
used only once. Lambda expressions free the programmer from this
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necessity: for example, if it is desired to square each element in a list, the
lambda form is passed to mapcar as the first of the above examples
illustrates. It is not necessary to define a squaring function first.

Search Strategies in Lisp

The use of higher-order functions provides Lisp with a powerful tool for
procedural abstraction. In this section, we use this abstraction technique to
implement general algorithms for breadth-first, depth-first, and best-first
search. These algorithms implement the search algorithms using the open
list — the current state list — and the closed list — the already visited states —
to manage search through the state space, see Luger (2009, Chapters 3 and
4) and Chapter 4 of this book for similar search algorithms in Prolog.

The Lisp implementation of breadth-first search maintains the open list as
a first-in-first-out (FIFO) structure. We will define open and closed as
global variables. This is done for several reasons: first to demonstrate the
use of global structures in Lisp; second, to contrast the Lisp solution with
that in Prolog; and third, it can be argued that since the primary task of this
program is to solve a search problem, the state of the search may be
represented globally. Finally, since open and closed may be large, their use
as global variables seems justified. General arguments of efficiency for the
local versus the global approach often depend on the implementation
details of a particular language. Global variables in Common Lisp are
written to begin and end with *. Breadth-first search may be defined:

(defun breadth-first ( )
(cond ((null *open*) nil)
(t (let ((state (car *opent*)))
(cond ((equal state *goal*) ‘success)

(t (setq *closed* (cons state
*closed*))

(setq *open* (append
(cdr *opent*)
generate-descendants
state *moves*)))
(breadth-first)))))))
(defun run-breadth (start goal)
(setqg *open* (list start))
(setqg *closed* nil)
(setq *goal* goal)
(breadth-first))
In our implementation, the *open* list is tested: if it is nil, the algorithm
returns nil, indicating failure as there ate no more states to evaluste; If
*open* is not nil, it examines the first element of *open*. If this is
equal to the goal, the algorithm halts and returns success; otherwise, it
calls generate-descendants to produce the children of the current
state, adds them to the *open#* list, and recurs. run-breadth is an
initialization function that sets the initial values of *open*, *closed*, and
*goal*. generate-descendants is passed both the state
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and *moves* as parameters. *moves* is a list of the functions that
generate moves. In the farmer, wolf, goat, and cabbage problem, assuming the
move definitions of Section 13.2, *moves* would be:

(setqg *moves*
‘(farmer-takes-self farmer-takes-wolf

farmer-takes-goat farmer-takes-cabbage))

generate-descendants takes a state and returns a list of its
children. In addition to generating child states, it disallows duplicates in the
list of children and eliminates any children that are already in the *open* or
*closed* list. In addition to the state, generate-descendants is
given a list of moves; these may be the names of defined functions, or they
may be lambda definitions. generate-descendants uses a 1let block
to save the result of a move in the local variable child. We define
generate-descendants:

(defun generate-descendants (state moves)
(cond ((null moves) nil)
(t (let ((child (funcall (car moves)
state))

(rest (generate-descendants state
(cdr moves))))

(cond ((null child) rest)
((member child rest :test
#'equal) rest)
((member child *open* :test
#'equal) rest)
((member child *closed* :test
#'equal) rest)
(t (cons child rest)))))))

As first noted in Section 13.2, the calls to the member function use an
additional parameter, :test #'equal. The member function allows the
user to specify any test for membership. This allows us to use predicates of
arbitrary complexity and semantics to test membership. Though Lisp does not
require that we specify the test, the default comparison is the predicate eq. eq
requires that two objects be identical, which means they have the same
location in memory; we are using a weaker comparison, equal, that only
requires that the objects have the same value. By binding the global variable
*moves* to an appropriate set of move functions, the search algorithm just
presented may be used to search any state space graph in a breadth-
first fashion.

One difficulty that remains with this implementation is its inability to print
the list of states along the path from a start to a goal. Although all the
states that lead to the goal are present in the closed list when the algorithm
halts, these are mixed with all other states from eatlier levels of the search
space. We can solve this problem by recording both the state and its
parent, and reconstructing the solution path from this information. For
example, if the state (€ e e e) generates the state (W e w e),a
record of both states, ((w e w e) (e e e e)), is placed on
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*open*. Later, after the children of the state have been generated, the
same (<state> <parent>) pair is placed on *closed*.

When the current state equals the goal, the ancestor information is used to
build the path from the goal to the start state by going back to successive
parents. This augmented version of breadth-first search begins by
defining state records as an abstract data type:

(defun build-record (state parent)
(list state parent))
(defun get-state (state-tuple) (nth 0 state-tuple))
(defun get-parent (state-tuple) (nth 1 state-tuple))
(defun retrieve-by-state (state list)
(cond ((null list) nil)

((equal state (get-state (car list)))
(car list))

(t (retrieve-by-state state
(cdr list)))))

build-record constructs a (<state> <parent>) pair. get-
state and get-parent access the appropriate ficlds of a record.
retrieve-by-state takes a state and a list of state records and
returns the record whose state field matches that state.

build-solution uses retrieve-by-state to chain back from state
to parent, constructing a list of successive states that led to a goal. When
initializing *open*, we will give the starting state a parent of nil; build-
solution stops when passed a null state.
(defun build-solution (state)
(cond ((null state) nil)
(t (cons state (build-solution (get-parent
(retrieve-by-state state *closed*)))))))

The remainder of the algorithm is similar to the breadth-first search of
Section 3.2:

(defun run-breadth (start goal)
(setqg *open* (list (build-record start nil)))
(setqg *closed* nil)
(setq *goal* goal)
(breadth-first))
(defun breadth-first ( )
(cond ((null *open*) nil)
(t (let ((state (car *opent*)))
(setq *closed* (cons state *closed¥*))

(cond ((equal (get-state state)
*goal¥*)

(build-solution *goal*))

(t (setq *open* (append (cdr
*open¥)

(generate-descendants
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(get-state state)
*moves*)))
(breadth-first)))))))

(defun generate-descendants (state moves)
(cond ((null moves) nil)
(t (let ((child (funcall
(car moves) state))

(rest (generate-descendants
state (cdr moves))))

(cond ((null child) rest)

((retrieve-by-state child rest)
rest)

((retrieve-by-state child *open*)
rest)

((retrieve-by-state child
*closed*) rest)

(t (cons (build-record child
state)

rest)))))))

Depth-first search is implemented by modifying breadth-first search to
maintain *open* as a stack. This simply involves reversing the order of
the arguments to append.

Best-First Best-first search may be implemented through straightforward
Search modifications to the breadth-first search algorithm. Specifically, the
heuristic evaluation is saved along with each state. The tuples on *open*
are then sorted according to this evaluation. The data type definitions for
state records are an extension of those used in breadth-first search:
(defun build-record (state parent depth weight)
(list state parent depth weight))
(defun get-state (state-tuple) (nth 0 state-tuple))
(defun get-parent (state-tuple) (nth 1 state-tuple))
(defun get-depth (state-tuple) (nth 2 state-tuple))
(defun get-weight (state-tuple) (nth 3 state-tuple))
(defun retrieve-by-state (state list)
(cond ((null list) nil)

((equal state (get-state (car list)))
(car list))

(t (retrieve-by-state state
(cdr list)))))
best-first and generate-descendants are defined:

(defun best-first ( )
(cond ((null *open*) nil)
(t (let ((state (car *opent*)))
(setq *closed* (cons state *closed¥*))
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(cond ((equal (get-state state)
*goal¥*)
(build-solution *goal*))
(t (setg *open+*
(insert-by-weight
(generate-descendants
(get-state state)
(+ 1 (get-depth
state))
*moves*)
(cdr *open*)))
(best-first)))))))

(defun generate-descendants (state depth moves)
(cond ((null moves) nil)
(t (let ((child (funcall (car moves) state))

(rest (generate-descendants state
depth (cdr moves))))

(cond ((null child) rest)

((retrieve-by-state child rest)
rest)

((retrieve-by-state child *open*)
rest)

((retrieve-by-state child *closed¥*)
rest)

(t (cons (build-record child state
depth (+ depth (heuristic
child)))
rest)))))))

The only differences between best-first and breadth-first
search are the use of insert-by-weight to sort the records on
*open* by their heuristic weights and the computation of search depth
and heuristic weights in generate-descendants.

Completion of best-first requires a definition of insert-by-
weight. This function takes an unsorted list of state records and inserts
them, one at a time, into their appropriate positions in *open*. It also
requires a problem-specific definition of a function heuristic. This
function takes a state and, using the global *goal*, computes a heuristic
weight for that state. We leave the creation of these functions as an
exercise for the reader.

Exercises

1. Create a type check that prevents the member check predicate (that
checks whether an item is a member of a list of items) from crashing when
called on member (a, a). Will this “fix” address the append(nil,
6, 6) anomaly that is described in Chapter 10? Test it and determine
your success.
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2. Implement build-solution and eliminate-duplicates
for the breadth-first search algorithm of Section 14.2.

3. Create a depth-first, a breadth-first, and best first search for the Water
Jugs problem (Chapter 13, number 5). This will require you to create a
heuristic measure for the Water Jugs problem, as well as create an
insert-by-weight function for maintaining the priority queue.

4. Create a depth-first, a breadth-first, and best first search for the
Missionaries and Cannibals problem (Chapter 13, number 6). This will
require you to create a heuristic measure for the Missionaties and
Cannibals problem, as well as create an insert-by-weight function
for maintaining the priority queue.

5. Write a Lisp program to solve the 8-queens problem. (This problem is to
find a way to place eight queens on a chessboard so that no queen may
capture any other through a single move, i.e., no two queens are on the
same row, column, or diagonal.) Do depth-first, breadth-first, and best-first
solutions to this problem.

6. Write a Lisp program to solve the full 8 x 8 version of the Knight’s Tour
problem. This problem asks you to find a path from any square to any other
square on the chessboard, using only the knight. Do a depth-first, breadth-
first, and best-first solutions for this problem.
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15.1 Pattern Matching: Introduction

In Chapter 15 we first design an algorithm for matching patterns in general
list structures. This is the basis for the unify function which supports full
pattern matching and the return of sets of unifying substitutions for
matching patterns in predicate calculus expressions. We will see this as the
basis for interpreters for logic programming and rule-based systems in
Lisp, presented in Chapters 16 and 17.

Pattern  Dattern matching is an important Al methodology that has already been
Matchlnl?isln discussed in the Prolog chapters and in the presentation of production
P systems. In this section we implement a recursive pattern matcher and use

it to build a pattern-directed retrieval function for a simple database.

The heart of this retrieval system is a function called match, which takes
as arguments two s-expressions and returns t if the expressions match.
Matching requires that both expressions have the same structure as well as
having identical atoms in corresponding positions. In addition, match
allows the inclusion of wvariables, denoted by ?, in an s-expression.
Variables are allowed to match with any s-expression, either a list or an
atom, but do not save bindings, as with full unification (next). Examples of
the desired behavior for match appear below. If the examples seem
reminiscent of the Prolog examples in Part II, this is because match is
actually a simplified version of the unification algorithm that forms the
heart of the Prolog environment, as well as of many other pattern-directed
Al systems. We will later expand match into the full unification algorithm
by allowing named variables and returning a list of bindings required for a
match.
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> (match ‘(likes bill wine) ‘(likes bill wine))
t
> (match ‘(likes bill wine) ‘(likes bill milk))
nil

(match ‘(likes bill ?) ‘(likes bill wine))

>
t
> (match ‘(likes ? wine) ‘(likes bill ?))
t
>

(match ‘(likes bill ?) ‘(likes bill (prolog lisp

smalltalk))

t

> (match ‘(likes ?) ‘(likes bill wine))

nil
match is used to define a function called get-matches, which takes as
arguments two s-expressions. The first argument is a pattern to be matched
against elements of the second s-expression, which must be a list. get—
matches returns a list of the elements of the list that match the first
argument. In the example below, get-matches is used to retrieve
records from an employee database as described eatlier in Part II1.

Because the database is a large and relatively complex s-expression, we
have bound it to the global variable *database* and use that variable as
an argument to get-matches. This was done to improve readability of
the examples.
> (setq *database* ‘(((lovelace ada) 50000.00 1234)
((turing alan) 45000.00 3927)
((shelley mary) 35000.00 2850)
( (vonNeumann john) 40000.00 7955)
((simon herbert) 50000.00 1374)
((mccarthy john) 48000.00 2864)
((russell bertrand) 35000.00 2950))
*database*

> (get-matches ‘((turing alan) 45000.00 3927)
*database*)

((turing alan) 45000.00 3927)
> (get-matches ‘(? 50000.00 ?) *database*)
;people who make 50000

(((lovelace ada) 50000.00 1234) ((simon herbert)
50000.00 1374))

> (get-matches ‘((? john) ? ?) *databasex*)
;all people named john

( ((vonNeumann john) 40000.00 7955) ((mccarthy john)
48000.00 2864))
We implement get-matches using cdr recursion: each step attempts
to match the target pattern with the first element of the database (the car
of the list). If the is a match, the function will cons it onto the list of
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matches returned by the recursive call to form the answer for the pattern.
get-matches is defined:

(defun get-matches (pattern database)
(cond ((null database) ( ))

((match pattern (car database))
(cons (car database)

(get-matches pattern
(cdr database))))

(t (get-matches pattern
(cdr database)))))

The heart of the system is the match function, a predicate that determines
whether or not two s-expressions containing variables actually match.
match is based on the idea that two lists match if and only if their
respective cars and cdrs match, suggesting a car-cdr recursive
scheme for the algorithm.

The recursion terminates when either of the arguments is atomic (this
includes the empty list, nil, which is both an atom and a list). If both
patterns are the same atom or if one of the patterns is a variable atom, ?,
which can match with anything, then termination is with a successful
match; otherwise, the match will fail. Notice that if either of the patterns is
a variable, the other pattern need not be atomic; variables may match with
variables or with s-expressions of arbitrary complexity.

Because the handling of the terminating conditions is complex, the
implementation of match uses a function called match-atom that takes
two arguments, one or both of which is an atom, and checks to see
whether the patterns match. By hiding this complexity in match-atom
the car-cdr recursive structure of match is more apparent:

(defun match (patternl pattern2)
(cond (or (atom patternl) (atom pattern2))

(match-atom patternl pattern2))
(t (and (match (car patternl) (car pattern2))

(match (cdr patternl)
(cdr pattern2))))))

The implementation of match-atom makes use of the fact that when it
is called, at least one of the arguments is an atom. Because of this
assumption, a simple test for equality of patterns is all that is needed to test
that both patterns are the same atom (including both being a vatiable); it
will fail either if the two patterns are different atoms or if one of them is
nonatomic. If the first test fails, the only way match can succeed is if one
of the patterns is a variable. This check constitutes the remainder of the
function definition.

Finally, we define a function variable-p to test whether or not a
pattern is a variable. Treating variables as an abstract data type now will
simplify later extensions to the function, for example, the extension of the
function to named variables as in Prolog.
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A Recursive
Unification
Function

(defun match-atom (patternl pattern2)

(or (equal patternl pattern2)
(variable-p patternl)
(variable-p pattern2)))

(defun variable-p (x) (equal x ‘?))

We have just completed the implementation of a recursive pattern-
matching algorithm that allowed the inclusion of unnamed variables in
patterns. Our next step will be to extend this simple pattern matcher into
the full unification algorithm. See Luger (2009, Section 2.3) for a
pseudocode version of this algorithm.

The function, unify, allows named variables in both of the patterns to be
matched, and returns a substitution list of the variable bindings required
for the match. This unification function is the basis of the inference
systems for logic and expert system interpreters developed later in
Chapters 16 and 17.

As follows the definition of unification, patterns are either constants,
variables, or list structures. We will distinguish variables from one another
by their names. Named variables will be represented as lists of the form
(var <name>), where <name> is usually an atomic symbol. (var
xX), (var y), and (var newstate) are all examples of legal
variables.

The function unify takes as arguments two patterns to be matched and a
set of wariable substitutions (bindings) to be employed in the match.
Generally, this set will be empty (nil) when the function is first called. On
a successful match, unify returns a (possibly empty) set of substitutions
required for a successful match. If no match was possible, unify returns
the symbol failed; nil is used to indicate an empty substitution set,
i.e., a match in which no substitutions were required. An example of the
behavior of unify, with comments, is:
> (unify ‘(p a (var x)) ‘(p a b) ())
(((var x) . b))
;Returns substitution of b for (var x).
> (unify ‘(p (var y) b) ‘(p a (var x)) ( ))
(((var x) . b) ((var y) . a))
;Variables appear in both patterns.
> (unify ‘(p (var x)) ‘(p (q a (var y))) ( ))
(((var x) q a (var y)))
;Variable is bound to a complex pattern.
> (unify ‘(p a) ‘(p a) ( ))
nil
;nil indicates no substitution required.
> (unify ‘(p a) ‘(q a) ())
failed

;Returns atom “failed” to indicate failure.
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We will explain the “.” notation, as in ((var X) . b), after we
present the function unify. unify, like the pattern matcher of earlier in
this section, uses a car-cdr recursive scheme and is defined by:

(defun unify (patternl pattern2 substitution-list)
(cond ((equal substitution-list ‘failed)
‘failed)
((varp patternl)
(match-var patternl
pattern2 substitution-list))
((varp pattern2)
(match-var pattern2
patternl substitution-list))
((is-constant-p patternl)
(cond ((equal patternl pattern2)
substitution-list)
(t ‘failed)))
((is-constant-p pattern2) ‘failed)
(t (unify (cdr patternl)
(cdr pattern2)
(unify (car patternl)
(car pattern2)
substitution-list)))))

On entering unify, the algorithm first checks whether the
substitution-list is equal to failed. This could occur if a
prior attempt to unify the cars of two patterns had failed. If this
condition is met, the entire unification operation fails, and the function
returns failed.

Next, if either pattern is a variable, the function match-var is called to
perform further checking and possibly add a new binding to
substitution-1list. If neither pattern is a variable, unify tests
whether either is a constant, returning the unchanged substitution list if
they are the same constant, otherwise it returns failed.

The last item in the cond statement implements the tree-recursive
decomposition of the problem. Because all other options have failed, the
function concludes that the patterns are lists the must be unified
recursively. It does this using a standard tree-recursive scheme: first, the
cars of the patterns are unified using the bindings in substitution-
list. The result is passed as the third argument to the call of unify on
the cdrs of both patterns. This allows the variable substitutions made in
matching the cars to be applied to other occurrences of those vatiables in
the cdrs of both patterns.

match-var, for the case of matching a variable and a pattern, is defined:
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(defun match-var (var pattern substitution-list)
(cond ((equal var pattern) substitution-list)
(t (let ((binding
(get-binding var substitution-list)))
(cond (binding (unify
(get-binding-value binding)
pattern substitution-list))
((occursp var pattern) ‘failed)
(t (add-substitution var pattern
substitution-list)))))))
match-var first checks whether the variable and the pattern are the same;

unifying a variable with itself requires no added substitutions, so
substitution-list is returned unchanged.

If var and pattern are not the same, match-var checks whether the
variable is already bound. If a binding exists, unify is called recursively to
match the value of the binding with pattern. Note that this binding
value may be a constant, a variable, or a pattern of arbitrary complexity;
requiring a call to the full unification algorithm to complete the match.

If no binding currently exists for var, the function calls occursp to test
whether var appears in pattern. As explained in (Luger 2009), the
occurs check is needed to prevent attempts to unify a variable with a
pattern containing that variable, leading to a circular structure. For
example, if (var X)wasboundto (p (var x)),any attempt to apply
those substitutions to a pattern would result in an infinite structure. If var
appears in pattern, match-var returns failed; otherwise, it adds the
new substitution pair to substitution-list wusing add-
substitution

unify and match-var are the heart of the unification algorithm.
occursp (which performs a tree walk on a pattern to find any
occurrences of the variable in that pattern), varp, and is-constant-
P (which test whether their argument is a variable or a constant,
respectively) appear below. Functions for handling substitution sets ate
discussed below.
(defun occursp (var pattern)
(cond ((equal var pattern) t)
((or (varp pattern)
(is-constant-p pattern))
nil)
(t (or (occursp var (car pattern))
(occursp var (cdr pattern))))))
(defun is-constant-p (item)
(atom item))
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(defun varp (item)
(and (listp item)
(equal (length item) 2)

(equal (car item) ‘var)))

Sets of substitutions are represented using a built-in Lisp data type called
the association list or a-list. This is the basis for the functions add-
substitutions, get-binding, and binding-value. An
association list is a list of data records, ot key/data pairs. The car of each
record is a key for its retrieval; the cdr of each record is called the datum.
The datum may be a list of values or a single atom. Retrieval is
implemented by the function assoc, which takes as arguments a key and
an association list and returns the first member of the association list that
has the key as its car. An optional third argument to assoc specifies the
test to be used in comparing keys. The default test is the Common Lisp
function eql, a form of equality test requiring that two arguments be the
same object (i.e., either the same memory location or the same numeric
value). In implementing substitution sets, we specify a less strict test,
equal, which requires only that the arguments match syntactically (i.e.,
are designated by identical names). An example of assoc’s behavior
appears next:

> (assoc 3 ‘((1 a) (2 b) (3 c) (4 d)))

(3 ¢)

> (assoc ‘d ‘((abc) (bcde) (de f) (c de))

:test #’'equal)

(d e f)

> (assoc ‘c ‘((a . 1) (b . 2) (¢ . 3) (d . 4)) :test

#'equal)

(c . 3)
Note that assoc returns the entire record matched on the key; the datum
may be retrieved from this list by the cdr function. Also, notice that in the
last call the members of the a-list are not lists but a structure called dozted
pairs,eg., (a . 1).
The dotted pair, or cons pair, is actually the fundamental constructor in
Lisp. It is the result of consing one s-expression onto another; the list
notation that we have used throughout the chapter is just a notational
variant of dotted pairs. For example, the value returned by (cons 1
nil) isactually (1 . nil); this is equivalent to (1). Similarly, the list
(1 2 3) may be written in dotted pair notation as (1 . (2 . ( 3
. nil))). Although the actual effect of a cons is to create a dotted
pair, the list notation is cleaner and is generally preferred.

If two atoms are consed together, the result is always written using dotted
pair notation. The cdr of a dotted pair is the second element in the pair,
rather than a list containing the second atom. For example:

> (cons ‘a 'b)

(a . b)
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> (car ‘(a . b))
a
> (cdr ‘(a . b))
b

Dotted pairs occur naturally in association lists when one atom is used as a
key for retrieving another atom, as well as in other applications that require
the formation and manipulation of pairs of atomic symbols. Because
unifications often substitute a single atom for a variable, dotted pairs
appear often in the association list returned by the unification function.

Along with assoc, Common Lisp defines the function acons, which
takes as arguments a key, a datum, and an association list and returns a new
association list whose first element is the result of consing the key onto
the datum. For example:

> (acons ‘a 1 nil)

((a . 1))
Note that when acons is given two atoms, it adds their cons to the
association list:

> (acons ‘pets ‘(emma jack clyde)

‘((name . bill) (hobbies music skiing movies)
(job . programmer)))
((pets emma jack clyde) (name . bill) (hobbies music

skiing movies) (job . programmer))

The members of an association list may themselves be ecither dotted pairs
or lists.

Association lists provide a convenient way to implement a variety of tables
and other simple data retrieval schemes. In implementing the unification
algorithm, we use association lists to represent sets of substitutions: the
keys are the variables, and the data are the values of their bindings. The
datum may be a simple variable or constant or a more complicated
structure.

Using association lists, the substitution set functions are defined:
(defun get-binding (var substitution-list)
(assoc var substitution-list :test #’'equal))
(defun get-binding-value (binding) (cdr binding))
(defun add-substitution (var pattern
substitution-list)

(acons var pattern substitution-list))

This completes the implementation of the unification algorithm. We will
use the unification algorithm again in Section 15.1 to implement a simple
Prolog in Lisp interpreter, and again in Section 16.2 to build an expert
system shell.
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15.2 Interpreters and Embedded Languages

The top level of the Lisp interpreter is known as the read-eval-print loop.
This describes the interpreter’s behavior in reading, evaluating, and printing
the value of s-expressions entered by the user. The eval function, defined
in Section 11.2, is the heart of the Lisp interpreter; using eval, it is
possible to write Lisp’s top-level read-eval-print loop in Lisp itself.
In the next example, we develop a simplified version of this loop. This
version is simplified chiefly in that it does not have the error-handling
abilities of the built-in loop, although Lisp does provide the functionality
needed to implement such capabilities.

To write the read-eval-print loop, we use two more Lisp functions,
read and print. read is a function that takes no parameters; when it is
evaluated, it returns the next s-expression entered at the keyboard. print
is a function that takes a single argument, evaluates it, and then prints that
result to standard output. Another function that will prove useful is
terpri, a function of no arguments that sends a newline character to
standard output. terpri also returns a value of nil on completion.
Using these functions, the read-eval-print loop is based on a
nested s-expression:

(print (eval (read)))

When this is evaluated, the innermost s-expression, (read), is evaluated
first. The value returned by the read, the next s-expression entered by the
user, is passed to eval, where it is evaluated. The result of this evaluation
is passed to print, where it is sent to the display screen. To complete the
loop we add a print expression to output the prompt, a terpri to
output a newline after the result has been printed, and a recursive call to
repeat the cycle. Thus, the final read-eval-print loop is defined:

(defun my-read-eval-print ( )
(print ‘:) ;output a prompt (“:")
(print (eval (read)))
(terpri) ;output a newline
(my-read-eval-print)) ;do it all again

This may be used “on top of” the built-in interpretet:

> (my-read-eval-print)

:(+ 1 2);note the alternative prompt

3

: ;etc

As this example illustrates, by making functions such as quote and eval
available to the user, Lisp gives the programmer a high degree of control
over the handling of functions. Because Lisp programs and data are both
represented as s-expressions, we may write programs that perform any
desired manipulations of Lisp expressions ptior to evaluating them. This
underlies much of Lisp’s power as an imperative representation language
because it allows arbitrary Lisp code to be stored, modified, and evaluated
when needed. It also makes it simple to write specialized interpreters that
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may extend or modify the behavior of the built-in Lisp interpreter in some
desired fashion. This capability is at the heart of many Lisp-based expert
systems, which read user queries and respond to them according to the
expertise contained in their knowledge base.

As an example of the way in which such a specialized interpreter may be
implemented in Lisp, we modify my-read-eval-print so that it
evaluates arithmetic expressions in an infix rather than a prefix notation, as
we see in the following example (note the modified prompt, infix->):

infix-> (1 + 2)

3

infix-> (7 — 2)

5

infix-> ((5 + 2) * (3 — 1)) ;Loop handles nesting.
15

To simplify the example, the infix interpreter handles only arithmetic
expressions. A further simplification restricts the interpreter to binary
operations and requites that all expressions be fully parenthesized,
eliminating the need for more sophisticated parsing techniques or worties
about operator precedence. However, it does allow expressions to be
nested to arbitrary depth and handles Lisp’s binary arithmetic operators.

We modify the previously developed read-eval-print loop by
adding a function that translates infix expressions into prefix expressions
prior to passing them on to eval. A first attempt at writing this function
might look like:

(defun simple-in-to-pre (exp)
(list (nth 1 exp)
;Middle element becomes first element.

(nth 0 exp)
;first operand

(nth 2 exp)

;second operand
simple-in-to-pre is effective in translating simple expressions;
however, it is not able to correctly translate nested expressions, that is,
expressions in which the operands are themselves infix expressions. To
handle this situation propetly, the operands must also be translated into
prefix notation. Recursion is halted by testing the argument to determine
whether it is a number, returning it unchanged if it is. The completed
version of the infix-to-prefix translator is:

(defun in-to-pre (exp)
(cond ((numberp exp) exp)
(t (list (nth 1 exp)
(in-to-pre (nth 0 exp))
(in-to-pre (nth 2 exp))))))

Using this translator, the read-eval-print loop may be modified to
interpret infix expressions, as defined next:
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(defun in-eval ( )
(print ‘infix->)
(print (eval (in-to-pre (read))))
(terpri)

(in-eval))
This allows the interpretation of binary expressions in infix form:
> (in-eval)
infix->(2 + 2)
4
infix->((3 * 4) — 5)
7

In the above example, we have implemented a new language in Lisp, the
language of infix arithmetic. Because of the facilities Lisp provides for
symbolic computing (lists and functions for their manipulation) along with
the ability to control evaluation, this was much easier to do than in many
other programming languages. This example illustrates an important Al
programming methodology, that of meta-linguistic abstraction.

Very often in Al programming, a problem is not completely understood, or
the program required to solve a problem is extremely complex. Meta-
linguistic abstraction uses the undetlying programming language, in this case,
Lisp, to implement a specialized, high-level language that may be more
effective for solving a particular class of problems. The term “meta-
linguistic abstraction” refers to our use of the base language to implement
this other programming language, rather than to directly solve the problem.
As we saw in Chapter 5, Prolog also gives the programmer the power to
create meta-level interpreters. The power of meta-interpreters to support
programming in complex domains was discussed in Part I.

Exercises

1. Newton’s method for solving roots takes an estimate of the value of the
root and tests it for accuracy. If the guess does not meet the required
tolerance, it computes a new estimate and repeats. Pseudo-code for using
Newton’s method to get the squate root of a number is:

function root-by-newtons-method (x, tolerance)
guess := 1;
repeat
guess := 1/2(guess + x/guess)
until absolute-value(x — guess guess) < tolerance
Write a recursive Lisp function to compute square roots by Newton’s
method.

2. Write a random number generator in Lisp. This function must maintain
a global variable, seed, and return a different random number each time the
function is called. For a description of a reasonable random number
algorithm, consult any basic algorithms text.



206 Part III: Programming in Lisp

3. Test the unify form of Section 15.1 with five different examples of
your own creation.

4. Test the occursp form of Section 15.1 on five different examples of
your own creation

5. Write a binary post-fix interpreter that takes arbitrarily complex
structures in post-fix form and evaluates them. Two examples of post-fix
are (3 4 +) and (6 (5 4 +) *).
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Chapter A Lisp-based logic programming interpreter:
Objectives An example of meta-linguistic abstraction
Critical components of logic interpreter
Predicate Calculus like facts and rules
Horn clause form
Queries processed by unification against facts and rules
Successful goal returns unification substitutions
Supporting technology for logic interpreter
Streams
Stream processing
Stream of variables substitutions filtered through conjunctive subgoals
gensym used to standardize variables apart
Exercises expanding functionality of logic interpreter
Adding and, not
Additions of numeric and equality relations

Chapter 16.1 A Simple Logic Programming Language
Contents  16.2 Streams and Stream Processing
16.3 A Stream-Based Logic Programming Interpreter

16.1 A Simple Logic Programming Language

Example  As an example of meta-linguistic abstraction, we develop a Lisp-based logic
programming interpreter, using the unification algorithm from Section
15.2. Like Prolog, our logic programs consist of a database of facts and
rules in the predicate calculus. The interpreter processes queries (or goals)
by unifying them against entries in the logic database. If a goal unifies with
a simple fact, it succeeds; the solution is the set of bindings generated in
the match. If it matches the head of a rule, the interpreter recursively
attempts to satisfy the rule premise in a depth-first fashion, using the
bindings generated in matching the head. On success, the interpreter prints
the original goal, with variables replaced by the solution bindings.

For simplicity’s sake, this interpreter supports conjunctive goals and
implications: or and not are not defined, nor are features such as arithmetic,
I/0, ot the usual Prolog built-in predicates. Although we do not implement
full Prolog, and the exhaustive nature of the search and absence of the et
prevent the proper treatment of recursive predicates, the shell captures the
basic behavior of the logic programming languages. The addition to the
interpreter of the other features just mentioned is an interesting exercise.

Our logic programming interpreter supports Horn clauses, a subset of full
predicate calculus (Luger 2009, Section 14.2). Well-formed formulae
consist of terms, conjunctive expressions, and rules written in a Lisp-
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oriented syntax. A compound term is a list in which the first element is a
predicate name and the remaining elements are the arguments. Arguments
may be either constants, variables, or other compound terms. As in the
discussion of unify, we represent variables as lists of two elements, the
word var followed by the name of the variable. Examples of terms
include:

(likes bill music)

(on block (var x))

(friend bill (father robert))
A conjunctive expression is a list whose first element is and and whose
subsequent arguments are either simple terms or conjunctive expressions:

(and (smaller david sarah) (smaller peter david))

(and (likes (var x) (var y))

(likes (var z) (var y)))
(and (hand-empty)
(and (on block-1 block-2)
(on block-2 table)))

Implications are expressed in a syntactically sweetened form that simplifies
both their writing and recognition:

(rule if <premise> then <conclusion>)
where <premise> is either a simple or conjunctive proposition and
<conclusion> is always a simple proposition. Examples include

(rule if (and (likes (var x) (var z))

(likes (var y) (var z)))

then (friend (var x) (var y)))

(rule if (and (size (var x) small)
(color (var x) red)
(smell (var x) fragrant))
then (kind (var x) rose))
The logic database is a list of facts and rules bound to a global variable,
*assertions*. We can define an example knowledge base of 1ikes
relationships by a call to setqg (we could have used the function
defvar):
(setqg *assertions*
‘((likes george beer)
(likes george kate)
(likes george kids)
(likes bill kids)
(likes bill music)
(likes bill pizza)
(likes bill wine)
(rule if (and (likes (var x) (var z))
(likes (var y) (var z)))

then (friend (var x) (var y)))))
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The top level of the interpreter is a function, logic-shell, that reads
goals and attempts to satisfy them against the logic database bound to
*assertions*. Given the above database, logic-shell will have

the following behavior, where comments follow the ;:

> (logic-shell) ; Prompts with a ?
?(likes bill (var x))

(likes bill kids)

(likes bill music)

(likes bill pizza)

(likes bill wine)

?(likes george kate)

(likes george kate)

?(likes george taxes) ; Failed query returns nothing.
?(friend bill george)

(friend bill george) ;From (and(likes bill kids)
; (likes george kids)).
?(friend bill roy) ;roy notin knowledge base, fail.
?(friend bill (var x))
(friend bill george) ;From (and(likes bill kids)
(likes george kids)).
(friend bill bill) ;From (and(likes bill kids)
; (likes bill kids)).
(friend bill bill) ; From (and(likes bill music)
; (likes bill music)).
(friend bill bill) ;From (and(likes bill pizza)
; (likes bill pizza)).
(friend bill bill) ;From (and(likes bill wine)
; (likes bill wine)).
?2quit
bye
>

Before discussing the implementation of the logic programming
interpreter, we introduce the s#ream data type.

Streams and Stream Processing

As the preceding example suggests, even a small knowledge base can
produce complex behaviors. It is necessary not only to determine the truth
or falsity of a goal but also to determine the variable substitutions that
make that goal be true in the knowledge base. A single goal can match with
different facts, producing different substitution sets; conjunctions of goals
require that all conjuncts succeed and also that the variable bindings be
consistent throughout. Similarly, rules require that the substitutions formed
in matching a goal with a rule conclusion be made in the rule premise when
it is solved. The management of these multiple substitution sets is the
major source of complexity in the interpreter. Streams help address this
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complexity by focusing on the movement of a sequence of candidate
variable substitutions through the constraints defined by the logic database.

A stream 1s a sequence of data objects. Perhaps the most common example of
stream processing is a typical interactive program. The data from the keyboard
are viewed as an endless sequence of characters, and the program is organized
around reading and processing the current character from the input stream.
Stream processing is a generalization of this idea: streams need not be
produced by the user; they may also be generated and modified by functions.
A generator is a function that produces a continuing stream of data objects. A
map function applies some function to each of the elements of a stream. A filter
eliminates selected elements of a stream according to the constraints of some
predicate.

The solutions returned by an inference engine may be represented as a stream
of different variable substitutions under which a goal follows from a
knowledge base. The constraints defined by the knowledge base are used to
modify and filter a stream of candidate substitutions, producing the result.
Consider, for example, the conjunctive goal (using the logic database from the
preceding section):
(and (likes bill (var z))
(likes george (var z)))

The stream-oriented view regards each of the conjuncts in the expression as a
filter for a stream of substitution sets. Each set of variable substitutions in the
stream is applied to the conjunct and the result is matched against the
knowledge base. If the match fails, that set of substitutions is eliminated from
the stream; if it succeeds, the match may create new sets of substitutions by
adding new bindings to the original substitution set.

Figure 16.1 A stream of variable substitutions filtered through
conjunctive subgoals.
Figure 16.1 illustrates the stream of substitutions passing through this
conjunctive goal. It begins with a stream of candidate substitutions containing
only the empty substitution set and grows after the first proposition matches
against multiple entries in the database. It then shrinks to a single substitution
set as the second conjunct eliminates substitutions that do not allow (likes
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george (var z)) to succeed. The resulting stream, ( ( ((var z) .
kids))), contains the only variable substitution that allows both subgoals in
the conjunction to succeed in the knowledge base.

As this example illustrates, a goal and a single set of substitutions may
generate several new substitution sets, one for each match in the
knowledge base. Alternatively, a goal will eliminate a substitution set from
the stream if no match is found. The stream of substitution sets may grow
and shrink as it passes through a series of conjuncts.

The basis of stream processing is a set of functions to create, augment, and
access the elements of a stream. We can define a simple set of stream
functions using lists and the standard list manipulators. The functions that
constitute a list-based implementation of the stream data type are:
;cons-stream adds a new first element to a stream.
(defun cons-stream (element stream)

(cons element stream))

;head-stream returns the first element of the stream.
(defun head-stream (stream) (car stream))
;tail-stream returns the stream with first element deleted.
(defun tail-stream (stream) (cdr stream))
;jempty-stream-p is true if the stream is empty.
(defun empty-stream-p (stream) (null stream))
;jmake-empty-stream creates an empty stream.
(defun make-empty-stream ( ) nil)
;combine-stream appends two streams.
(defun combine-streams (streaml stream2)
(cond ((empty-stream-p streaml) stream2)
(t (cons-stream (head-stream streaml)
(combine-streams
(tail-stream stream 1)
stream2)))))
Although the implementation of streams as lists does not allow the full
power of stream-based abstraction, the definition of a stream data type
helps us to view the program from a data flow point of view. For many
problems, such as the logic programming interpreter of Section 16.3, this
provides the programmer with a powerful tool for organizing and
simplifying the code. In Section 17.1 we discuss some limitations of this

list-based implementation of streams and present an alternative approach
using streams with delayed evaluation.

A Stream-Based Logic Programming Interpreter

We invoke the interpreter through a function called logic-shell, a
straightforward variation of the read-eval-print loop discussed in
Section 15.3. After printing a prompt, “?”, it reads the next s-expression
entered by the user and binds it to the symbol goal. If goal is equal to
quit, the function halts; otherwise, it calls solve to generate a stream of
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substitution sets that satisfy the goal. This stream is passed to print-
solutions, which prints the goal with each of these different
substitutions. The function then recurs. logic-shell is defined:
(defun logic-shell ( )
(print ‘2 )
(let ((goal (read)))
(cond ((equal goal ‘quit) ‘bye)
(t (print-solutions goal
(solve goal nil))
(terpri)
(logic-shell)))))
solve is the heart of the interpreter. solve takes a goal and a set of
substitutions and finds all solutions that are consistent with the knowledge
base. These solutions are returned as a stream of substitution sets; if there
are no matches, solve returns the empty stream. From the stream
processing point of view, solve is a source, or generator, for a stream of
solutions. solve is defined by:
(defun solve (goal substitutions)
(declare (special *assertions*))
(if (conjunctive-goal-p goal)
(filter-through-conj-goals (body goal)
(cons-stream substitutions
(make-empty-stream)))
(infer goal substitutions *assertions*)))
The declaration special tells the Lisp compiler that *assertions*
is a special, or global, variable and should be bound dynamically in the
environment in which solve is called. (This special declaration is not
required in many modern versions of Lisp.)

solve first tests whether the goal is a conjunction; if it is, solve calls
filter-through-conj-goals to perform the filtering described in
Section 16.2. If goal is not a conjunction, Solve assumes it is a simple
goal and calls infer, defined below, to solve it against the knowledge
base. solve calls filter-through-conj-goals with the body of
the conjunction (i.e., the sequence of conjuncts with the and operator
removed) and a stream that contains only the initial substitution set. The
result is a stream of substitutions representing all of the solutions for this
goal. We define filter-through-conj-goals by:

(defun filter-through-conj-goals (goals
substitution-stream)

(if (null goals) substitution-stream
(filter-through-conj-goals (cdr goals)
(filter-through-goal (car goals)
substitution-stream))))

If the list of goals is empty, the function halts, returning
substitution-stream unchanged. Otherwise, it calls filter-
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through-goal to filter substitution-stream through the first
goal on the list. It passes this result on to a recursive call to filter-
through-conj-goals with the remainder of the goal list. Thus, the
stream is passed through the goals in left-to-right order, growing or
shrinking as it passes through each goal.

filter-through-goal takes a single goal and uses it as a filter to the
stream of substitutions. This filtering is done by calling solve with the
goal and the first set of substitutions in the substitution-stream.
The result of this call to solve is a stream of substitutions resulting from
matches of the goal against the knowledge base. This stream will be empty
if the goal does not succeed under any of the substitutions contained in the
stream, ot it may contain multiple substitution sets representing alternative
bindings. This stream is combined with the result of filtering the tail of the
input stream through the same goal:
(defun filter-through-goal
(goal substitution-stream)
(if (empty-stream-p substitution-stream)
(make-empty-stream)
(combine-streams
(solve goal
(head-stream substitution-stream))
(filter-through-goal goal
(tail-stream substitution-stream)))))

To summarize, filter-through-conj-goals passes a stream of
substitution sets through a sequence of goals, and filter-through-
goal filters substitution-stream through a single goal. A
recursive call to solve solves the goal under each substitution set.

Whereas solve handles conjunctive goals by calling filter-
through-conj-goals, simple goals are handled by infer, defined
next, which takes a goal and a set of substitutions and finds all solutions
in the knowledge base, kb, infer’s third parameter, a database of logic
expressions. When solve first calls infer, it passes the knowledge base
contained in the global variable *assertions*. infer secarches kb
sequentially, trying the goal against each fact or rule conclusion.

The recursive implementation of infer builds the backward-chaining
search typical of Prolog and many expert system shells. It first checks
whether kb is empty, returning an empty stream if it is. Otherwise, it binds
the first item in kb to the symbol assertion using a Let* block. let* is
like 1et except it is guaranteed to evaluate the initializations of its local
variables in sequentially nested scopes, i.c., it provides an order to the
binding and visibility of preceding variables. It also defines the variable
match: if assertion is a rule, 1let* initializes match to the substitutions
required to unify the goal with the conclusion of the rule; if assertion
is a fact, let* binds match to those substitutions required to unify
assertion with goal. After attempting to unify the goal with the first
element of the knowledge base, infer tests whether the unification
succeeded. If it failed to match, infer recurs, attempting to solve the
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goal using the remainder of the knowledge base. If the unification
succeeded and assertion is a rule, infer calls solve on the premise of
the rule using the augmented set of substitutions bound to match.
combine-stream joins the resulting stream of solutions to that
constructed by calling infer on the rest of the knowledge base. If
assertion is not a rule, it is a fact; infer adds the solution bound to
match to those provided by the rest of the knowledge base. Note that
once the goal unifies with a fact, it is solved; this terminates the search. We
define infer:

(defun infer (goal substitutions kb)
(if (null kb)
(make-empty-stream)
(let* ((assertion
(rename-variables (car kb)))
(match (if (rulep assertion)

(unify goal (conclusion assertion)
substitutions)

(unify goal assertion substitutions))))
(if (equal match ‘failed)
(infer goal substitutions (cdr kb))
(if (rulep assertion)
(combine-streams
(solve (premise assertion) match)
(infer goal substitutions
(cdr kb)))
(cons-stream match
(infer goal substitutions
(cdr kb))))))))

Before the first element of kb is bound to assertion, it is passed to
rename-variables to give each variable a unique name. This
prevents name conflicts between the variables in the goal and those in the
knowledge base entry; e.g.,, if (var X) appears in a goal, it must be
treated as a different variable than a (var x) that appears in the rule or
fact. (This notion of standardizing variables apart is an important
component of automated reasoning in general. Luger (2009, Section 14.2)
demonstrates this in the context of resolution refutation systems). The
simplest way to handle this is by renaming all variables in assertion
with unique names. We define rename-variables at the end of this
section.

This completes the implementation of the core of the logic programming
interpreter. To summarize, solve is the top-level function and generates
a stream of substitution sets (substitution-stream) that represent
solutions to the goal using the knowledge base. filter-through-
conj-goals solves conjunctive goals in a left-to-right order, using each
goal as a filter on a stream of candidate solutions: if a goal cannot be
proven true against the knowledge base using a substitution set in the
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stream, filter-through-conj-goals eliminates those
substitutions from the stream. If the goal is a simple literal, solve calls
infer to generate a stream of all substitutions that make the goal succeed
against the knowledge base. Like Prolog, our logic programming
interpreter takes a goal and finds all variable bindings that make it true
against a given knowledge base.

All that remain are functions for accessing components of knowledge base
entries, managing variable substitutions, and printing solutions. print-—
solutions takes as arguments a goal and a substitution-
stream. For each set of substitutions in the stream, it prints the goal with
variables replaced by their bindings in the substitution set.
(defun print-solutions (goal substitution-stream)
(cond ((empty-stream-p substitution-stream)
nil)
(t (print (apply-substitutions goal
(head-stream
substitution-stream)))
(terpri)
(print-solutions goal
(tail-stream substitution-stream)))))
The replacement of variables with their values under a substitution set is
done by apply-substitutions, which does a car-cdr recursive tree
walk on a pattern. If the pattern is a constant (is—constant-p), it is
returned unchanged. If it is a variable (varp), apply-
substitutions tests if it is bound. If it is unbound, the variable is
returned; if it is bound, apply-substitutions calls itself recursively
on the value of this binding. Note that the binding value may be either a
constant, another variable, or a pattern of arbitrary complexity:
(defun apply-substitutions
(pattern substitution-list)
(cond ((is-constant-p pattern) pattern)
((varp pattern)
(let ((binding
(get-binding pattern
substitution-1list)))
(cond (binding (apply-substitutions
(get-binding-value binding)
substitution-1list))
(t pattern))))
(t (cons (apply-substitutions
(car pattern)
substitution-list)
(apply-substitutions (cdr pattern)
substitution-list)))))
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infer renamed the variables in each knowledge base entry before
matching it with a goal. This is necessary, as noted above, to prevent
undesired name collisions in matches. For example, the goal (p a (var
x)) should match with the knowledge base entry (p (var x) b),
because the scope of each (var x) is restricted to a single expression. As
unification is defined, however, this match will not occur. Name collisions
are prevented by giving each variable in an expression a unique name. The
basis of our renaming scheme is a Common Lisp built-in function called
gensym that takes no arguments; each time it is called, it returns a unique
symbol consisting of a number preceded by # : G. For example:

> (gensym)
#:G4

> (gensym)
#:G5

> (gensym)
#:G6

>

Our renaming scheme replaces each variable name in an expression with
the result of a call to gensym. rename-variables performs certain
initializations (described below) and calls rename-rec to make
substitutions recursively in the pattern. When a variable (varp) is
encountered, the function rename is called to return a new name. To allow
multiple occurrences of a variable in a pattern to be given consistent
names, each time a variable is renamed, the new name is placed in an
association list bound to the special variable *name-1ist*. The special
declaration makes all references to the variable dynamic and shared among
these functions. Thus, each access of *name-list* in rename will
access the instance of *name-list* declared in rename-
variables. rename-variables initializes *name-list* to
nil when it is first called on an expression. These functions are defined:

(defun rename-variables (assertion)
(declare (special *name-list*))
(setqg *name-list* nil)
(rename-rec assertion))
(defun rename-rec (exp)
(declare (special *name-list*))
(cond ((is-constant-p exp) exp)
((varp exp) (rename exp))
(t (cons (rename-rec (car exp))
(rename-rec (cdr exp))))))

(defun rename (var)

(declare (special *name-list*))
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(list ‘var (or (cdr (assoc var *name-list*
:test #’'equal))
(let ((name (gensym)))
(setqg *name-list*
(acons var name *name-list*))
name))))

The final functions access components of rules and goals and are self-
explanatory:

(defun premise (rule) (nth 2 rule))
(defun conclusion (rule) (nth 4 rule))

(defun rulep (pattern)
(and (listp pattern) (equal (nth 0 pattern)
‘rule)))

(defun conjunctive-goal-p (goal)
(and (listp goal) (equal (car goal) ‘and)))

(defun body (goal) (cdr goal))

In Chapter 17 we extend the ideas of Chapter 16 to delayed evaluation
using lexical closures. Finally we build a goal-driven expert system shell in
Lisp.

Exercises

1. Expand the logic programming interpreter to include Lisp write
statements. This will allow rules to print messages directly to the user. Hint:
modify solve first to examine if a goal is a write statement. If it is,
evaluate the write and return a stream containing the initial substitution
set.

2. Rewrite print-solutions in the logic programming interpreter so that it
prints the first solution and waits for a user response (such as a carriage
return) before printing the second solution.

3. Implement the general map and filter functions, map-stream and
filter-stream, described in Section 16.3.

4. Expand the logic programming interpreter to include or and not
relations. This will allow rules to contain more complex relationships
between its premises.

5. Expand the logic programming language to include arithmetic
comparisons, =, <, and >. Hint: as

in Exercise 1, modify solve to detect these comparisons before calling
infer. If an expression is a comparison, replace any variables with their
values and evaluate it. If it returns nil, solve should return the empty
stream; if it returns non-nil, solve should return a stream containing
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the initial substitution set. Assume that the expressions do not contain
unbound variables.

6. For a more challenging exercise, expand the logic programming
interpreter to define = so that it will function like the Prolog is operator
and assign a value to an unbound variable and simply do an equality test if
all elements are bound.
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Chapter 17.1 Streams and Delayed Evaluation
Contents  17.2 An Expert System Shell in Lisp

17.1 Streams and Delayed Evaluation

Why delayed A5 we demonstrated in the implementation of Logic-shell in Chapter
evaluation? 16, a stream-oriented view can help with the organization of a complex
program. However, our implementation of streams as lists did not provide
the full benefit of stream processing. In particular, this implementation
suffers from inefficiency and an inability to handle potentially infinite data

streams.

In the list implementation of streams, all of the elements must be computed
before that stream (list) can be passed on to the next function. In logic-
shell this leads to an exhaustive search of the knowledge base for each
intermediate goal in the solution process. In order to produce the first solution
to the top-level goal, the program must produce a list of all solutions. Even if
we want only the first solution on this list, the program must still search the
entire solution space. What we would really prefer is for the program to
produce just the first solution by searching only that portion of the space
needed to produce that solution and then to delay finding the rest of the goals
until they are needed.

A second problem is the inability to process potentially infinite streams of
information. Although this problem does not arise in logic-shell, it
occurs naturally in the stream-based solution to many problems. Assume, for
example, that we would like to write a function that returns a stream of the
first n odd Fibonacci numbers. A straightforward implementation would use a
generator to produce a stream of Fibonacci numbers, a filter to eliminate the
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Delayed
Evaluation and
Function Closures

even-valued numbers from the stream, and an accumulator to gather these
into a solution list of n elements, as in Figure 17.1. Unfortunately, the stream
of Fibonacci numbers is infinite in length and we cannot decide in advance
how long a list will be needed to produce the first n odd numbers.

Figure 17.1. A stream implementation that finds the first n odd
Fibonacci numbers.

Instead, we would like the generator to produce the stream of Fibonacci
numbers one at a time and pass each number through the filter until the
accumulator has gathered the n values required. This behavior more closely
fits our intuitive notion of evaluating a stream than does the list-based
implementation of Chapter 16. We accomplish this by use of delayed evalnation.

Instead of letting the generator run to completion to produce the entire
stteam of results, we let the function produce the first element of the
stteam and then freeze or delay its execution until the next element is
needed. When the program needs the next element of the stream, it causes
the function to resume execution and produce only that element and again
delay evaluation of the rest of the stream. Thus, instead of containing the
entire list of numbers, the stream consists of just two components, its first
element and the frozen computation of the rest of the stream, as shown in
Figure 17.2.

A list-based stream containing an indeterminate number of elements:
(e; e, €5 €, « « )

A stream with delayed evaluation of its tail containing two elements
but capable of producing any number of elements:

(e; . <delayed evaluation of rest of stream>)

Figure 17.2 A list-based and delayed evaluation of streams.
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We use function closures to create the delayed portion of the stream that was
illustrated by Figure 16.1. A closure consists of a function, along with all its
variable bindings in the current environment; we may bind a closure to a
variable, or pass it as a parameter, and evaluate it using funcall. Essentially,
a closure “freezes” a function application until a later time. We can create
closures using the Lisp form function. For example, consider the following
Lisp transcript:

> (setqg v 10)
10

> (let ((v 20)) (setqg f closure (function (lambda (
) v))))
#<COMPILED-LEXICAL-CLOSURE #x28641E>

> (funcall f closure)
20
>

10

The initial setq binds v to 10 in the global environment. In the 1et block,
we create a local binding of v to 20 and create a closure of a function that
returns this value of v. It is interesting to note that this binding of v does not
disappear when we exit the 1et block, because it is retained in the function
closure that is bound to £_closure. It is a lexical binding, however, so it
doesn’t shadow the global binding of v. If we subsequently evaluate this
closure, it returns 20, the value of the local binding of v, even though the
global v is still bound to 10.

The heart of this implementation of streams is a pair of functions, delay and
force. delay takes an expression as argument and does not evaluate it;
instead it takes the unevaluated argument and returns a closure. force takes
a function closure as argument and uses funcall to force its application.
These functions are defined:

(defmacro delay (exp) ‘(function (lambda ( ) ,exp)))

(defun force (function-closure)
(funcall function-closure))

delay is an example of a Lisp form called a macro. We cannot define delay
using defun because all functions so defined evaluate their arguments before
executing the body. Macros give us complete control over the evaluation of
their arguments. We define macros using the defmacro form. When a
macro is executed, it does not evaluate its arguments. Instead, it binds the
unevaluated s-expressions in the call to the formal parameters and evaluates its
body swice. The first evaluation is called a macro-expansion; the second evaluates
the resulting form.

To define the delay macro, we introducethe backgnote or *. Backquote
prevents evaluation just like a quote, except that it allows us to evaluate
selectively elements of the backquoted expression. Any eclement of a
backquoted s-expression preceded by a comma is evaluated and its value
inserted into the resulting expression. For example, assume we have the call
(delay (+ 2 3)).Theexpression (+ 2 3) is not evaluated; instead it
is bound to the formal parameter, exp. When the body of the macro is



222

Part III: Programming in Lisp

evaluated the first time, it returns the backquoted expression with the formal
parameter, exp, replaced by its value, the unevaluated s-expression (+ 2
3). This produces the expression (function (lambda () (+ 2
3)) ). This is evaluated again, returning a function closure.

If we later pass this closure to force, it will evaluate the expression
(lambda () (+ 2 3)). Thisis a function that takes no arguments and
whose body evaluates to 5. Using force and delay, we can implement
streams with delayed evaluation. We rewrite cons—-stream as a macro that
takes two arguments and conses the value of the first onto the delayed
evaluation of the second. Thus, the second argument may be a function that
will return a stream of any length; it is not evaluated. We define tail-
stream so that it forces the evaluation of the tail of a stream. These are
defined:
(defmacro cons-stream (exp stream) ‘(cons ,exp
(delay ,stream)))
(defun tail-stream (stream) (force (cdr stream)))

We also redefine combine-streams as a macro that takes two streams but
does not evaluate them. Instead, it uses delay to create a closure for the
second stream and passes this and the first stream to the function comb-f£.
comb-f£ is similar to our eatlier definition of combine-streams, except
that in the event that the first stream is empty, it forces evaluation of the
second stream. If the first stream is not empty, the recursive call to comb-f£ is
done using our delayed version of cons-stream. This freezes the recursive
call in a closure for later evaluation.

(defmacro combine-streams (streaml stream2)
‘(comb-f ,streaml (delay ,stream2)))
(defun comb-f (streaml stream2)
(if (empty-stream-p streaml)
(force stream2)
(cons-stream (head-stream streaml)

(comb-f (tail-stream streaml) stream2))))

If we add these definitions to the versions of head-stream, make-
empty-stream, and empty-stream-p from Section 16.2, we have a
complete stream implementation with delayed evaluation.

We can use these functions to solve our problem of producing the first n odd
Fibonacci numbers. £ibonacci-stream returns a stream of all the
Fibonacci numbers; note that fibonacci-stream is a nonterminating
recursive function. Delayed evaluation prevents it from looping forever; it
produces the next element only when needed. filter-odds takes a stream
of integers and eliminates the even elements of the stream. accumulate
takes a stream and a number n and returns a /st of the first n elements of the
stream.

(defun fibonacci-stream (fibonacci-1 fibonacci-2)
(cons-stream (+ fibonacci-1 fibonacci-2)

(fibonacci-stream fibonacci-2

(+ fibonacci-1 fibonacci-2))))
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(defun filter-odds (stream)
(cond ((evenp (head-stream stream))
(filter-odds (tail-stream stream)))
(t (cons-stream (head-stream stream)
(filter-odds (tail-stream stream))))))
(defun accumulate-into-list (n stream)
(cond ((zerop n) nil)
(t (cons (head-stream stream)
(accumulate-into-list (— n 1)
(tail-stream stream))))))

To obtain a list of the first 25 odd Fibonacci numbers, we call
accumulate-into-list:

(accumulate-into-list 25
(filter-odds (fibonacci-stream 0 1)))

We may use these stream functions in the definition of the logic programming
interpreter of Section 16.3 to improve its efficiency under certain
circumstances. Assume that we would like to modify print-solutions
so that instead of printing all solutions to a goal, it prints the first and waits for
the user to ask for the additional solutions. Using our implementation of lists
as streams, the algorithm would still search for all solutions before it could
print out the first. Using delayed evaluation, the first solution will be the head
of a stream, and the function evaluations necessary to find the additional
solutions will be frozen in the tail of the stream.

In the next section we modify this logic programming interpreter to
implement a Lisp-based expert system shell called 1isp-shell. Before
presenting the expert system shell, however, we mention two additional
stream functions that are used in its implementation. In Section 16.3, we
presented a general mapping function and a general filter for lists. These
functions, map-simple and filter, can be modified to function on
stteams. We use filter-stream and map-stream in the next
section; their implementation is an exercise.

An Expert System Shell in Lisp

The expert system shell developed in this section is an extension of the
backward-chaining engine of Section 16.3. The major modifications include
the use of certainty factors to manage uncertain reasoning, the ability to ask
the user for unknown facts, and the use of a working memory to save user
responses. This expert system shell is called 1isp-shell.

The logic programming interpreter returned a stream of the substitution
sets under which a goal logically followed from a database of logical
assertions. Bindings that did not allow the goal to be satisfied using the
knowledge base were either filtered from the stream or not generated in
the first place. In implementing reasoning with certainty factors, however,
logic truth values (t, f) are replaced by a numeric value between —1 and 1.
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This replacement requires that the stream of solutions to a goal not only
contain the variable bindings that allow the goal to be satisfied; they must
also include measures of the confidence under which each solution follows
from the knowledge base. Consequently, instead of processing streams of
substitution sets, 1isp-shell processes streams of pairs: a set of
substitutions and a number representing the confidence in the truth of the
goal under those variable substitutions

We implement stream elements as an abstract data type: the functions for
manipulating the substitution and certainty factor pairs are subst-
record, which constructs a pair from a set of substitutions and a
certainty factor; subst-1ist, which returns the set of bindings from a
pair; and subst-cf, which returns the certainty factor.

Internally, records ate represented as dotted pairs, of the form
(<substitution 1list>. <cf>). We next create functions that
handle these pairs, the first returning a list of bindings, the second
returning a certainty factor, and the third creating substitution-set certainty-
factor pairs:

(defun subst-list (substitutions)
(car substitutions))

(defun subst-cf (substitutions)
(cdr substitutions))

(defun subst-record (substitutions cf)
(cons substitutions cf))

Similarly, rules and facts are stored in the knowledge base with an attached
certainty factor. Facts are represented as dotted pairs, (<assertion>.
<cf>), where <assertion> is a positive literal and <cf> is its
certainty measure. Rules are in the format (rule if <premise>
then <conclusion> <cf>), where <cf> is the certainty factor.
We next create a sample rule for the domain of recognizing different types
of flowers:

(rule if (and (rose (var x)) (color (var x) red))

then (kind (var x) american-beauty) 1)
The functions for handling rules and facts are:

(defun premise (rule)
(nth 2 rule))

(defun conclusion (rule)
(nth 4 rule))

(defun rule-cf (rule)
(nth 5 rule))

(defun rulep (pattern)
(and (listp pattern)
(equal (nth 0 pattern) ‘rule)))



Chapter 17 Lisp-Shell: An Expert System Shell in Lisp 225

(defun fact-pattern (fact)
(car fact))

(defun fact-cf (fact)
(cdr fact))

Using these functions, we implement the balance of the rule interpreter
through a series of modifications to the logic programming interpreter first
presented in Section 16.3.

Architecture of solve is the heart of lisp-shell. solve does not return a solution stream
lisp-shell directly but first passes it through a filter that eliminates any substitutions
whose certainty factor is less than 0.2. This prunes results that lack

sufficient confidence.

(defun solve (goal substitutions)
(filter-stream
(if (conjunctive-goal-p goal)
(filter-through-conj-goals
(cdr (body goal))
(solve (car (body goal))
substitutions))
(solve-simple-goal goal
substitutions))
# ‘(lambda (x)
(< 0.2 (subst-cf x)))))

This definition of solve has changed only slightly from the definition of
solve in logic-shell. It is still a conditional statement that
distinguishes between conjunctive goals and simple goals. One difference is
the use of the general filter filter-stream to prune any solution
whose certainty factor falls below a certain value. This test is passed as a
lambda expression that checks whether or not the certainty factor of a
substitution set/cf pair is less than 0.2. The other difference is to use
solve-simple-goal in place of infer. Handling simple goals is
complicated by the ability to ask for user information. We define solve-
simple-goal as:
(defun solve-simple-goal (goal substitutions)
(declare (special *assertions*))
(declare (special *case-specific-data*))
(or (told goal substitutions
*case-specific-data¥)
(infer goal substitutions *assertions¥*)

(ask-for goal substitutions)))

solve-simple-goal uses an or form to try three different solution
strategies in order. First it calls told to check whether the goal has already
been solved by the user in response to a previous query.
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User responses are bound to the global variable *case-specific-
data*; told secarches this list to try to find a match for the goal. This
keeps 1isp-shell from asking for the same piece of information twice.
If this fails, the information was not asked for earlier, and solve-
simple-goal attempts to infer the goal using the rules in
*assertions*. Finally, if these fail, it calls ask-for to query the user
for the information. These functions are defined below.

The top-level read-solve-print loop has changed little, except for the
inclusion of a statement initializing *case-specific-data* to nil
before solving a new goal. Note that when solve is called initially, it is
not just passed the empty substitution set, but a pair consisting of the
empty substitution set and a certainty factor of 0. This certainty value has
no real meaning: it is included for syntactic reasons until a meaningful
substitution set and certainty factor pair is generated by user input or by a
fact in the knowledge base.
(defun lisp-shell ()
(declare (special *case-specific-data¥*))
(setqg *case-specific-data* ( ))
(prinl ‘lisp-shell> )
(let ((goal (read)))
(terpri)
(cond ((equal goal ‘quit) ‘bye)
(t (print-solutions goal
(solve goal
(subst-record nil 0)))

(terpri)

(lisp-shell)))))
filter-through-conj-goals is not changed, but filter-
through-goal must compute the certainty factor for a conjunctive
expression as the minimum of the certainties of the conjuncts. To do so, it
binds the first element of substitution-stream to the symbol
subs in a let block. It then calls solve on the goal and this
substitution set; passing the result through the general mapping function,
map-stream, which takes the stream of substitution pairs returned by
solve and recomputes their certainty factors as the minimum of the
certainty factor of the result and the certainty factor of the initial
substitution set. These functions are defined:

(defun filter-through-conj-goals (goals
substitution-stream)
(if (null goals)
substitution-stream
(filter-through-conj-goals (cdr goals)
(filter-through-goal (car goals)

substitution-stream))))
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(defun filter-through-goal (goal
substitution-stream)
(if (empty-stream-p substitution-stream)
(make-empty-stream)
(let ((subs (head-stream
substitution-stream)))
(combine-streams
(map-stream (solve goal subs)
# ‘(lambda (x)
(subst-record (subst-list x)
(min (subst-cf x)
(subst-cf subs)))))
(filter-through-goal goal
(tail-stream
substitution-stream))))))
The definition of infer has been changed to take certainty factors into
account. Although its overall structure reflects the version of infer
written for the logic programming interpreter in Section 16.2, we must now
compute the certainty factor for solutions to the goal from the certainty
factors of the rule and the certainties of solutions to the rule premise.
solve-rule calls solve to find all solutions to the premise and uses
map-stream to compute the resulting certainties for the rule conclusion.
(defun infer (goal substitutions kb)
(if (null kb)
(make-empty-stream)
(let* ((assertion
(rename-variables (car kb)))
(match (if (rulep assertion)
(unify goal (conclusion assertion)
subst-list substitutions))
(unify goal assertion
(subst-1list substitutions)))))
(if (equal match 'failed)
(infer goal substitutions
(cdr kb))
(if (rulep assertion)
(combine-streams

(solve-rule assertion
(subst-record match

(subst-cf substitutions)))
(infer goal substitutions
(cdr kb)))
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(cons-stream
(subst-record match
(fact-cf assertion))
(infer goal substitutions
(cdr kb))))))))

((defun solve-rule (rule substitutions)
(map-stream
(solve (premise rule) substitutions)
# ‘(lambda (x) (subst-record
(subst-1list x)
(* (subst-cf x)
(rule-cf rule))))))
Finally, we modify print-solutions to use certainty factors:
(defun print-solutions (goal substitution-stream)
(cond ((empty-stream-p substitution-stream)nil)

(t (print (apply-substitutions goal
(subst-list (head-stream

substitution-stream))))
(write-string “cf =*)
(prinl (subst-cf (head-stream

substitution-stream)))
(terpri)
(print-solutions goal
(tail-stream
substitution-stream)))))

The remaining functions, such as apply-substitutions and
functions for accessing rules and goals, are unchanged from Section 16.2.

The remainder of Lisp-shell consists of the functions ask-for and
told, which handle user interactions. These are straightforward, although
the reader should note that we have made some simplifying assumptions.
In particular, the only response allowed to queries is either “y” or “n”. This
causes the binding set passed to ask—for to be returned with a cf of
either 1 or —1, respectively; the user may not give an uncertain response
directly to a query. ask-rec prints a query and reads the answer,
repeating until the answer is either y or n. The reader may expand ask-
rec to take on any value within the —1 to 1 range. (-1 and 1, of course,
offers an arbitrary range; particular applications may use other ranges.)

askable verifies whether the user may be asked for a particular goal.
Any asked goal must exist as a pattern in the global list *askables*; the
architect of an expert system may in this way determine which goals may
be asked for and which may only be inferred from the knowledge base.
told searches through the entries in the global *case-specific-
data* to find whether the user has already answered a query. It is similar
to infer except it assumes that everything in *case-specific-
data* is stored as a fact. We define these functions:
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(defun ask-for (goal substitutions)
(declare (special *askables*))
(declare (special *case-specific-data*))
(if (askable goal *askables¥*)
(let* ((query (apply-substitutions goal
(subst-list substitutions)))

(result (ask-rec query)))
((setqg *case-specific-data*

(cons (subst-record query result)
*case-specific-data*))
(cons-stream

(subst-record (subst-list substitutions)
result)

(make-empty-stream)))))
(defun ask-rec (query)
(prinl query)
(write-string “>*")
(let ((answer (read)))
(cond ((equal answer ‘y) 1)
((equal answer ‘n) — 1)
(t (print
“answer must be y or n”)
(terpri)
(ask-rec query)))))
(defun askable (goal askables)
(cond ((null askables) nil)
((not (equal (unify goal car askables) ( ))
‘failed)) t)
(t (askable goal (cdr askables)))))
(defun told (goal substitutions case-specific-data)
(cond ((null case-specific-data)
(make-empty-stream))
(t (combine-streams

(use-fact goal (car case-specific-data)
substitutions)

(told goal substitutions

(cdr case-specific-data))))))

This completes the implementation of our Lisp-based expert system shell.
In the next section we use 1isp-shell to build a simple classification
expert system.

Classification

-1ass! We now present a small expert system for classifying trees and bushes.
Using lisp-shell

Although it is far from botanically complete, it illustrates the use and
behavior of the 1isp-shell software. The knowledge base resides in
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two global variables: *assertions*, which contains the rules and facts
of the knowledge base, and *askables*, which lists the goals that may
be asked of the user. The knowledge base used in this example is
constructed by two calls to setq:

(setqg *assertions* ‘(

(rule
if (and (size (var x) tall)
(woody (var x)))
then (tree (var x)) .9)
(rule
if (and (size (var x) small)
(woody (var x)))
then (bush (var x)) .9)
(rule
if (and (tree (var X)) (evergreen (var X))
(color (var x) blue))
then (kind (var x) spruce) .8)
(rule
if (and (tree (var X)) (evergreen (var X))
(color (var x) green))
then (kind (var x) pine) .9)
(rule
if (and (tree (var x)) (deciduous (var x))
(bears (var x) fruit))
then (fruit-tree (var x)) 1)
(rule
if (and (fruit-tree (var x))
(color fruit red)
(taste fruit sweet))
then (kind (var x) apple-tree) .9)
(rule
if (and (fruit-tree (var x))
(color fruit yellow)
(taste fruit sour))
then (kind (var x) lemon-tree) .8)
(rule
if (and (bush (var x))
(flowering (var x))
(thorny (var x)))
then (rose (var x)) 1)
(rule
if (and (rose (var x)) (color (var x) red))

then (kind (var x) american-beauty) 1)))
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(setqg *askables* “‘(
(size (var x) (var y))
(woody (var Xx))
(soft (var x))
(color (var x) (var y))
(evergreen (var X))
(thorny (var x))
(deciduous (var x))
(bears (var x) (var y))
(taste (var x) (var y))
(flowering (var x))))
A sample run of the trees knowledge base appears below. The reader is
encouraged to trace through the rule base to observe the order in which
rules are tried, the propagation of certainty factors, and the way in which
possibilities are pruned when found to be false:
> (lisp-shell)
lisp-shell>(kind tree-1 (var x))
(size tree-1 tall) >y
(woody tree-1) >y
(evergreen tree-1) >y
(color tree-1 blue) >n
(color tree-1 green) >y
(kind tree-1 pine) cf 0.81
(deciduous tree-1) >n
(size tree-1 small) >n
lisp-shell>(kind bush-2 (var x))
(size bush-2 tall) >n
(size bush-2 small) >y
(woody bush-2) >y
(flowering bush-2) >y
(thorny bush-2) >y
(color bush-2 red) >y
(kind bush-2 american-beauty) cf 0.9
lisp-shell>(kind tree-3 (var x))
(size tree-3 tall) >y
(woody tree-3) >y
(evergreen tree-3) >n
(deciduous tree-3) >y
(bears tree-3 fruit) >y
(color fruit red) >n
(color fruit yellow) >y

(taste fruit sour) >y
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(kind tree-3 lemon-tree) cf 0.72
(size tree-3 small) >n
lisp-shell>quit

bye

?

In this example, several anomalies may be noted. For example, 1isp-
shell occasionally asks whether a tree is small even though it was told
the tree is tall, or it asks whether the tree is deciduous even though the tree
is an evergreen. This is typical of the behavior of expert systems. The
knowledge base does not know anything about the relationship between
tall and small or evergreen and deciduous: they are just patterns to be
matched. Because the search is exhaustive, all rules are tried. If a system is
to exhibit deeper knowledge than this, these relationships must be coded in
the knowledge base. For example, a rule may be written that states that
small implies not tall. In this example, 1isp-shell is not capable of
representing these relationships because we have yet to implement the not
operator. This extension is left as an exercise.

Exercises

1. Rewrite the solution to finding the first n odd Fibonacci numbers
problem of Section 17.1 so that it uses the general stream filter, filter-
stream, instead of filter-odds. Modify this to return the first n
even Fibonacci numbers and then modify it again to return the squares of
the first n Fibonacci numbers.

2. Select a problem such as automotive diagnosis or classifying different
species of animals and solve it using 1isp-shell.

3. Expand the expert system shell of Section 17.2 to allow the user
responses other than y or n. For example, we may want the user to be
able to provide bindings for a goal. Hint: This may be done by changing
the ask-for and related functions to let the user also enter a pattern,
which is matched against the goal. If the match succeeds, ask for a certainty
factor.

4. Extend 1isp-shell to include not. For an example of how to treat
negation using uncertain reasoning, refer to the Prolog-based expert system
shell in Chapter 6.

5. In Section 16.3, we presented a general mapping function and a general
filter for lists. These functions, map-simple and filter, can be
modified to function on streams. Create the filter-stream and
map-stream functions used in 17.2.

6. Extend 1isp-shell to produce an answer even when all rules fail to
match. In other words, remove the nil as a possible result for 1isp-—
shell.
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18.1 Semantic Networks and Inheritance in Lisp

This chapter introduces the implementation of semantic networks and
inheritance, and a full object-oriented programming system in Lisp. As a
family of representations, semantic networks provide a basis for a large
variety of inferences, and are widely used in natural language processing
and cognitive modeling. We do not discuss all of these, but focus on a
basic approach to constructing network representations using property lists.
After these are discussed and used to define a simple semantic network, we
define a function for class inheritance. Finally, since semantic networks and
inheritance are important precursors of object-oriented design, we present
CLOS, the Common Lisp Object System, Section 18.2, and an example
implementation in 18.3.

ASimple Tisp is a convenient language for representing any graph structure,

Sﬁ::‘?v':’t:ﬁ including semantic nets. Lists provide the ability to create objects of
arbitrary complexity and these objects may be bound to names, allowing
for easy reference and the definition of relationships between them.
Indeed, all Lisp data structures are based on an internal implementation as
chains of pointers, a natural isomorph to graph structures.

For example, labeled graphs may be represented using association lists: each
node is an entry in an association list with all the arcs out of that node stored
in the datum of the node as a second association list. Arcs are described by an
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association list entry that has the arc name as its key and that has the arc
destination as its datum. Using this representation, the built-in association list
functions are used to find the destination of a particular arc from a given node.
For example, the labeled, directed graph of Figure 18.1 is represented by the
association list:

((a (1 . b))
(b (2 . ¢))
(c (2 . b) (3. a)))

Figure 18.1 A simple labeled directed graph

This approach is the basis of many network implementations. Another way to
implement semantic networks is through the use of property lists.

Essentially, property lists are a built-in feature of Lisp that allows named
relationships to be attached to symbols. Rather than using setq to bind an
association list to a symbol, with property lists we can program the direct
attachment of named attributes to objects in the global environment. These
are bound to the symbol not as a value but as an additional component called
the property list.

Functions for managing property lists are get, setf, remprop, and
symbol-plist. get, which has the syntax:

(get <symbol> <property-name>)

may be used to retrieve a property from <symbol> by its <property-
name>. For example, if the symbol rose has a color property of red and
a smell property of sweet, then get would have the behavior:

(get ‘rose ‘color)

red

(get ‘rose ‘smell)

sweet

(get ‘rose ‘party-affiliation)

nil
As the last of these calls to get illustrates, if an attempt is made to retrieve a

nonexistent property, one that is not on the property list, get returns a value
of nil.

Properties are attached to objects using the setf function, which has the
syntax:

(setf <form> <value>)



Chapter 18 Semantic Networks, Inheritance, and CLOS 235

setf is a generalization of setq. The first argument to setf is taken from
a large but specific list of forms. setf does not use the value of the form
but the location where the value is stored. The list of forms includes car
and cdr. setf places the value of its second argument in that location. For
example, we may use setf along with the list functions to modify lists in the
global environment, as the following transcript shows:

? (setg x ‘(abcde))

(a bcde)

? (setf (nth 2 x) 3)

3

? X

(a b 3 de)
We use setf, along with get, to change the value of properties. For
instance, we may define the properties of a rose by:

> (setf (get ‘rose ‘color) ‘red)

red

> (setf (get ‘rose ’‘smell) ‘sweet)

sweet
remprop takes as arguments a symbol and a property name and causes a
named property to be deleted. For example:

> (get ‘rose ‘color)

red

> (remprop ‘rose ‘color)

color

> (get ‘rose ‘color)

nil
symbol-plist takes as argument a symbol and returns its property list.
For example:

> (setf (get ‘rose ‘color) ‘red)

red

> (setf (get ‘rose ’‘smell) ‘sweet)

sweet

> (symbol-plist ‘rose)

(smell sweet color red)
Using property lists, it is straightforward to implement a semantic network.
For example, the following calls to setf implement the semantic network
description of species of birds from Figure 2.1. The isa relations define
inheritance links.

(setf (get ‘animal ‘covering) ‘skin)

(setf (get ‘bird ‘covering) ‘feathers)

(setf (get ‘bird ‘travel) ‘flies)

(setf (get ‘bird ‘isa) animal)
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(setf (get ‘fish ‘isa) animal)

(setf (get ‘fish ‘travel) ‘swim)

(setf (get ‘ostrich ‘isa) ‘bird)

(setf (get ‘ostrich ‘travel) ‘walk)

(setf (get ‘penguin ‘isa) ‘bird)

(setf (get ‘penguin ‘travel) ‘walk)

(setf (get ‘penguin ‘color) ‘brown)

(setf (get ‘opus ‘isa) ‘penguin)

(setf (get ‘canary ‘isa) ‘bird)

(setf (get ‘canary ‘color) ‘yellow)

(setf (get ‘canary ‘sound) ‘sing)

(setf (get ‘tweety ‘isa) ‘canary)

(setf (get ‘tweety ‘color) ‘white)

(setf (get ‘robin ‘isa) ‘bird)

(setf (get ‘robin ‘sound) ‘sings)

(setf (get ‘robin ‘color) ‘red)
Using this representation of semantic nets, we now define control functions
for hierarchical inheritance. This is simply a search along isa links until a
parent is found with the desired property. The parents are searched in a depth-
first fashion, and search stops when an instance of the property is found. This
is typical of the inheritance algorithms provided by many commercial systems.

Variations on this approach include the use of breadth-first search as an
inheritance search strategy.

inherit-get is a variation of get that first tries to retrieve a property
from a symbol; if this fails, inherit-get calls get-from-parents
to implement the search. get-from-parents takes as its first
argument either a single parent or a list of parents; the second argument is
a property name. If the parameter parents is nil, the search halts with
failure. If parents is an atom, it calls inherit-get on the parent to
either retrieve the property from the parent itself or continue the search. If
parents is a list, get-from-parents calls itself recursively on the
car and cdr of the list of parents. The tree walk based function
inherit-get is defined by:
(defun inherit-get (object property)
(or (get object property)
(get-from-parents (get object ‘isa)
property)))
(defun get-from-parents (parents property)
(cond ((null parents) nil)
((atom parents)
(inherit-get parents property))

(t (or (get-from-parents (car parents)
property)

(get-from-parents (cdr parents)
property)))))
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In the next section we generalize our representations for things, classes,
and inheritance using the CLOS object-oriented programming library.

Object-Oriented Programming Using CLOS

In spite of the many advantages of functional programming, some
problems are best conceptualized in terms of objects that have a state that
changes over time. Simulation programs are typical of this. Imagine trying
to build a program that will predict the ability of a steam heating system to
heat a large building: we can simplify the problem by thinking of it as a
system of objects (rooms, thermostats, boilers, steam pipes, etc.) that
interact to change the temperature and behavior of each other over time.
Object-oriented languages support an approach to problem solving that
lets us decompose a problem into interacting objects. These objects have a
state that can change over time, and a set of functions or methods that
define the object’s behaviors. Essentially, object-otiented programming lets
us solve problems by constructing a model of the problem domain as we
understand it. This model-based approach to problem solving is a natural
fit for artificial intelligence, an effective programming methodology in its
own right, and a powerful tool for thinking about complex problem
domains.

There are a number of languages that support object-oriented
programming. Some of the most important are Smalltalk, C++, Java and
the Common Lisp Object System (CLOS). At first glance, Lisp, with its
roots in functional programming, and object orientation, with its emphasis
on creating objects that retain their state over time, may seem wotlds apart.
However, many features of the language, such as dynamic type checking
and the ability to create and destroy objects dynamically, make it an ideal
foundation for constructing an object-oriented language. Indeed, Lisp was
the basis for many of the early object-oriented languages, such as Smalltalk,
Flavors, KEE, and ART. As the Common Lisp standard was developed,
the Lisp community has accepted CLOS as the preferred way to do object-
oriented programming in Lisp.

In order to fully support the needs of object-oriented programming, a
programming language must provide three capabilities: 1) encapsulation, 2)
polymorphism, and 3) inberitance. The remainder of this introduction describes
these capabilities and an introduction to the way in which CLOS supports
them.

Encapsulation. All modern programming languages allow us to
create complex data structures that combine atomic data items into a
single entity. Object-oriented encapsulation is unique in that it
combines both data items and the procedures used for their
manipulation into a single structure, called a c/ass. For example, the
abstract data types seen previously (e.g., Section 10.2) may quite
propetly be seen as classes. In some object-oriented languages, such
as Smalltalk, the encapsulation of procedures (or methods as they
are called in the object-oriented community) in the object definition
is explicit. CLOS takes a different approach, using Lisp’s type-
checking to provide this same ability. CLOS implements methods as
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generic functions. These functions check the type of their parameters to
guarantee that they can only be applied to instances of a certain
class. This gives us a logical binding of methods to their objects.

Polymorphism. The word polymorphic comes from the roots
“poly”, meaning many, and “morphos”, meaning form. A function is
polymorphic if it has many different behaviors, depending on the
types of its arguments. Perhaps the most intuitive example of
polymorphic functions and their importance is a simple drawing
program. Assume that we define objects for each of the shapes
(square, circle, line) that we would like to draw. A natural way to
implement this is to define a method named draw for each object
class. Although each individual method has a different definition,
depending on the shape it is to draw, all of them have the same
name. Every shape in our system has a draw behavior. This is much
simpler and more natural than to define a differently named
function (draw-square, draw-circle, etc.) for every shape. CLOS
supports polymorphism through generic functions. A generic
function is one whose behavior is determined by the types of its
arguments. In our drawing example, CLOS enables us to define a
generic function, draw, that includes code for drawing each of the
shapes defined in the program. On evaluation, it checks the type of
its argument and automatically executes the appropriate code.

Inheritance. Inheritance is a mechanism for supporting class
abstraction in a programming language. It lets us define general
classes that specify the structure and behavior of their
specializations, just as the class “tree” defines the essential attributes
of pine trees, poplars, oaks, and other different species. In Section
18.1, we built an inheritance algorithm for semantic networks; this
demonstrated the ease of implementing inheritance using Lisp’s
built-in data structuring techniques. CLOS provides us with a more
robust, expressive, built-in inheritance algorithm.

The basic data structure in CLOS is the class. A class is a
specification for a set of object instances. We define classes using the
defclass macro. defclass has the syntax:

(defclass <class-name> (<superclass-name>*)
(<slot-specifier>%*))

<class-name> is a symbol. Following the class name is a list of direct
superclasses (called superclass); these are the class’s immediate
parents in the inheritance hierarchy. This list may be empty. Following the
list of parent classes is a list of zero or more slot-specifiers. A
slot-specifier is cither the name of a slot or a list consisting of a
slot-name and zero or more slot-options:

slot-specifier ::= slotname |
(slot-name [slot-option])

For instance, we may define a new class, rectangle, which has slots
values for length and width:
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> (defclass rectangle()
(length width))
#<standard-class rectangle>

make-instance allows us to create instances of a class, taking as its
argument a class name and returning an instance of that class. It is the
instances of a class that actually store data values. We may bind a symbol,
rect, to an instance of rectangle using make-instance and
setq:

> (setq rect (make-instance ‘rectangle))
#<rectangle #x286AC1>

The slot options in a defclass define optional properties of slots. Slot
options have the syntax (where ““|” indicates alternative options):

slot-option ::= :reader <reader-function-name> |
:writer <writer-function-name>|
:accessor <reader-function-name> |
:allocation <allocation-type> |
:initarg <initarg-name> |

sinitform <form>

We declare slot options using keyword arguments. Keyword arguments are
a form of optional parameter in a Lisp function. The keyword, which
always begins with a “:”, precedes the value for that argument. Available
slot options include those that provide accessors to a slot. The
:reader option defines a function called reader-function-name
that returns the value of a slot for an instance. The :writer option
defines a function named writer-function-name that will write to
the slot. :accessor defines a function that may read a slot value or may
be used with setf to change its value.

In the following transcript, we define rectangle to have slots for
length and width, with slot accessors get-length and get-
width, respectively. After binding rect to an instance of rectangle
using make-instance, we use the accessor, get-length, with
setf to bind the length slot to a value of 10. Finally, we use the
accessor to read this value.
> (defclass rectangle ()
((length :accessor get-length)
(width :accessor get-width)))
#<standard-class rectangle>
> (setq rect (make-instance ‘rectangle))
#<rectangle #x289159>
> (setf (get-length rect) 10)
10
> (get-length rect)
10
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In addition to defining accessors, we can access a slot using the
primitive function slot-value. slot-value is defined for all slots;
it takes as arguments an instance and a slot name and returns the value of
that slot. We can use it with setf to change the slot value. For example,
we could use slot-value to access the width slot of rect:

> (setf (slot-value rect ‘width) 5)
5

> (slot-value rect ‘width)

5

tallocation lets us specify the memory allocation for a slot.
allocation-type may be ecither :instance or :class. If
allocation type is :instance, then CLOS allocates a local slot for each
instance of the type. If allocation type is :class, then all instances share
a single location for this slot. In :class allocation, all instances will share
the same value of the slot; changes made to the slot by any instance will
affect all other instances. If we omit the :allocation specifier,
allocation defaults to : instance.

tinitarg allows us to specify an argument that we can use with make-
instance to specify an initial value for a slot. For example, we can
modify our definition of rectangle to allow us to initialize the
length and width slots of instances:

> (defclass rectangle ()

((length :accessor get-length
tinitarg init-length)
(width :accessor get-width :initarg init-width)))
#<standard-class rectangle>
>(setq rect (make-instance ‘rectangle
‘init-length 100 ‘init-width 50))

#<rectangle #x28D081>

> (get-length rect)

100

> (get-width rect)

50
tinitform lets us specify a form that CLOS evaluates on each call to
make-instance to compute an initial value of the slot. For example, if
we would like our program to ask the user for the values of each new
instance of rectangle, we may define a function to do so and include it in
an initform:

> (defun read-value (query) (print query) (read))

read-value

> (defclass rectangle ()

((length :accessor get-length

tinitform (read-value “enter length”))
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(width :accessor get-width
tinitform (read-value “enter width”))))
#<standard-class rectangle>
> (setq rect (make-instance ‘rectangle))
“enter length” 100
“enter width” 50
#<rectangle #x290461>
> (get-length rect)
100
> (get-width rect)
50

A generic function is a function whose behavior depends upon the type of
its arguments. In CLOS, generic functions contain a set of wethods, indexed
by the type of their arguments. We call generic functions with a syntax
similar to that of regular functions; the generic function retrieves and
executes the method associated with the type of its parameters.

CLOS uses the structure of the class hierarchy in selecting a method in a
generic function; if there is no method defined directly for an argument of
a given class, it uses the method associated with the “closest” ancestor in
the hierarchy. Generic functions provide most of the advantages of
“purer” approaches of methods and message passing, including inheritance
and overloading. However, they are much closer in spirit to the functional
programming paradigm that forms the basis of Lisp. For instance, we can
use generic functions with mapcar, funcall, and other higher-order
constructs in the Lisp language.

We define generic functions using either defgeneric or defmethod.
defgeneric lets us define a generic function and several methods using
one form. defmethod enables us to define each method separately,
although CLOS combines all of them into a single generic function.
defgeneric has the (simplified) syntax:

(defgeneric f-name lambda-list <method-description>%*)

<method-description> ::= (:method specialized-lambda-
list form)

defgeneric takes a name of the function, a lambda list of its
arguments, and a series 