Al Algorithms, Data Structures, and
Idioms in Prolog, Lisp, and Java

Al Algorithms, Data Structures, and
Idioms in Prolog, Lisp, and Java

George F. Luger
William A. Stubblefield

Executive Editor Michael Hirsch

Acquisitions Editor Matt Goldstein
Editorial Assistant Sarah Milmore
Managing Editor Jeff Holcomb
Digital Assets Manager Marianne Groth
Senior Media Producer Bethany Tidd
Marketing Manager Erin Davis
Senior Author Support/

Technology Specialist Joe Vetere
Senior Manufacturing Buyer Carol Melville
Text Design, Composition, and Illustrations George F Luger
Cover Design Barbara Atkinson
Cover Image © Tom Barrow

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Copyright © 2009 Pearson Education, Inc. All rights reserved. No part of this publication may be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher.
Printed in the United States of America. For information on obtaining permission for use of material in this
work, please submit a written request to Pearson Education, Inc., Rights and Contracts Department, 501
Boylston Street, Suite 900, Boston, MA 02116, fax (617) 671-3447, or online at
http://www.pearsoned.com/legal/permissions.htm.

ISBN-13: 978-0-13-607047-4
ISBN-10: 0-13-607047-7

12345678910—OPM—12 1110 09 08

Partl
Chapter 1

Part I1
Chapter 2

Chapter 3

Chapter 4

Chapter 5

Contents

Preface iX

Language Idioms and the Master Programmer

Idioms, Patterns, and Programming 3

1.1 Introduction: Idioms and Patterns 3

1.2 Selected Examples of Language Idioms 6

1.3 A Brief History of Three Programming Paradigms 11
1.4 A Summary of Our Task 15

Programming in Prolog 17

Prolog: Representation 19
2.1 Introduction: Logic-Based Representation 19
2.2 Prolog Syntax 20

2.3 Creating, Changing, and Tracing a Prolog Computation 24

2.4 Lists and Recursion in Prolog 25
2.5 Structured Representation and Inheritance Search 28
Exercises 32

Abstract Data Types and Search 33

3.1 Introduction 33

3.2 Using cut to Control Search in Prolog 36
3.3 Abstract Data Types (ADTSs) in Prolog 38
Exercises 42

Depth- Breadth-, and Best-First Search 43

4.1 Production System Search in Prolog 43

4.2 A Production System Solution of the FWGC Problem 46
4.3 Designing Alternative Search Strategies 52

Exercises 58

Meta-Linguistic Abstraction, Types, and Meta-Interpreters
5.1 Meta-Interpreters, Types, and Unification 59

5.2 Types in Prolog 61

5.3 Unification, Variable Binding, and Evaluation 64
Exercises 68

59

VY Contents

Chapter 6 Three Meta-Interpreters: Prolog in Prolog, EXSHELL, and a
Planner 59

6.1 An Introduction to Meta-Interpreters: Prolog in Prolog 69
6.2 A Shell for a Rule-Based System 73

6.3 A Prolog Planner 82

Exercises 85

Chapter 7 Machine Learning Algorithms in Prolog 87
7.1 Machine Learning: Version Space Search 87
7.2 Explanation Based Learning in Prolog 100
Exercises 106

Chapter 8 Natural Language Processing in Prolog 107
8.1 Natural Language Understanding 107
8.2 Prolog Based Semantic Representation 108
8.3 A Context-Free Parser in Prolog 111
8.4 Probabilistic Parsers in Prolog 114
8.5 A Context-Sensitive Parser in Prolog 119
8.6 A Recursive Descent Semantic Net Parser 120
Exercises 123

Chapter 9 Dynamic Programming and the Earley Parser 125
9.1 Dynamic Programming Revisited 125
9.2 The Earley Parser 126
9.3 The Earley Parser in Prolog 134
Exercises 139

Chapter 10 Prolog: Final Thoughts 141

10.1 Towards a Procedural Semantics 141
10.2 Prolog and Automated Reasoning 144
10.3 Prolog Idioms, Extensions, and References 145
Part III Programming in Lisp 149
Chapter 11 S-Expressions, the Syntax of Lisp 151
11.1 Introduction to Symbol Expressions 151
11.2 Control of Lisp Evaluation 154
11.3 Programming in Lisp: Creating New Functions 156
11.4 Program Control: Conditionals and Predicates 157

Exercises 160

Chapter 12

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Chapter 17

Chapter 18

Chapter 19

Contents

Lists and Recursive Search 161

12.1 Functions, Lists, and Symbolic Computing 161

12.2 Lists as Recursive Structures 163

12.3 Nested Lists, Structure, and car/cdr Recursion 166
Exercises 168

Variables, Datratypes, and Search 171

13.1 Variables and Datatypes 171

13.2 Search: The Farmer, Wolf, Goat, and Cabbage Problem 177
Exercises 182

Higher-Order Functions and Flexible Search 185
14.1 Higher-Order Functions and Abstraction 185

14.2 Search Strategies in Lisp 189

Exercises 193

Unification and Embedded Languages in Lisp 195
15.1 Introduction 195

15.2 Interpreters and Embedded Languages 203
Exercises 205

Logic programming in Lisp 207

16.1 A Simple Logic Programming Language 207

16.2 Streams and Stream Processing 209

16.3 A Stream-Based logic Programming Interpreter 211
Exercises 217

Lisp-shell: An Expert System Shell in Lisp 219
17.1 Streams and Delayed Evaluation 219

17.2 An Expert System Shell in Lisp 223

Exercises 232

Semantic Networks, Inheritance, and CLOS 233
18.1 Semantic nets and Inheritance in Lisp 233

18.2 Object-Oriented Programming Using CLOS 237
18.3 CLOS Example: A Thermostat Simulation 244
Exercises 250

Machine Learning in Lisp 251
19.1 Learning: The ID3 Algorithm 251
19.2 Implementing ID3 259

Vii

viii

Contents

Chapter 20

Part IV
Chapter 21

Chapter 22

Chapter 23

Chapter 24

Exercises 266

Lisp: Final Thoughts 267

Programming in Java 269

Java, Representation and Object-Oriented Programming 273
21.1 Introduction to O-O Representation and Design 273
21.2 Object Orientation 274

21.3 Classes and Encapsulation 275

21.4 Polymorphism 276

21.5 Inheritance 277

21.6 Interfaces 280

21.7 Scoping and Access 282

21.8 The Java Standard Library 283

21.9 Conclusions: Design in Java 284

Exercises 285

Problem Spaces and Search 287

21.1 Abstraction and Generality in Java 287
21.2 Search Algorithms 288

21.3 Abstracting Problem States 292

21.4 Traversing the Solution Space 295
21.5 Putting the Framework to Use 298
Exercises 303

Java Representation for Predicate Calculus and Unification 305
23.1 Introduction to the Task 305

23.2 A Review of the Predicate Calculus and Unification 307

23.3 Building a Predicate Calculus Problem Solver in Java 310

23.4 Design Discussion 320

23.5 Conclusions: Mapping Logic into Objects 322

Exercises 323

A Logic-Based Reasoning System 325

24.1 Introduction 325

24.2 Reasoning in Logic as Searching an And/Or Graph 325
24.3 The Design of a Logic-Based Reasoning System 329
24.4 Implementing Complex Logic Expressions 330

24.5 Logic-Based Reasoning as And/Or Graph Search 335
24.6 Testing the Reasoning System 346

Chapter 25

Chapter 26

Chapter 27

Chapter 28

Chapter 29

Chapter 30

Contents

24.7 Design Discussion 348

Exercises 350

An Expert System Shell 351

25.1 Introduction: Expert Systems 351

25.2 Certainty Factors and the Unification Problem Solver 352
25.3 Adding User Interactions 358

25.4 Design Discussion 360

Exercises 361

Case Studies: JESS and other Expert System Shells in Java 363

26.1 Introduction 363

26.2 JESS 363

26.3 Other Expert system Shells 364
26.4 Using Open Source Tools 365

ID3: Learning from Examples 367

27.1 Introduction to Supervised Learning 367

27.2 Representing Knowledge as Decision Trees 367

27.3 A Decision Tree Induction program 370

27.4 1ID3: An Information Theoretic Tree Induction Algorithm 385
Exercises 388

Genetic and Evolutionary Computing 389

28.1 Introduction 389

28.2 The Genetic Algorithm: A First Pass 389

28.3 A GA Java Implementation in Java 393

28.4 Conclusion: Complex Problem Solving and Adaptation 401
Exercises 401

Case Studies: Java Machine Learning Software Available on the
Web 403

29.1 Java Machine Learning Software 403

The Earley Parser: Dynamic Programming in Java 405

30.1 Chart Parsing 405

30.2 The Earley Parser: Components 406

30.3 The Earley Parser: Java Code 408

30.4 The Completed Parser 414

30.5 Generating Parse Trees from Charts and Grammar Rules 419

Exercises 422

X

Contents

Chapter 31 Case Studies: Java Natural Language Tools on the Web

31.1 Java Natural Language Processing Software 423
31.2 LingPipe from the University of Pennsylvania 423
31.3 The Stanford Natural Language Processing Group Software
31.4 Sun’s Speech API 426

PartV Model Building and the Master Programmer 429

Chapter 32 Conclusion: The Master Programmer 431
32.1 Paradigm-Based Abstractions and Idioms 431
32.2 Programming as a Tool for Exploring Problem Domains
32.3 Programming as a Social Activity 434
32.4 Final Thoughts 437

Bibliography 439
Index 443

423

425

433

Preface

What we have to learn to do

We learn by doing...

- Aristotle, Ezhics

Why Another
Programming
Language
Book?

Writing a book about designing and implementing representations and
search algorithms in Prolog, Lisp, and Java presents the authors with a
number of exciting opportunities.

The first opportunity is the chance to compare three languages that give
very different expression to the many ideas that have shaped the evolution
of programming languages as a whole. These core ideas, which also
support modern Al technology, include functional programming, list
processing, predicate logic, declarative representation, dynamic binding,
meta-linguistic abstraction, strong-typing, meta-circular definition, and
object-oriented design and programming. Lisp and Prolog are, of course,
widely recognized for their contributions to the evolution, theory, and
practice of programming language design. Java, the youngest of this trio, is
both an example of how the ideas pioneered in these carlier languages
have shaped modern applicative programming, as well as a powerful tool
for delivering Al applications on personal computers, local networks, and
the world wide web.

The second opportunity this book affords is a chance to look at Artificial
Intelligence from the point of view of the craft of programming. Although
we sometimes are tempted to think of Al as a theoretical position on the
nature of intelligent activity, the complexity of the problems Al addresses
has made it a primary driver of progress in programming languages,
development environments, and software engineering methods. Both Lisp
and Prolog originated expressly as tools to address the demands of
symbolic computing. Java draws on object-orientation and other ideas that
can trace their roots back to Al programming. What is more important, Al
has done much to shape our thinking about program organization, data
structures, knowledge representation, and other elements of the software
craft. Anyone who understands how to give a simple, elegant formulation
to unification-based pattern matching, logical inference, machine learning
theoties, and the other algorithms discussed in this book has taken a large
step toward becoming a master programmer.

The book’s third, and in a sense, unifying focus lies at the intersection of
these points of view: how does a programming language’s formal structure
interact with the demands of the art and practice of programming to

Xi

Xii

Preface

The Design of
this Book

create the idioms that define its accepted use. By idiom, we mean a set of
conventionally accepted patterns for using the language in practice.
Although not the only way of using a language, an idiom defines patterns
of use that have proven effective, and constitute a common understanding
among programmers of how to use the language. Programming language
idioms do much to both enable, as well as support, ongoing
communication and collaboration between programmers.

These, then, ate the three points of view that shape our discussion of Al
programming. It is our hope that they will help to make this book more
than a practical guide to advanced programming techniques (although it is
certainly that). We hope that they will communicate the intellectual depth
and pleasure that we have found in mastering a programming language
and using it to create elegant and powerful computer programs.

There are five sections of this book. The first, made up of a single chapter,
lays the conceptual groundwork for the sections that follow. This first
chapter provides a general introduction to programming languages and
style, and asks questions such as “What is a master programmer?” What is a
programming language idiom?,” and “How are identical design patterns
implemented in different languages?” Next, we introduce a number of
design patterns specific to supporting data structures and search strategies
for complex problem solving. These patterns are discussed in a “language
neutral” context, with pointers to the specifics of the individual
programming paradigms presented in the subsequent sections of our
book. The first chapter ends with a short historical overview of the
evolution of the logic-based, functional, and object-oriented approaches to
computer programming languages.

Part II of this book presents Prolog. For readers that know the rudiments
of first-order predicate logic, the chapters of Part II can be seen as a
tutorial introduction to Prolog, the language for programming in logic.
For readers lacking any knowledge of the propositional and predicate
calculi we recommend reviewing an introductory textbook on logic.
Alternatively, Luger (2005, Chapter 2) presents a full introduction to both
the propositional and predicate logics. The Luger introduction includes a
discussion, as well as a pseudo code implementation, of unification, the
pattern-matching algorithm at the heart of the Prolog engine.

The design patterns that make up Part II begin with the “flat” logic-based
representation for facts, rules, and goals that one might expect in any
relational data base formalism. We next show how recursion, supported by
unification-based pattern matching, provides a natural design pattern for
tree and graph search algorithms. We then build a seties of abstract data
types, including sets, stacks, queues, and priority queues that support
patterns for search. These are, of course, abstract structures, crafted for
the specifics of the logic-programming environment that can search across
state spaces of arbitrary content and complexity. We then build and
demonstrate the “production system” design pattern that supports rule
based programming, planning, and a large number of other Al
technologies. Next, we present structured representations, including

Preface Xiii

semantic networks and frame systems in Prolog and demonstrate
techniques for implementing single and multiple inheritance
representation and search. Finally, we show how the Prolog design
patterns presented in Part II can support the tasks of machine learning
and natural language understanding.

Lisp and functional programming make up Part III. Again, we present the
material on Lisp in the form of a tutorial introduction. Thus, a
programmer with little or no experience in Lisp is gradually introduced to
the critical data structures and search algorithms of Lisp that support
symbolic computing. We begin with the (recursive) definition of symbol-
expressions, the basic components of the Lisp language. Next we present
the “assembly instructions” for symbol expressions, including car, cdr, and
cons. We then assemble new patterns for Lisp with cond and defun.
Finally, we demonstrate the creation and/or evaluation of symbol
expressions with quote and eval. Of course, the ongoing discussion of
variables, binding, scope, and closures is critical to building more complex
design patterns in Lisp.

Once the preliminary tools and techniques for Lisp are presented, we
describe and construct many of the design patterns seen eatlier in the
Prolog section. These include patterns supporting breadth-first, depth-
first, and best-first search as well as meta-interpreters for rule-based
systems and planning. We build and demonstrate a recursion-based
unification algorithm that supports a logic interpreter in Lisp as well as a
stream processor with delayed evaluation for handling potentially infinite
structures. We next present data structures for building semantic networks
and object systems. We then present the Common Lisp Object system
(CLOS) libraries for building object and inheritance based design patterns.
We close Part III by building design patterns that support decision-tree
based machine learning.

Java and its idioms are presented in Part IV. Because of the complexities
of the Java language, Part IV is not presented as a tutorial introduction to
the language itself. It is expected that the reader has completed at least an
introductory course in Java programming, or at the very least, has seen
object-oriented programming in another applicative language such as
C++, C#, or Objective C. But once we can assume a basic understanding
of Java tools, we do provide a tutorial introduction to many of the design
patterns of the language.

The first chapter of Part IV, after a brief overview of the origins of Java,
goes through many of the features of an object-oriented language that will
support the creation of design patterns in that environment. These
features include the fundamental data structuring philosophy of
encapsulation, polymorphism, and inheritance. Based on these concepts
we briefly address the analysis, iterative design, programming and test
phases for engineering programs. After the introductory chapter we begin
pattern building in Java, first considering the representation issue and how
to represent predicate calculus structures in Java. This leads to building

Xiv Preface

Using this Book

patterns that support breadth-first, depth-first, and best-first search. Based
on patterns for search, we build a production system, a pattern that
supports the rule-based expert system. Our further design patterns
support the application areas of natural language processing and machine
learning. An important strength that Java offers, again because of its
object-orientation and modularity is the use of public domain (and other)
libraries available on the web. We include in the Java section a number of
web-supported Al algorithms, including tools supporting work in natural
language, genetic and evolutionary programming (a-life), natural language
understanding, and machine learning (WEKA).

The final component of the book, Part V, brings together many of the
design patterns introduced in the eatlier sections. It also allows the authors
to reinforce many of the common themes that are, of necessity,
distributed across the various components of the presentation, We
conclude with general comments supporting the craft of programming.

This book is designed for three primary purposes. The first is as a
programming language component of a general class in Artificial
Intelligence. From this viewpoint, the authors see as essential that the Al
student build the significant algorithms that support the practice of AL
This book is designed to present exactly these algorithms. However, in the
normal lecture/lab approach taken to teaching Artificial Intelligence at the
University level, we have often found that it is difficult to cover more than
one language per quarter or semester course. Therefore we expect that the
various parts of this material, those dedicated to either Lisp, Prolog, or
Java, would be used individually to support programming the data
structures and algorithms presented in the Al course itself. In a more
advanced course in Al it would be expected that the class cover more than
one of these programming paradigms.

The second use of this book is for university classes exploring
programming paradigms themselves. Many modern computer science
departments offer a final year course in comparative programming
environments. The three languages covered in our book offer excellent
examples on these paradigms. We also feel that a paradigms course should
not be based on a rapid survey of a large number of languages while doing
a few “finger exercises” in each. Our philosophy for a paradigms course is
to get the student more deeply involved in fewer languages, and these
typically representing the declarative, functional, and object-oriented
approaches to programming. We also feel that the study of idiom and
design patterns in different environments can greatly expand the skill set
of the graduating student. Thus, our philosophy of programming is built
around the language idioms and design patterns presented in Part I and
summarized in Part V. We see these as an exciting opportunity for
students to appreciate the wealth and diversity of modern computing
environments. We feel this book offers exactly this opportunity.

The third intent of this book is to offer the professional programmer the
chance to continue their education through the exploration of multiple

Acknowledg-
ments

Preface XV

programming idioms, patterns, and paradigms. For these readers we also
feel the discussion of programming idioms and design patterns presented
throughout our book is important. We are all struggling to achieve the
status of the master programmer.

We have built each chapter in this book to reflect the materials that would
be covered in either one or two classroom lectures, or about an hout’s
effort, if the reader is going through this material by herself. There are a
small number of exercises at the end of most chapters that may be used to
reinforce the main concepts of that chapter. There is also, near the end of
each chapter, a summary statement of the core concepts covered.

First, we must thank several decades of students and colleagues at the
University of New Mexico. These friends not only suggested, helped
design, and tested our algorithms but have also challenged us to make
them better.

Second, we owe particular thanks to colleagues who wrote algorithms and
early drafts of chapters. These include Stan Lee, (PhD student at UNM)
for the Prolog chapter on Earley parsing, Breanna Ammons (MS in CS at
UNM) for the Java version of the Earley parser and along with Robert
Sputlock (CS undergraduate at UNM) the web-based NLP chapter, Paul
DePalma (Professor of CS at Gonzaga University) for the Java Genetic
Algorithms chapter, and Chayan Chakrabarti (MS in CS at UNM) for the
web-based machine learning chapter in Java

Third, there are several professional colleagues that we owe particular
debts. These include David MacQueen, University of Chicago, one of the
creators of SML, Manuel Hermenegildo, The Prince of Asturias Endowed
Chair of Computer Science at UNM and a designer of Ciao Prolog, Paul
De Palma, Professor of Computer Science at Gonzaga University, and
Alejandro Cdebaca, our friend and former student, who helped design
many of the algorithms of the Java chapters.

Fourth, we thank our friends at Pearson Education who have supported
our various creative writing activities over the past two decades. We
especially acknowledge our editors Alan Apt, Karen Mossman, Keith
Mansfield, Owen Knight, Simon Plumtree, and Matt Goldstein, along with
their various associate editors, proof readers, and web support personnel.

We also thank our wives, children, family, and friends; all those that have
made our lives not just survivable, but intellectually stimulating and
enjoyable.

Finally, to our readers; we salute you: the art, science, and practice of
programming is great fun, enjoy it

GL

BS

July 2008
Albuquerque

XVi Preface

PART I: Language Idioms and the

Master Programmer

all good things - trout as well as eternal salvation - come by grace and grace comes by art and art does not

come easy...

- Norman Mactean, (1989) A River Runs Through It

Language and
Idioms

The Master
Programmer

In defining a programming language idiom, an analogy with natural
language use might help. If I ask a friend, “Do you know what time it is?”
or equivalently “Do you have a watch?”, I would be surprised if she simply
said “yes” and turned away. These particular forms for asking someone for
the time of day are idiomatic in that they carry a meaning beyond their
literal interpretation. Similarly, a programming language idiom consists of
those patterns of use that good programmers accept as elegant, expressive
of their design intent, and that best harness the language’s power. Good
idiomatic style tends to be specific to a given language or language
paradigm: the way experienced programmers organize a Prolog program
would not constitute accepted Java style.

Language idioms serve two roles. The first is to enhance communication
between programmers. As experienced programmers know, we do not
simply write code for a compiler; we also write it for each other. Writing in
a standard idiom makes it easier for other people to understand our intent,
and to maintain and/or extend our code. Second, a language’s idiom helps
us to make sure we fully use the power the language designers have
afforded us. People design a language with certain programming styles in
mind. In the case of Java, that style was object-otriented programming, and
getting full benefit of such Java features as inheritance, scoping, automatic
garbage collection, exception handling, type checking, packages, interfaces,
and so forth requires writing in an object-oriented idiom. A primary goal of
this book is to explore and give examples of good idioms in three diverse
language paradigms: the declarative (logic-based), functional, and object-
oriented.

The goal of this book is to develop the idea and describe the practice of
the master programmer. This phrase carries a decidedly working class
connotation, suggesting the kind of knowledge and effort that comes
through long practice and the transmission of tools and skills from master
to student through the musty rituals of apprenticeship. It certainly suggests
something beyond the immaculate formalization that we generally associate
with scientific disciplines. Indeed, most computer science curricula

2

Part I Introduction

downplay this craft of programming, favoring discussions of computability
and complexity, algorithms, data structures, and the software engineer’s
formalist longings. In reality, the idea of programming as a craft that
demands skill and dedication is widely accepted in practical circles. Few
major successful programming projects have existed that did not owe
significant components of that success to the craftsmanship of such
individuals.

But, what then, do master programmers know?

The foundation of a master programmer’s knowledge is a strong
understanding of the core domains of computer science. Although working
programmers may not spend much (or any) time developing and
publishing theorems, they almost always have a deep, intuitive grasp of
algorithms, data structures, logic, complexity, and other aspects of the
theory of formal systems. We could compare this to a master weldet’s
understanding of metallurgy: she may not have a theoretician’s grasp of
metallic crystalline structure, but her welds do not crack. This book
presumes a strong grounding in these computer science disciplines.

Master programmers also tend to be language fanatics, exhibiting a fluency
in several programming languages, and an active interest in anything new
and unusual. We hope that our discussion of three major languages will
appeal to the craftsman’s fascination with their vatious tools and
techniques. We also hope that, by contrasting these three major languages
in a sort of “comparative language” discussion, we will help programmers
refine their understanding of what a language can provide, and the needs
that continue to drive the evolution of programming languages.

Chapter
Objectives

Idioms, Patterns, and Programming

This chapter introduces the ideas that we use to organize our thinking about
languages and how they shape the design and implementation of programs.
These are the ideas of language, idiom, and design pattern.

1.1 Introduction

Chapter _
Contents 12 Selec.ted Examples of Al Language I.dloms _
1.3 A Brief History of Three Programming Paradigms
1.4 A Summary of our Task
1.1 Introduction
Idioms and

Patterns

As with any craft, programming contains an undeniable element of
experience. We achieve mastery through long practice in solving the
problems that inevitably arise in trying to apply technology to actual
problem situations. In writing a book that examines the implementation of
major Al algorithms in a trio of languages, we hope to support the reader’s
own experience, much as a book of musical etudes helps a young musician
with their own exploration and development.

As important as computational theory, tools, and expetrience are to a
programmet’s growth, there is another kind of knowledge that they only
suggest. This knowledge comes in the form of pattern languages and
idioms, and it forms a major focus of this book. The idea of pattern
languages originated in architecture (Alexander et al. 1977) as a way of
formalizing the knowledge an architect brings to the design of buildings
and cities that will both support and enhance the lives of their residents. In
recent years, the idea of pattern languages has swept the literature on
software design (Gamma, et al. 1995; Coplein & Schmidt 1995; Evans
2003), as a way of capturing a mastet’s knowledge of good, robust program
structure.

A design pattern describes a typical design problem, and outlines an
approach to its solution. A pattern language consists of a collection of
related design patterns. In the book that first proposed the use of pattern
languages in architecture, Christopher Alexander et al. (1977, page x) state
that a pattern

describes a problem which occurs over and over again in onr environment, and
then describes the core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever doing it the same way
twice.

Design patterns capture and communicate a form of knowledge that is
essential to creating computer programs that users will embrace, and that

4 Part I: Language Idioms and the Master Programmer

Sample Design
Patterns

programmers will find to be elegant, logical, and maintainable. They
address programming and languages, not in terms of Turing completeness,
language paradigms, compiler semantics, or any of the other qualities that
constitute the core of computer science, but rather as tools for practical
problem solving. To a large extent, you can think of this book as
presenting a pattern language of the core problems of Al programming,
and examples — the patterns — of their solution.

Idioms ate a form and structure for knowledge that helps us bridge the
differences between patterns as abstract descriptions of a problem and its
solutions and an understanding of how best to implement that solution in a
given programming language. A language idiom is the expression of a
design pattern in a given language. In this sense, design patterns + idioms =
quality programs.

Consider, for example, the simple, widely used design pattern that we can
call map that applies some operator O to every element of a list L. We can
express this pattern in a pseudo code function as follows:

map (operator O, list L)

{
if (L contains no elements) quit;
h €& the first element of L.
apply O to h;
map(O, L minus h);

}

This map function produces a stream of results: O applied to each element
of the list L. As our definition of pattern specifies, this describes a solution
to a recurring problem, and also fosters unlimited variations, depending on
the type of the elements that make up the list L, and the nature of the
operator, O.

Now, let us consider a fragment of Lisp code that implements this same
map pattern, where £ is the mapped operator (in Lisp a function) and
list is the list:

(defun map (f list)
(cond ((null list) nil)
(t (cons (apply f (car list))
(map £ (cdr list))))))

This function map, created by using the built-in Lisp defun function, not
only implements the map pattern, but also illustrates elements of the Lisp
programming idiom. These include the use of the operators car and ¢dr to
separate the list into its head and tail, the use of the cons operator to place
the results into a new list, and also the use of recursion to move down the
list. Indeed, this idiom of recursively working through a list is so central to
Lisp, that compiler writers are expected to optimize this sort of tail
recursive structure into a more efficient iterative implementation.

Let us now compare the Lisp map to a Java implementation that
demonstrates how idioms vary across languages:

Chapter 1 Idioms, Patterns, and the Master programmer

public Vector map(Vector 1)

{
Vector result = new Vector();
Iterator iter = l.iterator();
while(iter.hasNext())
{

result.add(f(iter.next));

}
return result;

}

The most striking difference between the Java version and the Lisp version
is that the Java version is iterative. We could have written our list search in
a recursive form (Java supportts recursion, and compilers should optimize it
where possible), but Java also offers us iterators for moving through lists.
Since the authors of Java provide us with list iterators, and we can assume
they are implemented efficiently, it makes sense to use them. The Java
idiom differs from the Lisp idiom accordingly.

Furthermore, the Java version of map creates the new variable, result.
When the iterator completes its task, result will be a vector of
elements, each the result of applying £ to each element of the input list
(vector). Finally, result must be explicitly returned to the external
environment. In Lisp, however, the resulting list of mapped elements is the
result of invoking the function map (because it is returned as a direct
result of evaluating the map function).

Finally, we present a Prolog version of map. Of course in Prolog, map will
be a represented as a predicate. This predicate has three arguments, the
first the function, £, which will be applied to every element of the list that
is the second argument of the predicate. The third argument of the
predicate map is the list resulting from applying £ to each element of the
second argument. The pattern [X|Y] is the Prolog list representation,
where X is the head of the list (car in Lisp) and Y is the list that is the rest
of the list (cdr in Lisp). The is operator binds the result of £ applied to
H to the variable NH. As with Lisp, the map relationship is defined
recursively, although no tail recursive optimization is possible in this case.
Further clarifications of this Prolog specification are presented in Part II.

map(f, [1, [1)-
map(f, [H|T], [NH|NT]):-
NH is f(H), map(f, T, NT).

In the three examples above we see a very simple example of a pattern
having different idioms in each language, the eval/>assign pattern. This
pattern evaluates some expression and assigns the result to a variable. In
Java, as we saw above, = simply assigns the evaluated expression on its
right-hand-side to the variable on its left. In Lisp this same activity requires
the cons of an apply of £ to an element of the list. The resulting
symbol expression is then simply returned as part of the evaluated function
map. In Prolog, using the predicate representation, there are similar

6 Part I: Language Idioms and the Master Programmer

1.2

Symbolic
Computing:

The Issue of
Representation

Search

differences between assignment (based on unification with patterns such as
[H|T] and =) and evaluation (using is or making £ be a goal).

Understanding and utilizing these idioms is an essential aspect of mastering
a programming language, in that they represent expected ways the language
will be used. This not only allows programmers more easily to understand,
maintain, and extend each othet’s code, but also allows us to remain
consistent with the language designer’s assumptions and implementation
choices.

Selected Examples of AI Language Idioms

We can think of this book, then, as presenting some of the most important
patterns supporting Artificial Intelligence programming, and demonstrating
their implementation in the appropriate idioms of three major languages.
Although most of these patterns were introduced in this book’s companion
volume, Artificial Intelligence: Structures and Strategies for Complex: Problem Solving
(Luger 2009), it is worthwhile to summarize a subset of them briefly in this
introduction.

Artificial Intelligence rests on two basic ideas: first, representation or the use
of symbol structures to represent problem solving knowledge (state), and
second, search, the systematic consideration of sequences of operations on
these knowledge structures to solve complex problems. Symbolic
computing embraces a family of patterns for representing state and then
manipulating these (symbol) structures, as opposed to only performing
arithmetic calculations on states. Symbolic computing methods are the
foundation of artificial intelligence: in a sense, everything in this book rests
upon them. The recursive list-handling algorithm described above is a
fundamental symbolic computing pattern, as are the basic patterns for tree
and graph manipulation. Lisp was developed expressly as a language for
symbolic computing, and its s-expression representation (see Chapter 11)
has proved general, powerful and long-lived.

As we develop the examples of this book, pay close attention to how these
simple patterns of list, tree, and graph manipulation combine to form the
mote complex, problem specific patterns described below.

Search in Al is also fundamental and complementary to representation (as
is emphasized throughout our book. Prolog, in fact, incorporates a form of
search directly into its language semantics. In addition to forming a
foundation of Al, search introduces many of its thorniest problems. In
most interesting problems, search spaces tend to be intractable, and much
of Al theory examines the use of heuristics to control this complexity. As
has been pointed out from the very beginnings of Al (Feigenbaum and
Feldman 1963, Newell and Simon 1976) support of intelligent search
places the greatest demands on Al programming.

Search related design patterns and problems we will examine in this book
include implementations of the basic search algorithms (breadth-first,
depth-first, and best-first), management of search history, and the recovery
of solution paths with the use of those histories.

A particularly interesting search related problem is in the representation

Pattern
Matching

Chapter 1 Idioms, Patterns, and the Master programmer

and generation of problem states. Conceptually, Al search algorithms are
general: they can apply to any search space. Consequently, we will define
general, reusable search “frameworks” that can be applied to a range of
problem representations and operations for generating new states. How
the different programming paradigms address this issue is illuminating in
terms of their language-based idioms.

Lisp makes no syntactic distinction between functions and data structures:
both can be represented as symbol expressions (see s-expression, Chapter
11), and both can be handled identically as Lisp objects. In addition, Lisp
does not enforce strong typing on s-expressions. These two properties of
the language allow us to define a general search algorithm that takes as
parameters the starting problem state, and a list of Lisp functions, often
using the map design pattern described eatlier, for producing child states.

Prolog includes a list representation that is very similar to lists in Lisp, but
differs in having built-in search and pattern matching in a language
supporting direct representation of predicate calculus rules. Implementing
a generalized search framework in Prolog builds on this language’s unique
idioms. We define the operators for generating states as rules, using pattern
matching to determine when these rules apply. Prolog offers explicit meta-
level controls that allow us to direct the pattern matching, and control its
built-in search.

Java presents its own unique idioms for generalizing search. Although Java
provides a “reflection” package that allows us to manipulate its objects,
methods, and their parameters directly, this is not as simple to do as in Lisp
or Prolog. Instead, we will use Java interface definitions to specify the
methods a state object must have at a general level, and define search
algorithms that take as states instances of any class that instantiates the
appropriate interface (see Chapters 22-24).

These three approaches to implementing search are powerful lessons in the
differences in language idioms, and the way they relate to a common set of
design patterns. Although each language implements search in a unique
manner, the basic search algorithms (breadth-, depth-, or best-first) behave
identically in each. Similarly, each search algorithm involves a number of
design patterns, including the management of problem states on a list, the
ordering of the state list to control search, and the application of state-
transition operators to a state to produce its descendants. These design
patterns are clearly present in all algorithms; it is only at the level of
language syntax, semantics, and idioms that these implementations differ.

Pattern matching is another support technology for Al programming that
spawns a number of useful design patterns. Approaches to pattern
matching can vary from checking for identical memory locations, to
comparing simple regular-expressions, to full pattern-based unification
across predicate calculus expressions, see Luger (2009, Section 2.3). Once
again, the differences in the way each language implements pattern
matching illustrate critical differences in their semantic structure and
associated idioms.

Prolog provides unification pattern matching directly in its interpreter:
unification and search on Predicate Calculus based data structures are the

8 PartI: Language Idioms and the Master Programmer

Structured
Types and
Inheritance
(Frames)

Meta-Linguistic
Abstraction

basis of Prolog semantics. Here, the question is not how to implement
pattern matching, but how to use it to control search, the flow of program
execution, and the use of variable bindings to construct problem solutions
as search progresses. In this sense, Prolog gives rise to its own very unique
language idioms.

Lisp, in contrast, requires that we implement unification pattern matching
ourselves. Using its basic symbolic computing capabilities, Lisp makes it
straightforward to match recursively the tree structures that implicitly
define predicate calculus expressions. Here, the main design problem
facing us is the management of variable bindings across the unification
algorithm. Because Lisp is so well suited to this type of implementation,
we can take its implementation of unification as a “reference
implementation” for understanding both Prolog semantics, and the Java
implementation of the same algorithm.

Unlike Lisp, which allows us to use nested s-expressions to define tree
structures, Java is a strongly typed language. Consequently, our Java
implementation will depend upon a number of user-created classes to
define expressions, constants, variables, and variable bindings. As with our
implementation of search, the differences between the Java and Lisp
implementations of pattern matching are interesting examples of the
differences between the two languages, their distinct idioms, and their
differing roles in Al programming.

Although the basic symbolic structures (lists, trees, etc.) supported by all
these languages are at the foundation of Al programming, a major focus of
Al work is on producing representations that reflect the way people think
about problems. This leads to more complex structures that reflect the
organization of taxonomies, similarity relationships, ontologies, and other
cognitive structures. One of the most important of these comes from
frame theory (Minsky 1975; Luger 2009, Section 7.1), and is based on
structured data types (collections of individual attributes combined in a
single object or frame), explicit relationships between objects, and the use of
class inheritance to capture hierarchical organizations of classes and their
attributes.

These representational principles have proved so effective for practical
knowledge representation that they formed the basis of object-otriented
programming: Smalltalk, the CommonLisp Object System libraries
(CLOS), C++, and Java. Just as Prolog bases its organization on predicate
calculus and search, and Lisp builds on (functional) operations on symbolic
structures, so Java builds directly on these ideas of structured
representation and inheritance.

This approach of object-otiented programming undetlies a large number of
design patterns and their associated idioms (Gamma, et al. 1995; Coplein &
Schmidt 1995), as merited by the expressiveness of the approach. In this
book, we will often focus on the use of structured representations not
simply for design of program code, but also as a tool for knowledge
representation.

Meta-linguistic abstraction is one of the most powerful ways of organizing
programs to solve complex problems. In spite of its imposing title, the

Knowledge-
Level Design

Chapter 1 Idioms, Patterns, and the Master programmer

idea behind meta-linguistic abstraction is straightforward: rather than trying
to write a solution to a hard problem in an existing programming language,
use that language to create another language that is better suited to solving
the problem. We have touched on this idea briefly in this introduction in
our mention of general search frameworks, and will develop it throughout
the book (e.g., Chapters 5, 15, 20).

One example of meta-linguistic abstraction that is central to Al is the idea
of an inference engine: a program that takes a declarative representation of
domain knowledge in the form of rules, frames or some other
representation, and applies that knowledge to problems using general
inference algorithms. The commonest example of an inference engine is
found in a rule-based expert system shell. We will develop such a shell,
EXSHELL in Prolog (Chapter 6), Lisp-shell in Lisp (Chapter 17), and an
equivalent system in Java (Chapter 20), providing similar semantics in all
three language environments. This will be a central focus of the book, and
will provide an in-depth comparison of the programming idioms supported
by each of these languages.

This discussion of Al design patterns and language idioms has proceeded
from simple features, such as basic, list-based symbol processing, to more
powerful Al techniques such as frame representations and expert system
shells. In doing so, we are adopting an organization parallel to the
theoretical discussion in Artificial Intelligence: Strategies and Structures for
Complex Problem Solving (Luger 2009). We are building a set of tools for
programming at what Allen Newell (1982) has called the &nowledge level.

Figure 1.1 Levels of a Knowledge-Based System, adapted from Newell
(1982).

Allen Newell (1982) has distinguished between the &nowledge level and the
symbol level in describing an intelligent system. As may be seen in Figure 1.1
(adapted from Newell, 1982), the symbol level is concerned with the
particular formalisms used to represent problem solving knowledge, for
example the predicate calculus. Above this symbol level is the knowledge
level concerned with the knowledge content of the program and the way in
which that knowledge is used.

The distinction between the symbol and knowledge level is reflected in the

10 Part I: Language Idioms and the Master Programmer

architectures of expert systems and other knowledge-based programs (see
Chapters 6, 15, and 25). Since the user will understand these programs in
terms of their knowledge content, these programs must preserve two
invariants: first, as just noted, there must be a knowledge-level
characterization, and second, there must be a clear distinction between this
knowledge and its control. We see this second invariant when we utilize the
production system design pattern in Chapters 6, 15, and 25. Knowledge level
concerns include questions such as: What queries will be made of the
system? What objects and/or relations are important in the domain? How
is new knowledge added to the system? Will information change over time?
How will the system need to reason about its knowledge? Does the
problem domain include missing or uncertain information?

The symbol level, just below the knowledge level, defines the knowledge
representation language, whether it be direct use of the predicate calculus
or production rules. At this level decisions are made about the structures
required to represent and organize knowledge. This separation from the
knowledge level allows the programmer to address such issues as
expressiveness, efficiency, and ease of programming, that are not relevant
to the programs higher level intent and behavior.

The implementation of the algorithm and data structure level constitutes a still
lower level of program organization, and defines an additional set of design
considerations. For instance, the behavior of a logic-based or function-
based program should be unaffected by the use of a hash table, heap, or
binary tree for implementing its symbol tables. These are implementation
decisions and invisible at higher levels. In fact, most of the techniques used
to implement representation languages for Al are common computer
science techniques, including binary trees and tables and an important
component of the knowledge-level design hypothesis is that they be hidden
from the programmer.

In thinking of knowledge level programming, we are defining a hierarchy
that uses basic programming language constructs to create more
sophisticated symbol processing languages, and uses these symbolic
languages to capture knowledge of complex problem domains. This is a
natural hierarchy that moves from machine models that reflect an
undetlying computer architecture of variables, assignments and processes,
to a symbolic layer that works with more abstract ideas of symbolic
representation and inference. The knowledge level looks beyond symbolic
form to the semantics of problem solving domains and their associated
knowledge relationships.

The importance of this multi-level approach to system design cannot be
overemphasized: it allows a programmer to ignore the complexity hidden
at lower levels and focus on issues appropriate to the current level of
abstraction. It allows the theoretical foundations of artificial intelligence to
be kept free of the nuances of a particular implementation or programming
language. It allows us to modify an implementation, improving its
efficiency or porting it to another machine, without affecting its
specification and behavior at higher levels. But the Al programmer begins
addressing the problem-solving task from the programming language level.

1.3

Logic
Programming
in Prolog

Chapter 1 Idioms, Patterns, and the Master programmer

In fact, we may characterize the programmer’s ability to use design patterns
and their associated idioms as her ability to bridge and link the algorithms
and data structures afforded by different language paradigms with the
symbol level in the process of building expressive knowledge-intensive
programs.

To a large extent, then, our goal in writing this book is to give the reader
the intellectual tools for programming at the knowledge level. Just as an
experienced musician thinks past the problems of articulating individual
notes and chords on their instrument to the challenges of harmonic and
thythmic structure in a composition, or an architect looks beyond the
layout of floor plans to ways buildings will interact with their occupants
over time, we believe the goal of a programmer’s development is to think
of computer programs in terms of the knowledge they incorporate, and the
way they engage human beings in the patterns of their work,
communication and relationships. Becoming the “master programmer” we
mentioned earlier in this introduction requires the ability to think in terms
of the human activities a program will support, and simultaneously to
understand the many levels of abstraction, algorithms, and data structures
that lie between those activities and the comparatively barren structures of
the “raw” programming language

A Brief History of Three Programming Paradigms

We conclude this chapter by giving a brief description of the origins of the
three programming languages we present. We also give a cursory
description of the three paradigms these languages represent. These details
are precursors of and an introduction to the material presented in the next
three parts of this book.

Like Lisp, Prolog gains much of its power and elegance from its
foundations in mathematics. In the case of Prolog, those foundations are
predicate logic and resolution theorem proving. Of the three languages
presented in this book, Prolog may well seem unusual to most
programmers in that it is a declarative, rather than procedural, language. A
Prolog program is simply a statement, in first-order predicate calculus, of
the logical conditions a solution to a problem must satisfy. The declarative
semantics do not tell the computer what to do, only the conditions a
solution must satisfy. Execution of a Prolog program relies on search to
find a set of variable bindings that satisfy the conditions stated in the
particular goals required by the program. This declarative semantics makes
Prolog extremely powerful for a large class of problems that are of
particular interest to Al. These include constraint satisfaction problems,
natural language parsing, and many search problems, as will be
demonstrated in Part II.

A logic program is a set of specifications in formal logic; Prolog uses the
first-order predicate calculus. Indeed, the name itself comes from
programming in logic. An interpreter executes the program by
systematically making inferences from logic specifications. The idea of
using the representational power of the first-order predicate calculus to
express specifications for problem solving is one of the central

11

12 Part I: Language Idioms and the Master Programmer

Functional
Programming
in Lisp

contributions Prolog has made to computer science in general and to
artificial intelligence in particular. The benefits of using first-order
predicate calculus for a programming language include a clean and elegant
syntax and a well-defined semantics.

The implementation of Prolog has its roots in research on theorem proving
by J.A. Robinson (Robinson 1965), especially the creation of algorithms for
resolution refutation systems. Robinson designed a proof procedure called
resolution, which is the primary method for computing with Prolog. For a
mote complete description of resolution refutation systems and of Prolog
as Horn clause refutation, see Luger (2009, Chapter 14).

Because of these features, Prolog has proved to be a useful vehicle for
investigating such experimental programming issues as automatic code
generation, program vetification, and design of high-level specification
languages. As noted above, Prolog and other logic-based languages support
a declarative programming style—that is, constructing a program in terms
of high-level descriptions of a problem’s constraints—rather than a
procedural programming style—writing programs as a sequence of
instructions for performing an algorithm. This mode of programming
essentially tells the computer “what is true” and “what needs to be proven
(the goals)” rather than “how to do it.” This allows programmers to focus
on problem solving as creating sets of specifications for a domain rather
than the details of writing low-level algorithmic instructions for “what to
do next.”

The first Prolog program was written in Marseille, France, in the early
1970s as part of a project in natural language understanding (Colmerauer,
Kanoui et al. 1973, Roussel 1975, Kowalski 1979). The theoretical
background for the language is discussed in the work of Kowalski, Hayes,
and others (Hayes 1977, Kowalski 1979, Kowalski 1979, Lloyd 1984). The
major development of the Prolog language was carried out from 1975 to
1979 at the Department of Artificial Intelligence of the University of
Edinburgh. The people at Edinburgh responsible for the first “road
worthy” implementation of Prolog were David H.D. Warren and Fernando
Pereira. They produced the first Prolog interpreter robust enough for
delivery to the general computing community. This product was built using
the “C” language on the DEC-system 10 and could operate in both
interpretive and compiled modes (Warren, Pereira, et al. 1979).

Further descriptions of this eatly code and comparisons of Prolog with
Lisp may be found in Warren et al. (Warren, Pereira, et al. 1977). This
“Warren and Pereira” Prolog became the early standard. The book
Programming in Prolog (Clocksin and Mellish 1984, now in its fifth edition)
was created by two other researchers at the Department of Artificial
Intelligence, Bill Clocksin and Chris Mellish. This book quickly became the
chief vehicle for delivering Prolog to the computing community. We use
this standard, which has come to be known as Edinburgh Prolog. In fact,
all the Prolog code in this book may be run on the public domain
interpreter SWI-Prolog (to find, Google on swi-prolog).

Lisp was arguably the first programming language to ground its semantics
in mathematical theory: the theory of partial recursive functions (McCarthy

Chapter 1 Idioms, Patterns, and the Master programmer

1960, Church 1941). In contrast to most of its contemporaries, which
essentially presented the architecture of the underlying computer in a
higher-level form, this mathematical grounding has given Lisp unusual
power, durability and influence. Ideas such as list-based data structures,
functional programming, and dynamic binding, which are now accepted
features of mainstream programming languages can trace their origins to
earlier work in Lisp. Meta-circular definition, in which compilers and
interpreters for a language are written in a core version of the language
itself, was the basis of the first, and subsequent Lisp implementations. This
approach, still revolutionary after more than fifty years, replaces
cumbersome language specifications with an elegant, formal, public,
testable meta-language kernel that supports the continued growth and
refinement of the language.

Lisp was first proposed by John McCarthy in the late 1950s. The language
was originally intended as an alternative model of computation based on
the theory of recursive functions. In an early paper, McCarthy (McCarthy
1960) outlined his goals: to create a language for symbolic rather than
numeric computation, to implement a model of computation based on the
theory of recursive functions (Church 1941), to provide a clear definition
of the language’s syntax and semantics, and to demonstrate formally the
completeness of this computational model. Although Lisp is one of the
oldest computing languages still in active use (along with FORTRAN and
COBOL), the careful thought given to its original design and the
extensions made to the language through its history have kept it in the
vanguard of programming languages. In fact, this programming model has
proved so effective that a number of other languages have been based on
functional programming, including SCHEME, SML-NJ, FP, and OCAML.
In fact, several of these newer languages, e¢.g., SCHEME and SML-NJ,
have been designed specifically to reclaim the semantic clarity of the eatlier
versions of Lisp.

The list is the basis of both programs and data structures in Lisp: Lisp is an
acronym for list processing. Lisp provides a powerful set of list-handling
functions implemented internally as linked pointer structures. Lisp gives
programmers the full power and generality of linked data structures while
freeing them, with real-time garbage collection, from the responsibility for
explicitly managing pointers and pointer operations.

Originally, Lisp was a compact language, consisting of functions for
constructing and accessing lists (car, cdr, cons), defining new functions
(defun), detecting equality (eq), and evaluating expressions (quote,
eval). The only means for building program control were recursion and a
single conditional. More complicated functions, when needed, were
defined in terms of these primitives. Through time, the best of these new
functions became part of the language itself. This process of extending the
language by adding new functions led to the development of numerous
dialects of Lisp, often including hundreds of specialized functions for data
structuring, program control, real and integer arithmetic, input/output
(I/0), editing Lisp functions, and tracing program execution. These
dialects are the vehicle by which Lisp has evolved from a simple and
elegant theoretical model of computing into a rich, powerful, and practical

13

14 Part I: Language Idioms and the Master Programmer

Object-
Oriented
Programming
in Java

environment for building large software systems. Because of the
proliferation of eatly Lisp dialects, the Defense Advanced Research
Projects Agency in 1983 proposed a standard dialect for the language,
known as Common Lisp.

Although Common Lisp has emerged as the lingua franca of Lisp dialects,
a number of simpler dialects continue to be widely used. One of the most
important of these is SCHEME, an elegant rethinking of the language that
has been used both for Al development and for teaching the fundamental
concepts of computer science. The dialect we use throughout the
remainder of our book is Common Lisp. All our code may be run on a
current public domain interpreter built by Carnegie Mellon University,
called CMUCL (Google CMUCL).

Java is the third language considered in this book. Although it does not
have Lisp or Prolog’s long historical association with Artificial Intelligence,
it has become extremely important as a tool for delivering practical Al
applications. There are two primary reasons for this. The first is Java’s
elegant, dynamic implementation of object-oriented programming, a
programming paradigm with its roots in Al, that has proven its power for
use building Al programs through Smalltalk, Flavors, the Common Lisp
Object System (CLOS), and other object-oriented systems. The second
reason for Java’s importance to Al is that it has emerged as a primary
language for delivering tools and content over the world-wide-web. Java’s
ease of programming and the large amounts of reusable code available to
programmers greatly simplify the coding of complex programs involving
Al techniques. We demonstrate this in the final chapters of Part I'V.

Object-oriented programming is based on the idea that programs can be
best modularized in terms of objects: encapsulated structures of data and
functionality that can be referenced and manipulated as a unit. The power
of this programming model is enhanced by inheritance, or the ability to
define sub-classes of more general objects that inherit and modify their
functionality, and the subtle control object-oriented languages provide over
the scoping of variables and functions alike.

The first language to build object-oriented representations was created in
Norway in the 1960s. Simula-67 was, appropriately, a simulation language.
Simulation is a natural application of object-oriented programming that
language objects are used to represent objects in the domain being
simulated. Indeed, this ability to easily define isomorphisms between the
representations in an object-otiented program and a simulation domain has
carried over into modern object-oriented programming style, where
programmers are encouraged to model domain objects and their
interactions directly in their code.

Perhaps the most elegant formulation of the object-oriented model is in
the Smalltalk programming language, built at Xerox PARC in the early
1970s. Smalltalk not only presented a very pure form of object-oriented
programming, but also used it as a tool for graphics programming. Many of
the ideas now central to graphics interfaces, such as manipulable screen
objects, event driven interaction, and so on, found their eatly
implementation in the Smalltalk language. Other, later implementations of

14

Chapter 1 Idioms, Patterns, and the Master programmer

object-programming include C++, Objective C, C#, and the Common
Lisp Object System. The success of the model has made it rare to find a
programming language that does not incorporate at least some object-
oriented ideas.

Our first introduction of object-oriented languages is with the Common
Lisp Object System in Chapter 18 of Part III. However, in Part IV, we
have chosen Java to present the use of object-oriented tools for Al
programming. Java offers an elegant implementation of object-orientation
that implements single inheritance, dynamic binding, interface definitions,
packages, and other object concepts in a language syntax that most
programmers will find natural. Java is also widely supported and
documented.

The primary reason, however, for including Java in this book is its great
success as a practical programming language for a large number and vatiety
of applications, most notably those on the world-wide-web. One of the
great benefits of object-oriented programming languages is that the ability
to define objects combining data and related methods in a single structure
encourages the development of reusable software objects.

Although Java is, at its core, a relatively simple language, the efforts of
thousands of programmers have led to large amounts of high-quality, often
open source, Java code. This includes code for networking, graphics,
processing html and XML, security, and other techniques for programming
on the world-wide-web. We will examine a number of public domain Java
tools for Al, such as expert system rule engines, machine learning
algorithms, and natural language parsers. In addition, the modularity and
control of the object-oriented model supports the development of large
programs. This has led to the embedding of Al techniques in larger and
indeed more ordinary programs. We see Java as an essential language for
delivering Al in practical contexts, and will discuss the Java language in this
context. In this book we refer primarily to public domain interpreters most
of which are easily web accessible.

A Summary of Our Task

We hope that in reading this introductory chapter, you have come to see
that our goal in writing this book is not simply to present basic
implementation strategies for major Artificial Intelligence algorithms.
Rather, our goal is to look at programming languages as tools for the
intellectual activities of design, knowledge modeling, and system
development.

Computer programming has long been the focus both for scientific theory
and engineering practice. These disciplines have given us powerful tools
for the definition and analysis of algorithms and for the practical
management of large and small programming projects. In writing this
book, it has been our overarching goal to provide a third perspective on
programming languages: as tools for the art of designing systems to
supportt people in their thinking, communication, and work.

It is in this third perspective that the ideas of idioms and patterns become

15

16 Part I: Language Idioms and the Master Programmer

important. It is not our goal simply to present examples of artificial
intelligence algorithms that can be reused in a narrow range of situations.
Our goal is to use these algorithms — with all their complexity and
challenges — to help programmers build a repertoire of patterns and idioms
that can serve well across a wide range of practical problem solving
situations. The examples of this book are not ends in themselves; they are
only small steps in the maturation of the master programmer. Our goal is
to see them as starting points for developing programmers’ skills. We hope
you will share our enthusiasm for these remarkable artist’s tools and the
design patterns and idioms they both enable and support.

PART II: Programming in Prolog

The only way to rectify onr reasonings is to make them as tangible as those of the mathematicians, so that
we can find our error at a glance, and when there are disputes among persons we can simply say, “Let us
calenlate. .. to see who is right.”

—Leibniz, The Art of Discovery

As an implementation of logic programming, Prolog makes many
important contributions to Al problem solving. First and foremost, is its
direct and transparent representation and interpretation of predicate
calculus expressions. The predicate calculus has been an important
representational scheme in Al from the beginning, used everywhere from
automated reasoning to robotics research. A second contribution to Al is
the ability to create meta-predicates or predicates that can constrain,
manipulate, and interpret other predicates. This makes Prolog ideal for
creating meta-interpreters or interpreters written in Prolog that can
interpret subsets of Prolog code. We will do this many times in the
following chapters, writing interpreters for expert rule systems, exshell,
interpreters for machine learning using version space search and
explanation based learning models, and deterministic and stochastic natural
language parsers.

Most importantly Prolog has a declarative semantics, a means of directly
expressing problem relationships in Al. Prolog also has built-in unification,
some high- powered techniques for pattern matching and a depth-first left
to right search. For a full description of Prolog representation, unification,
and search as well as Prolog interpreter compared to an automated
theorem prover, we recommend Luger (2009, Section 14.3) or references
mentioned in Chapter 10. We will also address many of the important
issues of Prolog and logic programming for artificial intelligence
applications in the chapters that make up Part 1.

In Chapter 2 we present the basic Prolog syntax and several simple
programs. These programs demonstrate the use of the predicate calculus as
a representation language. We show how to monitor the Prolog
environment and demonstrate the use of the e with Prolog’s built in
depth-first left-to-right search. We also present simple structured
representations including semantic nets and frames and present a simple
recursive algorithm that implements inheritance search.

In Chapter 3 we create abstract data types (ADTs) in Prolog. These ADTs
include stacks, guenes, priority quenes, and sets. These data types are the basis
for many of the search and control algorithms in the remainder of Part II.

18 Part II Programming in Prolog

In particular, they are used to build a production systemr in Chapter 4, which
can perform depth-first, breadth-first, and best-first ot henristic search. They also
are critical to algorithms later in Part II including building planners,
parsers, and algorithms for machine learning.

In Chapter 5 we begin to present the family of design patterns expressed
through building meta-interpreters. But first we consider a number of
important Prolog meta-predicates, predicates whose domains of interpretation
are Prolog expressions themselves. For example, atom(X) succeeds if X is
bound to an atom, that is if X is instantiated at the time of the atom(X)
test. Meta-predicates may also be used for imposing type constraints on
Prolog interpretations, and we present a small database that enforces
Prolog typing constraints.

In Chapter 6 meta-predicates are used for designing meta-interprefers in
Prolog. We begin by building a Prolog interpreter in Prolog. We extend
this interpreter to rule-based expert system processing with exshell and
then build a robot planner using add- and delete-lists along the lines of the
older STRIPS problem solver (Fikes and Nilsson 1972, Nilsson 1980).

In Chapter 7 we demonstrate Prolog as a language for machine learning,
with the design of meta-interpreters for version space search and explanation-
based learning. In Chapter 8 we build a number of natural language
parsers/generators in Prolog, including context-free, context-sensitive,
probabilistic, and a recursive descent semantic net parser.

In Chapter 9 we present the Earley parser, a form of chart parsing, an
important contribution to interpreting natural language structures. The
Earley algorithm is built on ideas from dynamic programming (Luger 2009,
Section 4.1.2 and 15.2.2) where the chart captures sub-parse components
as they are generated while the algorithm moves across the words of the
sentence. Possible parses of the sentence are retrieved from the chart after
completion of its left-to-right generation of the chart.

Part II ends with Chapter 10 where we return to the discussion of the
general issues of programming in logic, the design of meta-interpreters, and
issues related to procedural versus declarative representation for problem
solving. We end Chapter 10 presenting an extensive list of references on
the Prolog language.

2

Chapter
Objectives

Chapter
Contents

Prolog: Representation

Prolog’s fundamental representations are described and built:
Facts
Rules
The and, or, not, and imply connectives
The environment for Prolog is presented:
The program as a data base of facts and relations between facts
Predicates are for creating and modifying this data base
Prolog’s procedural semantics is described with examples
Pattern-matching
Left-to-right depth-first search
Backtracking on variable bindings
The built-in predicates for monitoring Prolog’s execution ate presented
spy and trace
The list representation and recursive search are introduced
Examples of member check and writing out lists
Representations for structured hierarchies are created in Prolog
Semantic net and frame systems
Inherited properties determined through recursive (tree) search

2.1 Introduction: Logic-Based Representation

2.2 Syntax for Predicate Calculus Programming

2.3 Creating, Changing and Tracing a Prolog Computation

2.4 Lists and Recursion in Prolog

2.5 Structured Representations and Inheritance Search in Prolog

2.1

Prolog and
Logic

Introduction: Logic-Based Representation

Prolog is a computer language that uses many of the representational
strengths of the First-Order Predicate Calculus (Luger 2009, Chapter 2).
Because Prolog has this representational power it can express general
relationships between entities. This allows expressions such as “all females
are intelligent” rather than the limited representations of the propositional
calculus: “Kate is intelligent”, “Sarah is intelligent”, “Karen is intelligent”,
and so on for a very long time!

As in the Predicate Calculus, predicates offer the primary (and only)
representational structure in Prolog. Predicates can have zero or more
arguments, where their arty is the number of arguments. Functions may
only be represented as the argument of a predicate; they cannot be a
program statement in themselves. Prolog predicates have the usual and,
or, not and implies connectives. The predicate representation along
with its connectives is presented in Section 2.2.

19

20

Part II: Programming in Prolog

2.2

Facts, Rules
and
Connectives

Prolog also takes on many of the declarative aspects of the Predicate
Calculus in the sense that a program is simply the set of all true predicates
that describe a domain. The Prolog interpreter can be seen as a “theorem
prover” that takes the uset’s query and determines whether or not it is true,
as well as what variable substitutions might be required to make the query
true. If the query is not true in the context of the program’s specifications,
the interpreter says “no.”

Prolog Syntax

Although there are numerous dialects of Prolog, the syntax used
throughout this text is that of the original Warren and Pereira C-Prolog as
described by Clocksin and Mellish (2003). We begin with the set of
connectives that can take atomic predicates and join them with other
expressions to make more complex relationships. There are, because of the
usual keyboard conventions, a number of differences between Prolog and
predicate calculus syntax. In C-Prolog, for example, the symbol :- replaces
the € of first-order predicate calculus. The Prolog connectives include:

ENGLISH PREDICATE CALCULUS Prolog
and A :

or v ;

only if < -

not ~ not

In Prolog, predicate names and bound variables are expressed as a
sequence of alphanumeric characters beginning with an alphabetic.
Variables are represented as a string of alphanumeric characters beginning
(the first character, at least) with an uppercase alphabetic. Thus:

likes (X, susie).
or, bettet,
likes (Everyone, susie).

could represent the fact that “everyone likes Susie.” Note that the scope of
all variables is universal to that predicate, i.e., when a vatiable is used in a
predicate it is understood that it is true for all the domain elements within
its scope. For example,

likes(george, Y), likes(susie, Y).
represents the set of things (or people) liked by BOTH George and Susie.

Similarly, suppose it was desired to represent in Prolog the following
relationships: “George likes Kate and George likes Susie.” This could be
stated as:

likes(george, kate), likes(george, susie).
Likewise, “George likes Kate or George likes Susie™:

likes(george, kate); likes(george, susie).
Finally, “George likes Susie if George does not like Kate”:

likes(george, susie) :- not(likes(george, kate)).

A Simple
Prolog
Program

Chapter 2 Prolog: Representation 21

These examples show how the predicate calculus connectives ate expressed
in Prolog. The predicate names (likes), the number or order of parameters,
and even whether a given predicate always has the same number of
parameters are determined by the design requirements (the implicit
“semantics”) of the problem.

The form Prolog expressions take, as in the examples above, is a restricted
form of the full predicate calculus called the “Horn Clause calculus.” There
are many reasons supporting this restricted form, most important is the
power and computational efficiency of a resolution refutation system. For details
see Luger (2009, Chapter 14).

A Prolog program is a set of specifications in the first-order predicate
calculus describing the objects and relations in a problem domain. The set
of specifications is referred to as the database for that problem. The Prolog
interpreter responds to questions about this set of specifications. Queries to
the database are patterns in the same logical syntax as the database entries.
The Prolog interpreter uses pattern-directed search to find whether these
queties logically follow from the contents of the database.

The interpreter processes queries, searching the database in left to right
depth-first order to find out whether the query is a logical consequence of
the database of specifications. Prolog is primarily an interpreted language.
Some versions of Prolog run in interpretive mode only, while others allow
compilation of part or all of the set of specifications for faster execution.
Prolog is an interactive language; the user enters queries in response to the
Prolog prompt, “?-.
Let us describe a “world” consisting of George’s, Kate’s, and Susie’s likes
and dislikes. The database might contain the following set of predicates:

likes(george, kate).

likes(george, susie).

likes(george, wine).

likes(susie, wine).

likes(kate, gin).

likes(kate, susie).
This set of specifications has the obvious interpretation, or mapping, into

the world of George and his friends. That world is a mode/ for the database
(Luger 2009, Section 2.3). The interpreter may then be asked questions:

?- likes(george, kate).
Yes
?- likes(kate, susie).
Yes

?- likes(george, X).

X = kate
7
X = Susie
7
X = wine

22

Part II: Programming in Prolog

i
no
?- likes(george, beer).
no

Note first that in the request 1ikes(george, X), successive user
prompts (;) cause the interpreter to return all the terms in the database
specification that may be substituted for the X in the query. They ate
returned in the order in which they are found in the database: kate before
susie before wine. Although it goes against the philosophy of
nonprocedural specifications, a determined order of evaluation is a
property of most interpreters implemented on sequential machines.

To summarize: further responses to queries are produced when the user
prompts with the ; (or). This forces the rejection of the current solution
and a backtrack on the set of Prolog specifications for answers. Continued
prompts force Prolog to find all possible solutions to the query. When no
further solutions exist, the interpreter responds no.

This example also illustrates the closed world assumption ot negation as failure.
Prolog assumes that “anything is false whose opposite is not provably
true.” For the query 1ikes (george, beer), the interpreter looks for
the predicate likes(george, beer) or some rule that could
establish 1ikes (george, beer). Failing this, the request is false.
Prolog assumes that all knowledge of the wozld is present in the database.

The closed wotld assumption introduces a number of practical and
philosophical difficulties in the language. For example, failure to include a
fact in the database often means that its truth is unknown; the closed world
assumption treats it as false. If a predicate were omitted or there were a
misspelling, such as 1ikes (george, beeer), the response remains
no. Negation-as-failure issue is an important topic in Al research. Though
negation-as-failure is a simple way to deal with the problem of unspecified
knowledge, more sophisticated approaches, such as multi-valued logics
(true, false, unknown) and nonmonotonic reasoning (see Luger
2009, Section 9.1), provide a richer interpretive context.

The Prolog expressions just seen are examples of fact specifications. Prolog
also supports rule predicates to describe relationships between facts. We use
the logical implication :— . For rules, only one predicate is permitted on
the left-hand side of the 7/ symbol : -, and this predicate must be a positive
literal, which means it cannot have not in front of it. All predicate calculus
expressions that contain logical implication must be reduced to this form,
referred to as Homn clause logic. In Horn clause form, the left-hand side
(conclusion) of an implication must be a single positive literal. The Horn
clause calenlus is equivalent to the full first-order predicate calculus for proofs
by refutation (Luger 2009, Chapter 14).

Suppose we add to the specifications of the previous database a rule for
determining whether two people are friends. This may be defined:

friends (X, Y) :- likes(X, Z), likes(Y, Z2).
This expression might be interpreted as “X and Y are friends if there exists
a Z such that X likes Z and Y likes Z.” Two issues are important here. First,

Chapter 2 Prolog: Representation 23

because neither the predicate calculus nor Prolog has global variables, the
scopes (extent of definition) of X, Y, and Z are limited to the friends
rule. Second, values bound to, or unified with, X, Y, and Z are consistent
across the entire expression. The treatment of the friends rule by the
Prolog interpreter is seen in the following example.

With the friends rule added to the set of specifications of the preceding
example, we can query the interpreter:

?- friends(george, susie).
yes

To solve this query, Prolog searches the database using the backtrack
algorithm. Briefly, backtrack examines each predicate specification in the
order that it was placed in the Prolog. If the variable bindings of the
specification satisfy the query it accepts them. If they don’t, the interpreter
goes on to the next specification. If the interpreter runs into a dead end,
i.e., no variable substitution satisfies it, then it backs up looking for other
variable bindings for the predicates it has already satisfied. For example,
using the predicate specifications of our current example, the query
friends(george, susie) is unified with the conclusion of the rule
friends(X, Y) :- likes(X, Z), likes(Y, Z), with X as
george and Y as susie. The interpreter looks for a Z such that
likes(george, 1Z) is true and uses the first fact, with Z as kate.

The interpreter then tries to determine whether likes(susie,
kate) is true. When it is found to be false, using the closed world
assumption, this value for Z (kate) is rejected. The interpreter backtracks
to find a second value for Z. likes (george, Z) then matches the
second fact, with Z bound to susie. The interpreter then tries to match
likes(susie, susie). When this also fails, the interpreter goes
back to the database for yet another value for Z. This time wine is found
in the third predicate, and the interpreter goes on to show that
likes(susie, wine) is true. In this case wine is the binding that
ties george and susie.

It is important to state the relationship between universal and existential
quantification in the predicate calculus and the treatment of variables in a
Prolog program. When a variable is placed in the specifications of a Prolog
database, it is universally quantified. For example, 1ikes (susie, Y)
means, according to the semantics of the previous examples, “Susie likes
everyone.” In the course of interpreting a query, any term, or list, or
predicate from the domain of ¥, may be bound to Y. Similarly, in the rule
friends(X, Y) :- likes(X, Z), likes(Y, Z),anyX,Y,
and Z that meets the specifications of the expression are used.

To represent an existentially quantified variable in Prolog, we may take two
approaches. First, if the existential value of a variable is known, that value
may be entered directly into the database. Thus, likes(george,
wine) is an instance of 1ikes (george, Z).

Second, to find an instance of a variable that makes an expression true, we
query the interpreter. For example, to find whether a Z exists such that
likes(george, Z) is true, we put this query to the interpreter. It will

24

Part II: Programming in Prolog

2.3

find whether a value of Z exists under which the expression is true. Some
Prolog interpreters find all existentially quantified values; C-Prolog requires
repeated user prompts (;), as shown previously, to get all values.

Creating, Changing, and Tracing a Prolog Computation

In building a Prolog program the database of specifications is created first.
In an interactive environment the predicate assert can be used to add
new predicates to the set of specifications. Thus:

?- assert(likes(david, sarah)).

adds this predicate to the computing specifications. Now, with the query:
?- likes(david, X).
X = sarah.

is returned. assert allows further control in adding new specifications to
the database: asserta (P) asserts the predicate P at the beginning of all
the predicates P, and assertz (P) adds P at the end of all the predicates
named P. This is important for search priorities and building heuristics. To
remove a predicate P from the database retract (P) is used. (It should
be noted that in many Prologs assert can be unpredictable in that the
exact entry time of the new predicate into the environment can vary
depending on what other things are going on, affecting both the indexing
of asserted clauses as well as backtracking.)

It soon becomes tedious to create a set of specifications using the
predicates assert and retract. Instead, the good programmer takes
her favorite editor and creates a file containing all the Prolog program’s
specifications. Once this file is created, call it myfile, and Prolog is
called, then the file is placed in the database by the Prolog command
consult. Thus:

?- consult(myfile).
yes
integrates the predicates in myfile into the database. A short form of the

consult predicate, and better for adding multiple files to the database,
uses the list notation, to be seen shortly:

?- [myfile].
yes

If there are any syntax errors in your Prolog code the consult operator
will describe them at the time it is called.

The predicates read and write are important for user/system
communication. read (X) takes the next term from the current input
stteam and binds it to X. Input expressions are terminated with a “.”
write(X) puts X in the output stream. If X is unbound then an integer
preceded by an underline is printed (_69). This integer represents the
internal bookkeeping on variables necessary in a theorem-proving
environment (see Luger 2009, Chapter 14).

The Prolog predicates see and tell are used to read information from
and place information into files. see (X) opens the file X and defines the
current input stream as originating in X. If X is not bound to an available

2.4

Chapter 2 Prolog: Representation 25

file see(X) fails. Similarly, tell (X) opens a file for the output stream.
If no file X exists, tell (X) creates a file named by the bound value of X.
seen(X) and told(X) close the respective files.

A number of Prolog predicates are important in helping keep track of the
state of the Prolog database as well as the state of computing about the
database; the most important of these are 1isting, trace, and spy. If
we use listing(predicate name) where predicate name is
the name of a predicate, such as friends (above), all the clauses with
that predicate name in the database are returned by the interpreter. Note
that the number of arguments of the predicate is not indicated; in fact, all
uses of the predicate, regardless of the number of arguments, are returned.

trace allows the user to monitor the progress of the Prolog interpreter.
This monitoring is accomplished by printing to the output file every goal
that Prolog attempts, which is often more information than the user wants
to have. The tracing facilities in Prolog are often rather cryptic and take
some study and experience to understand. The information available in a
trace of a Prolog program usually includes the following:

The depth level of recursive calls (marked left to right on line).
When a goal is tried for the first time (sometimes call is used).
When a goal is successfully satisfied (with an exit).

When a goal has further matches possible (a retry).

When a goal fails because all attempts to satisfy it have failed
The goal notrace stops the exhaustive tracing.

When a more selective trace is required the goal spy is useful. This
predicate takes a predicate name as argument but sometimes is defined as a
prefix operator where the predicate to be monitored is listed after the
operator. Thus, spy member causes the interpreter to print to output all
uses of the predicate member. spy can also take a list of predicates
followed by their arities: spy[member/2, append/3] monitors
member with two arguments and append with three. nospy removes
these spy points.

Lists and Recursion in Prolog

The previous subsections presented Prolog syntax with several simple
examples. These examples introduced Prolog as an engine for computing
with predicate calculus expressions (in Horn clause form). This is
consistent with all the principles of predicate calculus inference presented
in Luger (2009, Chapter 2). Prolog uses unification for pattern matching
and returns the bindings that make an expression true. These values are
unified with the variables in a particular expression and are not bound in
the global environment.

Recursion is the primary control mechanism for Prolog programming. We
will demonstrate this with several examples. But first we consider some
simple list-processing examples. The list is a data structure consisting of
ordered sets of elements (or, indeed, lists). Recursion is the natural way to
process the list structure. Unification and recursion come together in list

26

Part II: Programming in Prolog

processing in Prolog. The set of elements of a list are enclosed by brackets,
[], and are separated by commas. Examples of Prolog lists are:
(1, 2, 3, 4]
[[george, kate], [allen, amy], [richard, shirley]]
[tom, dick, harry, fred]

[]

The first elements of a list may be separated from the tail of the list by the
bar operator, |. The tail of a list is the list with its first element removed.
For instance, when the list is [tom,dick,harry,fred], the first
clement is tom and the tail is the list [dick, harry, fred]. Using
the vertical bar operator and unification, we can break a list into its
components:

If [tom, dick, harry, fred] is matched to [X | Y],

then X = tom and Y = [dick, harry, fred].

If [tom,dick,harry,fred] is matched to the pattern
[X, Y | 2], then X = tom , Y = dick , and 2z =
[harry, fred].

If [tom, dick, harry, fred] is matched to [X, Y, Z |
W], then X = tom, Y = dick, Z2 = harry, and W =
[fred].

If [tom, dick, harry, fred] is matched to [W, X, Y,
Z | V], then W = tom, X = dick, Y = harry, Z = fred,
and V. = [].

[tom, dick, harry, fred] will not match [V, W, X, Y,
z | ul.

[tom, dick, harry, fred] will match [tom, X |
[harry, fred]], to give X = dick.

Besides “tearing lists apart” to get at particular elements, unification can be
used to “build” the list structure. For example, if X = tom, ¥ =
[dick] when L unifies with [X | Y], then L will be bound to [tom,
dick]. Thus terms separated by commas before the | are all elements of
the list, and the structure after the | is always a list, the tail of the list.

Let’s take a simple example of recursive processing of lists: the member
check. We define a predicate to determine whether an item, represented by
X, is in a list. This predicate member takes two arguments, an element and
a list, and is true if the element is a member of the list. For example:

?- member(a, [a, b, ¢, d, e]).
yes

?- member(a, [1, 2, 3, 4]).

no

?- member(X, [a, b, c]).

X = a

7
X =D

~e

>
I
Q

Chapter 2 Prolog: Representation 27

4

no
To define member recursively, we first test if X is the first item in the list:
member (X, [X | T]).

This tests whether X and the first element of the list are identical. Not that
this pattern will match no matter what X is bound to: an atom, a list,
whatevet! If the two are not identical, then it is natural to check whether X
is an element of the rest (T) of the list. This is defined by:

member (X, [Y | T]) :- member(X, T).

The two lines of Prolog for checking list membership are then:
member (X, [X | T]).
member (X, [Y | T]) :- member(X, T).

This example illustrates the importance of Prolog’s built-in order of search
with the terminating condition placed before the recursive call, that is, to be
tested before the algorithm recurs. If the order of the predicates is reversed,
the terminating condition may never be checked. We now trace
member (c, [a,b,c]), with numbering:
1: member (X, [X | T1).
2: member (X, [Y | T]) :- member(X, T).
?- member(c, [a, b, c]).
call 1. fail, since c <> a
call 2. X =¢, ¥Y=a, T = [b, c],
member(c, | [b,c])?
call 1. fail, since ¢ <> Db
call 2. X =¢, Y=Db, T = [c],
member(c, | [c])?
call 1. success, ¢ = c
yes (to second call 2.)
yes (to first call 2.)
yes
Good Prolog style suggests the use of anonymons variables. These serve as an
indication to the programmer and interpreter that certain variables are used
solely for pattern-matching purposes, with the variable binding itself not
part of the computation process. Thus, when we test whether the element
X is the same as the first item in the list we usually say: member (X,
[X| _1). The use of the _ indicates that even though the tail of the list
plays a crucial part in the unification of the query, the content of the tail of
the list is unimportant. In the member check the anonymous variable
should be used in the recutsive statement as well, where the value of the
head of the list is unimportant:

member (X, [X | _1).
member(X, [_ | T]) :- member(X, T).
Writing out a list one element to a line is a nice exercise for understanding

both lists and recursive control. Suppose we wish to write out the list
[a,b,c,d]. We could define the recursive command:

writelist([1).
writelist([H | T]) :- write(H), nl, writelist(T).

28 Part II: Programming in Prolog

2.5

Semantic Nets
in Prolog

This predicate writes one element of the list on each line, as nl requires the
output stream controller to begin a new line.

If we wish to write out a list in reversed order the recursive predicate must
come before the write command. This guarantees that the list is
traversed to the end before any element is written. At that time the last
element of the list is written followed by each preceding element as the
recursive control comes back up to the top. A reverse write of a list would

be:

reverse _writelist([]).
reverse writelist([H | T]) :- reverse writelist(T),
write(H), nl.
The reader should run writelist and reverse writelist with
trace to obsetrve the behavior of these predicates.

Structured Representations and Inheritance Search

Structured representations are an important component of the Al
representational toolkit (Collins and Quillian 1969, Luger 2009). They also
support many of the design patterns mentioned in Chapter 1. In this and
the following section we consider two structured representations, the
semantic net, and frames that are used almost ubiquitously in Al. We now
propose a simple semantic network representational structure in Prolog and
use recursive search to implement inheritance. Our language ignores the
important distinction between classes and instances. This restriction
simplifies the implementation of inheritance.

In the semantic net of Figure 2.1, nodes represent individuals such as the
canary tweety and classes such as ostrich, crow, robin, bird,
and vertebrate. isa links represent the class hierarchy relationship.
We adopt canonical forms for the data relationships within the net. We use
an isa(Type, Parent) predicate to indicate that Type is a member
of Parent and a hasprop(Object, Property, Value)
predicate to represent property relations. hasprop indicates that
Object has Property with Value. Object and Value are nodes in
the network, and Property is the name of the link that joins them.

A partial list of predicates describing the bird hierarchy of Figure 2.1 is:

isa(canary, bird). hasprop(tweety, color, white)
isa(robin, bird). hasprop(robin, color, red).
isa(ostrich, bird). hasprop(canary, color, yellow).
isa(penguin, bird). hasprop(penguin, color, brown).
isa(bird, animal). hasprop(bird, travel, fly).
isa(fish, animal). hasprop(ostrich, travel, walk).
isa(opus, penguin). hasprop(fish, travel, swim).

isa(tweety, canary). hasprop(robin, sound, sing).
hasprop(canary, sound, sing).
hasprop(bird, cover, feathers).

hasprop(animal, cover, skin).

Frames in
Prolog

Chapter 2 Prolog: Representation 29

Figure 2.1 A semantic net for a bird hierarchy reflecting the Prolog code.

We create a recursive search algorithm to find whether an object in our
semantic net has a particular property. Properties are stored in the net at
the most general level at which they are true. Through inheritance, an
individual or subclass acquires the properties of its superclasses. Thus the
property £1y holds for bird and all its subclasses. Exceptions are located
at the specific level of the exception. Thus, ostrich and penguin
travel by walking instead of flying. The hasproperty predicate begins
search at a particular object. If the information is not directly attached to
that object, hasproperty follows isa links to superclasses. If no more
superclasses exist and hasproperty has not located the property, it
fails.

hasproperty(Object, Property, Value) :-
hasprop(Object, Property, Value).
hasproperty(Object, Property, Value) :-
isa(Object, Parent),
hasproperty(Parent, Property, Value).
hasproperty searches the inheritance hierarchy in a depth-first fashion.

In the next section, we show how inheritance can be applied to a frame-
based representation with both single and multiple-inheritance relations.

Semantic nets can be partitioned, with additional information added to
node descriptions, to give them a frame-like structure (Minsky 1975, Luger
2009). We present the bird example again using frames, where each frame
represents a collection of relationships of the semantic net and the isa
slots of the frame define the frame hierarchy as in Figure 2.2.

The first slot of each of the frames name that node, for example,
name (tweety) or name(vertebrate). The second slot gives the
inheritance links between that node and its parents. Because our example

30

Part II: Programming in Prolog

has a tree structure, each node has only one link, the isa predicate with
one argument. The third slot in the node’s frame is a list of features that
describe that node. In this list we use any Prolog predicate such as f1lies,
feathers, or color (brown). The final slot in the frame is the list of
exceptions and default values for the node, again either a single word or
predicate indicating a property.

In our frame language, each frame organizes its slot names into lists of
properties and default values. This allows us to distinguish these different
types of knowledge and give them different behaviors in the inheritance
hierarchy. Although our implementation allows subclasses to inherit
properties from both lists, other representations are possible and may be
useful in certain applications. We may wish to specify that only default
values are inhetrited. Or we may wish to build a third list containing the
properties of the class itself rather than the members, sometimes called ¢/ass
values. For example, we may wish to state that the class canary names a
species of songbird. This should not be inherited by subclasses or
instances: tweety does not name a species of songbird. Further
extensions to this example are suggested in the exercises.

We now represent the relationships in Figure 2.2 with the Prolog fact
predicate frame with four arguments. We may use the methods suggested
in Chapter 5 to check the parameters of the frame predicate for appropriate
type, for instance, to ensure that the third frame slot is a list that contains
only values from a fixed list of properties.

frame (name(bird),
isa(animal),
[travel(flies), feathers],
[1)
frame (name (penguin),
isa(bird),
[color (brown)],
[travel(walks)]).
frame (name(canary),
isa(bird),
[color(yellow), call(sing)],
[size(small)]).
frame (name (tweety),
isa(canary),
[1,
[color(white)]).

Once the full set of descriptions and inheritance relationships are defined
for the frame of Figure 2.2, we create procedures to infer properties from
this representation:
get (Prop, Object) :-
frame(name(Object), , List of properties,),

member (Prop, List of properties).

Chapter 2 Prolog: Representation 31

name: bird name: animal

isa: animal isa: animate

properties: flies properties: eats
feathers skin

default: default:

name: canary name: tweety

isa: bird isa: canary

properties: color(yellow) properties:
sound(sing)

default: size(small) default: color(white)

Figure 2.2 A frame system reflecting the Prolog code in the text.
get (Prop, Object) :-
frame(name(Object), , List of defaults),
member (Prop, List of defaults).
get (Prop, Object) :-
frame(name(Object), isa(Parent), ,),
get(Prop, Parent).
If the frame structure allows multiple inheritance of properties, we make
this change both in our representation and in our search strategy. First, in
the frame representation we make the argument of the isa predicate a list
of superclasses of the Object. Thus, cach superclass in the list is a parent

of the entity named in the first argument of frame. If opus is a
penguin and a cartoon_char we represent this:

frame (name(opus),
isa([penguin, cartoon_char]),
[color(black)],
[1).

Now, we test for properties of opus by recurring up the isa hierarchy
for both penguin and cartoon_char. We add the following get
definition between the third and fourth get predicates of the previous
example.
get (Prop, Object) :-
frame(name(Object), isa(List), _, _),
get multiple(Prop, List).

32

Part II: Programming in Prolog

We define get_multiple by:
get multiple(Prop, [Parent _]) :-
get (Prop, Parent).
get multiple(Prop, [_ Rest]) :-
get multiple(Prop, Rest).

With this inheritance preference, properties of penguin and its
superclasses will be examined before those of cartoon_char.

Finally, any Prolog procedure may be attached to a frame slot. As we have
built the frame representation in our examples, this would entail adding a
Prolog rule, or list of Prolog rules, as a parameter of frame. This is
accomplished by enclosing the entire rule in patentheses, as we will see for
rules in exshell in Chapter 6, and making this structure an argument of
the frame predicate. For example, we could design a list of response rules
for opus, giving him different responses for different questions.

This list of rules, each rule in parentheses, would then become a parameter
of the frame and, depending on the value of X passed to the opus frame,
would define the appropriate response. More complex examples could be
rules describing the control of a thermostat or creating a graphic image
appropriate to a set of values. Examples of this are presented in both Lisp
(Chapter 17) and Java (Chapter 21) where attached procedures, often called
methods, play an important role in object-oriented representations.

Exercises

1. Create a relational database in Prolog. Represent the data tuples as facts
and the constraints on the data tuples as rules. Suitable examples might be
from stock in a department store or records in a personnel office.

2. Write the “member check” program in Prolog. What happens when an
item is not in the list? Query to the “member” specification to break a list
into its component elements.

3. Design a Prolog program unique (Bag, Set) that takes a bag (a list
that may contain duplicate elements) and returns a sef (no elements are
repeated).

4. Write a Prolog program to count the elements in a list (a list within the
list counts as one element). Write a program to count the atoms in a list
(count the elements within any sublist). Hint: several meta-predicates such
as atom() can be helpful.

5. Implement a frame system with inheritance that supports the definition
of three kinds of slots: properties of a class that may be inherited by
subclasses, properties that are inherited by instances of the class but not by
subclasses, and properties of the class and its subclasses that are not
inherited by instances (class properties). Discuss the benefits, uses, and
problems with this distinction.

Chapter
Objectives

Chapter
Contents

Abstract Data Types and Search

Prolog’s graph search representations were described and built:
Lists
A recursive tree-walk algorithm
The cut predicate, |, for Prolog was presented:
Controls the interpreter’s backtracking
Limits variable instantiations, and thus
May prevent the interpreter from computing good solutions
Demonstrated procedural abstraction and information hiding with Abstract Data
Types
The stack operators
The queue operators
The priority queue operators
Sets

3.1 Recursive Search in Prolog
3.2 Using cut to Control Search in Prolog
3.3 Abstract Data Types in Prolog

3.1

Recursion-
Based Graph
Search

Introduction

We next introduce the 3 x 3 knight’s tour problem, create a predicate
calculus based representation of problem states, and a recursive search of
its state space. The chess knight can move on a restricted board as on any
regular chessboard: two squares one direction (horizontally or vertically)
and one in the other (vertically or horizontally). Thus, the knight can go
from square 1 to either square 6 or 8 or from square 9 to either 2 or 4. We
ask if the knight can generate a sequence on legal moves from one square
to another on this restricted chessboard, from square 1 to 9, for example.
The knight’s moves are represented in Prolog using move facts, Figure 3.1.

The path predicate defines an algorithm for a path between its two
arguments, the present state, X, and the goal that it wants to achieve, Y. To
do this it first tests whether it is where it wants to be, path(Z, Z), and
if not, looks for a state, W, to move to

The Prolog search defined by path is a recursive, depth-first, left-to-right,
tree walk. As shown in Section 2.3, assert is a built-in Prolog predicate
that always succeeds and has the side effect of placing its argument in the
database of specifications. The been predicate is used to record each state
as it is visited and then not (been (X)) determines, with each new state
found whether that state has been previously visited, thus avoiding looping
within the search space.

33

34

Part II: Programming in Prolog

Figure 3.1. The 3 x 3 chessboard and set of legal moves expressed as
Prolog facts.

path(z, Z).
path(X, Y) :-
move (X, W), not(been(W)), assert(been(W)),
path(w, Y).
This use of the been predicate violates good programming practice in that
it uses global side-effects to control search. been (3), when asserted into

the database, is a fact available to any other predicate and, as such, has
global extension. We created been to modify the program execution.

A more sophisticated method for control of search is to create a list that
keeps track of visited states. We create this list and make it the third
argument of the path predicate. As each new state is encountered, the
member predicate, Section 2.3, checks whether or not it is already a visited
state. If the state is not a member of the list we put it on this list in the
order in which it was encountered, the most recent state encountered the
head of the list. If the new state is on the list of already visited states, the
path predicate backtracks looking for new non-visited states. This
approach remedies the problems of using global been (W) . The following
clauses implement depth-first left-to right graph search with backtracking.
path(z, Z, L).
path(X, Y, L) :-
move (X, Z), not(member(z, L)),
path(z, ¥, [Z]|L]).

The third parameter of path is the variable representing the list of visited
states. When a new state not already on the list of visited states L, it is
placed on the front of the state list [Z | L] for the next path call. It
should be noted that all the parameters of path are local and their current
values depend on where they are called in the graph search. Each
successful recursive call adds a state to this list. If all continuations from a
certain state fail, then that particular path call fails and the interpreter
backs up to the parent call. Thus, states are added to and deleted from this
state list as the backtracking search moves through the graph.

When the path call finally succeeds, the first two parameters are identical
and the third parameter is the list of states visited, in reverse order. Thus
we can print out the steps of the solution. The call to the Prolog interpreter

Chapter 3: Abstract Data Types and Search

path(X,Y,[X]), where X and Y are replaced by numbers between 1
and 9, finds a path from state X to state Y, if the path exists. The third
parameter initializes the path list with the starting state X. Note that there is
no typing distinction in Prolog: the first two parameters are any
representation of states in the problem space and the third is a list of states.
Unification makes this generalization of pattern matching across data types
possible. Thus, path is a general depth-first search algorithm that may be
used with any graph. In Chapter 4 we use this algorithm to implement a
solution to the farmer, wolf, goat, and cabbage problem, with different
state specifications of state in the call to path.

We now present a solution for the 3 x 3 knight’s tour. (It is an exercise to
solve the full 8 x 8 knight’s tour problem in Prolog. We refer to the two
parts of the path algorithm by number:
l. is path(z, 2, L).
2. is path(X, Y, L) :-
move (X, Z), not(member(z, L)),

path(z, Y, [Z | L]).

?- path(1, 3, [1]).
path(1l, 3, [1]) attempts to match 1. fail 1<>3.
path(1, 3, [1]) matches 2. X=1, Y=3, L=[1]
move(l, Z) matches, Z=6,
not (member(6,[1]))=true,
call path(6, 3, [6,1]
path(6, 3, [6,1]) trys to match 1. fail 6<>3.
path(6, 3, [6,1]) calls 2. X=6, ¥Y=3, L=[6, 1].
move(6, Z) matches, Z=7,
not (member (7, [6,1]))=true,
call path(7, 3, [7,6,1])
path(7, 3, [7,6,1]) trys to match 1. fail 7<>3.
path(7, 3, [7,6,1]) in 2: X=7, ¥Y=3, L=[7,6,1].
move(7, Z) matches Z=6,
not (member(6, [7,6,1])) fails, backtrack!
move(7, Z) matches, Z = 2,
not (member (2, [7,6,1])) is true
call path(2, 3, [2,7,6,1])
path(2, 3, [2,7,6,1]) attempts 1, fail, 2 <> 3.
path matches 2, X in 2: Y is 3, L is [2, 7, 6, 1]
move(2, Z) matches, Z=7,
not (member(..)) fails, backtrack!
move(2, Z) matches Z=9,
not (member(..)) is true,
call path(9, 3, [9,2,7,6,1])
path(9, 3, [9,2,7,6,1]) fails 1, 9<>3.

35

36

Part II: Programming in Prolog

3.2

path matches 2, X=9, Y=3, L=[9,2,7,6,1]
move(9, Z) matches Z = 4,
not (member(..)) is true,
call path(4, 3, [4,9,2,7,6,1])
path(4, 3, [4,9,2,7,6,1])fails 1, 4<>3.
path matches 2, X=4, Y=3, L is [4,9,2,7,6,1]
3,

move(4, Z) matches Z
not (member(..)) true,
call path(3, 3, [3,4,9,2,7,6,1])

path(3, 3, [3,4,9,2,7,6,1]) attempts 1, true, 3=3

The recursive path call then returns yes for each of its calls.

In summary, the recursive path call is a she// or general control structure
for search in a graph: in path (X, Y, L), Xis the present state; Y is the
goal state. When X and Y are identical, the recursion terminates. L is the
list of states on the current path towards state ¥, and as each new state Z is
found with the call move (X, 2) itis placed on front of the list: [Z |
L]. The state list is checked, using not (member (Z, L)), to be sutre
the path does not loop.

In Chapter 4, we generalize this approach creating a closed list that retains
all the states visited and does not remove visited states when the path
predicate backtracks from a state that has no “useful” children. The
difference between the state list L in the path call above and the closed
set in Chapter 4 is that closed records all states visited, while the state list L
keeps track of only the present path of states.

Using cut to Control Search in Prolog

The predicate ¢ut is tepresented by an exclamation point, |. The syntax for
cut is that of a goal with no arguments. Cut has several side effects: first,
when originally encountered it always succeeds, and second, if it is “failed
back to” in backtracking, it causes the entire goal in which it is contained to
fail. For a simple example of the effect of the cut, we create a two-move
path call from the knight’s tour example that we just presented. Consider
the predicate path2:

path2 (X, Y) :- move(X, Z), move(Z, Y).
There is a two-move path between X and Y if there exists an intermediate

state Z between them. For this example, assume part of the knight’s tour
database:

move(l, 8).

move(6, 7).

move(6, 1).

move(8, 3).

move(8, 1).

The interpreter finds all the two-move paths from 1; there are four:

?- path2(1, wW).

W=7

Chapter 3: Abstract Data Types and Search

7
w=1
r

W =3
7
w=1
7

no

When path2 is altered with cut, only two answers result:
path2(X, Y¥) :- move(X, Z), !, move(Z, Y)
?- path2(1, wW).

W=7
7

w=1
7

no

The no response happens because variable Z takes on only one value (the
first value it is bound to), namely 6. Once the first subgoal succeeds, Z is
bound to 6 and the cut is encountered. This prohibits further backtracking
using the first move subgoal and allowing any further bindings for the
variable Z.

There are several justifications for the use of cut in Prolog programming.
First, as this example demonstrated, it allows the programmer to control
precisely the shape of the search tree. When further (exhaustive) search is
not required, the tree can be explicitly pruned at that point. This allows
Prolog code to have the flavor of function calling: when one set of values
(bindings) is “returned” by a Prolog predicate (or set of predicates) and the
cut is encountered, the interpreter does not search for any other
unifications. Thus, if that set of values does not lead to a solution then no
further values are attempted. Of course, in the context of the mathematical
foundations of the predicate calculus itself, cut may prevent the
computation of possible interpretations of the particular predicate calculus
and as a result eliminate a possible answer or mode/, (Luger 2009, Sections
2.3,14.3).

A second use of the cut controls recursive calls. For example, in the path
call:

path(z, %, L).

path(X, Z, L) :- move(X, Y), not(member(Y, L)),

path(Y, 2, [Y|L]),!.

The addition of cut means that (at most) one solution to the graph search
is produced. This single solution is produced because further solutions
occur after the clause path(Z, Z, L) is satisfied. If the user asks for
more solutions, path(z, Z, L) fails, and the second path call is
reinvoked to continue the (exhaustive) search of the graph. When the cut is
placed after the recursive path call, the call cannot be reentered (backed
into) for further search.

Important side effects of the cut are to make the program run faster and to

37

38 Part II: Programming in Prolog

consetve memory locations. When cut is used within a predicate, the
pointers in memory needed for backtracking to predicates to the left of the
cut are not created. This is, of course, because they will never be needed.
Thus, cut produces the desired solution, and only the desired solution, with
a more efficient use of memory.

The cut can also be used with recursion to reinitialize the path call for
further search within the graph. This will be demonstrated with the general
search algorithms presented in Chapter 4. For this purpose we also need to
develop several abstract data types.

3.3 Abstract Data Types (ADTs) in Prolog

The ADT Stack

Programming, in almost any environment, is enhanced by creatin
8 g y y 8
procedural abstractions and by hiding information. Because the se, stack,
quene, and priority guene data structures are important support constructs for
graph search algorithms, a major component of Al problem solving, we
build them in Prolog in the present section. We will use these ADT's in the
design of the Prolog search algorithms presented in Chapter 4.

Since lists, recursion, and pattern matching, as emphasized throughout this
book, are the primary tools for building and searching graph structures.
These are the pieces with which we build our ADTs. All list handling and
recursive processing that define the ADT are “hidden” within the ADT
abstraction, quite different than the normal static data structure.

A stack is a linear structure with access at one end only. Thus all elements
must be added to, pashed, and removed, popped, from the structure at that
access end. The stack is sometimes referred to as a last-in-first-out (LIFO)
data structure. We will see its use with depth-first search in Chapter 4. The
operators that we will define for a stack are:

1. Test whether the stack is empty.

2. Push an element onto the stack.

3. Pop or remove, the top element from the stack.

4. Peek (often called Top) to see the top element on the stack

without popping it.

5. Member_ stack, checks whether an element is in the stack.

6. Add list to stack, adds a list of elements to the stack.
Operators 5 and 6 may be built from 1-4.
We now build these operators in Prolog, using the list primitives:

1. empty stack([]).

This predicate can be used either to test a stack to see whether it is empty or
to generate a new empty stack.

2-4. stack(Top, Stack, [Top | Stack]).

This predicate performs the push, pop, and peek predicates depending on the
variable bindings of its arguments. For instance, push produces a new stack as
the third argument when the first two arguments are bound. Likewise, pop
produces the top element of the stack when the third argument is bound to
the stack. The second argument will then be bound to the new stack, once the

The ADT Queue

Chapter 3: Abstract Data Types and Search

top element is popped. Finally, if we keep the stack as the third argument, the
first argument lets us peek at its top element.
5. member stack(Element, Stack) :-

member (Element, Stack).
This allows us to determine whether an element is a member of the stack. Of
course, the same result could be produced by creating a recursive call that
pecked at the next element of the stack and then, if this element did not match
Element, popped the stack. This would continue until the empty stack
predicate was true.
6. add_list to stack(List, Stack, Result) :-
append(List, Stack, Result).

List is added to Stack to produce Result, a new stack. Of course,
the same result could be obtained by popping List (until empty) and
pushing each element onto a temporary stack. We would then pop the
temporary stack and push each element onto the Stack until
empty stack is true for the temporary stack. append is described in
detail in Chapter 10.

A final predicate for printing a stack in reverse order is
reverse_ print_ stack. This is very useful when a stack has, in
reversed order, the current path from the start state to the present state of
the graph search. We will see several examples of this in Chapter 4.

reverse_print stack(S) :-
empty stack(S).

reverse_print stack(S) :-
stack(E, Rest, 9),
reverse print stack(Rest),
write(E), nl.

A guene is a first-in-first-out (FIFO) data structure. It is often characterized
as a list where elements are taken off or dequened from one end and
elements are added to or enguened at the other end. The queue is used for
defining breadth-first search in Chapter 4. The queue operators are:

l. empty queue([7).
This predicate tests whether a queue is empty or initializes a new empty queue.
2. enqueue(E, [], [E]).
enqueue(E, [H | T], [H | Tnew]) :-
enqueue(E, T, Tnew).

This recursive predicate adds the element E to a queue, the second argument.
The new augmented queue is the third argument.

3. dequeue(E, [E | T], T).

This predicate produces a new queue, the third argument, which is the result
of taking the next element, the first argument, off the original queue, the
second argument.

4, dequeue(E, [E | T],).

This predicate lets us peek at the next element, E, of the queue.

39

40 Part II: Programming in Prolog

The ADT
Priority Queue

The ADT Set

5. member queue(Element, Queue) :-
member (Element, Queue).
This tests whether Element is a member of Queue.
6. add_list to queue(List, Queue, Newqueue) :-
append(Queue, List, Newqueue).

This predicate enqueues an entire list of elements. Of course, 5 and 6 can
be created using 1-4; append is presented in Chapter 10.

A priority quene otrders the elements of a regular queue so that each new
element added to the priority queue is placed in its sorted order, with the
“best” element first. The deguene operator removes the “best” sorted
element from the priority queue. We will use the priority queue in the
design of the best-first search algorithm in Chapter 4.

Because the priority queue is a sorted queue, many of its operators are the
same as the queue operators, Iin particular, empty queue,
member queue, and dequeue (the “best” of the sorted elements will
be next for the dequeue). enqueue in a priority queue is the
insert pg operator, as each new item is placed in its proper sorted
order.

insert pqg(State, [], [State]) :- !.
insert pqg(State, [H | Tail], [State, H | Tail]) :-
precedes (State, H).
insert pqg(State, [H | T], [H | Tnew]) :-
insert pqg(State, T, Tnew).
precedes (X, Y) :- X < Y. % < depends on problem
The first argument of this predicate is the new element that is to be
inserted. The second argument is the previous priority queue, and the third
argument is the augmented priority queue. The precedes predicate
checks that the order of elements is preserved. Another priotity queue
operator is insert_ list pq. This predicate is used to merge an
unsorted list or set of elements into the priority queue, as is necessary when
adding the children of a state to the priority queue for best-first search,
Chapter 4. insert_list pq uses insert_ pg to put each individual
new item into the priority queue:
insert_list pg([1, L, L).
insert list pq([State | Tail], L, New L) :-
insert pg(State, L, L2),
insert list pg(Tail, L2, New L).
Finally, we describe the ADT set. A sezis a collection of elements with no
element repeated. Sets can be used for collecting all the children of a state

or for maintaining the set of all states visited while executing a search
algorithm.

In Prolog a set of elements, e.g., {a,b}, may be represented as a list,
[a,b], with the order of the list not important. The set operators include
empty_ set, member set, delete if in, and
add if not in. We also include the traditional operators for

Chapter 3: Abstract Data Types and Search

combining and comparing sets, including union, intersection,
set difference, subset, and equal set.

empty set([]).

member_set(E, S) :-

member (E, S).

delete if in set(E, [1, [1).

delete if in set(E, [E | T], T) :- !.

delete if in set(E, [H | T], [H

T new]) :-
delete if in set(E, T, T new), !.
add_if not_in set(X, S, S) :-
member (X, S), !.
add if not in set(X, S, [X | S]).
union([], S, S).
union([H | T], S, S _new) :-
union(T, S, S2),
add_if not_in set(H, S2, S new),!.
subset ([1, _).
subset([H | T], S) :-
member_set(H, S),
subset (T, S).
intersection([1, _, [1).
intersection([H | T], S, [H | S _new]) :-
member_set(H, S),
intersection(T, S, S_new), !.
intersection([_ | Tl1, S, S_new) :-
intersection(T, S, S_new), !.
set _difference([1, _, [1)-.
set difference([H | T], S, T new) :-
member_set(H, S),
set_difference(T, S, T new), !.
set difference([H | T], S, [H | T new]) :-
set_difference(T, S, T new), !.
equal_ set(S1l, S2) :-
subset(S1, S2),
subset (S2, S1).

In Chapters 4 and 5 we use many of these abstract data types to build more
complex graph search algorithms and meta-interpreters in Prolog. For
example, the stack and queue ADTSs are used to build the “open” list that
organizes depth-first and breadth-first search. The set ADTSs coordinate
the “closed” list that helps prevent cycles in a search.

41

42

Part II: Programming in Prolog

Exercises

1. Write Prolog code to solve the full 8 X 8 knight’s tour problem. This will
require a lot of effort if all the move (X, Y) facts on the full chessboard
are itemized. It is much better to create a set of eight predicates that
capture the general rules for moving the knight on the full chessboard. You
will also have to create a new representation for the squares on the boatd.
Hint: consider a predicate containing the two element order pair, for
example, state(Row, Column).

2. Take the path algorithm presented for the knight’s tour problem in the
text. Rewrite the path call of the recursive code given in Section 3.1 to
the following form:

path(X, Y) :- path(X, W), move(W, Y).
Examine the trace of this execution and describe what is happening.

3. Create a three step path predicate for the knight’s tour:
path3(X, Y¥) :- move(X, Z), move(Z, W), move (W, Y).

Create a tree that demonstrates the full search for the path3 predicate.
Place the cut operator between the second and third move predicates.
Show how this prunes the tree. Next place the cut between the first and
second move predicates and again demonstrate how the tree is pruned.
Finally, put two cuts within the path3 predicate and show how this
prunes the search.

4. Write and test the ADTs presented in Section 3.3. trace will let you
monitor the Prolog environment as the ADT's execute.

Chapter
Objectives

Chapter
Contents

Depth-, Breadth-, and Best-First Search
Using the Production System Design
Pattern

A production system was defined and examples given:

Production rule sets
Control strategies
A production system written in Prolog was presented:

A rule set and control strategy for the Farmer Wolf, Goat, and Cabbage
problem
Search strategies for the production system created using Abstract Data Types
Depth-first search and the stack operators

Breadth-first search and the queue operators

Best first search and the priority queue operators

Sets were used for the closed list in all searches

4.1 Production System Search in Prolog
4.2 A Production System Solution to the Farmer, Wolf, Goat, Cabbage Problem
4.3 Designing Alternative Search Strategies

4.1

The Production
System

Production System Search in Prolog

The production system (Luger 2009, Section 6.2) is a model of computation that has
proved particularly important in Al, both for implementing search algorithms
and for modeling human problem solving behavior. A production system
provides pattern-directed control of a problem-solving process and consists of a
set of production rules, a working memory, and a recognize—act control cycle.

A production system 1s defined by:

The set of production rules. These are often simply called productions. A production is
a condition—action pair and defines a single chunk of problem-solving
knowledge. The condition part of the rule is a pattern that determines when
that rule may be applied by matching data in the working memory. The
action part of the rule defines the associated problem-solving step.

Working memory contains a description of the current state of the world in a reasoning
process. This description is a pattern that, in data-driven reasoning, is matched
against the condition part of a production to select appropriate problem-
solving actions. The actions of production rules are specifically designed to
alter the contents of working memory, leading to the next phase of the
recognize-act cycle.

The recognize—act cycle. The control structure for a production system is simple:
working memory is initialized with the beginning problem description. The
current state of the problem solving is maintained as a set of patterns in
working memory. These patterns are matched against the conditions of the

43

44 Part II: Programming in Prolog

Example 4.1:
The Knight's
Tour Revisited

production rules; this produces a subset of the production rules, called the
conflict set, whose conditions match the patterns in working memory. One of
the productions in the conflict set is then selected (conflict resolution) and the
production is fired. After the selected production rule is fired, the control
cycle repeats with the modified working memory. The process terminates
when the contents of working memory do not match any rule conditions.

Conflict resolution chooses a rule from the conflict set for firing. Conflict
resolution strategies may be simple, such as selecting the first rule whose
condition matches the state of the world, or may involve complex rule
selection heuristics. The pure production system model has no mechanism
for recovering from dead ends in the search; it simply continues until no
more productions are enabled and halts. Many practical implementations
of production systems allow backtracking to a previous state of working
memory in such situations. A schematic drawing of a production system is
presented in Figure 4.1.

Figure 4.1. The production system. Control loops from the
working memory through the production rules until no rule
matches a working memory pattern.

The 3 x 3 knight’s tour problem may be solved with a production system,
Figure 4.1. Each move can be represented as a rule whose condition is the
location of the knight on a particular square and whose action moves the
knight to another square. Sixteen productions, presented in Table 4.1,
represent all possible moves of the knight.

We next specify a recursive procedure to implement a control algorithm for
the production system. We will use the recursive path algorithm of Section
3.1, where the third argument of the path predicate is the list of already
visited states. Because path(Z, Z, L) will unify only with predicates
whose first two arguments are identical, such as path(3, 3, _) or
path(5, 5, _), it defines the desited terminating condition. If
path(X, X, L) does not succeed we look at the production rules for a
next state and then recur.

Chapter 4: Production Systems and Search

RULE # CONDITION ACTION
1 knight on square 1 move knight to square 8
2 knight on square 1 move knight to square 6
3 knight on square 2 move knight to square 9
4 knight on square 2 move knight to square 7
5 knight on square 3 move knight to square 4
6 knight on square 3 move knight to square 8
7 knight on square 4 move knight to square 9
8 knight on square 4 move knight to square 3
9 knight on square 6 move knight to square 1
10 knight on square 6 move knight to square 7
11 knight on square 7 move knight to square 2
12 knight on square 7 move knight to square 6
13 knight on square 8 move knight to square 3
14 knight on square 8 move knight to square 1
15 knight on square 9 move knight to square 2
16 knight on square 9 move knight to square 4

45

Table 4.1. Production rules for the 3 x 3 knight tour problem.

The general recursive path definition is given by two predicate calculus
formulas:
path(z, Z, L).
path(X, Y, L) :-
move (X, Z), not(member(z, L)),
path(z, Y, [2 | L]).
Working memory, represented by the parameters of the recursive path
predicate, contains both the current board state and the goal state. The
control regime applies rules until the current state equals the goal state and
then halts. A simple conflict resolution scheme would fire the first rule that
did not cause the search to loop. Because the search may lead to dead ends
(from which every possible move leads to a previously visited state and thus
a loop), the control regime must also allow backtracking; an execution of
this production system that determines whether a path exists from square 1
to square 2 is charted in Table 4.2.

Production systems are capable of generating infinite loops when searching
a state space graph. These loops are particularly difficult to spot in a
production system because the rules can fire in any order. That is, looping
may appear in the execution of the system, but it cannot easily be found
from a syntactic inspection of the rule set.

46 Part II: Programming in Prolog

4.2

Example 4.2: The
Farmer, Wolf,
Goat, and
Cabbage Problem

LOOP CURRENT GOAL CONFLICT RULES USE RULE

0 1 2 1,2 1

1 8 2 13, 14 13
2 3 2 5,6 5

3 4 2 7,8 7

4 9 2 15, 16 15
5 2 2 No Rules Match Halt

Table 4.2. The iterations of the production system finding a path from

square 1 to square 2.
For example, with the “move” rules of the knight’s tour problem ordered as
in Table 4.1 and a conflict resolution strategy of selecting the first match, the
pattern move (2, X) would match with move (2, 9), indicating a
move to square 9. On the next iteration, the pattern move (9, X) would
match with move (9, 2), taking the search back to square 2, causing a
loop. The not (member (Z, L)) will check the list of visited states. The
actual conflict resolution strategy was therefore: select the first matching move that
leads to an wnvisited state. In a production system, the proper place for
recording such case-specific data as a list of previously visited states is not a
global closed list but within the working memory itself, as we see in the next
sections where the parameters of the path call make up the content of
working memory.

A Production System Solution to the FWGC Problem

In Section 4.1 we described the production system and demonstrated a
simple depth-first search for the restricted Knight’s Tour problem. In this
section we write a production system solution to the farmer, wolf, goat, and
cabbage (FWGC) problem. In Section 4.3 we use the simple abstract data
types created in Chapter 3 to create depth-, breadth-, and best-first solutions
for production system problems. The FWGC problem is stated as follows:

A farmer with his wolf, goat, and cabbage come to the edge of a
river they wish to cross. There is a boat at the river’s edge, but, of
course, only the farmer can row. The boat also can carry only two
things (including the rower) at a time. If the wolf is ever left alone
with the goat, the wolf will eat the goat; similarly, if the goat is left
alone with the cabbage, the goat will eat the cabbage. Devise a
sequence of crossings of the river so that all four characters arrive
safely on the other side of the river.

We now create a production system solution to this problem. First, we
observe that the problem may be represented as a search through a graph.
To do this we consider the possible moves that might be available at any
time in the solution process. Some of these moves are eventually ruled out
because they produce states that are unsafe (something will be eaten).

For the moment, suppose that all states are safe, and simply consider the
graph of possible states. We often take this approach to problem solving,

Chapter 4: Production Systems and Search 47

relaxing various constraints so that we can see the general structure of the
search problem. After we have described the full graph then it is often
straightforward to add constraints that prohibit parts of the graph — the
“illegal” states — from further exploration. The boat can be used in four
ways: to carry the farmer and wolf, the farmer and goat, the farmer and
cabbage, or the farmer alone. A state of the world is some combination of
the characters on the two banks. Several states of the search are represented
in Figure 4.2. States of the world may be represented using the predicate,
state(F, W, G, C), with the location of the farmer as first
parameter, location of the wolf as second parameter, the goat as third, and
the cabbage as fourth. We assume that the river runs “north to south” and
that the characters are on either the east, e, or west, w, bank. Thus,
state(w, w, w, w) has all characters on the west bank to start the
problem.

Figure 4.2. State representation and sample crossings of the F, W, G, C
problem.

It must be pointed out that these choices are conventions that have been
arbitrarily chosen by the authors. Indeed, as researchers in Al continually
point out, the selection of an appropriate representation is often the most
critical aspect of problem solving. These conventions are selected to fit the
predicate calculus representation in Prolog. Different states of the world atre
created by different crossings of the river, represented by changes in the
values of the parameters of the state predicate, as in Figure 4.2. Other
representations are certainly possible.

We next describe a general graph for this river-crossing problem. For the
time being, we ignore the fact that some states are unsafe. In Figure 4.3 we
see the beginning of the graph of possible moves back and forth across the
river. Since the farmer always rows, it is not necessary to have a separate
representation for the location of the boat. Figure 4.3 represents part of the
graph that is to be searched for a solution path.

48

Part II: Programming in Prolog

The recursive path call described in Section 4.1 provides the control
mechanism for the production system search. The production rules change
state in the search. We define these #f... #ben... rules in Prolog form. We take
a direct approach here requiring that the pattern for the present state and the
pattern for the next state both be placed in the head of the Horn clause, or
to the left of :-. These are the arguments to the move predicate.

Figure 4.3. The beginning portion of the state space graph in the
FWGC problem, including unsafe states.

The constraints that the production rule requires to fire and return the next
state are placed to the right of :-. As shown in the following example, these
conditions are expressed as unification constraints. The first rule is for the
farmer to take the wolf across the river. This rule must account for both the
transfer from east to west and the transfer from west to east, and it must not
be applicable when the farmer and wolf are on opposite sides of the river.
Thus, it must transform state(e, e, G, C) to state(w, w, G,
C) and state(w, w, G, C) to state(e, e, G, C). It must
also fail for state(e, w, G, C) and state(w, e, G, C).The
variables G and C represent the fact that the third and fourth parameters can
be bound to either @ or w. Whatever their values, they remain the same after
the move of the farmer and wolf to the other side of the river. Some of the
states produced may indeed be “unsafe.”

The following rule operates only when the farmer and wolf are in the same
location and takes them to the opposite side of the river. Note that the goat
and cabbage do not change their present location, whatever it might be.

move (state(X, X, G, C), state(Y, Y, G, C)) :-
opp(X, Y).

Chapter 4: Production Systems and Search 49

opp(e, w).

opp(w, €).
This rule fires when a state (the present location in the graph) is presented to
the first parameter of move in which the farmer and wolf are at the same
location. When the rule fires, a new state, the second parameter of move, is
produced with the value of X opposite, opp, the value of Y. Two conditions
are satisfied to produce the new state: first, that the values of the first two
parameters are the same and, second, that both of their new locations ate
opposite their old.

The first condition was checked implicitly in the unification process, in that
move is not matched unless the first two parameters are the same. This test
may be done explicitly by using the following rule:
move (state(F, W, G, C), state(Z, Z, G, C)) :-
F =W, opp(F, Z2).

This equivalent move rule first tests whether F and W are the same and, only
if they are (on the same side of the river), assigns the opposite value of F to
Z. Note that Prolog can do “assignment” by the binding of variable values in

unification. Bindings are shared by all occurrences of a variable in a clause,
and the scope of a variable is limited to the clause in which it occurs.

Pattern matching, a powerful tool in Al programming, is especially
important in pruning search. States that do not fit the patterns in the rule are
automatically pruned. In this sense, the first version of the move rule offers
a more efficient representation because unification does not even consider
the state predicate unless its first two parameters are identical.

Next, we create a predicate to test whether each new state is safe, so that
nothing is eaten in the process of crossing the river. Again, unification plays
an important role in this definition. Any state where the second and third
parameters are the same and opposite the first parameter is unsafe: the
wolf eats the goat. Alternatively, if the third and fourth parameters are the
same and opposite the first parameter, the state is unsafe: the goat cats
the cabbage. These unsafe situations may be represented with the
following rules.

unsafe(state(X, Y, ¥, C)) :- opp(X, Y).

unsafe(state(X, W, ¥, Y)) :- opp(X, Y).
Several points should be mentioned. First, if a state is to be not unsafe (i.c.,
safe), according to the definition of not in Prolog, neither of these unsafe
predicates can be true. Thus, neither of these predicates can unify with the
current state or, if they do unify, their conditions are not satisfied. Second,
not in Prolog is not exactly equivalent to the logical ~ of the first-order
predicate calculus; not is rather “negation by failure of its opposite.” The
reader should test a number of states to verify that unsafe does what it is
intended to do. Now, not unsafe is added to the previous production
rule:

move(state(X, X, G, C), state(Y, Y, G, C)) :-
opp(X, Y), not(unsafe(state(Y, ¥, G, C))).

50

Part II: Programming in Prolog

The not unsafe test calls unsafe, as mentioned above, to see whether
the generated state is an acceptable new state in the search. When all
criteria are met, including the check in the path algorithm that the new
state is not a member of the visited-state list, path is (recursively) called on
this state to go deeper into the graph. When path is called, the new state is
added to the visited-state list.

In a similar fashion, we can create the three other production rules to
represent the farmer taking the goat, cabbage, and himself across the river.
We have added a writelist command to each production rule to print a
trace of the current rule. The reverse_print stack command is
used in the terminating condition of path to print out the final solution

path.

Finally, we add a fifth “pseudorule” that always fires, because no conditions
are placed on it, when all previous rules have failed; it indicates that the
path call is backtracking from the current state, and then that rule itself
fails. This pseudorule is added to assist the user in seeing what is going on as
the production system is running. We now present the full production
system program in Prolog to solve the farmer, wolf, goat, and cabbage
problem. The Prolog predicates unsafe, writelist, and the ADT
stack predicates of Section 3.3.1, must also be included:

move (state(X, X, G, C), state(Y, ¥, G, C)) :-
opp(X, Y), not(unsafe(state(Y, Y, G, C))),
writelist([try farmer - wolf’, Y, Y, G, C]).
move (state(X, W, X, C), state(Y, W, ¥, C)) :-
opp(X, Y), not(unsafe(state(Y, W, Y, C))),
writelist([try farmer - goat’, ¥, W, ¥, C]).
move (state(X, W, G, X), state(Y, W, G, Y)) :-
opp(X, Y), not(unsafe(state(Y, W, G, Y))),
writelist([try farmer - cabbage’, Y, W, G, Y]).
move (state(X, W, G, C), state(Y, W, G, C)) :-
opp(X, Y), not(unsafe(state(Y, W, G, C))),
writelist([try farmer by self’, Y, W, G, C]).

move (state(F, W, G, C), state(F, W, G, C)) :-
writelist([~BACKTRACK at:’, F, W, G, C]), fail.

path(Goal, Goal, Been_stack) :-
write(Solution Path Is: ‘), nl,

reverse_print stack(Been_stack).

path(State, Goal, Been_stack) :-
move(State, Next state),
not (member stack(Next state, Been_ stack)),
stack(Next_state, Been_stack, New_been_ stack),
path(Next_ state, Goal, New been stack), !.
opp(e, w)-.
opp(w, €).

Chapter 4: Production Systems and Search 51

The code is called by requesting go, which initializes the recursive path
call. To make running the program easier, we can create a predicate, called
test, that simplifies the input:
go(Start, Goal) :-
empty stack(Empty been_ stack),
stack(Start, Empty_been_stack, Been_stack),
path(Start, Goal, Been_stack).
test :- go(state(w,w,w,w), state(e,e,e,e)).
The algorithm backtracks from states that allow no further progress. You
may also use trace to monitor the various variable bindings local to each
call of path. It may also be noted that this program is a general program
for moving the four creatures from any (legal) position on the banks to any
other (legal) position, including asking for a path from the goal back to the
start state. Other interesting features of production systems, including the
fact that different orderings of the rules can produce different searches
through the graph, are presented in the exercises. A partial trace of the
execution of the F, W, G, C program, showing only rules actually used to
generate new states, is presented next:
?- test.
try farmer takes goat e
try farmer takes self w
try farmer takes wolf e

o 0 £ =

s O 0O 0
£ € € £

try farmer takes goat w

try farmer takes cabbage e e w e

try farmer takes wolf ww w e

try farmer takes goat e w e e

BACKTRACK from e,w,e,e
BACKTRACK from w,w,w,e

try farmer takes self we w e

try farmer takes goat e e e e

Solution Path Is:

state(w,w,w,w)

state(e,w,e,w)

state(w,w,e,w)

state(e,e,e,w)

state(w,e,w,w)

state(e,e,w,e)

state(w,e,w,e)

state(e,e,e,e)
In summary, this Prolog program implements a production system solution
to the farmer, wolf, goat, and cabbage problem. The move rules make up
the content of the production memory. The working memory is represented

by the arguments of the path call. The production system control
mechanism is defined by the recursive path call. Finally, the ordering of

52

Part II: Programming in Prolog

4.3

Depth-first
Search

rules for generation of children from each state (conflict resolution) is
determined by the order in which the rules are placed in the production
memory. We next present depth-, breadth-, and best-first search algorithms
for production system based graph search.

Designing Alternative Search Strategies

As the previous subsection demonstrated, Prolog itself uses depth-first
search with backtracking. We now show how alternative search strategies
can be implemented in Prolog. Our implementations of depth-first, breadth-
first, and best-first search use gper and closed lists to record states in the
search. The open list contains all potential next states in the search. How the
open list is maintained, as a stack, as a queue, or as a priority queue,
determines which particular state is next, that is, search is in either depth-
first, breadth-first, or as best-first modes. The closed set keeps track of all
the states that have been previously visited, and is used primarily to
preventing looping in the graph as well as to keep track of the current path
through the space. The details of how the open and closed data structures
organize a search space can be found in Luger (2009, Chapter 3 and 4).
When search fails at any point we do not backtrack. Instead, open and
closed ate updated within the path call and the search continues with these
revised values. The cut is used to keep Prolog from storing the old versions
of the open and closed lists.

Because the values of variables are restored when recursion backtracks, the
list of visited states in the depth-first path algorithm of Section 4.2 records
states only if they are on the current path to the goal. Although the testing
each “new” state for membership in this list prevents loops, it still allows
branches of the space to be reexamined if they are reached along paths
generated earlier but abandoned at that time as unfruitful. A more efficient
implementation keeps track of all the states that have ever been
encountered. This more complete collection of states made up the members
of the set we call ¢losed (see Luger 2009, Chapter 3), and Closed_set in
the following algorithm.

Closed_set holds all states on the current path plus the states that were
rejected when the algorithm determined they had no usable children; thus, it
no longer represents the path from the start to the current state. To capture
this path information, we create the ordered pair [State, Parent] to
keep track of each state and its parent; the Start state is represented by
[Start, nil]. These state—parent pairs will be used to re-create the
solution path from the Closed_set.

We now present a shell structure for depth-first search in Prolog, keeping
track of both open and closed and checking each new state to be sure it was
not previously visited. path has three arguments, the Open_stack,
Closed_set, maintained as a set, and the Goal state. The current state,
State, is the next state on the Open_stack. The stack and set operators
are found in Section 3.3.

Search starts by calling a go predicate that initializes the path call. Note
that go places the Start state with the nil parent, [Start, nil],
alone on Open_stack; the Closed_set is empty:

Chapter 4: Production Systems and Search 53

go(Start, Goal) :-
empty stack(Empty open),
stack([Start, nil], Empty open, Open_stack),
empty set(Closed _set),
path(Open_stack, Closed_set, Goal).
The three-argument path call is:
path(Open_stack, ,) :-
empty stack(Open_stack),
write(’No solution found with these rules’).
path(Open_stack, Closed_set, Goal) :-
stack([State, Parent], _, Open_stack),
State = Goal,
write(A Solution is Found!’), nl,
printsolution([State, Parent], Closed_set).
path(Open_stack, Closed_set, Goal) :-

stack([State, Parent], Rest_open_stack,
Open_stack),

get children(State, Rest open stack, Closed_set,
Children),

add_list to_stack(Children, Rest open_stack,
New_open_stack),

union([[State, Parent]], Closed_set,
New_closed_set),

path(New_open_stack, New closed_set, Goal), !.
get children(State, Rest open stack, Closed_set,
Children) :-

bagof (Child, moves(State, Rest open_ stack,
Closed_set, Child), Children).

moves (State, Rest open_ stack, Closed set, [Next,
State]) :-

move (State, Next),
not (unsafe(Next)), % test depends on problem
not (member stack([Next,], Rest open_ stack)),
not (member set([Next,], Closed_set)).
We assume a set of move rules appropriate to the problem, and, if
necessary, an unsafe predicate:
move (Present state, Next state) :- .. % test rules
move (Present state, Next state) :- ..

The first path call terminates search when the Open_stack is empty,
which means there are no more states on the open list to continue the
search. This usually indicates that the graph has been exhaustively searched.
The second path call terminates and prints out the solution path when the
solution is found. Since the states of the graph search are maintained as

54

Part II: Programming in Prolog

Breadth-first
Search

[State, ©Parent] pairs, printsolution will go to the
Closed_set and recursively rebuild the solution path. Note that the
solution is printed from start to goal.

printsolution([State, nil],) :- write(State), nl.
printsolution([State, Parent], Closed_set) :-
member_ set([Parent, Grandparent], Closed_set),
printsolution([Parent, Grandparent], Closed_set),
write(State), nl.

The third path call uses bagof, a Prolog built-in predicate standard to most
interpreters. bagof lets us gather all the unifications of a pattern into a
single list. The second parameter to bagof is the pattern predicate to be
matched in the database. The first parameter specifies the components of
the second parameter that we wish to collect. For example, we may be
interested in the values bound to a single variable of a predicate. All bindings
of the first parameter resulting from these matches are collected in a list, the
bag, and bound to the third parametet.

In this program, bagof collects the states reached by firing 4/ of the
enabled production rules. Of course, this is necessary to gather all
descendants of a particular state so that we can add them, in proper order, to
open. The second argument of bagof, a new predicate named moves,
calls the move predicates to generate all the states that may be reached using
the production rules. The arguments to moves are the present state, the
open list, the closed set, and a variable that is the state reached by a good
move. Before returning this state, moves checks that the new state, Next,
is not a member of cither rest_open_stack, open once the present
state is removed, or closed_set. bagof calls moves and collects all
the states that meet these conditions. The third argument of bagof
represents the new states that are to be placed on the Open_stack.

For some Prolog interpreters, bagof fails when no matches exist for the
second argument and thus the third argument, List, is empty. This can be
remedied by substituting (bagof(X, moves(S, T, C, X),
List); List = []) forthe current calls to bagof in the code.
Finally, because the states of the search atre represented as state—parent pairs,
member check predicates, e.g., member set, must be revised to reflect
the structure of pattern matching. We test if a state—parent pair is identical
to the first element of the list of state—parent pairs and then recur if it isn’t:

member set([State, Parent], [[State, Parent]|]).

member set(X, [_|T]) :- member set(X, T).

We now present the she// of an algorithm for breadth-first search using
explicit open and closed lists. This algorithm is called by:

go(Start, Goal) :-
empty dqueue(Empty open_ dqueue),

enqueue([Start, nil], Empty open queue,
Open_dqueue),

empty set(Closed _set),
path(Open_gqueue, Closed_set, Goal).

Chapter 4: Production Systems and Search 55

Start and Goal have their obvious values. The shell can be used with the
move rules and unsafe predicates for any search problem. Again we create
the ordered pair [State, Parent], as we did with depth-first search,
to keep track of each state and its parent; the start state is represented by
[Start, nil]. This will be used by printsolution to re-create the
solution path from the Closed_set. The first parameter of path is the
Open_dueue, the second is the Closed set, and the third is the
Goal. Don’t care variables, those whose values are not used in a clause, are
written as “_”.

path(Open_gqueue, ,) :-

empty dqueue(Open_dqueue),

write(’'Graph searched, no solution found.’).

path(Open_gqueue, Closed _set, Goal) :-
dequeue([State, Parent], Open_queue,),
State = Goal,
write(’Solution path is: ‘), nl,
printsolution([State, Parent], Closed_set).

path(Open_gqueue, Closed _set, Goal) :-
dequeue([State, Parent], Open_gqueue,
Rest_open_dueue),

get children(State, Rest open queue,
Closed_set, Children),

add_list to_queue(Children, Rest_open_dgueue,
New_open_dueue),

union([[State, Parent]], Closed_set,
New_closed_set),

path(New_open_queue, New_closed_set, Goal), !.

get children(State, Rest open queue, Closed_set,
Children) :-
bagof (Child, moves(State, Rest open_ queue,
Closed_set, Child), Children).
moves (State, Rest open queue, Closed_set, [Next,
State]) :-
move (State, Next),
not (unsafe(Next)), $test depends on problem
not (member queue([Next,], Rest open queue)),
not (member set([Next,], Closed _set)).

This algorithm is a shell in that no move rules are given. These must be
supplied to fit the specific problem domain, such as the FWGC problem of
Section 4.2. The queue and set operators are found in Section 3.3.

The first path termination condition is defined for the case that path is
called with its first argument, Open_queue, empty. This happens only
when no more states in the graph remain to be searched and the solution
has not been found. A solution is found in the second path predicate when
the head of the open queue and the Goal state are identical. When

56

Part II: Programming in Prolog

Best-first
Search

path does not terminate, the third call, with bagof and moves
predicates, gathers all the children of the current state and maintains the
queue. (The detailed actions of these two predicates were described in
Section 4.3.2.) In order to recreate the solution path, we saved each state as a
state—parent pair, [State, Parent]. The start state has the parent
nil. As noted in Section 4.3.1, the state—parent pair representation makes
necessary a slightly more complex pattern matching in the member,
moves, and printsolution predicates.

Obur shell for best-first search is a modification of the breadth-first algorithm
in which the open queue is replaced by a priority queue, ordered by heutistic
merit, which supplies the current state for each new call to path. In our
algorithm, we attach a heuristic measure permanently to each new state on
open and use this measure for ordering the states on open. We also retain
the parent of each state. This information is used by printsolution, as
in depth- and breadth-first search, to build the solution path once the goal is
found.

To keep track of all required search information, each state is represented as
a list of five elements: the state description, the parent of the state, an integer
giving the depth in the graph of the state’s discovery, an integer giving the
heuristic measure of the state, and the integer sum of the third and fourth
elements. The first and second elements are found in the usual way; the third
is determined by adding one to the depth of its parent; the fourth is
determined by the heuristic measure of the particular problem. The fifth
element, used for ordering the states on the open_pq,is £(n) = g(n)
+ h(n). A justification for using this approach to order states for heuristic
search, usually referred to as the A Algorithm, is presented in Luger (2009,
Chapter 4).

As before, the move rules are not specified; they are defined to fit the
specific problem. The ADT operators for set and priority guene are presented
in Section 3.3. heuristic, also specific to each problem, is a measure
applied to each state to determine its heuristic weight, the value of the
fourth parameter in its descriptive list.

This best-first search algorithm has two termination conditions and is called
by:
go(Start, Goal) :-
empty set(Closed _set),
empty_pg(Open),
heuristic(Start, Goal, H),
insert pg([Start, nil, 0, H, H], Open, Open pdg),
path(Open_pqg, Closed_set, Goal).

nil is the parent of Start and H its heuristic evaluation. The code for
best-first search is:

path(Open_pq, _,_) :-

empty_pg(Open_pq),
write(’'Graph searched, no solution found.’).

Chapter 4: Production Systems and Search 57

path(Open_pqg, Closed_set, Goal) :-
dequeue_pqg([State, Parent, , ,], Open_pqgq,),
State = Goal,

write(’'The solution path is: ‘), nl,
printsolution([State, Parent, , , 1,
Closed _set).

path(Open_pqg, Closed_set, Goal) :-

dequeue_pg([State, Parent, D, H, S], Open_pqg,
Rest_open pq),

get children([State, Parent, D, H, S],
Rest_open pqg, Closed_set, Children, Goal),

insert list pg(Children, Rest open pq,
New_open_pqg),

union([[State, Parent, D, H, S]], Closed_set,
New_closed_set),

path(New_open pq, New closed set, Goal), !.

get_children is a predicate that generates all the children of State. It
uses bagof and moves predicates as in the previous searches, with details
carlier this Section. A set of move rules, a safe check for legal moves, and
a heuristic must be specifically defined for each application. The
member check must be specifically designed for five element lists.
get children([State, ,D, , _1,Rest _open pqg,
Closed_set,Children,Goal) :-
bagof (Child, moves([State, , D, , _1,
Rest_open_pq, Closed_set, Child,Goal),
Children).

moves([State, _, Depth, _, 1, Rest open pq,
Closed_set, [Next,State,New D,H,S], Goal) :-

move (State, Next),

not (unsafe(Next)), % application specific
not (member pg([Next, , , _, _1,Rest open pq)),
not (member set([Next, , , , _1,Closed set)),

New D is Depth + 1,

heuristic(Next, Goal, H), % application specific

S is New D + H.
printsolution prints the solution path, recursively finding state—parent
pairs by matching the first two elements in the state description with the
first two elements of the five element lists that make up the Closed_set.

printsolution([State, nil, , , 1, _) :-
write(State), nl.

printsolution([State, Parent, , ,], Closed_set):-
member_set([Parent, Grandparent, , , _1,
Closed_set),
printsolution([Parent, Grandparent, , , 1,

Closed_set),
write(State), nl.

58

Part II: Programming in Prolog

In Chapter 5 we further generalize the approach taken so far in that we
present a set of built-in Prolog meta-predicates, predicates like bagof, that
explicitly manipulate other Prolog predicates. This will set the stage for
creating meta-interpreters in Chapter 6.

Exercises

1. Take the path algorithm presented for the knight’s tour problem in the
text. Rewrite the path call in the recursive code to the following form:

path(X, Y) :- path(X, W), move(W, Y).
Examine the trace of this execution and describe what is happening.

2. Write the Prolog code for the farmer, wolf, goat, and cabbage problem,
Section 4.2:

A. Execute this code and draw a graph of the search space.

B. Alter the rule ordering to produce alternative solution paths.

C. Use the shell in the text to produce a breadth-first problem.

D. Describe a heuristic that might be appropriate for this problem.
E. Build the heuristic search solution.

3. Do A - E as in Exercise 2 to create a production system solution for the
Missionary and Cannibal problem. Hint: you may want the is operator,
see Section 5.3.

Three missionaries and three cannibals come to the bank of a
river they wish to cross. There is a boat that will hold only
two, and any of the group is able to row. If there are ever
more missionaries than cannibals on any side of the river the
cannibals will get converted. Devise a series of moves to get
all the people across the river with no conversions.

4. Use and extend your code to check alternative forms of the missionary
and cannibal problem—for example, when there are four missionaries and
four cannibals and the boat holds only two. What if the boat can hold
three? Try to generalize solutions for the whole class of missionary and
cannibal problems.

5. Write a production system Prolog program to solve the full 8§ x 8§
Knight’s Tour problem. Do tasks A - E as described in Exercise 2.

6. Do A - E as in Exercise 2 above for the Water Jugs problem:

There are two jugs, one holding 3 and the other 5 gallons of
water. A number of things can be done with the jugs: they can
be filled, emptied, and dumped one into the other either until
the poured-into jug is full or until the poured-out-of jug is
empty. Devise a sequence of actions that will produce 4
gallons of water in the larger jug. (Hint: use only integers.)

Chapter
Objectives

Chapter
Contents

Meta-Linguistic Abstraction, Types, and
Meta-Interpreters

A number of Prolog meta-predicates are presented, including:
Atom
clause
univ (=..)
call
The type system for Prolog:
Programmer implements typing as needed
Types as run time constraints rather than enforced at compile time
Unification and variable binding explained
Evaluation versus unification
is vetsus =
Difference lists demonstrated

5.1 Meta-Predicates, Types, and Unification
5.2 Types in Prolog
5.3 Unification: The Engine for Variable Binding and Evaluation

5.1

Meta-Logical
Predicates

Meta-Interpreters, Types, and Unification

In this chapter we first consider a set of powerful Prolog predicates, called
meta-predicates. These predicates take as their scope other predicates in the
Prolog environment. Thus they offer tools for building meta-interpreters,
interpreters in a language that are able to interpret specifications in that
language. An example will be to build a rule interpreter in Prolog, an
interpreter that can manipulate and interpret rule sets, specified in Prolog
syntax. These interpreters can also be used to query the user, offer
explanations of the interpreter’s decisions, implement multi-valued or
fuzzy logics, and run any Prolog code.

In Section 5.1 we introduce a useful set of meta-predicates. In Section 5.2
we discuss data typing for Prolog and describe how type constraints can
be added to a prolog system. An example of a typed relational database in
Prolog is given. Finally, in Section 5.3, we discuss unification and
demonstrate with difference lists how powerful this can be.

Meta-logical constructs extend the expressive power of any programming
environment. We refer to these predicates as mefa because they ate
designed to match, query, and manipulate other predicates that make up
the specifications of the problem domain. That is, they can be used to
reason about Prolog predicates rather than the terms or objects these
other predicates denote. We need meta-predicates in Prolog for (at least)
five reasons:

59

60

Part II: Programming in Prolog

To determine the “type” of an expression;

To add “type” constraints to logic programming applications;
To build, take apart, and evaluate Prolog structures;

To compare values of expressions;

To convert predicates passed as data to executable code.

We have actually seen a number of meta-predicates already. In Chapter 2
we described how global structures, which are those that can be accessed
by the entire clause set, are entered into a Prolog program. The command
assert(C) adds the clause C to the current set of clauses. There are
dangers associated with programming with predicates such as assert
and retract. Because these predicates are able to create and remove
global structures, they can introduce side effects into the program, and
may cause other problems associated with poorly structured programs.
Yet, it is sometimes necessaty to use global structures to draw on the
power of Prolog’s built-in database and pattern matching. We do this
when creating semantic nets and frames in a Prolog environment, as in
Section 2.4. We may also use global structures to describe new results as
they are found with a rule-based expert system shell, as in Section 6.2. We
want this information to be global so that other predicates (rules) may
access it when appropriate.

Other meta-predicates that are useful for manipulating representations
include:

var (X) succeeds only when X is an unbound variable.
nonvar (X) succeeds only when X is bound to a nonvatiable term.
=.. creates a list from a predicate term.

For example, foo(a, b, c¢) =.. Y unifies Y with [foo, a, b,
c]. The head of the list Y is the predicate name, and its tail is the
predicate’s arguments. =. . also can be used to bind alternative variable
patterns, of course. Thus,if X =.. [foo, a, b, c] succeeds, then
X has the value foo(a, b, c).

functor (A, B, C) succeeds with A a term whose principal
functor has name B and arity C.

For example, functor(foo(a, b), X, Y) will succeed with
variables X = foo and Y = 2. functor (A, B, C) can also be used
with any of its arguments bound in order to produce the others, such as all
the terms with a certain name and/or arity.

clause(A, B) unifies B with the body of a clause whose head is A.

For example, if p(X) :- dg(X) exists in the database, then
clause(p(a), Y) will succeed with Y = g(a). This is useful for
controlling rule chaining in an interpreter, as seen in Chapter 6.

any_predicate(.., X, ..) :- X executes predicate X, the
argument of any predicate.

Thus a predicate, here X, may be passed as a parameter and executed at
any desired time. call (X), where X is a clause, also succeeds with the
execution of predicate X.

5.2

Chapter 5 Meta-Linguistic Abstraction 61

This short list of meta-logical predicates will be very important in building
and interpreting Al data structures. Because Prolog can manipulate its
own structures in a straightforward fashion, it is easy to implement
interpreters that modify the Prolog semantics, as we see next.

Types in Prolog

For a number of problem-solving applications, the unconstrained use of
unification can introduce unintended error. Prolog is an untyped language,
in that unification simply matches patterns, without restricting them
according to data type. For example, append(nil, 6, 6) can be
inferred from the definition of append, as we will see in Chapter 10.
Strongly typed languages such as Pascal have shown how type checking
helps programmers avoid these problems. Researchers have proposed
adding types to Prolog (Neves et al. 1986, Mycroft and O’Keefe 1984).

Typed data are particularly appropriate in a relational database (Neves et
al. 1986, Malpas 1987). The rules of logic can be used as constraints on the
data and the data can be typed to enforce consistent and meaningful
interpretation of the queries. Suppose that a department store database has
inventory, suppliers, supplier inventory, and other
appropriate relations. We define a database as relations with named fields
that can be thought of as sets of tuples. For example, inventory might
consist of 4-tuples, where:

< Pname, Pnumber, Supplier, Weight > inventory
only when Supplier is the supplier name of an inventory item

numbered Pnumber that is called Pname and has weight Weight.
Suppose further:

< Supplier, Snumber, Status, Location > suppliers

only when Supplier is the name of a supplier numbered Snumber
who has status Status and lives in city Location. Suppose finally:

< Supplier, Pnumber, Cost, Department >
supplier inventory

only if Supplier is the name of a supplier of part number Pnumber in
the amount of Cost to department Department.

We may define Prolog rules that implement various queries and perform
type checking across these relationships. For instance, the query “are there
suppliers of part number 1 that live in London?” is given in Prolog as:
?- getsuppliers(Supplier,1l, london).
The rule:
getsuppliers(Supplier, Pnumber, City) :-
cktype(City, suppliers, city),
suppliers(Supplier, _, _,City),
cktype (Pnumber, inventory, number),
supplier inventory(Supplier, Pnumber, ,),

cktype(Supplier, inventory, name).

62

Part II: Programming in Prolog

implements this query and also enforces the appropriate constraints actoss
the tuples of the database. First the variables Pnumber and City are
bound when the query unifies with the head of the rule; the predicate
cktype tests that Supplier is an element of the set of suppliers, that
1 is a legitimate inventory number, and that london is a suppliers’ city.

We define cktype to take three arguments: a value, a relation name, and
a field name, and to check that each value is of the appropriate type for
that relation. For example, we may define lists of legal values for
Supplier, Pnumber, and City and enforce data typing by requiring
member checks of candidate values across these lists. Alternatively, we
may define logical constraints on possible values of a type; for example,
we may require that inventory numbers be less than 1000.

We should note the differences in type checking between standard
languages such as Pascal and Prolog. We might define a Pascal data type
for suppliers as:
type supplier = record

sname: string;

snumber: integer;

status: boolean;

location: string

end

The Pascal programmer defines new types, here supplier, in terms of
already defined types, such as boolean or integer. When the
programmer uses variables of this type, the compiler automatically
enforces type constraints on their values.

In Prolog, we can represent the supplier relation as instances of the form:

supplier (sname(Supplier),
snumber (Snumber),
status(Status),
location(Location)).

We then implement type checking by wusing rules such as
getsuppliers and cktype. The distinction between Pascal and
Prolog type checking is clear and important: the Pascal type declaration
tells the compiler the form for both the entire structure (record) and the
individual components (boolean, integer, string) of the data
type. In Pascal we declare variables to be of a particular type (record)
and then create procedures to access these typed structures.

procedure changestatus (X: supplier);
begin
if X.status then.
Because it is nonprocedural, Prolog does not separate the declaration from

the use of data types, and type checking is done as the program is
executing. Consider the rule:

Chapter 5 Meta-Linguistic Abstraction 63

supplier name(supplier(sname(Supplier),
snumber (Snumber),
status(true),
location (london))) :-

integer (Snumber), write(Supplier).

supplier_name takes as argument an instance of the supplier
predicate and writes the name of the Supplier. However, this rule will
succeed only if the supplier’s number is an integer, the status is active
(true), and the supplier lives in london. An important part of this type
check is handled by the unification algorithm (status and
location) and the rest is the built-in system-predicate integer.
Further constraints could restrict values to be from a particular list; for
example, Snumber could be constrained to be from a list of supplier
numbers. We define constraints on database queries using rules such as
cktype and supplier name to implement type checking when the
program is executed.

So far, we have seen three ways that data may be typed in Prolog. First,
and most powerful, is the program designer’s use of unification and
syntactic patterns to constrain variable assignment. Second, Prolog itself
provides predicates to do limited type checking. We saw this with meta-
predicates such as var (X), clause(X,Y), and integer (X). The
third use of typing occurred in the inventory example where rules checked
lists of legitimate Supplier, Pnumbers, and Cities to enforce type
constraints.

A fourth, and more radical approach is the complete predicate and data
type check proposed by Mycroft and O’Keefe (1984). Here all predicate
names are typed and given a fixed arity. Furthermore, all variable names
are themselves typed. A strength of this approach is that the constraints
on the constituent predicates and variables of the Prolog program are
themselves enforced by a (meta) Prolog program. Even though the result
may be slower program execution, the security gained through total type
enforcement may justify this cost.

To summarize, rather than providing built-in type checking as a default,
Prolog allows run-time type checking under complete programmer
control. This approach offers a number of benefits for Al programmers,
including the following:

1. The programmer is not forced to adhere to strong type
checking at all times. This allows us to write predicates that
work across any type of object. For example, the member
predicate performs general member checking, regardless of
the type of elements in the list.

2. User flexibility with typing helps exploratory programming.
Programmers can relax type checking in the early stages of
program development and introduce it to detect errors as
they come to better understand the problem.

3. Al representations seldom conform to the built-in data types
of languages such as Pascal, C++, or Java. Prolog allows

64

Part II: Programming in Prolog

5.3

types to be defined using the full power of predicate
calculus. The database example showed this flexibility.

4. Because type checking is done at run time rather than
compile time, the programmer determines when the
program should perform a check. This allows programmers
to delay type checking until it is necessary or until certain
variables have become bound.

5. Programmer control of type checking at run time also
suppotts the creation of programs that build and enforce
new types during execution. This can be of use in a learning
or a natural language processing program, as we see In
Chapters 7, 8, and 9.

In the next section we take a closer look at unification in Prolog. As we
noted earlier, unification is the technical name for pattern matching,
especially when applied to expressions in the Predicate Calculus. The
details for implementing this algorithm may be found in Luger (2009,
Section 2.3). In Prolog, unification is implemented with backtracking that
supportts full systematic instantiation of all values defined for the problem
domain. To master the art of Prolog programming the sequential actions
of the interpreter, sometimes referred to as Prolog’s “procedural
semantics” must be fully understood.

Unification, Engine of Variable Binding and Evaluation

An important feature of Prolog programming is the interpretet’s behavior
when considering a problem’s specification and faced with a particular
query. The query is matched with the set of specifications to see under
what constraints it might be true. The interpretet’s action, left-to-right
depth first backtracking across all specified variable bindings, is a variation
of the search of a resolution-based reasoning system.

But Prolog is NOT a full mathematically sound theorem prover, as it lacks
several important constraints, including the occurs check, and Prolog also
suppotts the use of cut. For details see Luger 2009, Section 14.3). The
critical point is that Prolog performs a systematic search across database
entries, rather than, as in traditional languages, a sequential evaluation of
statements and expressions. This has an important result: variables are
bound (assigned values or instantiated) by wwification and not by an
evaluation process, unless, of course, an evaluation is explicitly requested.
This paradigm for programming has several implications.

The first and perhaps most important result is the relaxation of the
requirement to specify variables as input or output. We saw this power
briefly with the member predicate in Chapter 2 and will see it again with
the append predicate in Chapter 10. append can cither join lists
together, test whether two lists are correctly appended, or break a list into
parts consistent with the definition of append. We use unification as a
constraint handler for parsing and generating natural language sentences in
Chapters 7 and 8.

Unification is also a powerful technique for rule-based and frame-based

Chapter 5 Meta-Linguistic Abstraction 65

expert systems. All production systems require a form of this matching,
and it is often necessary to write a unification algorithm in languages that
don’t provide it, see, for example, Section 15.1 for a Lisp implementation
of unification.

An important difference between unification-based computing and the use
of more traditional languages is that unification performs syntactic
matches (with appropriate parameter substitutions) on structures. It does
not evaluate expressions. Suppose, for example, we wished to create a
successor predicate that succeeds if its second argument is the
arithmetic successor of its first argument. Not understanding the
unification/evaluation paradigm, we might be tempted to define
successor:

successor (X, Y) := Y =X + 1.

This will fail because the = operator does not evaluate its arguments but
only attempts to unify the expressions on either side. This predicate
succeeds if Y unifies with the structure X + 1. Because 4 does not unify
with 3 + 1, the call successor (3, 4) fails! On the other hand,
demonstrating the power of unification, = can test for equivalence, as
defined by determining whether substitutions exist that can make a7y two
expressions equivalent. For example, whether:

friends (X, Y) = friends(george, kate).

In order to correctly define successor (and other related arithmetic
predicates), we need to be able to evaluate arithmetic expressions. Prolog
provides an operator, 1s, for just this task. 1s evaluates the expression on
its right-hand side and attempts to unify the result with the object on its
left. Thus:

X is Y + Z.

unifies X with the value of Y added to Z. Because it performs arithmetic
evaluation, if Y and Z do not have values (are not bound at execution
time), the evaluation of 1s causes a run-time error. Thus, X is Y + Z
cannot (as one might think with a declarative programming language) give
a value to Y when X and Z are bound. Therefore programs must use 1 s to
evaluate expressions with arithmetic operators, +,—, *, /, and mod.

Finally, as in the predicate calculus, variables in Prolog may have one and
only one binding within the scope of a single expression. Once given a
value, through local assignment or unification, variables can never take on
a new value, except through backtracking in the and/or search space of
the current interpretation. Upon backtracking, all the instances of the
variable within the scope of the expression take on the new value. Thus,
is cannot function as a traditional assighment operator; and expressions
suchas X is X + 1 will always fail.

Using is, we now propetly define successor (X, Y) where the
second argument has a numeric value that is one more than the first:

successor (X, Y) :—= Y is X + 1.

successor will now have the correct behavior as long as X is bound to

A n1imerie vrahie at the time that the eann~rrocanr rrodicate ic rallad

66

Part II: Programming in Prolog

successor can be used either to compute Y, given X, or to test values
assigned to X and Y:

?- successor (3, X).
X =4

Yes

?- successor (3, 4).
Yes

?- successor (4, 2).
No

?- successor (Y, 4).

failure, error in arithmetic expression
since Y is not bound at the time that successor is called.

As this discussion illustrates, Prolog does not evaluate expressions as a
default as in traditional languages such as C++ and Java. The programmer
must explicitly call for evaluation and assignment using is. Explicit
control of evaluation, as also found in Lisp, makes it easy to treat
expressions as data, passed as parameters, and creating or modifying them
as needed within the program. This feature, like the ability to manipulate
predicate calculus expressions as data and execute them using call,
greatly simplifies the development of different interpreters, such as the
expert system shell of the next chapter.

We close this discussion of the power of unification-based computing
with an example that does string catenation through the use of difference
lsts. As an alternative to the standard Prolog list notation, we can
represent a list as the difference of two lists. For example, [a, b] is
equivalentto [a, b | [1 1] — [lor[a, b, c] — [c].
This representation has certain expressive advantages over the traditional
list syntax. When the list [a, b] is represented as the difference [a, b
| Y] — Y, it actually describes the potentially infinite class of all lists
that have a and b as their first two elements. Now this representation has
an interesting property, namely addition:

X —2 =X—-Y+Y—12

We can use this property to define the following single-clause logic
program where X — Y is the first list, Y — Z is the second list, and X —
Z is the result of catenating them, as in Figure 5.1: We create the predicate
catenate that takes two list X and Y and creates Z:

catenate(X — ¥, Y — Z, X — Z).

This operation joins two lists of any length in constant time by unification
on the list structures, rather than by repeated assignment based on the
length of the lists (as with append, Chapter 10). Thus, the catenate
call gives:

?- catenate ([a, b Y] —- Y, [1, 2, 3] — [], W).
Y = [1, 2, 3]
W=[a, b, 1, 2] 3]_[]

Chapter 5 Meta-Linguistic Abstraction 67

Figure 5.1 Tree diagrams: list catenation using difference lists.

As may be seen in Figure 5.1, the (subtree) value of Y in the second
parameter is unified with both occurrences of Y in the first parameter of
catenate. This demonstrates the power of unification, not simply for
substituting values for variables but also for matching general structures:
all occurrences of Y take the value of the entire subtree. The example also
illustrates the advantages of an appropriate representation. Thus difference
lists represent a whole class of lists, including the desired catenation.

In this section we have discussed a number of idiosyncrasies and
advantages of Prolog’s unification-based approach to computing.
Unification is at the heart of Prolog’s declarative semantics. For a more
complete discussion of Prolog’s semantics see Luger (2009, Section 14.3).

In Chapter 6 we use Prolog’s declarative semantics and unification-based
pattern matching to design three meta-interpreters: Prolog in Prolog, the
shell for an expert system, and a planner.

68

Part II: Programming in Prolog

Exercises

1. Create a type check that prevents the member check predicate (that
checks whether an item is a member of a list of items) from crashing when
called on member (a, a). Will this “fix”” address the append (nil,
6, 6) anomaly thatis described in Chapter 9? Test it and see.

2. Create the “inventory supply” database of Section 5.2. Build type checks
for a set of six useful queries on these data tuples.

3. Is the difference list catenate really a linear time append (Chapter
10)? Explain.
4. Explore the powers of unification. Use trace to see what happens
when you query the Prolog interpreter as follows. Can you explain what is
happening?

aa X =X +1

b: X is X + 1

¢ X = foo(X)

Chapter
Objectives

Three Meta-Interpreters: Prolog in Prolog,
EXSHELL, and a Planner

Prolog’s meta-predicates used to build three meta-interpreters

Prolog in Prolog

An expert system shell: exshell

A planner in Prolog
The Prolog in Prolog interpreter:

Left-to-right and depth-first search

Solves for a goal look first for facts, then rules, then ask user
exshell performed, using a set of solve predicates:

Goal-driven, depth-first search

Answers how (rule stack) and why (proof tree)

Pruned search paths using the Stanford certainty factor algebra
The Prolog planner

Uses an add and delete list to generate new states

Performs depth-first and left-to-right search for a plan

Chapter 6.1 An Introduction to Meta-Interpreters: Prolog in Prolog
Contents 6.2 A Shell for a Rule-Based Expert System
6.3 A Prolog Planner
6.1 An Introduction to Meta-Interpreters: Prolog in Prolog
Meta [n both Lisp and Prolog, it is easy to write programs that manipulate
Interpreters

expressions written in that language’s syntax. We call such programs meta-
interpreters. In an example we will explore throughout this book, an expert
system shell interprets a set of rules and facts that describe a particular
problem. Although the rules of a problem situation are written in the
syntax of the underlying language, the meta-interpreter redefines their
semantics. The “tools” for supporting the design of a meta-interpreter in
Prolog were the meta predicates presented in Chapter 5.

In this chapter we present three examples of meta-interpreters. As our first
example, we define the semantics of pure Prolog using the Prolog language
itself. This is not only an elegant statement of Prolog semantics, but also
will serve as a starting point for more complex meta-interpreters. solve
takes as its argument a Prolog goal and processes it according to the
semantics of Prolog:

solve(true) :-1!.

solve(not A) :- not(solve(A)).

solve((A, B)) :-!, solve(A), solve(B).

solve(A) :- clause(A, B), solve(B).

69

70 Part II: Programming in Prolog

The first solve predicate checks to see if its argument is a fact and true.
The second checks to determine whether the argument of solve is false
and makes the appropriate change. The third solve predicate sees if the
argument of the solve predicate is the and of two predicates and then
calls solve on the first followed by calling solve on the second.
Actually, the third solve can handle any number of anded goals, calling
solve on the first and then calling solve on the set of anded
remaining goals. Finally, when the three previous attempts have failed,
solve, using the clause metapredicate, finds a rule whose head is the
goal and then calls solve on the body of that rule. solve implements
the same left-to-right, depth-first, goal-directed search as the built-in
Prolog interpreter.

If we assume the following simple set of assertions,

P(X, Y) = q(X), r(Y).

g(X) := s(X).

r(X) :- t(X).

s(a).

t(b).

t(c).
solve has the behavior we would expect of Prolog:

?- solve(p(a, b)).

Yes

?- solve(p(X, Y)).

X =a, Y = b;

X =a, Y =c;

No

?- solve(p(f, g9)).

no
The ability easily to write meta-interpreters for a language has certain
theoretical advantages. For example, McCarthy wrote a simple Lisp meta-
interpreter as part of a proof that the Lisp language is Turing complete
(McCarthy 1960). From a more practical standpoint, we can use meta-
interpreters to extend or modify the semantics of the underlying language
to better fit our application. This is the programming methodology of weta-

linguistic abstraction, the creation of a high-level language that is designed to
help solve a specific problem.

For example, we can extend the standard Prolog semantics so as to ask the
user about the truth-value of any goal that does not succeed (using the four
solve predicates above) in the knowledge base. We do this by adding the
following clauses to the end of the previous definitions of solve:

solve(A) :- askuser(A).
askuser(A) :- write(d),

write(’? Enter true if the goal is true, false
otherwise’), nl.

read(true).

Chapter 6 Three Meta-Interpreters 71

Because we add this definition to the end of the other solve rules, it is
called only if all of these earlier solve rules fail. solve then calls
askuser to query the user for the truth value of the goal (A). askuser
prints the goal and instructions for answering. read (true) attempts to
unify the user’s input with the term true, failing if the user enters false
(or anything that does not unify with true). In this way we have changed
the semantics of solve and extended the behavior of Prolog. An
example, using the simple knowledge base defined above, illustrates the
behavior of the augmented definition of solve:

?- solve(p(f, g9)).

s(f)? Enter true if the goal is true, false
otherwise

true.

t(g)? Enter true if the goal is true, false
otherwise

true.

yes

<

Another extension to the meta-interpreter allows it to respond to “why”
queries. When the interpreter asks the user a question, the user can
respond with why; the appropriate response to this query is the current
rule that the program is trying to solve. We implement this by storing the
stack of rules in the current line of reasoning as the second parameter to
solve. Whenever solve calls clause to solve a goal, it places the
selected rule on the stack. Thus, the rule stack records the chain of rules
from the top-level goal to the current subgoal.

Because the user may now enter two valid responses to a query, askuser
calls respond, which cither succeeds if the user enters true (as before)
or prints the top rule on the stack if the user enters why. respond and
askuser are mutually recursive, so that after printing the answer to a
why query, respond calls askuser to query the user about the goal
again. Note, however, that respond calls askuser with the tail of the
rule stack. Thus, a series of why queries will simply chain back up the rule
stack until the stack is empty — the search is at the root node of the tree —
letting the user trace the entire line of reasoning.
solve(true, _) :-!.
solve(not(A), Rules) :- not(solve(A, Rules)).
solve((A, B), Rules) :- !,
solve(A, Rules), solve(B, Rules).
solve(A, Rules) :-
clause(A, B), solve(B, [(A :- B) | Rules]).
solve(A, Rules) :- askuser(A, Rules).
askuser (A, Rules) :-
write(A),

write(’? Enter true if goal is true,
false otherwise’),nl,

read(Answer), respond(Answer, A, Rules).

72

Part II: Programming in Prolog

respond(true, _,).
respond(why, A, [Rule | Rules]) :-
write(Rule), nl,
askuser (A, Rules).
respond(why, A, []) :- askuser(A, [1).
For example, suppose we run solve on the simple database introduced
earlier in the section:
?- solve(p(f, 9), [1)-
s(f)? Enter true if goal is true, false otherwise
why.
a(f) :- s(f)
s(f)? Enter true if goal is true, false otherwise
why.
p(f,9) :- (a(f), r(9))
s(f)? Enter true if goal is true, false otherwise
true.
t(g)? Enter true if goal is true, false otherwise
true.
yes
Note how successive why queries actually trace back up the full line of

reasoning.

A further useful extension to the solve predicate constructs a proof tree
for any successful goal. The ability to build proof trees provides expert
system shells with the means of responding to “how” queries; it is also
important to any algorithm, such as explanation-based learning (Chapter 7),
that reasons about the results of a problem solver.

We may modify the pure Prolog interpreter to build a proof tree recursively
for a goal as it solves that goal. In the definition that follows, the proof is
returned as the second parameter of the solve predicate. The proof of
the atom true is that atom; this halts the recursion. In solving a goal A
using a rule A := B, we construct the proof of B and return the structure
(A :- ProofB). In solving a conjunction of two goals, A and B, we
simply conjoin the proof trees for each goal: (ProofA, ProofB).

The definition of a meta-interpreter that supports the construction of the
proof trees is:
solve(true, true) :-!.
solve(not(A), not ProofA) :-
not(solve(A, ProofA)).
solve((A, B), (ProofA, ProofB)) :-
solve(A, ProofA), solve(B, ProofB).
solve(A, (A :- ProofB)) :-
clause(A, B), solve(B, ProofB).
solve(A, (A :- given)) :-
askuser ().

6.2

EXSHELL

Chapter 6 Three Meta-Interpreters 73

askuser (A, Proof) :-
write(A),

write(’enter true if goal is true,
false otherwise’),
read(true).

Running this on our simple database gives the results:
?- solve(p(a, b), Proof).

Proof = p(a, b) :-
((a(a) :-

(s(a) :-

true)),
r(b) :-
(t(b) :-
true)))

In the next section, we use these same techniques to implement an expert
system shell. exshell uses a knowledge base in the form of rules to
solve problems. It asks the user for needed information, keeps a record of
case-specific data, responds to how and why queties, and implements the
Stanford certainty factor algebra (Luger 2009, Section 9.2.1). Although this
program, exshell, is much more complex than the Prolog meta-
interpreters discussed above, it is just an extension of this methodology. Its
heart is a solve predicate implementing a back-chaining search.

A Shell for a Rule-Based Expert System

In this section we present the key predicates used in the design of an
interpreter for a goal-driven, rule-based expert system. At the end of this
section, we demonstrate the performance of exshell using an
automotive diagnostic knowledge base. If the reader would prefer to read
through this trace before examining exshell’s key predicates, we
encourage looking ahead.

An exshell knowledge base consists of rules and specifications of
queries that can be made to the user. Rules are represented using a two-
parameter rule predicate of the form rule(R, CF). The first
parameter is an assertion to the knowledge base, written using standard
Prolog syntax. Assertions may be Prolog rules, of the form (G :- P),
where G is the head of the rule and P is the conjunctive pattern under
which G is true. The first argument to the rule predicate may also be a
Prolog fact. CF is the confidence the designer has in the rule’s conclusions.
exshell implements the certainty factor algebra of MYCIN, (Luger
2009, Section 9.2.1), and we include a brief overview of the Stanford
algebra here. Certainty factors (CFs) range from +100, a fact that is true, to
—100, something that is known to be false. If the CF is around 0, the truth
value is unknown. Typical rules from a knowledge base for diagnosing
automotive failures are:

rule((bad_component(starter) :-

(bad_system(starter_system),
lights(come _on))), 50).

rule(fix(starter, ‘replace starter’),100).

74

Part II: Programming in Prolog

Thits first rule states that if the bad system is shown to be the starter system
and the lights come on, then conclude that the bad component is the
starter, with a certainty of 50. Because this rule contains the symbol 2 - it
must be surrounded by parentheses. The second rule asserts the fact that
we may fix a broken starter by replacing it, with a certainty factor of 100.
exshell uses the rule predicate to retrieve those rules that conclude
about a given goal, just as the simpler versions of solve in Section 6.1
used the built-in clause predicate to retrieve rules from the global
Prolog database.

exshell supports user queries for unknown data. However, because we
do not want the interpreter to ask for every unsolved goal, we allow the
programmer to specify exactly what information may be obtained from
asking. We do this with the askable predicate:

askable(car_starts).

Here askable specifies that the interpreter may ask the user for the truth
of the car_starts goal when nothing is known or can be concluded
about that goal.

In addition to the programmer-defined knowledge base of rules and
askables, exshell maintains its own trecord of case-specific data.
Because the shell asks the user for information, it needs to remember what
it has been told; this prevents the program from asking the same question
twice during a consultation (decidedly non-expert behavior!).

The heart of the exshell meta-interpreter is a predicate of four
arguments called, surprisingly, solve. The first of these arguments is the
goal to be solved. On successfully solving the goal, exshell binds the
second argument to the (accumulated) confidence in the goal as computed
from the knowledge base. The third argument is the rule stack, used in
responding to why queries, and the fourth is the cutoff threshold for the
certainty factor algebra. This allows pruning of the search space if the
confidence falls below a specified threshold.

In attempting to satisfy a goal, G, solve first tries to match G with any
facts that it already has obtained from the user. We represent known facts
using the two-parameter known(A, CF) predicate. For example,
known(car_starts, 85) indicates that the user has already told us
that the car starts, with a confidence of 85. If the goal is unknown, solve
attempts to solve the goal using its knowledge base. It handles the negation
of a goal by solving the goal and multiplying the confidence in that goal by
—1. It solves conjunctive goals in left-to-right order. If G is a positive literal,
solve tries any rule whose head matches G. If this fails, solve queries the
user. On obtaining the user’s confidence in a goal, solve asserts this
information to the database using a known predicate.

% Case 1l: truth value of goal is already known
solve(Goal, CF, _, Threshold) :

known (Goal, CF), !,

above threshold(CF, Threshold).

Chapter 6 Three Meta-Interpreters 75

% Case 2: negated goal

solve(not(Goal), CF, Rules, Threshold) :-!,
invert threshold(Threshold, New_ threshold),
solve(Goal, CF_goal, Rules, New_threshold),
negate cf(CF_goal, CF).

% Case 3: conjunctive goals

solve((Goal _1,Goal _2), CF, Rules, Threshold) :- !
solve(Goal 1, CF_1, Rules, Threshold),
above threshold(CF_1, Threshold),
solve(Goal 2, CF_2, Rules, Threshold),
above threshold(CF_2, Threshold),
and_cf(CF_1, CF_2, CF).

% Case 4: back chain on a rule in knowledge base

solve(Goal, CF, Rules, Threshold) :-
rule((Goal :- (Premise)), CF_rule),

4

solve(Premise, CF_premise, [rule((Goal :-
Premise), CF_rule)|Rules], Threshold),
rule cf(CF_rule, CF_premise, CF),
above threshold(CF, Threshold).
% Case 5: fact assertion in knowledge base
solve(Goal, CF, _, Threshold) :-
rule(Goal, CF),
above threshold(CF, Threshold).
% Case 6: ask user
solve(Goal, CF, Rules, Threshold) :-
askable(Goal),
askuser (Goal, CF, Rules), !,
assert (known(Goal, CF)),
above threshold(CF, Threshold).
We start a consultation using a two-argument version of solve. The first
argument is the top-level goal in the knowledge base, and the second is a
variable that will be bound to the confidence in the goal’s truth as inferred
from the knowledge base. solve/2 (solve with arity of 2) prints a set
of instructions to the user, calls retractall (known(,)) to clean
up any residual information from previous uses of exsﬁefl, and calls
solve/4 initialized with appropriate values:
solve(Goal, CF) :-
print_instructions,
retractall(known(_, _)),
solve(Goal, CF, [], 20).
print_instructions gives allowable responses to an exshell query:
print_instructions :- nl,
write('Response must be either:’), nl,
write(’Confidence in truth of query.’), nl,

76

Part II: Programming in Prolog

write(’A number between —100 and 100.’), nl,

write(’why.’), nl,

write(’'how(X), where X is a goal’), nl.
The next set of predicates computes certainty factors. Again, exshell
uses a form of the Stanford certainty factor algebra. Briefly, the certainty
factor of the and of two goals is the minimum of the certainty factors of
the individual goals; the certainty factor of the negation of a fact is —1 times
the certainty of that fact. Confidence in a fact concluded using a rule equals
the certainty of the premise multiplied by the certainty factor in the rule.
above_ threshold determines whether the value of a certainty factor
is too low given a particular threshold. exshell uses the
threshold value to prune a goal if its certainty gets too low.

Note that we define above_ threshold separately for negative and
positive values of the threshold. A positive threshold enables us to
prune if the goal’s confidence is less than threshold. However, a
negative threshold indicates that we are trying to prove a goal false.
Thus for negative goals, we prune search if the value of the goal’s
confidence is greater than the threshold. invert threshold is
called to multiply threshold by 1.

and cf(A, B, A) :- A = < B.
and cf(A, B, B) :- B < A.
negate cf(CF, Negated CF) :-
Negated CF is - 1 * CF.
rule cf(CF_rule, CF_premise,CF) :-
CF is (CF_rule * CF_premise/100).
above threshold(CF, T) :-
T >=20, CF >= T.
above threshold(CF, T) :-
T < 0, CF =< T.
invert_ threshold(Threshold, New_threshold) :-
New_threshold is —1 * Threshold.
askuser writes out a query and reads the uset’s Answer; the respond
predicates take the appropriate action for each user input.
askuser(Goal, CF, Rules) :-
nl, write('User query:’),
write(Goal), nl, write(’'?’),
read(Answer),
respond(Answer, Goal, CF, Rules).
The user can respond to this query with a CF between 100 and —100, for
confidence in the goal’s truth, why to ask why the question was asked, or
how (X) to inquire how result X was established. The response to why is
the rule currently on top of the rule stack. As with our implementation of
Prolog in Prolog in Section 6.1, successive why queries will pop back up

the rule stack, enabling the user to reconstruct the entire line of reasoning.
If the user answer matches how (X), respond calls build proof to

Chapter 6 Three Meta-Interpreters 77

build a proof tree for X and write proof to print that proof in a
readable form. There is a “catchall” respond for unknown input values.

% Case 1l: user enters a valid confidence factor
respond(CF, , CF, _) :-
number (CF),
CF =< 100, CF >= —100.
% Case 2: user enters a why query
respond(why, Goal, CF, [Rule | Rules]) :-
write rule(Rule),
askuser (Goal, CF, Rules).
respond(why, Goal, CF, []) :-
write(’'Back to top of rule stack.’),
askuser(Goal, CF, [1).
% Case 3: user enters a how query. Build/print proof
respond(how(X), Goal, CF, Rules) :-
build proof (X, CF_X, Proof), !,
write(X), write(’concluded with certainty’),
write(CF_X), nl, nl,
write(’'The proof is ‘), nl, nl,
write proof (Proof, 0), nl, nl,
askuser (Goal, CF, Rules).
% User enters how query, could not build proof
respond(how(X), Goal, CF, Rules) :-
write(’'The truth of ‘), write(X), nl,
write(’is not yet known.’), nl,
askuser (Goal, CF, Rules).
% Case 4: User presents unrecognized input
respond(_, Goal, CF, Rules) :-
write('Unrecognized response.’), nl,
askuser (Goal, CF, Rules).
build proof is parallel to solve/4, but build proof does not
ask the user for unknowns, as these were already saved as part of the case-
specific data. build_proof constructs a proof tree as it proves the goal.
build_ proof(Goal, CF, (Goal, CF :- given)) :-
known(Goal, CF), !.
build_ proof(not Goal, CF, not Proof) :- !,
build_ proof(Goal, CF_goal, Proof),
negate cf(CF_goal, CF).

build proof((Goal_1, Goal 2), CF,
(Proof_1, Proof 2)) :- !,

build proof(Goal 1, CF_1, Proof 1),
build proof(Goal 2, CF_2, Proof 2),
and_cf(CF_1, CF_2, CF).

78 Part II: Programming in Prolog

build_proof(Goal, CF, (Goal, CF :- Proof)) :-
rule((Goal :- Premise), CF_rule),
build_ proof (Premise, CF_premise, Proof),
rule cf(CF_rule, CF_premise, CF).
build_proof(Goal, CF, (Goal, CF :- fact)) :-
rule(Goal, CF).
The final predicates create a user interface. The interface requires the bulk
of the code! First, we define a predicate write rule:
write rule(rule((Goal :- (Premise)), CF)) :-
write(Goal), write(':-'), nl,
write premise(Premise), nl,
write('CF = ‘), write(CF), nl.
write rule(rule(Goal, CF)) :-
write(Goal), nl, write('CF = '), write(CF), nl.
write_ premise writes the conjuncts of a rule premise:
write premise((Premise 1, Premise 2)) :- !,
write premise(Premise 1),
write premise(Premise_ 2).
write premise(not Premise) :- !,
write(’’), write(not), write('’),
write(Premise), nl.
write premise(Premise) :-
write(’’), write(Premise), nl.
write_proof prints proof, using indents to show the tree’s structure:
write proof((Goal, CF :- given), Level) :-
indent(Level), write(Goal), write(’ CF= ‘),
write(CF),write(’ given by the user’), nl, !.
write proof((Goal, CF :- fact), Level) :-
indent(Level), write(Goal), write(’ CF = ‘),
write(CF),

write(’ was a fact of knowledge base’), nl, !.

write proof((Goal, CF :- Proof), Level) :-
indent(Level), write(Goal), write(’ CF = ‘),
write(CF), write(’ :-'), nl, New_ level is

Level + 1,write proof(Proof,New level), !.
write proof(not Proof, Level) :-
indent(Level), write((not)), nl,

New level is Level + 1,

write proof (Proof, New level), !.
write proof((Proof 1, Proof 2),Level) :-

write proof(Proof 1, Level),

write proof(Proof 2, Level), !.

indent (0).

Chapter 6 Three Meta-Interpreters 79

indent(1l) :-
write(’’), 1 new is 1 — 1, indent(l _new).

As an illustration of the behavior of exshell, consider the following
sample knowledge base for diagnosing car problems. The top-level goal is
fix/1. The knowledge base decomposes the problem solution into finding
the bad_system, finding the bad_component within that system,
and finally linking the diagnosis to Advice for its solution. Note that the
knowledge base is incomplete; there are sets of symptoms that it cannot
diagnose. In this case, exshell simply fails. Extending the knowledge
base to some of these cases and adding a rule that succeeds if all other rules
fail are interesting challenges and left as exercises. The following set of
rules is segmented to show reasoning on each level of the search tree
presented in Figure 6.1. The top segment, rule((fix (Advice), is at
the root of the tree:

rule((fix(Advice) :- % Top-level query

(bad_component(X), fix(X,Advice))), 100).
rule((bad_component (starter) :-

(bad_system(starter_system),
lights(come _on))), 50).

rule((bad_component (battery) :-

(bad_system(starter_system),
not lights(come on))), 90).

rule((bad_component(timing) :-

(bad_system(ignition_system),
not tuned_recently)), 80).

rule((bad_component(plugs) :-

(bad_system(ignition_system),
plugs(dirty))), 90).
rule((bad _component(ignition wires) :-

(bad_system(ignition_system),
not plugs(dirty), tuned recently)), 80).
rule((bad_system(starter_system) :-

(not car_starts, not turns_over)), 90).
rule((bad_system(ignition_ system) :-

(not car_starts, turns_over, gas_in carb)),80).
rule((bad_system(ignition_ system) :-

(runs(rough), gas_in carb)), 80).
rule((bad _system(ignition_ system) :-

(car_starts, runs(dies), gas_in carb)), 60).

rule(fix(starter, ‘replace starter’), 100).
rule(fix(battery, ‘replace/recharge battery’), 100).
rule(fix(timing, ‘get the timing adjusted’), 100).
rule(fix(plugs, ‘replace spark plugs’), 100).

rule(fix(ignition wires, ‘check ignition’),100).

askable(car_starts). % May ask user about goal

80 Part II: Programming in Prolog

askable(turns_over).
askable(lights(_)).
askable(runs(_)).
askable(gas_in carb).
askable(tuned_recently).
askable(plugs(_)).
Next we demonstrate, exshell using this knowledge base. Figure 6.1

presents the trace and the search space: solid lines are searched, dotted
lines are not searched, and bold lines indicate the solution.

?- solve(fix(X), CF).

Response must be either:
A confidence in the truth of the query.
This is a number between —100 and 100.
why.
how(X), where X is a goal

User query:car_starts

? =100.
User query:turns_over
? 85.
User query:gas_in carb
? 75.
User query:tuned recently
? =90.
X = ‘get the timing adjusted’ CF = 48.0

We now run the problem again using how and why queries. Compare the
responses with the corresponding subtrees and search paths of Figure 6.1:

?- solve(tix(X), CF).

Figure 6.1. The graph searched in an automotive diagnosis consultation;
dashed lines are branches not examined, bold lines indicate the solution.

Chapter 6 Three Meta-Interpreters

Response must be either:
A confidence in the truth of the query.
This is a number between —100 and 100.
why.
how(X), where X is a goal

User query:car_starts

? =100.

User query:turns_over

? why.

bad_system(starter_ system):-
not car_starts
not turns_over
CF = 90

User query:turns_over

? why.

bad_component(starter):-
bad_system(starter_ system)
lights(come_on)
CF = 50

User query:turns_over
? why.

fix(_0):-
bad_component (starter)
fix(starter, 0)
CF = 100

User query:turns_over

? why.

Back to top of rule stack.
User query:turns_over

? 85.

User query:gas_in carb

? 75.

User query:tuned recently
? why.

bad component(timing):-
bad system(ignition_system)
not tuned_recently
CF = 80

User query:tuned recently
? how(bad system(ignition_ system)).

bad system(ignition_system) was concluded with
certainty 60.0

The proof is

bad system(ignition_system) CF= 60.0 :-

81

not car_starts CF = —100 was given by the user

turns_over CF = 85 was given by the user
gas_in carb CF = 75 was given by the user

User query:tuned recently
? =90.
X = ‘get the timing adjusted’ CF = 48.0

82

Part II: Programming in Prolog

6.3 A Prolog Planner

For the third meta-interpreter of Chapter 6 we present a predicate calculus-
based planning algorithm. In many ways this approach to planning is
similar to early work in planning at SRI-International (Fikes and Nilsson
1971, Fikes et al. 1972). Our planner is predicate calculus based in that the
PC representation is used to describe both the states of the planning world
(the state descriptions) as well as the rules for changing the state of the
world. In this section we create a Prolog version of that algorithm.

We represent the states of the world, including the start and goal, as
lists of predicates that have interpretations as states of the world. Thus, the
start and goal states are each described as a list of predicates:

start = [handempty, ontable(b), ontable(c), on(a,b),
clear(c), clear(a)]

goal = [handempty, ontable(a), ontable(b), on(c,b),
clear(a), clear(c)]

These states are seen, with a portion of the search space, in Figure 6.2.

The moves in this blocks world are described using an add and delete list.
The add and delete list describes how the list of predicates describing a
new state of the solution is created from the list describing the previous
state: some predicates are added to the state list and others are deleted. The
move predicates for state change have three arguments. First is the move
predicate name with its arguments. The second argument is the list of
preconditions: the predicates that must be true of the description of the
present state of the wortld for the move rule to be applied to that state.
The third argument is the list containing the add and delete predicates: the
predicates that are added to and/or deleted from the state of the world to
create the new state of the world that results from applying the move rule.
Notice how useful the ADT set operators of union, intersection, set
difference, etc., are in manipulating the preconditions and the predicates in
the add and delete list.

Four of the moves within this blocks world may be described:

move (pickup(X), [handempty, clear(X), on(X,Y)],
[del (handempty), del(clear (X)), del(on(X,Y)),
add(clear(Y)), add(holding(X))])-.

move (pickup(X), [handempty, clear(X), ontable(X)],
[del (handempty), del(clear (X)),

del (ontable(X)), add(holding(X))]).

move (putdown (X), [holding(X)],
[del (holding (X)), add(ontable(X)),
add(clear (X)), add(handempty)]).

move (stack(X,Y), [holding(X), clear(Y)],
[del (holding (X)), del(clear(Y)),
add (handempty),add(on(X,Y)),add(clear(X))]).

Chapter 6 Three Meta-Interpreters 83

e T

A C
B C A B

I | I |
The start state The goal state

w
(9]

i pgaaa

A
B C
B C
—
I

Figure 6.2. The start and goal states along with the initial portion of the
search space for the blocks world planner.

Finally, we present the recursive controller for the plan generation. The
first plan predicate gives the successful termination conditions (goal state
description) for the plan when the Goal is produced. The final plan
predicate states that after exhaustive search, no plan is possible. The
recursive plan generator:

1. Searches for a move relationship.

2. Checks, using the subset operator, whether the state’s
Preconditions are met.

3. The change state predicate produces a new
Child_state using the add and delete list.

member stack makes sure the new state has not been visited
before.

4. The stack operator pushes the new Child_ state onto
the New_move_ stack.

84

Part II: Programming in Prolog

5. The stack operator pushes the original Name state onto the
New been stack.

6. The recursive plan call searches for the next state using the
Child state and an updated New move_ stack and
Been stack.

A number of supporting utilities, built on the stack and set ADTs of
Section 3.3 are included. Of course, the search being stack-based, is depth-
first with backtracking and terminates with the first path found to a goal. It
is left as an exercise to build other search strategies for planning, e.g.,
breadth-first and best-first planners.

plan(State, Goal, _, Move_stack) :-
equal_ set(State, Goal),
write('moves are’), nl,
reverse_print stack(Move_stack).
plan(State, Goal, Been_stack, Move_ stack) :-
move (Name, Preconditions, Actions),
conditions_met (Preconditions, State),
change state(State, Actions, Child_state),
not (member_ stack(Child_state, Been_stack)),
stack(Name, Been_stack, New_been stack),
stack(Child state, Move_stack, New move_ stack),

plan(Child_state, Goal, New been stack,
New_move_stack), !.

plan(_, _, _) =:-
write(’No plan possible with these moves!’).
conditions met (P, S) :-
subset (P, S).
change_ state(S, [1, S).
change state(S, [add(P) | T], S _new) :-
change state(S, T, S2),
add_if not in set(P, S2, S new), !.
change state(S, [del(P) | T], S _new) :-
change state(S, T, S2),
delete if in set(P, S2, S _new), !.
reverse_print stack(S) :-
empty stack(S).
reverse_print stack(S) :-
stack(E, Rest, S),
reverse_print stack(Rest), write(E), nl.

Finally, we create a go predicate to initialize the arguments for plan, as
well as a test predicate to demonstrate an easy method to save repeated
creation of the same input string.

Chapter 6 Three Meta-Interpreters 85

go(Start, Goal) :-
empty stack(Move_ stack),
empty stack(Been_stack),
stack(Start, Been_stack, New_been_ stack),

plan(Start, Goal, New been stack, Move_ stack).

test :-
go(
[handempty, ontable(b), ontable(c),
on(a,b), clear(c), clear(a)l],

[handempty, ontable(a), ontable(b), on(c,b),
clear(a), clear(c)]

) -
In Chapter 7 we present two machine learning algorithms in Prolog, version
space search and explanation based learning.

Exercises

1. Extend the meta-interpreter for Prolog in Prolog (Section 6.1) to include
or and the cut.

2. Further complete the rules used with the exshell cars example in the
text. You might add several new sets of rules for the transmission, cooling
system, and brakes.

3. Create a knowledge base for a new domain for the expert system
exshell.

4. exshell currently allows the user to respond to queries by entering a
confidence in the query’s truth, a why query, or a how query. Extend the
respond predicate to allow the user to answer with y if the query is true,
n if it is false. These responses correspond to having certainty factors of
100 and -100.

5. As currently designed, if exshell cannot solve a goal using the rule base,
it fails. Extend exshell so if it cannot prove a goal using the rules, and if it
is not askable, it will call that goal as a Prolog query. Adding this option
requires changes to both the solve and build_proof predicates.

6. Add a predicate that that exshell does not just fail if it cannot find a
solution recommendation. This could be a solve predicate at the very
end of all solve predicates that prints out some message about the state
of the problem solving, perhaps by binding X, and linking it to some
Advice, and then succeeds. This an important consideration,
guaranteeing that exshell terminates gracefully.

7. Finish the code for the planner of Section 6.3. Add code for a situation
that requires a new set of moves and has new objects in the domain, such
as adding pyramids or spheres that cannot be stacked on.

8. Add appropriate predicates and ADTs to plan to implement a breadth-
first search controller for the planner of Section 6.3.

86 Part II: Programming in Prolog

9. Design a best-first search controller for the planner of Section 6.3. Add
heuristics to the search of your planning algorithm. Can you specify a
heuristic that is admissible (Luger 2009, Section 4.3)?

Machine Learning Algorithms in Prolog

Chapter Two different machine learning algorithms
Objectives Version space search
Specific-to-general
Candidate elimination
Explanation-based learning
Learning from examples
Generalization
Prolog meta-predicates and interpreters for learning
Version space search
Explanation-based learning
Chapter 7.1 Machine Learning: Version Space Search
Contents 7 Explanation Based Learning in Prolog
7.1 Machine Learning: Version Space Search
In this section and the next, we implement two machine learning
algorithms: version space search and explanation-based learning. The algorithms
themselves are presented in detail in Luger (2009, Chapter 10). In this
chapter, we first briefly summarize them and then implement them in
Prolog. Prolog is wused for machine learning because, as these
implementations illustrate, in addition to the flexibility to respond to novel
data elements provided by its powerful built-in pattern matching, its meta-
level reasoning capabilities simplify the construction and manipulation of
new representations.
The Version 750 space search (Mitchell 1978, 1979, 1982) illustrates the
Spa:fgts)t:iat:"cnl: implementation of inductive learning as search through a concept space. A

concept space is a state space representation of all possible generalizations
from data in a problem domain. Version space search takes advantage of
the fact that generalization operations impose an ordering on the concepts
in a space, and then uses this ordering to guide the search.

Generalization and specialization are the most common types of operations for
defining a concept space. The primary generalization operations used in
machine learning and expressed in the predicate calculus (Luger 2009,
Chapter 2) are:

Replacing constants with variables. For example:

color(ball,red)
generalizes to

color(X,red)

87

88

Part II: Programming in Prolog

Dropping conditions from a conjunctive expression.

shape (X, round) Asize(X, small) Acolor(X, red)
generalizes to

shape (X, round) A color(X,red)
Adding a disjunct to an expression.

shape(X,round) A size(X,small) A color(X,red)
generalizes to

shape (X,round) A size(X,small) A (color(X,red) Vv

color(X,blue))

Replacing a property with its parent in a class hierarchy. If
primary_ color is a superclass of red, then

color(X,red)

generalizes to

color (X, primary color)

We may think of generalization in set theoretic terms: let P and Q be the
sets of sentences matching the predicate calculus expressions p and d,
respectively. Expression p is more general than q iff Q € P. In the above
examples, the set of sentences that match color (X, red) contains the
set of elements that match color (ball, red). Similarly, in example
2, we may think of the set of round, red things as a superset of the set of
small, red, round things. Note that the “more general than” relationship
defines a partial ordering on the space of logical sentences. We express this
using the “>” symbol, where p > g means that p is more general than q.
This ordering is a powerful source of constraints on the search performed
by a learning algorithm.

We formalize this relationship through the notion of covering. 1If concept p
is more general than concept g, we say that p covers gq. We define the
covers relation: let p(x) and g (x) be descriptions that classify objects as
being positive examples of a concept. In other words, for an object X,
p(xX) 2 positive(x) and q(xX) = positive(x). p covers g
iff g(x)> positive(x) is a logical consequence of p(x) =2
positive(x).
For example, color (X, Y) covers color(ball, Z), which in turn
covers color (ball, red). As a simple example, consider a domain
of objects that have properties and values:

Sizes = {large, small}

Colors = {red, white, blue}

Shapes = {ball, brick, cube}
These objects can be represented using the predicate obj(Sizes,
Color, Shapes). The generalization operation of replacing constants
with variables defines the space of Figure 7.1. We may view inductive

learning as searching this space for a concept that is consistent with all the
training examples.

Chapter 7 Machine Learning 89

Figure 7.1. An example concept space.

We next present the candidate elimination algorithm (Mitchell 1982) for
searching the concept space. This algorithm relies on the notion of a version
space, which is the set of all concept descriptions consistent with the
training examples. This algorithm works by reducing the size of the version
space as more examples become available. The first two versions of this
algorithm reduce the version space in a specific to general direction and a
general to specific direction, respectively. The third version, called candidate
elimination, combines these approaches into a bi-directional search. These
versions of the candidate elimination algorithm are data driven; they
generalize based on regularities found in the training data. Also, in using
training data of known classification, these algorithms perform a variety of
supervised learning.

Version space search uses both positive and negative examples of the
target concept. Although it is possible to generalize from positive examples
only, negative examples are important in preventing the algorithm from
over generalizing. Not only must the learned concept be general enough to
cover all positive examples; it also must be specific enough to exclude all
negative examples. In the space of Figure 7.1, one concept that would
cover all sets of exclusively positive instances would simply be obj (X,
Y, Z).However, this concept is probably too general, because it implies
that all instances belong to the target concept. One way to avoid
overgeneralization is to generalize as little as possible to cover positive
examples; another is to use negative instances to eliminate overly general
concepts. As Figure 7.2 illustrates, negative instances prevent
overgeneralization by forcing the learner to specialize concepts in order to
exclude negative instances. The algorithms of this section use both of these
techniques.

We define specific to general search, for hypothesis set S, as:

90

Part II: Programming in Prolog

Figure 7.2. The role of negative examples in preventing
overgeneralization.

Begin
Initialize S to first positive training instance;

N is the set of all negative instances seen so far;
For each positive instance p
Begin
For every s in S, if s does not match p,
Replace s with its most specific
generalization that matchs p;
Delete from S all hypotheses more general than
some other hypothesis in S;
Delete from S all hypotheses that match a prev-
iously observed negative instance in N;
End;
For every negative instance n
Begin
Delete all members of S that match n;
Add n to N to check future hypotheses
for overgeneralization;
End;
End

Specific to general search maintains a set, S, of hypotheses, or candidate
concept definitions. To avoid overgeneralization, these candidate
definitions are the maximally specific generalizations from the training data. A
concept, ¢, is maximally specific if it covers all positive examples, none of
the negative examples, and for any other concept, c¢’, that covers the
positive examples, ¢ < c¢’. Figure 7.3 shows an example of applying this
algorithm to the version space of Figure 7.1. The specific to general
version space search algorithm is built in Prolog in Section 7.1.2.

We may also search the space in a general to specific direction. This algorithm
maintains a set, G, of maximally general concepts that cover all of the positive and

Chapter 7 Machine Learning 91

none of the negative instances. A concept, c, is maximally general if it covers
none of the negative training instances, and for any other concept, c’, that
covers no negative training instance, ¢ > c’. In this algorithm, which we
leave as an exercise, negative instances will lead to the specialization of
candidate concepts while the algorithm uses positive instances to eliminate
ovetly specialized concepts.

Figure 7.3. Specific to general version space search learning the concept
“ball.”

The candidate elimination algorithm combines these two approaches into a bi-
directional search. This bi-directional approach has a number of benefits
for learning. The algorithm maintains two sets of candidate concepts: G,
the set of maximally general candidate concepts, and S, the set of
maximally specific candidates. The algorithm specializes G and generalizes
S until they converge on the target concept. The algorithm is described:

Begin
Initialize G to the most general concept in space;
Initialize S to first positive training instance;
For each new positive instance p
Begin
Delete all members of G that fail to match p;
For every s in S, if s does not match p,
replace s with its most specific
generalizations that match p;

Delete from S any hypothesis more general than
some other hypothesis in S;

Delete from S any hypothesis more general than
some hypothesis in G;
End;

92 Part II: Programming in Prolog

For each new negative instance n
Begin
Delete all members of S that match n;
For each g in G that matches n, replace g with

its most general specializations that do
not match n;

Delete from G any hypothesis more specific than
some other hypothesis in G;

Delete from G any hypothesis more specific than
some hypothesis in S;

End;

If G = S and both are singletons, then the algorithm
has found a single concept that is consistent
with all the data;

If G and S become empty, then there is no concept
that covers all positive instances and none of
the negative instances;

End
Figure 7.4 illustrates the behavior of the candidate elimination algorithm in
searching the version space of Figure 7.1. Note that the figure does not
show those concepts that were produced through generalization or
specialization but eliminated as ovetly general or specific. We leave the
elaboration of this part of the algorithm as an exercise and show a partial
implementation in the next section.

Figure 7.4. The candidate elimination algorithm learning the concept “red
ball.”

A Simple Prolog
Program

Chapter 7 Machine Learning 93

We first implement the specific to general search and then the full bi-
directional candidate elimination algorithm. We also give hints on how to
construct the general to specific version space search. These search
algorithms are independent of the representation used for concepts, as long
as that representation supports appropriate generalization and
specialization operations. We use a representation of objects as lists of
features. For example, we describe a small, red, ball with the list:

[small, red, ball]

We represent the concept of all small, red things by including a variable in
the list:

[small, red, X]

This representation we call a_feature vector, It is less expressive than full logic,
e.g., it cannot represent the class “all red or green balls.” However, it
simplifies generalization, and provides a strong inductive bias (Luger 2009,
Section 10.4). We generalize a feature vector by substituting a variable for a
constant, for example, the most specific common generalization of
[small, red, ball] and [small, green, ball] is
[small, X, balll]. This vector will cover both of the specializations
and is the most specific vector to do so.

We define one feature vector as covering another if the first is either identical
to or more general than the second. Note that unlike unification, covers
is asymmetrical: values exist for which X covers Y, but Y does not cover X.
For example, [X, red, ball] covers [large, red, ball] but
the reverse is not true. We next define the predicate covers for feature
VeCtors as:

covers([1, [1).

covers([Hl | T1], [H2 | T2]) :-
var(Hl), var(H2), covers(Tl, T2).
% variables cover each other

covers([H1 | T1], [H2 | T2]) :-
var(Hl), atom(H2), covers(Tl, T2).
% a variable covers a constant

covers([H1 | T1], [H2 | T2]) :-
atom(H1l), atom(H2), H1 = H2,
covers(Tl, T2).
% matching constants

We next need to determine whether one feature vector is strictly more
general than another; ie., the vectors are not identical. We define the
more_general/2 predicate as:

more _general (X, Y) :- not(covers(Y,X)),covers(X,Y).

We implement generalization of feature vectors as a predicate,
generalize with three arguments, where the first argument is a feature
vector representing an hypothesis (this vector may contain variables), the
second argument is an instance, containing no variables. generalize
binds its third argument to the most specific generalization of the

94

Part II: Programming in Prolog

hypothesis that covers the instance. generalize recursively scans the
feature vectors, comparing corresponding elements. If two elements
match, the result contains the value of the hypotheses vector in that
position; if two elements do not match, it places a variable in the
corresponding position of the generalized feature vector. Note the use of
the expression not(Feature \= Inst prop), in the second
definition of generalize; this double negative enables us to test if two
atoms will unify without actually performing the unification and forming
any unwanted variable bindings. We define generalize:

generalize([1, [1, [1)-

generalize([Feature | Rest],[Inst prop | Rest inst],
[Feature | Rest gen]) :-

not (Feature \= Inst prop),
generalize(Rest, Rest _inst, Rest gen).
generalize([Feature | Rest],[Inst prop | Rest inst],
[_ | Rest _gen]) :-
Feature \= Inst_prop,
generalize(Rest, Rest _inst, Rest gen).

These predicates define the essential operations on feature vector
representations. The remainder of the implementation that follows is
independent of any specific representation, and may be adapted to a variety
of representations and generalization operators.

As discussed in Section 7.1, we may search a concept space in a specific to
general direction by maintaining a list H of candidate hypotheses. The
hypotheses in H are the most specific concepts that cover all the positive
examples and none of the negative examples seen so far. The heart of the
algorithm is process with five arguments. The first argument to
process is a training instance, positive(X) or negative(X),
indicating that X is a positive or negative example. The second and third
arguments are the current list of hypotheses and the list of negative
instances. On completion, process binds its fourth and fifth arguments
to the updated lists of hypotheses and to the negative examples,
respectively.

The first clause in the definition below initializes an empty hypothesis set
to the first positive instance. The second handles positive training instances
by generalizing candidate hypotheses to cover the instance. It then deletes
all over-generalizations by removing those that are more general than some
other hypothesis and eliminating any hypothesis that covers some negative
instance. The third clause in the definition handles negative examples by
deleting any hypothesis that covers those instances.

process(positive(Instance), [], N, [Instance], N).
process(positive(Instance), H, N, Updated H, N) :-
generalize set(H, Gen_H, Instance),

delete(X, Gen_H, (member(Y, Gen_H),
more _general(X, Y)), Pruned_H),

delete(X, Pruned H, (member(Y, N),
covers(X, Y)), Updated H).

Chapter 7 Machine Learning 95

process(negative(Instance), H, N, Updated H,
[InstanceN]) :-

delete(X, H, covers(X, Instance), Updated H).
process(Input, H, N, H, N):- %Catches bad input

Input \= positive(_),

Input \= negative(_),

write(’'Enter either positive(Instance) or

negative(Instance) ‘), nl.
An interesting aspect of this implementation is the delete predicate, a
generalization of the usual process of deleting all matches of an element
from a list. One of the arguments to delete is a test that determines
which elements to remove from the list. Using bagof, delete matches
its first argument (usually a variable) with each element of its second
argument (this must be a list). For each such binding, it then executes the
test specified in argument three: this test is any sequence of callable Prolog
goals. If a list element causes this test to fail, delete includes that
element in the resulting list. It returns the result in its final argument. The
delete predicate is an excellent example of the power of meta reasoning
in Prolog: by letting us pass in a specification of the elements we want to
remove from a list, delete gives us a general tool for implementing a
range of list operations. Thus, delete lets us define the various filters
used in process/5 in an extremely compact fashion. We define
delete:
delete(X, L, Goal, New_L) :-
(bagof (X, (member(X, L), not(Goal)), New L);
New L = []).

Generalize_ set is a straightforward predicate that recursively scans a
list of hypotheses and generalizes each one against a training instance. Note
that this assumes that we may have multiple candidate generalizations at
one time. In fact, the feature vector representation of Section 7.1.1 only
allows a single most specific generalization. However, this is not true in
general and we have defined the algorithm for the general case.

generalize set([1, [1, _)-.

generalize_ set([Hypothesis Rest],
Updated_H, Instance):-

not (covers (Hypothesis, Instance)),

(bagof (X, generalize(Hypothesis, Instance, X),
Updated_head); Updated head = []),

generalize_ set(Rest, Updated_rest, Instance),
append(Updated head, Updated _rest, Updated H).

generalize set([Hypothesis | Rest],
[Hypothesis | Updated rest], Instance) :-

covers (Hypothesis, Instance),
generalize set(Rest, Updated_rest, Instance).

specific_to_general implements a loop that reads and processes training
instances:

96

Part II: Programming in Prolog

specific to general(H, N) :-
write('H = '), write(H), nl, write(’'N = ‘'),
write(N), nl,
write(’Enter Instance: ‘), read(Instance),
process(Instance, H, N, Updated H, Updated N),
specific_to general(Updated H, Updated N).

The following transcript illustrates the execution of this algorithm.

?- specific_to _general([], [])-.

H=11]

N =11

Enter Instance: positive([small, red, ball]).

H [[small, red, ball]]

N =11

Enter Instance: negative([large, green, cube]).

H [[small, red, ball]]

N

Enter Instance: negative([small, blue, brick]).

H = [[small, red, ball]]

[[large, green, cube]]

N = [[small, blue, brick], [large, green, cube]]
Enter Instance: positive([small, green, ball]).
H = [[small, 66, ball]]

N = [[small, blue, brick], [large, green, cube]]
Enter Instance: positive([large, blue, ball]).

H [[_116, 66, ball]]

N [[small, blue, brick], [large, green, cube]]

The second version of the algorithm searches in a general to specific
direction, as described in Section 7.1.1. In this version, the set of candidate
hypotheses are initialized to the most general possible concept. In the case
of the feature vector representation, this is a list of variables. It then
specializes candidate concepts to prevent them from covering negative
instances. In the feature vector representation, this involves replacing
variables with constants. When given a new positive instance, it eliminates
any candidate hypothesis that fails to cover that instance.

We implement this algorithm in a way that closely parallels the specific to
general search just described, including the use of the general delete
predicate to define the various filters of the list of candidate concepts. In
defining a general to specific search, process will have six arguments. The
first five reflect the specific to general version: the first a training instance
of the form positive(Instance) or negative(Instance);
the second is a list of candidate hypotheses; these are the most general
hypotheses that cover no negative instances. The third argument is the list
of positive examples, used to delete any overly specialized candidate
hypothesis. The fourth and fifth arguments are the updated lists of
hypotheses and positive examples, respectively. The sixth argument is a list
of allowable variable substitutions for specializing concepts.

Chapter 7 Machine Learning 97

Specialization by substituting a constant for a variable requires the
algorithm to know the allowable constant values for each field of the
feature vector. These values will have to be passed in as the sixth argument
of process. In our example of [Size, Color, Shape] vectors, a
sample list of types might be: [[small, medium, large],
[red, white, blue], [ball, brick, cube]]. Note that
the position of each sublist determines the position in a feature vector
where those values are used; for example, the first sublist defines allowable
values for the first position of a feature vector. We leave construction of
this algorithm as an exercise. For guidance we include a run of our
implementation:
?- general_to_specific([[_, _, _11, [1.

[[small, medium, large],
[red, blue, green],
[ball, brick, cube]]).

H=1[[_0, 1, _2]]

P=11

Enter Instance: positive([small, red, ball]).
H=11[_0, 1, _2]]

P = [[small, red, ball]]

Enter Instance; negative([large, green, cube]).

H = [[small, 89, 90], [79, red, 807,
[69, 70, ball]]

P = [[small, red, ball]]

Enter Instance: negative([small, blue, brick]).
H [[_79, red, _80]1,[_69, 70, ball]]

P [[small, red, ball]]

Enter Instance: positive([small, green, ball]).
H=[[_69, 70,ball]]

P = [[small, green, ball], [small, red, ball]]

The full candidate elimination algorithm, as described in Section 7.1.1, is a
combination of the two single direction searches. As before, the heart of
the algorithm is the definition of process, with six arguments. The first
argument to process is a training instance. Arguments two and three are
G and S, the sets of maximally general and maximally specific hypotheses
respectively. The fourth and fifth arguments are bound to the updated
versions of these sets. The sixth argument of process lists allowable
variable substitutions for specializing feature vectors.

On positive instances, process generalizes S, the set of most specific
generalizations, to cover the training instance. It then eliminates any
elements of S that have been over generalized. It also eliminates any
elements of G that fail to cover the training instance. It is interesting to
note that an element of S is overly general if there is no element of G that
covers it; this is true because G contains those candidate hypotheses that
are both maximally general and cover no negative instances. process
uses delete to eliminate these hypotheses.

98

Part II: Programming in Prolog

On a negative training instance, process specializes all hypotheses in G
to exclude that instance. It also eliminates any candidates in S that cover
the negative instance. As discussed above, specialization of feature vectors
requires replacing variables with constants. This requires that we pass a list
of allowable substitutions as the sixth argument to process. We define
process:
process(negative(Instance), G, S, Updated G,
Updated_S, Types) :-
delete(X, S, covers(X, Instance), Updated_S),
specialize_set (G, Spec_G, Instance, Types),
delete(X, Spec_G, (member(Y, Spec_G),
more _general(Y, X)), Pruned G),

delete(X, Pruned G, (member(Y, Updated S),
not(covers(X, Y))), Updated G).

process(positive(Instance), G, [1,
Updated_ G, [Instance],) :- %Initialize S
delete(X, G, not(covers(X, Instance)),
Updated_G).
process(positive(Instance), G, S,
Updated_G, Updated_S,) :-
delete(X, G, not(covers(X, Instance)),
Updated_G),
generalize set(S, Gen_S, Instance),
delete(X, Gen_S, (member(Y, Gen_S),
more _general(X, Y)), Pruned_S),
delete(X, Pruned_ S, not((member(Y, Updated G),
covers(Y, X))), Updated S).
process(Input, G, P, G, P,_) :-
Input \= positive(_), Input \= negative(_),
write(Enter a positive(Instance) or
negative(Instance): ‘), nl.
generalize set generalizes all members of a set of candidate
hypotheses to cover a training instance. It is identical to the version defined
for the specific to general search. specialize_ set takes a set of
candidate hypotheses and computes all maximally general specializations of
those hypotheses that exclude (do not covet) a training instance. Note the
use of bagof to get all specializations.
specialize set([1, [1, _, _)-
specialize set([HypothesisRest],
Updated_H, Instance, Types) :-
covers (Hypothesis, Instance),
(bagof (Hypothesis, specialize(Hypothesis,
Instance,Types), Updated head) ;
Updated_head = [1),
specialize set(Rest, Updated rest, Instance,
Types),
append(Updated head, Updated_rest, Updated H).

Chapter 7 Machine Learning 99

specialize set([HypothesisRest],
[HypothesisUpdated rest],Instance,Types):-

not (covers(Hypothesis, Instance)),

specialize set(Rest, Updated rest,
Instance, Types).

specialize finds an element of a feature vector that is a variable. It
binds that variable to a constant value that it selects from the list of
allowable values, and which does not match the training instance. Recall
that specialize_set called specialize with bagof to get all
specializations. If we call specialize once, it will substitute a constant
into the first variable; bagof causes it to produce all specializations.

specialize([Prop_], [Inst prop_ 1,
[Instance_values_]) :-

var (Prop), member (Prop, Instance_ values),
Prop \= Inst prop.
specialize([_Tail], [_Inst tail], [_Types]) :-
specialize(Tail, Inst_tail, Types).
The definitions of generalize, more general, covers, and
delete are the same as in the specific to general algorithm defined

above. candidate elim implements a top-level read-process loop,
printing out the current G set, the S set, and calls process on the input:

candidate _elim([G],[S],_) :-
covers(G,S),covers(S,G),
write(’'target concept is: ‘), write(G),nl.
candidate _elim(G, S, Types) :-
write(’'G= ‘), write(G), nl, write(’'S= ‘),
write(S), nl, write('Enter Instance: ‘),
read(Instance),

process(Instance, G, S, Updated G,
Updated_S, Types),

candidate_elim(Updated G, Updated S, Types).
To conclude this section we present a trace of the candidate elimination

algorithm. Note initializations of G, S, and the list of allowable
substitutions:

?- candidate elim([[_, _, _11, [1.
[[small, medium, large],
[red, blue, green],
[ball, brick, cube]]).

G= [[_0, _1, _21]]

S= [1

Enter Instance: positive([small, red, ball]).
G= [[_0, 1, _21]]

S= [[small, red, ball]]

Enter Instance: negative([large, green, cube]).

G= [[small, 96, 971, [_86, red, 871,
[76, _77, ball]]

100 Part II: Programming in Prolog

7.2

The Explanation
Based Learning
Algorithm

S= [[small, red, ball]]

Enter Instance: negative([small, blue, brick]).
G= [[_86, red, 871, [_76, _77, ball]l]

S= [[small, red, ball]]

Enter Instance: positive([small, green, ball]).
G= [[_76, _77, ball]l]

S= [[small, 351, ball]]

Enter Instance: positive([large, red, ball]).

target concept is: [_76, 77, ball] yes
Explanation Based Learning in Prolog

In this section, we describe briefly the algorithms for explanation-based
learning, Section 7.2.1 and then present a Prolog implementation of the
explanation-based learning in Section 7.2.2. Our implementation is based
upon Kedar-Cabelli and McCarty’s formulation (Kedar-Cabelli and
McCarty 1987; Luger 2009, Section 10.5.2), called prolog ebg, and
illustrates the power of unification in Prolog. Even though it is quite
difficult to implement explanation-based learning in many languages, the
Prolog version is fairly simple.

Explanation-based learning uses an explicitly represented domain theory
to construct an explanation of a training example, usually a proof that the
example logically follows from the theory. By generalizing from the
explanation of the instance, rather than from the instance itself,
explanation-based learning filters noise, selects relevant aspects of
experience, and organizes training data into a coherent structure.

There are several alternative formulations of this idea. For example, the
STRIPS program for representing general operators for planning (see
Section 6.3) has exerted a powerful influence on this research (Fikes et al.
1972). Meta-DENDRAL established the power of theory-based
interpretation of training instances (Luger 2009, Section 10.5.1). A number
of authors (DeJong and Mooney 1986, Minton 1988) have proposed
alternative formulations of this idea. The Explanation-Based
Generalization algorithm of Mitchell et al. (1986) is also typical of the
genre. In this section, we examine a variation of the explanation-based
learning (EBL) algorithm developed by DeJong and Mooney (1980).

EBL begins with:

1. A target concept. The learner’s task is to determine an effective
definition of this concept. Depending upon the specific
application, the target concept may be a classification, a
theorem to be proven, a plan for achieving a goal, or a heuristic
for a problem solver.

2. A training example, an instance of the target.

A domain theory, a set of rules and facts that are used to explain
how the training example is an instance of the goal concept.

4. Operationality criteria, some means of describing the form
concept definitions may take.

Chapter 7 Machine Learning 101

To illustrate EBL, we present an example of learning about when an object
is a cup. This is a variation of a problem explored by Winston et al. (1983)
and adapted to explanation-based learning by Mitchell et al. (1986). The
target concept is a rule that may be used to infer whether an object is a cup;
again, we adopt a predicate calculus representation:

premise(X) 2> cup(X)
where premise is a conjunctive expression containing the variable X.

Assume a domain theory that includes the following rules about cups:
liftable(X) A holds_liquid(X) = cup(X)

part(Z, W) a concave(W) A points up(W) ->
holds_liquid(Z)

light(Y) »~ part(Y, handle) > liftable(Y)
small(A) > light(A)

made_of (A, feathers) - light(A)
The training example is an instance of the goal concept. That is, we are
given:

cup(objl)

small(objl)

part(objl, handle)

owns (bob, objl)

part(objl, bottom)

part(objl, bowl)

points_up(bowl)

concave (bowl)

color(objl, red)
Finally, assume the operationality criteria require that target concepts be
defined in terms of observable, structural properties of objects, such as
part and points_up. We may provide domain rules that enable the

learner to infer whether a description is operational, or we may simply list
operational predicates.

A theorem prover constructs an explanation of why the example is an
instance of the training concept: a proof that the target concept logically
follows from the example, as in Figure 7.5. Note that this explanation
eliminates such irrelevant concepts as color (objl, red) from the
training data and captures (only) those aspects of the example known to be
relevant to the goal.

The next stage of explanation-based learning generalizes the explanation to
produce a concept definition that may be used to recognize other cups.
EBL accomplishes this by substituting variables for those constants in the
proof tree that depend solely on the particular training instance, as may be
seen in Figure 7.5 (bottom). Based on the generalized tree, EBL defines a
new rule whose conclusion is the root of the tree and whose premise is the
conjunction of the leaves:

102

Part II: Programming in Prolog

Figure 7.5. A specific (top) and generalized (bottom) proof that an object,
X, is a cup.

small (X) A~ part(X, handle) A part(X, W) A concave(W)
A points up(W) = cup(X).

In constructing a generalized proof tree, our goal is to substitute variables
for those constants that are part of the training instance while at the same
time retaining those constants and constraints that are part of the domain
theory. In this example, the constant handle originated in the domain
theory rather than the training instance. We have retained it as an essential
constraint in the acquired rule.

We may construct a generalized proof tree in a number of ways using a
training instance as a guide. Mitchell et al. (1986) accomplish this by first
constructing a proof tree that is specific to the training example and
subsequently generalizing the proof through a process called goal regression.
Goal regression matches the generalized goal (in our example, cup (X))
with the root of the proof tree, replacing constants with variables as
required for the match. The algorithm applies these substitutions
recursively through the tree until all appropriate constants have been
generalized. See Mitchell et al. (1986) for a detailed description of this
process. We next implement the explanation based learning algorithm in
Prolog.

Prolog
Implementation
of EBL

Chapter 7 Machine Learning 103

Instead of building an explanation structure and maintaining separate sets
of specific and general substitutions as done in Section 7.2.1, our algorithm
will build both the proof of the training instance and the generalized proof
tree concurrently.

For this example, we represent proof trees as we did in exshell (Section
6.2). When prolog_ebg discovers a fact, it returns this fact as the leaf of
a proof tree. The proof of conjunctive goals is the conjunction of the proof
of the conjuncts. The proof of a goal that requires rule chaining is
represented as (Goal :— Proof), where Proof becomes bound to
the proof tree for the rule premise.

The heart of the algorithm is prolog_ ebg. This predicate takes four
arguments: the first is the goal being proved in the training example, the
second is the generalization of that goal. If the domain theory enables a
proof of the specific goal, it binds the third and fourth arguments to a
proof tree for the goal and the generalization of that proof. For instance,
implementing the cup example from Section 7.2.1, we would call
prolog ebg with the arguments:

prolog ebg(cup(objl), cup(X), Proof, Gen proof).

We assume that Prolog has the domain theory and training instance of
Section 7.2.1. When prolog ebg succeeds; Proof and Gen proof
are the proof trees of Figure 7.5.

prolog _ebg is a straightforward variation of the exshell meta-
interpreter of Section 6.2. The primary difference is that prolog_ebg
solves the goal and the generalized goal in parallel. A further interesting
aspect of the algorithm is the use of the predicate duplicate to create
two versions of each rule: the first version is the rule as it appears in the
domain theory, the second binds variables in the rule to the values in the
training instance. We define prolog_ebg:
prolog ebg(A, GenA, A, GenA) :- clause(A, true).

prolog ebg((A, B), (GenA, GenB), (AProof, BProof),
(GenAProof, GenBProof)) :- !,

prolog ebg(A, GenA, AProof, GenAProof),
prolog ebg(B, GenB, BProof, GenBProof).

prolog ebg(A, GenA, (A :- Proof), (GenA :-
GenProof)) :-

clause(GenA, GenB),

duplicate((GenA :- GenB), (A :- B)),

prolog ebg(B, GenB, Proof, GenProof).
Duplicate relies upon the behavior of assert and retract to
create a copy of a Prolog expression with all new variables.

duplicate(0ld, New) :-
assert(’'S$marker’ (01d)),
retract(’'S$marker’ (New)).

extract support returns the sequence of the highest level
operational nodes, as defined by the predicate operational. The

104 Part II: Programming in Prolog

extract support predicate implements a recursive tree walk,
terminating the recursion when it finds nodes in the proof tree that
qualifies as operational.
extract_support(Proof, Proof) :- operational(Proof).
extract_support((A :- _), A) :- operational(Ad).
extract_support((AProof, BProof), (A, B)) :-
extract_support (AProof, A),
extract_support(BProof, B).

extract_support((_ :- Proof), B) :-
extract_support(Proof, B).
The final component of the explanation based generalization algorithm

constructs the learned rule, wusing the prolog ebg and
extract support predicates:

ebg(Goal, Gen_goal, (Gen_goal :- Premise)) :-
prolog ebg(Goal, Gen_goal, _, Gen_proof),
extract_support(Gen_proof, Premise).

We illustrate the execution of these predicates with the example of learning
structural definitions of cups from Section 7.2.1, as described originally by
Mitchell et al. (1986). We begin with a domain theory for cups and other
physical objects. The theory includes the rules:
cup(X) :- liftable(X), holds_liquid(X).
holds_liquid(Z) :-
part(Z, W), concave(W), points_ up(W).

liftable(Y) :-

light(Y), part(Y, handle).
light(A):- small(A).
light(A):- made_of (A, feathers).

The learner is also given the following example, in which obj1 is known
to be a cup:

small (objl).
part(objl, handle).
owns (bob, objl).
part(objl, bottom).
part(objl, bowl).
points_up(bowl).
concave (bowl).
color(objl, red).
The operationality criteria define predicates that may be used in a rule:
operational(small(_)).

operational(part(_, _)).

Chapter 7 Machine Learning 105

operational(owns(_, _)).
operational (points_up(_)).
operational(concave(_)).

A run of the algorithm on the cup example illustrates the behavior of these
predicates. Of course, symbols such as “_ 0”7 and “_106” indicate specific
variables in Prolog, i.e., all uses of 106 represent the same variable:

?- prolog ebg(cup(objl), cup(X), Proof, Gen proof).

X = 0,

Proof = cup(objl) :-
((liftable(objl) :-

((light(objl) :-
small(objl)),
part(objl, handle))),

(holds_liquid(objl) :-
(part(objl, bowl),
concave (bowl),
points_up(bowl))))

Gen_prooof = cup(_0) :-
((liftable(_0) :-

((light(_0) :-
small(_0)),
part(_0, handle))),

(holds_liquid(_0) :-
(part(_0, _106),
concave(_106),
points_up(_106))))

When we give extract_ support the generalized proof from the
previous execution of prolog_ebg, it returns the operational nodes of
the proof, in left-to-right order:

?- extract_support((cup(_0) :-
((liftable(_0) :-
((light(_0) :-
small(_0)),
part(_0, handle))),
(holds_liquid(_0) :-
(part(_0,_106),
concave(_106),
points_up(_106))))), Premise),
0= _0, 106 = 1,
Premise = (small(_0), part(_O0,handle)), part(0, 1),
concave(_1), points up(_1)

Finally, ebg uses these predicates to construct a new rule from the
example.

?- ebg(cup(objl), cup(X), Rule).

X = 0,

Rule = cup(_0) :-

((small(_0), part(_0, handle)), part(_0,_110),
concave(_110), points up(_110))

In the next two chapters we address the problem of understanding natural
language. We first, in Chapter 8, discuss issues in semantic (or language

106

Part II: Programming in Prolog

meaning) representations, building Prolog structures for conceptual
dependencies. We then build several recursive descent patsers to capture
syntactic relationships in sentences. These meta-interpreters demonstrate
context free, context sensitive, deterministic, and probabilistic parsing. In
Chapter 9 we present the Earley parser in Prolog, which uses techniques
from dynamic programming. The FEarley parser is often called a chart
parser.

Exercises

1. The run of the candidate elimination algorithm shown in Figure 7.4 does
not show candidate concepts that were produced but eliminated because
they were either overly general, overly specific, or subsumed by some other
concept. Re-do the execution trace, showing these concepts and the
reasons each was eliminated.

2. Develop a domain theory for explanation-based learning in some
problem area of your choice. Trace the behavior of an explanation-based
learner in applying this theory to several training instances.

3. Implement a general to specific search of the version space using the
feature vector representation of Section 7.2. We can specialize feature
vectors by replacing variables with constants; since this requitres telling the
algorithm of allowable values for each field of the feature vector, we must
pass this in as an extra argument. The following definition of
run_general, the top-level goal, illustrates the necessary initializations
for the example used in the text: objects may be small, medium, or
large, their color may be red, blue, green, and their shape may be
ball, brick, or cube.

run_general :-

general_ to_specific([[_, _, _11, [1,
[[small,medium,large], [red,blue,green],
[ball,brick,cube]]).

4. Create another domain theory example, as proposed in exercise 2 above,
and run it with prolog ebg.

5. Extend the definition of ebg so that, after it constructs a new rule, it
asserts it to the logic database where it may be used in future queries. Test
the performance of the resulting system using a theory for a suitably rich
domain. You might do this by constructing a theory for a domain of your
choice, or extending the theory from the cup example to allow it to explain
different types of cups such as Styrofoam cups, cups without handles, etc.

Chapter
Objectives

Chapter
Contents

Natural Language Processing in Prolog

Natural language processing representations were presented
Semantic relationships
Conceptual graphs
Verb-based case frames
Prolog was used to build a series of parsers
Context free parsers
Deterministic
Probabilistic Parsers
Probabilistic measures for sentence structures and words
Lexicalized probabilistic parsers capture word combination
plausibility
Context sensitive parsers
Deterministic
Recursive descent semantic net parsers
Enforce word-based case frame constraints

8.1 Natural Language Understanding in Prolog
8.2 Prolog-Based Semantic Representations
8.3 A Context-Free Parser in Prolog

8.4 Probabilistic Parsers in Prolog

8.5 A Context-Sensitive Parser in Prolog

8.6 A Recursive Descent Semantic Net Parser

8.1

Natural Language Understanding in Prolog

Because of its declarative semantics, built-in search, and pattern matching,
Prolog provides an important tool for programs that process natural
language. Indeed, natural language understanding was one of Prolog’s
carliest applications. As we will see with many examples in this chapter, we
can write natural language grammars directly in Prolog, for example,
context-free, context-sensitive, recursive descent semantic network, as well
as stochastic parsers. Semantic representations are also easy to create in
Prolog, as we see for conceptual graphs and case frames in Section 8.2.
Semantic relationships may be captured either using the first-order
predicate calculus or by a meta-interpreter for another representation, as
suggested by semantic networks (Section 2.4.1) or frames (Sections 2.4.2
and 8.1). This not only simplifies programming, but also keeps a close
connection between theories and their implementation.

In Section 8.3 we present a context-free parser and later add context
sensitivity to the parse Section 8.5. We accomplish many of the same
justifications for context sensitivity in patsing, e.g., noun-verb agreement,
with the various probabilistic parsers of Section 8.4. Finally, semantic

107

108

Part II: Programming in Prolog

8.2

inference, using graph techniques including join, restrict, and
inheritance in conceptual graphs, can be done directly in Prolog as
we see in Section 8.5.

Many of the approaches to parsing presented in this chapter have been
suggested by several generations of colleagues and students.

Prolog-Based Semantic Representations

Following on the early work in Al developing representational schemes such
as semantic networks, scripts, and frames (Luger 2009, Section 7.1) a number
of network languages were developed to model the semantics of natural language
and other domains. In this section, we examine a particular formalism to show
how, in this situation, the problems of representing meaning were addressed.
John Sowa’s conceptual graphs (Sowa 1984) is an example of a network
representation language. We briefly introduce conceptual graphs and show
how they may be implemented in Prolog. A more complete introduction to
this representational formalism may be found in Sowa (1984) and Luger (2009,
Section 7.2).

A conceptual graph is a finite, connected, bipartite graph. The nodes of the
graph are either concepts or conceptual relations. Conceptual graphs do not use
labeled arcs; instead the conceptual relation nodes represent relations
between concepts. Because conceptual graphs are bipartite, concepts only
have arcs to relations, and vice versa. In Figure 8.1 dog and brown are
concept nodes and color a conceptual relation. To distinguish these
types of nodes, we represent concepts as boxes and conceptual relations as
ellipses.

Figure 8.1. Conceptual graph relations with different arities.

In conceptual graphs, concept nodes represent either concrete or abstract
objects in the wotld of discourse. Conctrete concepts, such as a cat,
telephone, or restaurant, are characterized by our ability to form an image
of them in our minds. Note that concrete concepts include generic
concepts such as cat or restaurant along with concepts of specific cats and
restaurants. We can still form an image of a generic cat. Abstract concepts

Chapter 8 Natural Language Processing 109

include things such as love, beauty, and loyalty that do not correspond to
images in our minds.

Conceptual relation nodes indicate a relation involving one or more
concepts. One advantage of formulating conceptual graphs as bipartite
graphs rather than using labeled arcs is that it simplifies the representation
of relations of any number of arcs (arity). A relation of arity n is
represented by a conceptual relation node having n arcs, as shown in
Figure 8.1.

Each conceptual graph represents a single proposition. A typical
knowledge base will contain a number of such graphs. Graphs may be
arbitrarily complex but must be finite. For example, one graph in Figure
8.1 represents the proposition “A dog has a colot of brown.” Figure 8.2 is
a graph of somewhat greater complexity that represents the sentence
“Mary gave John the book.” This graph uses conceptual relations to
represent the cases of the verb “to give” and indicates the way in which
conceptual graphs are used to model the semantics of natural language.

Figure 8.2. Conceptual graph of “Mary gave John the book.”

Conceptual graphs can be translated directly into predicate calculus and
hence into Prolog. The conceptual relation nodes become the predicate
name, and the arity of the relation indicates the number of arguments of
the predicate. Each Prolog predicate, as with each conceptual graph,
represents a single proposition.

The conceptual graphs of Figure 8.1 may be rendered in Prolog as:

bird(X), flies(X).

dog(X), color (X, Y), brown(Y).

child(X), parents(X, Y, Z), father(Y), mother(z).
where X, ¥, and Z are bound to the appropriate individuals. Type
information can be added to parameters as indicated in Section 5.2. We can
also define the type hierarchy through a variation of isa predicates.

In addition to concepts, we define the relations to be used in conceptual
graphs. For this example, we use the following concepts:

agent links an act with a concept of type animate. agent defines the
relation between an action and the animate object causing the action.

experiencer links a state with a concept of type animate. It defines the
relation between a mental state and its experiencet.

instrument links an act with an entity and defines the instrument used
in an action.

110

Part II: Programming in Prolog

object links an event or state with an entity and represents the verb—
object relation.

part links concepts of type physobj and defines the relation between
whole and part.

The verb plays a particularly important role in building an interpretation, as it
defines the relationships between the subject, object, and other components of
the sentence. We can represent each verb using a case frame that specifies:

The linguistic relationships (agent, object, instrument, and so on) appropriate
to that particular verb. Transitive verbs, for example, can have a direct object;
intransitive verbs do not.

Constraints on the values that may be assigned to any component of the case
frame. For example, in the case frame for the verb bites, we have asserted that
the agent of biting must be of the type dog. This causes “Man bites dog” to be
rejected as semantically incorrect.

Default values on components of the case frame. In the “bites” frame, we
have a default value of teeth for the concept linked to the instrument relation.

The case frames for the verbs like and bite appear in Figure 8.3.

Figure 8.3. Case frames for the verbs “like” and “bite.”

These verb-based case frames are also easily built in Prolog. Each verb is
paired with a list of the semantic relations assumed to be part of the verb.
These may include agents, instruments, and objects. We next offer
examples of the verbs give and bite from Figure 8.3. For example, the verb
give requires a subject, object, and indirect object. In the English sentence
“John gives Mary the book,” this structure takes on the obvious
assignments. We can define defaults in a case frame by binding the
appropriate variable values. For example, we could give bite a default
instrument of teeth, and, indeed indicate that the instrument for biting,
teeth, belong to the agent! Case frames for these two verbs might be:

8.3

Chapter 8 Natural Language Processing 111

verb(give,
[human (Subject),
agent (Subject, give),
act of giving (give),
object (Object, give),
inanimate (Object),
recipient (Ind obj, give),
human (Ind_obj) 1).
verb(bite,
[animate (Subject),
agent (Subject, Action),
act _of biting (Action),
object (Object, Action),
animate (Object),
instrument (teeth, Action),
part_of (teeth, Subject)]).

Logic programming also offers a powerful medium for building
grammars as well as representations for semantic meanings. We next
build recursive descent parsers in Prolog, and then add syntactic and
semantic constraints to these parsers.

A Context-Free Parser in Prolog

Consider the subset of English grammar rules below. These rules are
“declarative” in the sense that they simply define relationships among parts
of speech. With this subset of rules a large number of simple sentences can
be judged as well formed or not. The “<—>" indicate that the symbol on
the left hand side can be replaced by the symbol or symbols on the right.
For example, a Sentence can be replaced by a NounPhrase followed
by a VerbPhrase.

Sentence <-> NounPhrase VerbPhrase

NounPhrase <-> Noun

NounPhrase <-> Article Noun

VerbPhrase <-> Verb

VerbPhrase <-> Verb NounPhrase

Adding some vocabulary to the grammar rules:
Article(a)
Article(the)
Noun (man)
Noun (dog)
Verb(likes)
Verb(bites)
These grammar rules have a natural fit to Prolog, for example, a
sentence is a nounphrase followed by a verbphrase:
sentence(Start, End) :-

nounphrase(Start, Rest), verbphrase(Rest, End).

112

Part II: Programming in Prolog

This sentence Prolog rule takes two parameters, each a list; the first list,
Start, is a sequence of words. The rule attempts to determine whether
some initial part of this list is a NounPhrase. Any remaining tail of the
NounPhrase list will match the second parameter and be passed to the
first parameter of the verbphrase predicate. Any symbols that remain
after the verbphrase check are passed back as the second argument of
sentence. If the original list is a sentence, the second argument of
sentence must be empty, [].Two alternative Prolog descriptions of
nounphrase and verbphrase parses follow.

Figure 8.4 is the parse tree of “the man bites the dog,” with and
constraints in the grammar reflected by and links in the tree.

Figure 8.4. The and/or parse tree for "The man bites the dog.”

To simplify our Prolog code, we present the sentence as a list: [the,
man, likes, the, dog]. This list is broken up by, and passed to,
the various grammar rules to be examined for syntactic correctness. Note
how the “pattern matching” works on the list in question: pulling off the
head, or the head and second element; passing on what is left over; and so
on. The utterance predicate takes the list to be parsed as its argument
and calls the sentence rule, initializing the second parameter of
sentence to []. The complete grammar is defined:
utterance(X) :- sentence(X, []).
sentence(Start, End) :-
nounphrase(Start, Rest), verbphrase(Rest, End).
nounphrase([Noun | End], End) :-
noun (Noun).
nounphrase([Article, Noun | End], End) :-
article(Article), noun(Noun).
verbphrase([Verb | End], End) :-
verb(Verb).

Chapter 8 Natural Language Processing 113

verbphrase([Verb | Rest], End) :-
verb(Verb), nounphrase(Rest, End).
article(a).
article(the).
noun(man) .
noun(dog) .
verb(likes).
verb(bites).
Example sentences may be tested for correctness:
?- utterance([the, man, bites, the, dog]).
Yes
?- utterance([the, man, bites, the]).
no

The interpreter can also fill in possible legitimate words to incomplete
sentences:

?- utterance([the, man, likes, X]).

X = man
7

X = dog
7

no

Finally, the same code may be used to generate the set of all well-formed
sentences using this limited dictionary and set of grammar rules:

?- utterance(X).
[man, likes]

7

[man, bites]

4
[man, likes, man]

4
[man, likes, dog]
etc.

If the user continues asking for more solutions, eventually all possible well-
formed sentences that can be generated from the grammar rules and our
vocabulary are returned as values for X. Note that the Prolog search is left-
to-right and depth-first.

The grammar rules specify a subset of legitimate sentences of English. The
Prolog grammar code represents these specifications. The interpreter is
asked questions about them and the answer is a function of the
specifications and the question asked. Since there are no constraints
enforced across the subtrees that make up the full parse of a sentence, see
Figure 8.4, the parser/generator for this grammar is said to be context free.
In Section 8.3 we use probabilistic measures to add constraints both to
particular word combinations and to the structures of the grammar.

114 Part II: Programming in Prolog

8.4

Probabilistic
Context-Free
Parser

Probabilistic Parsers in Prolog

In this section we extend the context-free grammar of Section 8.2 to
include further syntactic and semantic constraints. For example, we may
want some grammatical structures to be less likely than others, such as a
noun by itself being less likely than an article followed by a noun. Further,
we may want the sentence “The dog bites the widget” to be less likely than
the sentence “The dog bites the man.” Finally, if our vocabulary includes
the verb like (as well as likes), we want “The man likes the dog” to be
acceptable, but “The man like the dog” to fail. The parsers for Sections
8.3.1 and 8.3.2 were suggested by Professor Mark Steedman of the
University of Edinburgh and transformed to the syntax of this book by Dr.
Monique Morin of the University of New Mexico.

We next create two probabilistic parsers in Prolog, first a context free
parser and second, a lexicalized context free parser.

Our first extension is to build a probabilistic context-free parser. To do this, we
add a probabilistic parameter, Prob, to each grammar rule. Note that the
probability that a sentence will be a noun phrase followed by a verb phrase
is 1.0, while the probability that a noun phrase is simply a noun is less than
the probability of it being an article followed by a noun. These probabilities
are reflected in pr facts that are related to each grammar rule, rl, r2, ...,
r5.

The full probability of a particular sentence, Prob, however, is calculated
by combining a number of probabilities: that of the rule itself together with
the probabilities of each of its constituents. Thus, the full probability Prob
of rl is a product of the probabilities that a particular noun phrase is
combined with a particular verb phrase. Further, the probability for the
third rule, r3, will be the product of that type noun phrase occurring (r3)
times the probabilities of the particular article and noun that make up the
noun phrase. These noun/article probabilities are given in the two
argument dictionary “fact” predicates. These probabilities for particular
words might be determined by sampling some corpus of collected
sentences. In the examples that follow we simply made-up these
probabilistic measures.
utterance(Prob, X) :- sentence(Prob, X, [1).
sentence(Prob, Start, End) :-
nounphrase(P1, Start, Rest),
verbphrase (P2, Rest, End),
pr(rl, P), Prob is P*P1l*P2.
nounphrase(Prob, [Noun | End], End) :-
noun(P1l, Noun), pr(r2, P), Prob is P*Pl.
nounphrase(Prob, [Article, Noun | End], End) :-
article(P1l, Article), noun(P2,Noun), pr(r3, P),
Prob is P*P1*P2.
verbphrase(Prob, [Verb | End], End) :-
verb(Pl, Verb), pr(r4, P), Prob is P*Pl.

Chapter 8 Natural Language Processing 115

verbphrase (Prob, [Verb | Rest], End) :-
verb(Pl, Verb),
nounphrase (P2, Rest, End), pr(r5, P),
Prob is P*P1*P2.
pr(rl, 1.0).
pr(r2, 0.3).
pr(r3, 0.7).
pr(r4, 0.2).
pr(r5, 0.8).
article(0.25, a).
article(0.75, the).
noun(0.65, man).
noun(0.35, dog).
verb(0.9, likes).
verb(0.1, bites).
We now run several example sentences as well as offer general patterns of
sentences, i.e., sentences beginning with specific patterns of words such as

“The dog bites...” Finally, we ask for all possible sentences that can be
generated under these constraints.

?- utterance(Prob, [the, man, likes, the, dog]).
Prob = 0.0451474

Yes

?- utterance(Prob, [bites, dog])

No

?- utterance(Prob, [the, man, dog]).

No

?- utterance(Prob, [the, dog, bites, X]).

Prob = 0.0028665

X = man

4

Prob = 0.0015435

X = dog

7

No

?- utterance(Prob, [the, dog, bites, XY]).
Prob = 0.0028665

X = man

4

Prob = 0.0015435
X = dog
Y =11

.
4

116

A Probabilistic
Lexicalized
Context Free
Parser

Part II: Programming in Prolog

Prob = 0.00167212
X = a

Y = [man] ;

etc.

?- utterance(Prob, X).
Prob = 0.0351
X = [man, likes]

4
Prob =
X =

0.0039
[man, bites]

4
Prob =
X =

0.027378
[man, likes, man]

4
Prob =
X =

0.014742

[man, likes, dog]

etc.

We next demonstrate a probabilistic lexicalized context-free parser. This is a
much more constrained system in which the probabilities, besides giving
measures for the various grammatical structures and individual words as in
the previous section, also describe the possible combinations of words
(thus, it is a probabilistic /exicalized parser). For example, we now measure
the likelihood of both noun-verb and verb-object word combinations.
Constraining noun-verb combinations gives us much of the power of the
context-sensitive parsing that we see next in Section 8.4, where noun-verb
agreement is enforced by the constraints across the subtrees of the parse.

utterances in the language by determining a probabilistic measure for their
occurring. Thus, we can determine that a possible sentence fails for
syntactic or semantic reasons by seeing that it produces a very low or zero
probability measure, rather than by the interpreter simply saying “no.”

In the following grammar we have hard coded the probabilities of various
structure and word combinations. In a real system, lexical information
could be better obtained by sampling approptiate corpora with noun-verb
or verb-object bigrams. We discuss the #-gram approach to language analysis
in Luger (2009, Section 15.4) whete the probability of word combinations
was desctribed (two words—~bigrams, three words—+trigrams, etc.). These
probabilities are usually determined by sampling over a large collection of
sentences, called a corpus. The result was the ability to assess the likelihood
of these word combinations, e.g., to determine the probability of the verb
“bite” following the noun “dogs.”

In the following examples the Prob value is made up of the probabilities
of the particular sentence structure, the probabilities of the verb-noun and
verb-object combinations, and the probabilities of individual words.

Chapter 8 Natural Language Processing 117

utterance(Prob, X) :-
sentence(Prob, Verb, Noun, X, [1).
sentence(Prob, Verb, Noun, Start, End) :-
nounphrase(P1, Noun, Start, Rest),
verbphrase (P2, Verb, Rest, End),
pr(rl, P), % Probability of this structure

pr([rl, Verb, Noun], PrDep),
% Probability of this noun/verb combo

pr(shead, Verb, Pshead),
% Probability this verb heads the sentence

Prob is Pshead*P*PrDep*P1*P2.
nounphrase(Prob, Noun, [Noun | End], End) :-
noun(P1l, Noun), pr(r2, P), Prob is P*Pl.
nounphrase(Prob, Noun, [Article,Noun | End], End) :-
article(P1l, Article), noun(P2,Noun), pr(r3, P),

pr([r3, Noun, Article], PrDep),
% Probability of art/noun combo

Prob is P*PrDep*P1*P2.
verbphrase (Prob, Verb, [Verb | End], End) :-
verb(Pl, Verb), pr(r4, P), Prob is P*Pl.
verbphrase(Prob, Verb, [Verb,Object | Rest], End) :-

verb(P1l, Verb), nounphrase(P2, Object,
Rest, End).

pr([r5, Verb, Object], PrDep),
% Probability of verb/object combo

pr(r5, P), Prob is P*PrDep*P1*P2.
pr(rl, 1.0).
pr(r2, 0.3).
pr(r3, 0.7).
pr(r4, 0.2).

pr(r5, 0.8).
article(1.0, a).

article(1.0, the).
article(1l.0, these).
noun(1l.0, man).

noun(l1.0, dogs).

verb(1l.0, likes).
verb(1.0, bite).

pr(shead, likes, 0.5).
pr(shead, bite, 0.5).
pr([rl, likes, man], 1.0).
pr([rl, likes, dogs], 0.0).
pr([rl, bite, man], 0.0).
pr([rl, bite, dogs], 1.0).

118

Part II: Programming in Prolog

pr([r3, man, a], O.
the],

these]

pr([r3, man,

pr([r3, man,

pr([r3, dogs, al,

pr([r3, dogs, the],

pr([r3, dogs,
pr([r5, likes, man]
pr([r5, likes,
pr([r5, bite, man],

pr([r5, bite, dogs]

The Prob measure gives the
sentences return No.

?- utterance(Prob,

Prob = 0.03136

?- utterance(Prob,
Prob = 0.0098

?- utterance(Prob,
Prob = 0.0098

?- utterance(Prob,
Prob = 0

?- utterance(Prob,
No

?- utterance(Prob,
Prob = 0

X = likes Y = []

7

Prob = 0.042

X = bite Y = []
7

Prob = 0

X = likes Y = [man]
7

Prob = 0.04032

X = bite Y = [man]
7

Prob = 0.01008

X = bite Y = [dogs]
7

Prob = 0.04704

X = bite Y =

Etc

[a,

these],

dogs],

5).
0.5).
, 0.0).

0.0).

0.6).
0.4).
, 0.2).
0.8).
0.8).

, 0.2).

likelihood of the utterance; words that aren’t

[a, man, likes, these, dogs]).

[a, man, likes, a, man]).

[a, man, likes, a, man]).

[the, dogs, likes, these, man]).

[the, dogs]).

[the, dogs, X | Y])

man]

?- utterance(Prob, X).

8.5

Chapter 8 Natural Language Processing 119

Prob = 0.03

X = [man, likes]

7

Prob = 0

X = [man, bite]

7

Prob = 0.0072

X = [man, likes, man]

7
Prob = 0.0288

X = [man, likes, dogs]

7

Prob = 0.0084

X = [man, likes, a, man]

etc

We next enforce many of the same syntax/semantic relationships seen in
this section by imposing constraints (context sensitivity) across the subtrees
of the parse. Context sensitivity can be used to constrain subtrees to
supportt relationships within a sentence such as article-noun and noun-verb
number agreement.

A Context-Sensitive Parser in Prolog

A context-sensitive parser addresses the issues of the previous section in a
different manner. Suppose we desire to have proper noun—verb agreement
enforced by the grammar rules themselves. In the dictionary entry for each
wortd its singular or plural form can be noted as such. Then in the grammar
specifications for nounphrase and verbphrase a further parameter
is used to signify the Number of each phrase. This enforces the constraint
that a singular noun has to be associated with a singular verb. Similar
constraints for article—noun combinations can also be enforced. The
technique we are using is constraining sentence components by enforcing
variable bindings across the subtrees of the parse of the sentence (note the
and links in the parse tree of Figure 8.4).

Context sensitivity increases the power of a context-free grammar
considerably. These additions are made by directly extending the Prolog
code of Section 8.2:

utterance(X) :- sentence(X, [1).

sentence(Start, End) :-
nounphrase(Start, Rest, Number),
verbphrase(Rest, End, Number).

nounphrase([Noun | End], End, Number) :-
noun(Noun, Number).

nounphrase([Article, Noun | End], End, Number) :-

noun (Noun, Number), article(Article, Number).

120

Part II: Programming in Prolog

8.6

verbphrase([Verb | End], End, Number) :-
verb(Verb, Number).
verbphrase([Verb | Rest], End, Number) :-
verb(Verb, Number), nounphrase(Rest, End,).

article(a, singular).

article(these, plural).

article(the, singular).

article(the, plural).

noun(man, singular).

noun(men, plural).

noun(dog, singular).

noun(dogs, plural).

verb(likes, singular).

verb(like, plural).

verb(bites, singular).

verb(bite, plural).
We next test some sentences. The answer to the second query is no,
because the subject (men) and the verb (1ikes) do not agree in number.

?- utterance([the, men, like, the, dog]).

Yes

?- utterance([the, men, likes, the, dog]).

no
If we enter the following goal, X returns all verb phrases that complete the
plural “the men ...” with all verb phrases with noun—verb number
agreement. The final query returns all sentences with article—noun as well
as noun—verb agreement.

?- utterance([the, men X]).
?- utterance(X).

In the context-sensitive example we use the parameters of dictionary
entries to introduce more information on the meanings of each of the
words that make up the sentence. This approach may be generalized to a
powerful parser for natural language. More and more information may be
included in the dictionary of the word components used in the sentences,
implementing a knowledge base of the meaning of English words. For
example, men are animate and human. Similarly, dogs may be described as
animate and nonhuman. With these descriptions new rules may be added
for parsing, such as “humans do not bite animate nonhumans” to eliminate
sentences such as [the, man, bites, the, dog]. We add these constraints in
the following section.

A Recursive Descent Semantic Net Parser

We next extend the set of context-sensitive grammar rules to include some
possibilities of semantic consistency. We do this by matching case frames,

Chapter 8 Natural Language Processing 121

Section 8.1, for the verbs of sentences to semantic descriptions of subjects
and objects. After each match, we constrain these semantic net subgraphs
to be consistent with each other. We do this by performing graph
operations, such as join and restrict, to each piece of the graph as it
is returned up the parse tree.
We first present the grammar rules where the top-level utterance,
returns not just a sentence but also a Sentence graph. Each
component of the grammar, e.g., nounphrase and verbphrase, call
join to merge together the constraints of their respective graphs.
utterance(X, Sentence_graph) :-
sentence(X, [], Sentence_graph).
sentence(Start, End, Sentence_graph) :-
nounphrase(Start, Rest, Subject graph),
verbphrase(Rest, End, Predicate graph),

join([agent(Subject graph)], Predicate_graph,
Sentence_graph).

nounphrase([Noun | End], End, Noun phrase graph) :-
noun(Noun, Noun phrase graph).

nounphrase([Article, Noun | End], End,
Noun_phrase graph) :-
article(Article),
noun(Noun, Noun phrase graph).

verbphrase([Verb | End], End, Verb phrase graph) :-
verb(Verb, Verb phrase graph).

verbphrase([Verb | Rest], End, Verb phrase graph) :-
verb(Verb, Verb graph),
nounphrase(Rest, End, Noun phrase graph),

join([object (Noun_ phrase graph)], Verb graph,
Verb phrase graph).

We next present the graph join and restriction operations. These
are meta-predicates since their domain is other Prolog structures. These
utilities propagate constraints across pieces of semantic nets they combine.
join(X, X, X).
join(A, B, C) :-
isframe(A), isframe(B), !,
join_ frames(A, B, C, not joined).
join(A, B, C) :-
isframe(A), is_slot((B), !,
join_slot to frame(B, A, C).
join(A, B, C) :-
isframe(B), is_slot(aA), !,
join_slot to frame(A, B, C).
join(A, B, C) :-
is_slot(A), is_slot(B), !,
join_slots(A, B, C).

122

Part II: Programming in Prolog

join frames recursively matches each slot (property) of the first frame
to matching slots of the second frame. join_slot_to_frame takes a
slot and a frame and searches the frame for matching slots.
join slots, once slots are matched, unites the two slots, taking the
type hierarchy into account:

join frames([A | B], C, D, OK) :-
join_slot to frame(A, C, E) , !,
join frames(B, E, D, ok).

join frames([A | B], C, [A | D], OK) :-
join_ frames(B, C, D, OK), !.

join_ frames([], A, A, Ok).

join_slot to frame(A, [B
join_slots(A, B, D).

Ccl, [D | c]) :-

join slot to frame(A, [B | C], [B | D]) :-
join_slot to frame(A, C, D).
join_slots(A, B, D) :-
functor (A, FA,), functor(B, FB, _),
match _with inheritance(FA, FB, FN),
arg(l, A, Value_a), arg(l, B, Value b),
join(Value_a, Value b, New _value),
D =.. [FN | [New value]].
isframe([_ | _1)-.
isframe([1).
is_slot(A) :- functor(a, _, 1).
Finally, we create dictionary entries, the inheritance hierarchy, and verb
case frames. In this example, we use a simple hierarchy that lists all valid
specializations; the third argument to match_with_inheritance is
the common specialization of the first two. A more realistic approach

might maintain a graph of the hierarchies and search it for common
specializations. Implementation of this is left as an exercise.

match _with_ inheritance(X, X, X).

match with inheritance(dog, animate, dog).
match with inheritance(animate, dog, dog).
match with_ inheritance(man, animate, man).
match with inheritance(animate, man, man).
article(a).

article(the).

noun(fido, [dog(fido)]).

noun(man, [man(X)]).

noun(dog, [dog(X)]).

verb(likes, [action([liking(X)]),
agent([animate(X)]), object(animate(Y)])])-.

verb(bites, [action([biting(Y)]),
agent([dog(X)]), object(animate(Z)]1)]).

Chapter 8 Natural Language Processing 123

We now parse several sentences and print out their Sentence_graph:

?- utterance([the, man, likes, the, dog], X).

X = [action([liking(_54)]), agent([man(_23)1]),
object([dog(_52)]1)].

?- utterance([fido, likes, the, man], X).

X = [action([liking(_62)]), agent([dog(fido)]),
object([man(_70)]1)].

?- utterance([the, man, bites, fido], 2).

no

The first sentence states that some man, with name unknown, likes an
unnamed dog. The last sentence, although it was syntactically correct, did
not meet the semantic constraints, where a dog had to be the agent of
bites. In the second sentence, a particular dog, Fido, likes an unnamed
man. Next we ask whether Fido can bite an unnamed man:

?- utterance([fido, bites, the, man], X).

X = [action([biting(_12)]), agent([dog(fido)]),

object([man(_17)]1)1.

This parser may be extended in many interesting directions, for instance,
by adding adjectives, adverbs, and prepositional phrases, or by allowing
compound sentences. These additions must be both matched and
constrained as they are merged into the sentence graph for the full
sentence. Each dictionary item may also have multiple meanings that are
only accepted as they meet the general requirements of the sentence. In the
next chapter we present the Earley parser for language structures.

Exercises

1. Create a predicate calculus and a Prolog representation for the
Conceptual Graph presented in Figure 8.2, “Mary gave John the book.”
Take this same example and create a general Prolog rule, “X gave Y the Z”
along with a number of constraints, such as “object (Z).” Also create a
number of Prolog facts, such as “object (book)” and show how this
conceptual graph can be constrained by using the Prolog interpreter on
your simple program.

2. Figure 8.3 presents case frames for the verbs 1ike and bite. Write
Prolog specifications that captures the constraints of these representations.
Add other related fact and rules in Prolog and then use the Prolog
interpreter to instantiate the constraints that are implicit in these two verb
case frames.

3. Create a predicate calculus and a Prolog representation for the two
Conceptual Graphs presented in Figure 8.5.

4. Describe an algorithm that could be used to impose graph constraints
across the structures of Figure 8.5. You will have to address the nesting
issue to handle sentences like “Mary believes that John does not like soup.”

5. Create Prolog case frames, similar to those of Section 8.1 for five other
verbs, including like, trade, and pardon.

124

Part II: Programming in Prolog

6. Write the Prolog code for a subset of English grammar rules, as in the
context-free and context-sensitive parsers in Sections 8.2 and 8.4, adding:

Adjectives and adverbs that modify verbs and nouns, respectively.
Prepositional phrases. (Can you do this with a recursive call?)
Compound sentences (two sentences joined by a conjunction).

7. Extend the stochastic context-free parser of Section 8.3 to include
probabilities for the new sentence structures of Exercise 8. Explore
obtaining probabilities for these sentence structures from a treebank for
natural language processing. Examples may be found on the www.

8. Add probabilities for more word pair relationships as in the lexicalized
context-free parser of Section 8.3.2. Explore the possibility of obtaining
the probabilistic bigram values for the noun—verb, verb—object, and other
word pairs from actual corpus linguistics. These may be found on the www.

9. Many of the simple natural language parsers presented in Chapter 8 will
accept grammatically correct sentences that may not have a commonsense
meaning, such as “the man bites the dog.” These sentences may be
eliminated from the grammar by augmenting the patser to include some
notion of what is semantically plausible. Design a small “semantic
network” (Section 2.4.1) in Prolog to allow you to reason about some
aspect of the possible interpretations of the English grammar rules, such as
when it is reasonable for the man to bite a dog.

10. Rework the semantic net parser of Section 14.3.2 to support richer class
hierarchies. Specifically, rewrite match_with_ inheritance so that
instead of enumerating the common specializations of two items, it
computes this by searching a type hierarchy.

Figure 8.5. Conceptual Graphs to be translated into predicate calculus and
into Prolog.

Chapter
Objectives

Chapter
Contents

Dynamic Programming and the Earley
Parser

Language parsing with dynamic programming technique
Memoization of subparses
Retaining partial solutions (parses) for reuse
The chart as medium for storage and reuse
Indexes for word list (sentence)
States reflect components of parse
Dot reflects extent parsing right side of grammar rule
Lists of states make up components of chart
Chart linked to word list
Prolog implementation of an Earley parser
Context free parser
Deterministic
Chart supports multiple parse trees
Forwards development of chart composes components of successful parse
Backwards search of chart produces possible parses of word list
Eatley parser important use of meta-interpreter technology.

9.1 Dynamic Programming Revisited
9.2 Earley Parsing: Pseudocode and an Example
9.3 The Earley Parser in Prolog

9.1

Dynamic Programming Revisited

The dynamic programming (DP) approach to problem solving was
originally proposed by Richard Bellman (1956). The idea is straightforward:
when addressing a large complex problem that can be broken down into
multiple subproblems, save partial solutions as they are generated so that
they can be reused later in the solution process for the full problem. This
“save and reuse of partial solutions” is sometimes called memoizing the
subproblem solutions for later reuse.

There are many examples of dynamic programming in pattern matching
technology, for example, it has been used in determining a difference
measure between two strings of bits or characters. The overall difference
between the strings will be a function of the differences between its
specific components. An example of this is a spell checker going to its
dictionary and suggesting words that are “close” to your misspelled word.
The spell checker determines “closeness” by calculating a difference
measure between your word and words that it has in its dictionary. This
difference is often calculated, using some form of the DP algorithm, as a

125

126 Part II: Programming in Prolog

9.2

Memoization
And
Dotted Pairs

function of the differences between the characters in each word. Examples
of the DB comparison of character strings are found in Luger (2009,
Section 4.1.2).

A further example of the use of DP is for recognizing words in speech
understanding as a function of the possible phonemes from an input
stream. As phonemes are recognized (with associated probabilities), the
most appropriate word is often a function of the combined conjoined
probabilistic measures of the individual phones. The DP Viterbi algorithm
can be used for this task (Luger 2009, Section 13.1).

In this section, we present the Earley parser, a use of dynamic
programming to build a context-free parser that recognizes strings of
words as components of syntactically correct sentences. The presentation
and Prolog code of this chapter is based on the efforts of University of
New Mexico graduate student Stan Lee. The pseudo-code of Section 9.2 is
adapted from that of Jurafsky and Martin (2008).

The Earley Parser

The parsing algorithms of Chapter 8 are based on a recursive, depth-first,
and left-to-right search of possible acceptable syntactic structures. This
search approach can mean that many of the possible acceptable partial
parses of the first (left-most) components of the string are repeatedly
regenerated. This revisiting of eatly partial solutions within the full parse
structure is the result of later backtracking requirements of the search and
can become exponentially expensive and costly in large parses. Dynamic
programming provides an efficient alternative where partial parses, once
generated, are saved for reuse in the overall final parse of a string of words.
The first DP-based parser was created by Eartley (1970).

In parsing with Earley’s algorithm the memoization of partial solutions
(partial parses) is done with a data structure called a charz. This is why the
various alternative forms of the Earley approach to parsing are sometimes
called chart parsing. The chart is generated through the use of dotted grammar
rules.

The dotted grammar rule provides a representation that indicates, in the chart,
the state of the parsing process at any given time. Every dotted rule falls into
one of three categories, depending on whether the dot's position is at the
beginning, somewhere in the middle, or at the end of the right hand side,
RHS, of the grammar rule. We refer to these three categories as the znitial,
partial, ot completed parsing stages, respectively:

Initial prediction: Symbol — (@ RHS unseen
Partial parse: Symbol — RHS seen @ RHS unseen
Completed parse: Symbol — RHS seen @

In addition, there is a natural correspondence between states containing
different dotted rules and the edges of the parse tree(s) produced by the
parse. Consider the following very simple grammar, where terminal
symbols are surrounded by quotes, as in “mary”:

Chapter 9 The Earley Parser 127

Sentence — Noun Verb
Noun — “mary”

Verb — “runs”

As we perform a top-down, left-to-right parse of this sentence, the
following sequence of states is produced:

Sentence —> ¢ Noun Verb predict: Noun followed by 1erb
Noun — ¢ mary predict: mary
Noun — mary ° Scanned: mary

Sentence — Noun * Verb completed: Noun;
predict: Verb

Verb — ¢ runs predict: runs
Verb — runs ° Scanned: runs

Sentence — Noun Verb * completed: 1 erb,
completed: sentence

Note that the scanning and completing procedures deterministically produce a
result. The prediction procedure describes the possible parsing rules that can
apply to the current situation. Scanning and prediction creates the states in
the parse tree of Figure 9.1.

Earley's algorithm operates by generating top-down and left-to-right
predictions of how to parse a given input. Each prediction is recorded as a
state containing all the relevant information about the prediction, where the
key component of each state is a dotted rule. (A second component will be
introduced in the next section.) All of the predictions generated after
examining a particular word of the input are collectively referred to as the

state set. For a given input sentence with n words, Wy towp, atotaln + 1

state sets are generated: [Sg, Sq, .., Spy|. The initial state set, S,
contains those predictions that are made before examining any input words,

S, contains predictions made after examining W4, and so on.

*Noun Verb
S
Noun * Verb Noun Verb®
Noun Verb
mary’ runs®
mary runs

Figure 9.1 The relationship of dotted rules to the generation of a parse
tree.
We refer to the entire collection of state sets as the chart produced by the
parser. Figure 9.1 illustrates the relationship between state set generation
and the examination of input words.

128

Part II: Programming in Prolog

At this point we need to pause to get our terminology straight. Although,
traditionally, the sets of states that make up each component of the parse
are called state sets, the order of the generation of these states is important.
Thus we call each component of the chart the staze /ist, and desctibe it as

[State;, State,, .., State,]. This also works well with the
Prolog implementation, Section 9.3, where the state lists will be maintained
as Prolog lists. Finally, we describe each state of the state list as a sequence
of specific symbols enclosed by brackets, for example, (§ — * S).

We now consider Earley’s algorithm parsing the simple sentence mary
runs, using the grammar above. The algorithm begins by creating a

dummy start state, ($ — ¢ S), that is the first member of state list Sy.
This state represents the prediction that the input string can be parsed as a

sentence, and it is inserted into Sy prior to examining any input words. A

successful parse produces a final state list S, which is S, in this example,
that contains the state ($§ — S).

Beginning with S, the parser executes a loop in which each state, S5, in
the current state list is examined 7 order and used to generate new states.
Each new state is generated by one of three procedures that are called the
predictor, scanner, and completer. The approptiate procedure is determined by
the dotted rule in state S, specifically by the grammar symbol (if any)
following the dot in the rule.

In our example, the first state to be examined contains the rule ($ —
S). Since the dot is followed by the symbol S, this state is “expecting” to
see an instance of S occur next in the input. As S is a nonterminal symbol
of the grammar, the predictor procedure generates all states corresponding
to a possible parse of S. In this case, as there is only one alternative for S,
namely that S — Noun Verb, only one state,

(8§ — + Noun Verb), is added to Sj. As this state is expecting a part
of speech, denoted by the nonterminal symbol Noun following the dot,
the algorithm examines the next input word to verify that prediction. This
is done by the scanner procedure, and since the next word matches the
prediction, mary is indeed a Noun, the scanner generates a new state
recording the match: (Noun — mary). Since this state depends on

input word Wy, it becomes the first state in state list S; rather than being

added to Sy. At this point the chart, containing two state lists, looks as
follows, where after each state we name the procedure that generated it:

So: [($S = * S), dummy start state
(S — ¢ Noun Verb)] predictor
Si: [(Noun — mary °)] scanner

Each state in the list of states Sy has now been processed, so the algorithm

moves to S; and considers the state (Noun — mary). Since thisis a
completed state, the completer procedure is applied. For each state
expecting a Noun, that is, has the ¢ Noun pattern, the completer

Earley
Pseudocode

Chapter 9 The Earley Parser 129

generates a new state that records the discovery of a Noun by advancing
the dot over the Noun symbol. In this case, the completer produces the

state (S — * Noun Verb) in S and generates the new state (S —
Noun ¢ Verb) in the list S;. This state is expecting a part of speech,

which causes the scanner to examine the next input word W,. As W, is a
Verb, the Scanner generates the state (Verb — runs ¢) and adds it to

S,, resulting in the following chart:

Syt [— »Y), start
(S — ¢ Noun Verb)] predictor
Sq: [Noun — mary °), scanner
(S — Noun * Verb)] completer
Sy: [(Vetb — runs *)] scanner

Processing the new state S,, the completer advances the dot in
(5§ — Noun °* Verb) to produce (S — Noun Verb ¢), from
which the completer generates the state ($§ — S *) signifying a
successful parse of a sentence. The final chart for mary runs, with
three state lists, is:

Sg: [($ — * 8S), start
(S — * Noun Verb)] predictor
Syt [(Noun — mary °), scanner
(S — Noun °* Verb)] completer
Sy: [(Verb — runs °*), scanner
(S — Noun Verb °*), completer
($ —= S *)] completer

To represent computationally the state lists produced by the dotted pair
rules above, we create indices to show how much of the right hand side of
a grammar rule has been parsed. We first describe this representation and
then offer pseudo-code for implementing it within the Earley algorithm.
Each state in the state list is augmented with an index indicating how far
the input stream has been processed. Thus, we extend each state
description to a (dotted rule [i, j|) representation where the /7 j/ pair denotes
how much of right hand side, RHS, of the grammar rule has been seen or
parsed to the present time. For the right hand side of a parsed rule that
includes zero or more seen and unseen components indicated by the °, we
have (8 — Seen °* Unseen, [i,]]), where i is the start of
Seen and J is the position of * in the word sequence.

We now add indices to the parsing states discussed earlier for the sentence
mary runs:

($ = =8, [0, 0])
produced by predictor, i =

(Noun — mary °*, [0,1])
scanner sees word[1] between word indices 0 and 1

j = 0, nothing yet parsed

130

Part II: Programming in Prolog

(S — Noun °* Verb, [0,1])
completer has seen Noun (mary) between chart 0 and 1

(S — Noun Verb ¢, [0,2])
completer has seen sentence S between chart 0 and 2

Thus, the state indexing pattern shows the results produced by each of the
three state generators using the dotted rules along with the word index W;.

To summarize, the three procedures for generating the states of the state
list are: predictor generating states with index [J, J] going into

chart[J], scanner considering word W44 to generate states indexed by
[J, J+1] into chart[j+1], and completer operating on rules with
index [1, J], 1 < J,adding a state entry to chart[j]. Note that a
state from the dotted-rule, [i, J] always goes into the state list
chart[j]. Thus, the state lists include chart[0], ceny
chart[n]for asentence of n words.

Now that we have presented the indexing scheme for representing the
chart, we give the pseudo-code for the Eatley parser. In Section 9.2.3 we
use this code to parse an example sentence and in Section 9.3 we
implement this algorithm in Prolog. We replace the “¢” symbol with “@”
as this symbol will be used for the dot in the Prolog code of Section 9.3.
function EARLEY-PARSE(words, grammar) returns chart
chart := empty

ADDTOCHART(($ — @ S, [0, 0]), chart[0])
% dummy start state

for i from 0 to LENGTH(words) do
for each state in chart[i] do

if rule rhs(state) = .. @ A ..
and A is not a part of speech

then PREDICTOR(State)

else if rule rhs(state) = .. @ L ..
¢ L is part of speech

then ScaANNER(sState)

else OMPLETER (sState)
% rule rhs = RHS @
end
end

procedure PREDICTOR((A — .. @ B .., [1, 7J1))
for each (B — RHS) in grammar do
ADDTOCHART((B — @ RHS, [j, Jl1), chart[j])

end

procedure SCANNER((A — .. @ L .., [I, J1))
if (L — word[j]) is_in grammar

then abptocHART((L — word[j] @ , [F, 7 + 11),
chart[j + 1])

end

Earley
Example

Chapter 9 The Earley Parser 131

procedure COMPLETER((B — .. @, [F, k1))
for each (A — .. @ B .., [1, j]l) in chart[j] do
ADDTOCHART((A — .. B @ .., [I, k]), chart[k])

end

procedure ADDTOCHART(State, state-list)
if state is not in state-list
then ADDTOEND(state, state-lis

end

Our first example, the Earley parse of the sentence “Mary runs,” was
intended to be simple but illustrative, with the detailed presentation of the
state lists and their indices. We now produce a solution, along with the
details of the chart that is generated, for a more complex sentence, “John
called Mary from Denver”. This sentence is ambiguous (Did John use a
phone while he was in Denver to call, or did John call that Mary that was
from Denver). We present the two different parses of this sentence in
Figure 9.2 and describe how they may both be recovered from the chart
produced by parsing the sentence in an exercise. This retrieval process is
typical of the dynamic programming paradigm where the parsing is done in
a forward left-to-right fashion and then particular parses are retrieved from
the chart by moving backward through the completed chart.

The following set of grammar rules is sufficient for parsing the sentence:

S — NP VP

NP — NP PP

NP — Noun

VP — Verb NP

vPp — VP PP

PP — Prep NP

Noun — “john”

Noun — ‘“mary”

Noun — “denver”

Verb — ‘“called”

Prep — “from”
In Figure 9.2 we present two parse trees for the word string john
called mary from denver. Figure 9.2a shows john called
(mary from denver), where Mary is from Denver, and in Figure
92b john (called mary) (from denver), wherte John is
calling from Denver. We now use the pseudo-code of the function
EARLEY-PARSE to address this string. It is essential that the algorithm not
allow any state to be placed in any state list more than one time, although

the same state may be generated with different predictor/scanner
applications:

1. Insert start state ($ — @ S, [0,0]) into chart[0]

2. Processing state-list S, = chart[0] for (i = 0):
The predictor procedure produces within chart[0]:

132

Part II: Programming in Prolog

($ - @s, [0,0])) ==>
(S — @ NP VP, [0,0])
(S — @ Np VP, [0,0]) ==>
(NP — @ NP PP, [0,0])
(S — @ Np VP, [0,0]) ==>

(NP — @ Noun, [0,0])
3. Verifying that the next word word[i + 1] =
word[1l] or “john” is a Noun:
The scanner procedure initializes chart[l] by
producing
(NP — @ Noun, [0,0]) ==>
(Noun — john @, [0,1])

4. Processing S; = chart[l] shows the typical start

of a new state list, with the scanner procedure
processing the next word in the word string, and
the algorithm then calling completer.

The completer procedure adds the following states

to chart[1l]:
(NP — Noun @, [0,1])
(S — NP @ VP, [0,1]) from x1
(NP — NP @ PP, [0,1]) from x2

5. The completer procedure ends for S; as no more
states have “dots” to advance, calling predictor:

The predictor procedure generates states based on
all newly-advanced dots:

(VP — @ Verb NP, [1,1]) from x1
(VP — @ VP PP, [1,1]) also from x1
(PP — @ Prep NP, [1,1]) from x2

6. Verifying that the next word, word[i + 1] =
word[2] or “called” is a Verb:

The scanner procedure initializes chart[2] by
producing:
(VP — @ Verb NP, [1,1]) ==>
(Verb — called @, [1,2])

Step 6 (above) initializes chart[2] by scanningword[2] in the word
string; the completer and predictor procedures then finish state list 2.

The function EARLEY-PARSE continues through the generation of
chart[5] as seen in the full chart listing produced next. In the full
listing we have annotated each state by the procedure that generated it. It
should also be noted that several partial parses, indicated by *, are
generated for the chart that are not used in the final parses of the sentence.
Note also that the fifth and sixth states in the state list of chart[1],
indicated by **, which predict two different types of VP beginning at index
1, are instrumental in producing the two different parses of the string of
words, as presented in Figure 9.2.

chart[0]:

[($ = @ s, [0,

Chapter 9 The Earley Parser

start state

01)

(S — @ NP VP, [0,0]) predictor
(NP — @ NP PP, [0,0])* predictor
(NP — @ Noun, [0,0])] predictor
chart[1l]:
[(Noun — john @, [0,1]) scanner
(NP — Noun @, [0,1]) completer
(S — NP @ VP, [0,1]) completer
(NP — NP @ PP, [O0,1])* completer
(VP — @ Verb NP, [1,1])** predictor
(VP — @ VP PP, [1,1])*%* predictor
(PP — @ Prep NP, [1,1])%*] predictor
chart[2]:
[(Verb — called @, [1,2]) scanner
(VP — Verb @ NP, [1,2]) completer
(NP— @ NP PP, [2,2]) predictor
(NP — @ Noun, [2,2])] predictor
chart[3]:
[(Noun — mary @, [2,3]) scanner
(NP — Noun @, [2,3]) completer
(VP — Verb NP @, [1,3]) completer
(NP — NP @ PP, [2,3]) completer
(S — NP VP @, [0,3])* completer
(VP — VP @ PP, [1,3]) completer
(PP — @ Prep NP, [3,3]) predictor
($ = s @, [0,3])*] completer
chart[4]:
[(Prep — from @, [3,4]) scanner
(PP — Prep @ NP, [3,4]) completer
(NP — @ NP PP, [4,4])* predictor
(NP — @ Noun, [4,4])] predictor
chart[5]:
[(Noun — denver @, [4,5]) scanner
(NP — Noun @, [4,5]) completer
(PP — Prep NP @, [3,5]) completer
(NP — NP @ PP, [4,5])%* completer
(NP — NP PP @, [2,5]) completer
(VP — VP PP @, [1,5]) completer
(PP — @ Prep NP, [5,5])* predictor
(VP — Verb NP @, [1,5]) completer
(NP — NP @ PP, [2,5])%* completer
(S — NP VP @, [0,5]) completer
(VP — VP @ PP, [1,5])%* completer

($ — s @,

[0,51)]1

completer

133

134

Part II: Programming in Prolog

9.3

The complete chart generated by the EARLEY-PARSE algorithm contains 39
states separated into six different state lists, charts 0 — 5. The final state list
contains the success state ($ — S @, [0,5]) showing that the
string containing five words has been parsed and is indeed a sentence. As
pointed out earlier, there are states in the chart, ten indicated by *, that are
not part of either of the final parse trees, as seen in Figure 9.2.

The Earley Parser in Prolog

Finally, we present the Eatley parser in Prolog. Our Prolog code, designed
by Stan Lee, a graduate student in Computer Science at the University of
New Mexico, is a direct implementation of the EARLEY-PARSE pseudo-code
given in Section 9.2.2. When looking at the three procedures that follow -
scannet, predictor, and completer — it is important to note that similarity.

The code begins with initialization, including reading in the word string,
parsing, and writing out the chart after it is created:
go :-= go(s).
go(NT) :
input (Words),
earley(NT, Words, Chart),
writesln(Chart).
The earley predicate first generates the start state, StartS for the
parser and then calls the state generator state_gen which produces the
chart, Chart. state gen checks first if the wordlist is exhausted and
terminates if it is, next it checks if the current state list is completed and if

it is, begins working on the next state, otherwise it continues to process the
current state list:

earley(NonTerminal, Words, Chart) :-

StartS = s($, [@, NonTerminal], [0,0]),
initial parser state(Words, StartS, PS),
state_gen(PS, Chart).

state_gen(PS, Chart) :- $Si = [], Words = []
final state_ set done(PS, Chart)
state_gen(PS, Chart) :- $Si = [], Words not []

current_ state_set done(PS, NextPS),
state_gen(NextPS, Chart).
state gen(PS, Chart) :- $Si = [S|Rest]

current_ state_rhs(S, RHS, PS, PS2),

$PS2[Si] = Rest
(
append(_, [@€, A|_], RHS),
rule(a,) -> %A not a part of speech
predictor (S, A, PS2, NextPS)
H
append(_, [@, L|_], RHS),
lex rule(L,) -> 3L is part of speech
scanner (S, L, PS2, NextPS)

14

Chapter 9 The Earley Parser 135

completer (S, PS2, NextPS) %S is completed state

),
state_gen(NextPS, Chart).

NP
P
NP
Noun
John called Mary from Denver
0 1 2 3 4 5
NP
Prep Noun
John called Mary from Denver
0 1 2 3 4 5

(b)

Figure 9.2. Two different parse trees for the word string representing the
sentence “John called Mary from Denver”. The index
scheme for the word string is below it.

We next present the predictor procedure. This procedure takes a
dotted rule A => ... @ B ... and predicts a new entry into the
state list for the symbol B in the grammar:

136 Part II: Programming in Prolog

predictor(S, B, PS, NewPS) :-

S =s(_, _» [I,3]1),

Findall
(
s(B, [@ | RHS], [J,J]),
rule(B, RHS),
NewStates
),

add_to_chart (NewStates, PS, NewPS).

The scanner procedure considers the next word in the input string. If it
is a part of speech, Lex, scanner creates a new state list and enters that
part of speech, for example, the state (Noun — denver @,
[4,5]), that begins chart[5] in Section 9.2.3. The scanner
procedure prepares the way for the completer and predictor
procedures. If the next word in the input stream is not the predicted part
of speech, it leaves the chart unchanged:

scanner (S, Lex, PS, NewPS) :-
S =s(_, _r [I,3]),
next_ input(Word, J, Jl, PS),
lex rule(Lex, [Word]), !,
add to_chart([s(Lex, [Word,@], [J,J1])], PS,
NewPS) .

scanner(_, _, PS, PS).

Finally, the completer procedure takes a completed state S that has
recognized a pattern B, and adds a new state to the list for each preceding
state that is looking for that pattern.

completer (S, PS, NewPS) :-
S =s(B, _, [J,K]),
Findall

(
s(A, BdotRHS, [I,K]),

in_chart(s(A, DotBRHS, [I,J]), PS),
append(X, [@, B|Y], DotBRHS),
append (X, [B, @|Y], BdotRHS % adv dot over B
),
NewStates
),

add_to_chart (NewStates, PS, NewPS).

We next describe the utility predicates that support the three main
procedures just presented. The most important of these are predicates for
maintaining the state of the parser itself. The parser-state, PS, is
represented by a structure ps with five arguments: PS = ps(Words,
I, Si, SNext, Chart). The first argument of ps is the current
string of words maintained as a list and the second argument, I, is the

current index of Words. Si and SNext are the current and next state

Chapter 9 The Earley Parser 137

lists, and Chart is the current chart. Thus, S1 and SNext are always
subsets of the current Chart. Notice that the “assighment” that creates
the next state-list is done with unification (=).

The PS utilities perform initial and final state checks, determine if the
current state list is complete, extract components of the current state and
get the next input value. Parsing is finished when the Word list and the
current state list S1i, the first and third arguments of PS, are both empty. If
Si is empty but the Word list is not, then the next state list becomes the
new current state list and the parser moves to the next index as is seen in
the current state_set_ done predicate:

initial parser state(Words, StartState, InitPS) :-

InitPS = ps(Words, 0, [StartState], [].,
[StartState]).

final state_set done(ps([]l, _, [1, _, FinalChart),
FinalChart).

current state set done(ps([_|Words], I, [
Chart), ps(Words, J, SNext,
Chart)) :-

J is I+1.

], SNext,
(1,

current state rhs(S, RHS, ps(Words, I, [S]|Si],
SNext, Chart), ps(Words, I, Si, SNext,
Chart)) :-

S = s(_, RHS,).
In the final predicate, S is the first state of the cutrrent state list (the third
argument of ps, maintained as a list). This is removed, and the patterns of

the right hand side of the current dotted grammar rule, RHS, are isolated
for interpretation. The current state list S1i is the tail of the previous list.

More utilities: The next element of Words in PS is between the current
and next indices. The chart is maintained by checking to see if states are
already in its state lists. Finally, there are predicates for adding states to the
current chart.
next input(Word, I, Il, ps([Word| 1, I, , _, _)) :-
Il is I+1.
add_to_chart([], PS, PS).
add_to_chart([S|States], PS, NewPS) :-
in_chart(s, PS),!,
add_to_chart(States, PS, NewPS).
add_to_chart([S|States], PS, NewPS) :-
add_to_state_set(S, PS, NextPS),
add_to_chart(States, NextPS, NewPS).
in_chart(S, ps(_, _, _, _, Chart)) :-
member (S, Chart).

138

Part II: Programming in Prolog

add_to_state_set(S, PS, NewPS) :-
PS = ps(Words, I, Si, SNext, Chart),
S =s(_, v [_+/31),
add_to_end(S, Chart, NewChart),
(
I == - %S is not a scan
state
add_to_end(S, Si, NewSi),
NewPS = ps(Words, I, NewSi, SNext, NewChart)

~e

add_to_end(S, SNext, NewSNext),
NewPS = ps(Words, I, Si, NewSNext, NewChart)
) -
add_to_end(X, List, NewList) :-
append(List, [X], NewList).
The add_to_state_ set predicate, first places the new state in the
new version of the chart, NewChart. It then checks whether the current
word list index I is the same as the second index J of the pair of indices of
the state being added to the state list, testing whether I == J. When this
is true, that state is added to the end (made the last element) of the current

state list S;. Otherwise, the new state was generated by the scanner
procedure after reading the next word in the input word list. This new
state will begin a new state list, SNext.

Finally, we present the output of the Prolog go and earley predicates
running on the word list “John called Mary from Denver”:

?- listing([input, rule, lex rule]).

input([john, called, mary, from, denver]).

rule(s, [np, vpl).

rule(np, [np, ppl)-

rule(np, [noun]).

rule(vp, [verb, np]).

rule(vp, [vp, ppl)-

rule(pp, [prep, npl).

lex_rule(noun, [john]).

lex rule(noun, [mary]).

lex rule(noun, [denver]).

lex rule(verb, [called]).

lex rule(prep, [from]).

?- go.

s($, (&, s], [0, O])

s(s, [€, np, vpl, [0, 0])

s(np, [€, np, ppl, [0, O])

s(np, [€, noun], [0, 0])

s(noun, [john, @], [0, 1])

s(np, [noun, €], [0, 1])

s(s, [np, &, vpl, [0, 1])

s(np, [np, €, ppl, [0, 11)

Chapter 9 The Earley Parser 139

s(vp, (@, verb, np], [1, 1])
s(vp, [@, vp, ppP], [1, 11])
s(pp, (@, prep, npl, [1, 1])
s(verb, [called, @], [1, 2])
s(vp, [verb, @, npl, [1, 2])
s(np, [@, np, ppl, [2, 2])
s(np, [@, noun], [2, 2])
s(noun, [mary, @], [2, 3])
s(np, [noun, @], [2, 3])
s(vp, [verb, np, @], [1, 3])
s(np, [np, @, ppl, [2, 3])
s(s, [np, vp, @], [0, 3])
s(vp, [vp, @, ppl, [1, 31])
s(pp, (@, prep, npl, [3, 31])
s($, [s, @1, [0, 31])

s(prep, [from, @], [3, 41])
s(pp, [prep, @, npl, [3, 4])
s(np, (@, np, ppl, [4, 4])
s(np, [@, noun], [4, 4])
s(noun, [denver, @], [4, 5])
s(np, [noun, @], [4, 5])
s(pp, [prep, np, @], [3, 51])
s(np, [np, @, ppl, [4, 51])
s(np, [np, pPp, @], [2, 5])
s(vp, [vp, PP, @], [1, 5])
s(pp, (@, prep, npl, [5, 51])
s(vp, [verb, np, @], [1, 5])
s(np, [np, @, ppl, [2, 5])
s(s, [np, vp, @], [0, 5])
s(vp, [vp, @, ppl, [1, 51])
s($, [s, @1, [0, 5])

Yes

?2-

We present the Earley parser again in Java, Chapter 30. Although the
control procedures in Java are almost identical to those just presented in
Prolog, it is interesting to compare the representational differences
between declarative and an object-oriented languages.

Next, in the final chapter of Part I, we discuss important features of Prolog
and declarative programming. We present Lisp and functional
programming in Part III.

Exercises

1. Describe the role of the dot within the right hand side of the grammar
rules as they are processed by the Earley parser. How is the location of the
dot changed as the parse proceeds? What does it mean when we say that
the same right hand side of a grammar rule can have dots at different
locations?

2. In the Earley parser the input word list and the states in the state lists
have indices that are related. Explain how the indices for the states of the
state list are created.

3. Describe in your own words the roles of the predictor,
completer, and scanner procedures in the algorithm for Earley

140

Part II: Programming in Prolog

parsing. What order are these procedures called in when parsing a sentence,
and why is that ordering important? Explain your answers to the order of
procedure invocation in detail.

4. Augment the Earley Prolog parser to consider the sentence “John saw
the burglar with the telescope”. Create two different possible pare trees
from interpreting this string and comment on how the different possible
parses are retrieved them from the chart.

5. Create an 8 — 10 wotd sentence of your own and send it to the Earley
parser. Produce the chart as it changes with each additional word of the
sentence that is scanned.

6. Create a grammar that includes adjectives and adverbs in its list of rules.
What changes are needed for the Earley parser to handle these new rules?
Test the Early parser with sentences that contain adjectives and adverbs.

7. In the case of “John called Mary from Denver” the patser produced two
parse trees. Analyze Figure 9.4 and show which components of the full
parse are shared between both trees and where the critical differences are.

8. Analyze the complexity of the Earley algorithm. What was the cost of
the two parses that we considered in detail in this chapter? What are the
worst- and best-case complexity limits? What type sentences force the
worst case? Alternatively, what types of sentences are optimal?

10 Prolog: Final Thoughts

Chapter Prolog and declarative representations

Objectives Facts
Rules

The append example
Prolog referenced to automated reasoning systems
Lack of occurs check
No unigue names o closed world
Prolog semantics
Pattern-matching
Left-to-right depth-first search search
Backtracking on variable bindings
References offered for Prolog extensions

Chapter 1.1 Prolog: Towards a Declarative Semantics
Contents | Prolog and Automated Reasoning
10.3 Prolog Idioms
10.4 Prolog Extensions

10.1 Prolog: Towards a Declarative Semantics

We have now finishing our nine-chapter presentation of Prolog. To
summarize and conclude we describe again the design philosophy
supporting this language paradigm, look at how this influenced the history
of its development, summarize the main language idioms we used in
building our AI applications programs, and mention several modern
extensions of this declarative approach to programming.

Prolog was first designed and used at the University of Marseilles in the
south of France in the early 1970s. The first Prolog interpreter was
intended to analyze French using metamorphosis grammars (Colmerauer 1975).
From Marseilles, the language development moved on to the University of
Edinburgh in Scotland, where at the Artificial Intelligence Department,
Fernando Pereira and David Warren (1980) created definite clause grammars.
In fact, because of the declarative nature of Prolog and the flexibility of
pattern-driven control, tasks in Natural Language Processing, NLP, (Luger
2009, Chapter 15) have always offered a major application domain (see
Chapters 8 and 9). Veronica Dahl (1977), Dahl and McCord (1983),
Michael McCord (1982, 1986), and John Sowa (Sowa 1984, Walker et al.
1987) have all contributed to this research.

Besides NLP, Prolog has supported many research tasks including the
development of eatly expert systems (Bundy et al. 1979). Building Al
representations such as semantic nets, frames, and objects has always been
an important task for Prolog (see especially Knowledge Systems and Prolog by

141

142

Part II: Programming in Prolog

Adrian Walker, Michael McCotd, John Sowa, and Walter Wilson, 1987, and
Prolog: A Relational Language and Its Applications by John Malpas 1987).

In the remainder of this chapter we discuss briefly declarative
programming, how Prolog relates to theorem proving, and describe again
the Prolog idioms presented in Part II.

In traditional computing languages such as FORTRAN, C, and Java the
logic for the problem’s specification and the control for executing the
solution algorithm are inextricably mixed together. A program in these
languages is simply a sequence of things fo be done to achieve an answer.
This is the accepted notion of applicative ot procedural languages. Prolog,
however, separates the logic or specification for a problem application
from the execution or control of the use of that specification. In artificial
intelligence programs, there are many reasons for this separation, as has
been evident throughout Part II.

Prolog presents an alternative approach to computing. A program, as we
have seen, consists of a set of specifications or declarations of what is true in
a problem domain. The Prolog interpreter, taking a question from the user,
determines whether it is true or false with respect to the set of
specifications, If the query is true, Prolog will return a set of variable
bindings (a model, see 10.2) under which the query is true.

As an example of the declarative/ nonprocedural nature of Prolog, consider
append:

append([1, L, L).

append([X | T], L, [X | NL]) :- append(T, L, NL).
append is nonprocedural in that it defines a relationship between lists
rather than a series of operations for joining two lists. Consequently,
different queries will cause it to compute different aspects of this
relationship. We can understand append by tracing its execution in
joining two lists together. If the following call is made, the response is:

?- append([a, bl c]l [dl e]l Y)~
Y = [a, b, ¢, d, e]

The execution of append is not tail recursive, in that the local variable
values are accessed after the recursive call has succeeded. In this case, X is
placed on the head of the list ([X | NLJ) after the recursive call has
finished. This requires that a record of each call be kept on the Prolog
stack. For purposes of reference in the following trace:

1. is append([], L, L).

2. is append([X | T]1, L, [X | NL]) :-
append(T, L, NL).

?- append([ar br C]r [dr e]r Y)-

try match 1, fail [a, b, c] /=]
match 2, X is a, T is [b, c¢], L is [d, e],
call append([b, c], [d, e], NL)
try match 1, fail [b, c] /= []
match 2, X is b, T is [c], L is [d, e],
call append([c], [d, e], NL)

Chapter 10: Final Thoughts 143

try match 1, fail [c] []

match 2, X is ¢, T is [], L is [d, e],
call append([], [d, e], NL)
match 1, L is [d, e]
yes

yes, N is [d, e], [X | NL] is [c, d, e]

yes, NL is [c, d, e], [X | NL] is [b, ¢, d, e]
yes, NL is [b, ¢, d, e],
[X | NL] is [a, b, ¢, d, e]

Y = [a, b, ¢, d, e], yes

In most Prolog programs, the parameters of the predicates seem to be
intended as either “input” or “output”; most definitions assume that
certain parameters be bound in the call and others unbound. This need not
be so. In fact, there is no commitment at all to parameters being input or
output! Prolog code is simply a set of specifications of what is true, a
statement of the logic of the situation. Thus, append specifies a
relationship between three lists, such that the third list is the catenation of
the first onto the front of the second.

To demonstrate this we can give append a different set of goals:
?- append([a, b], [c]l, [a, b, c]).
Yes
?- append([a], [c], [a, b, c]).

No
?- append(X, [br C]r [ar br C])-
X = [a]

?- append(X, Y, [a, b, c]).
X =11

Y = [a, b, c]
X = [a]

Y = [b, c]

X = [a, b]

Y = [c]

~e

X = [a, b, c]
Y [1

no
In the last query, Prolog returns all the lists X and Y that, when appended
together, give [a,b,c], four pairs of lists in all. As mentioned above,
append gives a statement of the logic of a relationship that exists among
three lists. What the interpreter produces depends on the query.

The notion of solving a problem based on a set of specifications for
relationships in a problem domain area, coupled with the action of a
theorem prover, is exciting and important. As seen in Part II, it is a

144

Part II: Programming in Prolog

10.2

valuable tool in areas as diverse as natural language understanding,
databases, expert systems, and machine learning. How the Prolog
interpreter works cannot be fully understood without the concepts of
resolution theorem proving, especially the Horn clause refutation process,
which is presented in Luger (2009, Section 14.2 and Section 14.3) where
Prolog is presented as an instance of a resolution refutation system. In
Section 10.2 we briefly summarize these issues.

Prolog and Automated Reasoning

Prolog’s declarative semantics, with the interpreter determining the truth or
falsity of queries has much of the feel of an automated reasoning system or
theorem prover (Luger 2009, Chapter 14). In fact, Prolog is not a theorem
provet, as it lacks several important features that would make it both sound
(only producing mathematically correct responses) and complete (able to
produce all correct responses consistent with a problem’s specifications).
Many of these features ate not implemented in current versions of Prolog.
In fact, most are omitted to make Prolog a more efficient programming
tool, even when this omission costs Prolog any claim of mathematical
soundness.

In this section we will list several of the key features of automated
reasoning systems that Prolog lacks. First is the oceurs check. Prolog does not
determine whether any expression in the language contains a subset of
itself. For example, the test whether foo(X) = foo(foo(X)) wil
make most Prolog environments get seriously weird. It turns out that the
systematic check of whether any Prolog expression contains a subset of
itself is computationally costly and as a result is ignored.

A second limitation on Prolog is the order constraint. The Prolog inference
system (interpreter) performs a left-to-right depth-first goal reduction on
its specifications. This requires that the programmer order these
specifications appropriately. For example, the termination of a recursive
call must be presented before the recursive expression, otherwise the
recursion will never terminate. The programmer can also organize goals in
the order in which she wishes the interpreter to see them. This can help
create an efficient program but does not support a truly declarative
specification language where non-deterministic goal reduction is a critical
component. Finally, the use of the cut, !, allows the programmer to
further limit the set of models that the interpreter can compute. Again this
limitation promotes efficiency but it is at the cost of a mathematically
complete system.

A third limitation of Prolog is that there is no #nigue name constraint or
closed world assumption. Unique names means that each atom in the prolog
wotld must have one and only one “name” or value; otherwise there must
exist a set of deterministic predicates that can reduce an atom to its unique
(canonical) form. In mathematics, for example, 1, cannot be 1 + 0,0 + 1,
or 0 + 1 + 0, etc. There must be some predicate that can reduce all of these
expressions to one canonical form for that atom.

Further, the closed wotld assumption, requires that all the atoms in a

10.3

Chapter 10: Final Thoughts 145

domain must be specified; the interpreter cannot return no because some
atom was ignored or misspelled. These requirements in a theorem proving
environment address the negation as failure result that can be so frustrating to
a Prolog programmer. Negation as failure describes the situation where the
interpreter returns no and this indicates either that the query is false or that
the program’s specifications are incorrect. When a true theorem prover
responds no then the query is false.

Even though the Prolog interpreter is not a theorem prover, the intelligent
programmer can utilize many aspects of its declarative semantics to build a
set of clean representational specifications; these are then addressed by an
efficient interpretet. For more discussion of Prolog as theorem proving see
Luger (2009, Section 14.3).

Prolog Idioms and Extensions

We now summarize several of the Prolog programming idioms we have
used in Part II of this presentation. We consider idioms from three
perspectives, from the lowest level of command and specification
instructions, from a middle level of creating program language modules
such as abstract data types, and from the most general level of using meta-
predicates to make new interpreters within Prolog that are able to operate
on specific sets of Prolog expressions.

From the lowest level of designing control and building specifications, we
mention four different idioms that were used throughout Part II as critical
components for constructing Prolog programs. The first idiom is wnification
ot pattern matching. Unification offers a unique power for variable binding
found only in high-level languages. It is particularly powerful for pattern
matching across sets of predicate calculus specifications. Unification offers
an efficient implementation of the if/then/else constructs of lower
level languages: if the pattern matches, perform the associated action,
otherwise consider the next pattern. It is also an important and simplifying
tool for designing meta-interpreters, such as the production system
(Section 4.2). Production rules can be ordered and presented as a set of
patterns to be matched by unification) that will then trigger specific
behaviors. An algorithm for unification can be found in Luger (2009,
Section 2.3). It is interesting to note that unification, a constituent of
Prolog, is explicitly programmed into Lisp (Chapter 15) and Java (Chapter
32 and 33) to support Al programming techniques in these languages.

A second idiom of Prolog is the use of assignment. Assignment is related to
unification in that many variables, especially those in predicate calculus
form, are assigned values through unification. However, when a variable is
to have some value based on an explicit functional calculation, the is
operator must be used. Understanding the specific roles of assignment,
evaluation, and pattern matching is important for Prolog use.

The primary control construct for Prolog is recursion, the third idiom we
mention. Recursion works with unification to evaluate patterns in much
the same way as for, repeat/until, or while constructs are used in
lower level languages. Since many of Als problem solving tasks consist in

146

Part II: Programming in Prolog

searching indeterminate sized trees or graphs, the naturalness of recursion
makes it an important idiom: until specific criteria are met continue search
over specifications. Of course the lower-level control constructs of for,
repeat, etc, could be built into Prolog, but the idioms for these
constructs is recursion coupled with unification.

Finally, at the predicate creation level of the program, the ordering of
predicate specifications is important for Prolog. The issue is to utilize the
built in depth-first left-to-right goal reduction of the Prolog interpreter.
Understanding the action of the interpreter has important implications for
using the order idiom. Along with order of specifications for efficient
search, of course, is understanding and using wisely the predicate cut, |.

At the middle level of program design, where specifications are clustered to
have systematic program level effects, we mention several idioms. These
were grouped together in our presentation in Section 3.3 under the
construct abstract data types (ADTs). Abstract data types, such as set, stack,
guene, and priority guene were developed in Chapter 3. The abstractions allow
the program designer to use the higher-level constructs of queue, stack, etc.
directly in problem solving. We then used these control abstract data types
to design the search algorithms presented in Chapter 4. They were also
later used in the machine learning and natural language chapters of Part II.
For our Prolog chapters these idioms offer a natural way to exptess
constructs related to graph search.

Finally, at that abstract level where the programmer is directly designing
interpreters we described and used the wmeta-predicate idioms. Meta-
predicates are built into the Prolog environment to assist the program
designer with tools that manipulate other Prolog predicates, as described in
Section 5.1. We demonstrated in Section 5.2 how the meta-predicate
idioms can be used to enforce type constraints within a Prolog
programming environment.

The most important use of meta-predicates, however, is to design meta-
interpreters as we did in the remaining chapters (6 — 9) of Part II. Our
meta-interpreters wetre collected sets of predicates that were used to
interpret other sets of predicate specifications. Example meta-interpreters
included a Prolog interpreter written in Prolog and a production system
interpreter, Exshell, for building rule-based expert systems. The meta-
interpreter is the most powerful use of our idioms, because at this level of
abstraction and encapsulation our interpreters are implementing specific
design patterns.

There are many additional software tools for declarative and logic
programming available. An extension of Prolog’s declarative semantics into
a true resolution-based theorem-proving environment can be found in
Otter McCune and Wos 1997). Otter, originally produced at Argonne
National Laboratories, is a complete automated reasoning system based on
resolution refutation that addresses many of the shortcomings of Prolog
mentioned in Section 10.2, e.g., the occurs check. A current version of
Otter includes Isabelle, written in ML, (Paulson 1989), Tau (Halcomb and
Schulz 2005), and Vampire (Robinson and Voronkov 2001). These
automated reasoning systems are in the public domain and downloadable.

Chapter 10: Final Thoughts 147

Ciao Prolog is a modern version of Prolog created in Spain (Mera et al. 2007,
Hermenegildo et al. 2007). Ciao offers a complete Prolog system, but its novel
modular design allows both restricting and extending the language. As a result,
it allows working with fully declarative subsets of Prolog and also to extend
these subsets both syntactically and semantically. Most importantly, these
restrictions and extensions can be activated separately on each program
module so that several extensions can coexist in the same application for
different modules. Ciao also supports (through such extensions) programming
with functions, higher-order (with predicate abstractions), constraints, and
objects, as well as feature terms (records), persistence, several control rules
(breadth-first search, iterative deepening), concuttrency (threads/engines), a
good base for distributed execution (agents), and parallel execution. Libraries
also support WWW programming, sockets, external interfaces (C, Java, TclTk,
relational databases, etc.).

Ehud Shapiro and his colleagues have researched the parallel execution of
Prolog specifications. This is an important extension of the power to be
gained by extending the built in depth-first search with backtracking traditional
Prolog interpreter with parallel execution. For example, if a declarative goal
has a number of or based goals to satisfy, these can be checked in parallel
(Shapiro 1987).

Constraint logic programming is a declarative specification language where
relations between variables can be stated in the form of constraints.
Constraints differ from the common primitives of other programming
languages in that they do not specify a step or sequence of steps to execute but
rather the properties or requirements of the solution to be found. The
constraints used in constraint programming are of various kinds, including
constraint satisfaction problems. Constraints are often embedded within a
programming language or provided via separate software libraries (O’Sullivan
2003, Krzysztof and Wallace 2007).

Recent research has also extended traditional logic programming by adding
distributions to declarative specifications (Pless and Luger 2003,
Chakrabarti et al. 2005, Sakhanenko et al. 2007). This is a natural extension,
in that declarative specifications do not be need to be seen as deterministic,
but may be more realistically cast as probabilistic.

There is ongoing interest in logic-based or pure declarative programming
environments other than Prolog. The Gddel Programming Language, by Hill and
Lloyd (1994), presents the Godel language and Somogyi, Henderson, and
Conway (1995) describe Mercury. Gédel and Mercury are two relatively new
declarative logic-programming environments.

Finally, Prolog is a general-purpose language, and, because of space
limitations, we have been unable to present a number of its important
features and control constructs. We recommend that the interested reader
pursue some of the many excellent texts available including Programming in
Prolog (Clocksin and Mellish 2003), Computing with Logic (Maier and Warren
1988), The Art of Prolog (Sterling and Shapiro 1986), The Craft of Prolog
(O’Keete 1990), Techniques of Prolog Programming (VanLe 1993), Mastering
Prolog (Lucas 1990), ot Adpanced Prolog: Technignes and Examples (Ross 1989),
Knowledge Systems through Prolog (King 1991), and Natural Langnage Processing in
Prolog (Gazdar and Mellish 1989).

148 Part II: Programming in Prolog

In Part III we present the philosophy and idioms of functional
programming, using the Lisp language. Part IV then presents object-
oriented design and programming with Java, and Part V offers our
summary. As the reader covers the different parts of this book it can be
seen how the different languages are utilized to address many of the same
problems, while the idioms of one programming paradigm may or may not
be suitable to another.

Part III: Programming in Lisp

“The name of the song is called Haddocks’ Eyes.”
“Ob, that’s the name of the song, is it?” Alice said, trying to feel interested.

“No, you don’t understand,” the Knight said, looking a little vexed. “That’s what the name is called. The
name really is “T'he Aged Aged Man.”

“Then I onght to have said ‘That's what the song is called’?” Alice corrected berself.

“No, you onghtn’t: that’s quite another thing! The song is called ‘Ways and Means’: but that’s only what
it’s called you know!”

“Well, what is the song, then?” said Alice, who was by this time completely bewildered.
“T was coming to that,” the Knight said.
—Lewis Carroll, Through the Looking Glass

For the almost fifty years of its existence, Lisp has been an important
language for artificial intelligence programming. Originally designed for
symbolic computing, Lisp has been extended and refined over its lifetime
in direct response to the needs of Al applications. Lisp is an imperative
language: Lisp programs describe how to perform an algorithm. This
contrasts with declarative languages such as Prolog, whose programs are
assertions that define relationships and constraints in a problem domain.
However, unlike traditional imperative languages, such as FORTRAN,
C++ or Java, Lisp is functional its syntax and semantics are derived from
the mathematical theory of recursive functions.

The power of functional programming, combined with a rich set of high-
level tools for building symbolic data structures such as predicates, frames,
networks, rules, and objects, is responsible for Lisp’s popularity in the Al
community. Lisp is widely used as a language for implementing Al tools
and models, particularly in the research community, where its high-level
functionality and rich development environment make it an ideal language
for building and testing prototype systems.

In Part III, we introduce the syntax and semantics of Common Lisp, with
particular emphasis on the features of the language that make it useful for
Al programming: the use of lists to create symbolic data structures, and the
implementation of interpreters and search algorithms to manipulate these
structures. Examples of Lisp programs that we develop in Part III include
search engines, pattern matchers, theorem provers, rule-based expert
system shells, semantic networks, algorithms for learning, and object-
oriented simulations. It is not our goal to provide a complete introduction
to Lisp; a number of excellent texts (see the epilogue Chapter 20) do this in

149

150

Part III: Introduction

far greater detail than our space allows. Instead, we focus on using Lisp to
implement the representation languages and algorithms of artificial
intelligence programming.

In Chapter 11 we introduce symbol expressions, usually termed s-expressions,
the syntactic basis for the Lisp language. In Chapter 12, we present lists,
and demonstrate recursion as a natural tool for exploring list structures.
Chapter 13 presents variables in Lisp and discusses bindings, and scope
using Lisp forms including set and let. We then present abstract data
types in Lisp and end the chapter with a production system implementing
depth-first search.

Chapter 14 presents functions for building meta-interpreters, including the
map, filter, and lambda forms. These functions are then used for
building search algorithms in Lisp. As in Prolog, open and closed lists atre
used to design depth-first, breadth-first, and best-first search algorithms.
These search algorithms are designed around the production system
pattern and are in many ways similar to the Prolog search algorithms of
Chapter 4.

Chapter 15 creates a unification algorithm in Lisp in preparation for, in
Chapter 16, logic programming in Lisp. This unification, or general pattern
matching algorithm, supports the design of a read-eval-print loop
that implements embedded interpreters. In Chapter 16 we present a full
interpreter for expressions in a restricted form of the predicate calculus.
This, in turn, sets up the full expert system shell of Chapter 17.

Chapter 17 first presents streams and delayed evaluation as a lead in to
presenting 1isp-shell, a general-purpose expert system shell in Lisp
for problems represented in the predicate calculus. 1isp-shell requires
that the facts and rules of the problem domain to be translated into a
pseudo Horn clause form.

In Chapter 18 we present object-oriented structures built in Lisp. We see
the language as implementing the three components of object-oriented
design: inheritance, encapsulation, and polymorphism. We see this
implemented first in semantic networks and then in the full object system
using the CLOS (Common Lisp Object System) library. We use CLOS to
build a simulation of a heating system for a building.

In Chapter 19 we explore machine learning in Lisp building the full ID3
algorithm and testing it with a “consumer credit” example. Chapter 20
concludes Part III with a discussion of functional programming and a
reference list.

11

Chapter
Objectives

Chapter
Contents

S-expressions, the Syntax of Lisp

The Lisp, s-expression introduced
Basic syntactic unit for the language
Structures defined recursively
The list as data or function
quote
eval
Creating new functions in Lisp:
defun
Control structures in Lisp
Functions
cond
if
Predicates
and
or
not

11.1 Introduction to Symbol Expressions

11.2 Control of Lisp Evaluation: quote and eval

11.3 Programming in Lisp: Creating New Functions

11.4 Program Control in Lisp: Conditionals and Predicates

11.1

The S-
expression

Introduction to Symbol Expressions

The syntactic elements of the Lisp programming language are symbolic
expressions, also known as s-expressions. Both programs and data are
represented as s-expressions: an s-expression may be either an atom or a /list.
Lisp atoms are the basic syntactic units of the language and include both
numbers and symbols. Symbolic atoms are composed of letters, numbers,
and the non-alphanumeric characters.

Examples of Lisp atoms include:
3.1416
100
hyphenated-name
some-global
nil
A /list is a sequence of either atoms or other lists separated by blanks and
enclosed in parentheses. Examples of lists include:
(1 2 3 4)
(george kate james joyce)
(a (b c) (d (e £)))
@)

Note that lists may be elements of lists. This nesting may be arbitrarily

151

152

Part III: Programming in Lisp

deep and allows us to create symbol structures of any desired form and
complexity. The empty list, “()”, plays a special role in the construction
and manipulation of Lisp data structures and is given the special name
nil. nil is the only s-expression that is considered to be both an atom
and a list. Lists are extremely flexible tools for constructing
representational structures. For example, we can use lists to represent
expressions in the predicate calculus:

(on block-1 table)

(likes bill X)

(and (likes george kate) (likes bill merry))
We use this syntax to represent predicate calculus expressions in the
unification algorithm of this chapter. The next two examples suggest ways
in which lists may be used to implement the data structures needed in a
database application.

((2467 (lovelace ada) programmer)

(3592 (babbage charles) computer-designer))

((key-1 value-1) (key-2 value-2) (key-3 value-3))
An important feature of Lisp is its use of Lisp syntax to represent
programs as well as data. For example, the lists,

(* 79)

(= (+34)7)
may be interpreted as arithmetic expressions in a prefix notation. This is
exactly how Lisp treats these expressions, with (* 7 9) representing the
product of 7 and 9. When Lisp is invoked, the user enters an interactive
dialogue with the Lisp interpreter. The interpreter prints a prompt, in our
examples “>”, reads the user input, attempts to evaluate that input, and, if
successful, prints the result. For example:

> (* 7 9)

63

>

Here, the user enters (* 7 9) and the Lisp interpreter responds with 63,
L.e., the value associated with that expression. Lisp then prints another
prompt and waits for more user input. This cycle is known as the read-eval-
printloop and is the heart of the Lisp interpretet.

When given a list, the Lisp evaluator attempts to interpret the first element
of the list as the name of a function and the remaining elements as its
arguments. Thus, the s-expression (£ X y) is equivalent to the more
traditional looking mathematical function notation f£(x,y). The value
printed by Lisp is the result of applying the function to its arguments. Lisp
expressions that may be meaningfully evaluated are called forms. If the user
enters an expression that may not be correctly evaluated, Lisp prints an
error message and allows the user to trace and correct the problem. A
sample Lisp session appeats below:

> (+ 14 5)
19

> (+12 3 4)
10

> (— (+ 3 4) 7)
0

Chapter 11 S-expresssions, the Syntax of Lisp 153

> (* (+ 2 5) (=7 (/ 21 7)))
28
> (= (+ 2 3) 5)

(> (* 56) (+45))

Vt V

(a b c)
Error: invalid function: a

Several of the examples above have arguments that are themselves lists, for
example the expression (— (+ 3 4) 7). This indicates the
composition of functions, in this case “subtract 7 from the resu/t of adding
3 to 47. The word “result” is emphasized here to indicate that the
function—is not passed the s-expression “(+ 3 4)” as an argument but
rather the result of evaluating that expression.

In evaluating a function, Lisp first evaluates its arguments and then applies
the function indicated by the first element of the expression to the results
of these evaluations. If the arguments are themselves function expressions,
Lisp applies this rule recursively to their evaluation. Thus, Lisp allows
nested function calls of arbitrary depth. It is important to remember that,
by default, Lisp evaluates everything. Lisp uses the convention that
numbers always evaluate to themselves. If, for example, 5 is typed into the
Lisp interpreter, Lisp will respond with 5. Symbols, such as X, may have a
value bound to them. If a symbol is bound, the binding is returned when the
symbol is evaluated (one way in which symbols become bound is in a
function call; see Section 13.2). If a symbol is unbound, it is an etror to
evaluate that symbol.

For example, in evaluating the expression (+ (* 2 3) (* 3 5)),
Lisp first evaluates the arguments, (* 2 3) and (* 3 5). In
evaluating (* 2 3), Lisp evaluates the arguments 2 and 3, which return
their respective arithmetic values; these values are multiplied to yield 6.
Similarly, (* 3 5) evaluates to 15. These results are then passed to the
top-level addition, which is evaluated, returning 21. A diagram of this
evaluation appears in Figure 11.1.

Figure 11.1. Tree representation of the evaluation of a simple Lisp function

In addition to arithmetic operations, Lisp includes a large number of
functions that operate on lists. These include functions to construct and
combine lists, to access elements of lists, and to test various properties. For
example, 1ist takes any number of arguments and constructs a list of
those elements. nth takes a number and a list as arguments and returns

154 Part III: Programming in Lisp

S-expressions
Defined

11.2

Using quote
and eval

the indicated element of the list. By convention, nth begins counting with
0. Examples of these and other list manipulation functions include:

> (list 1 2 3 4 5)
(1 23 45)

> (nth 0 “(a b c d))
a
> (nth 2 (list 1 2 3 4 5))
3
> (nth 2 ‘((a 1) (b 2) (c 3) (d 4)))
(c 3)
> (length ‘(a b c d))
4
> (member 7 ‘(1 2 3 4 5))
nil
> (null ())
t
DEFINITION

S-EXPRESSION
An s-expression is defined recursively:
An atom is an s-expression.

If s, s,, .., S, are s-expressions, then so is the list (5; s,
. S,).
A /istis a non-atomic s-expression.

A form is an s-expression that is intended to be evaluated. If it is a
list, the first element is treated as the function name and the
subsequent elements are evaluated to obtain the function
arguments.

In evaluating an s-expression:
If the s-expression is a number, return the value of the number.

If the s-expression is an atomic symbol, return the value bound to
that symbol; if it is not bound, it is an error.

If the s-expression is a list, evaluate the second through the last
arguments and apply the function indicated by the first argument
to the results.

Lisp represents both programs and data as s-expressions. Not only does
this simplify the syntax of the language but also, when combined with
the ability to control the evaluation of s-expressions, it makes it easy to
write programs that treat other Lisp programs as data. This simplifies the
implementation of interpreters in Lisp.

Control of Lisp Evaluation

In the previous section, several of the examples included list arguments
preceded by a single quotation mark: ‘. The *, which can also be
represented by the function quote, is a special function which does not
evaluate its argument but prevents evaluation, often because its argument is
to be treated as data rather than as an evaluable form.

Chapter 11 S-expresssions, the Syntax of Lisp 155

When evaluating an s-expression, Lisp will first try to evaluate all of its
arguments. If the interpreter is given the expression (nth 0 (a b ¢
d)), it will first try to evaluate the argument (a b ¢ d). This
attempted evaluation will result in an error, because a, the first element of
this s-expression, does not represent any known Lisp function. To prevent
this, Lisp provides the user with the built-in function quote. quote
takes one argument and returns that argument without evaluating it. For
example:

> (quote (a b c¢))

(a b c)

> (quote (+ 1 3))

(+ 1 3)
Because quote is used so often, Lisp allows it to be abbreviated by a
single quotation mark. Thus, the preceding examples could be written:

> ‘(a b c)

(a b c)

> (+ 1 3)

(+ 1 3)
In general, quote is used to prevent the evaluation of arguments to a
function when these arguments are intended to be treated as data rather
than evaluable forms. In the eatlier examples of simple arithmetic, quote
was not needed, because numbers always evaluate to themselves. Consider
the effect of quote in the following calls to the 1ist function:

> (list (+ 1 2) (+ 3 4))

(37)

> (list “(+ 1 2) “(+ 3 4))

((+ 1 2) (+ 3 4))
In the first example, the arguments are not quoted; they are therefore
evaluated and passed to 1ist according to the default evaluation scheme.
In the second example, quote prevents this evaluation, with the s-
expressions themselves being passed as arguments to 1ist. Even though
(+ 1 2) is a meaningful Lisp form, quote prevents its evaluation. The
ability to prevent evaluation of programs and manipulate them as data is an
important feature of Lisp.

As a complement to quote, Lisp also provides a function, eval, that
allows the programmer to evaluate an s-expression at will. eval takes one
s-expression as an argument: this argument is evaluated as is usual for
arguments to functions; however, the result is then evaluated agazn and this
final result is returned as the value of eval. Examples of the behavior of
eval and quote:

> (quote (+ 2 3))

(+ 2 3)

> (eval (quote (+ 2 3))) ;eval undoes the effect of quote
5

> (list ‘* 2 5) ;this constructs an evaluable s-expression

(* 25)

> (eval (list ‘* 2 5)) ;this constructs and evaluates the s-
expression

10

156

Part III: Programming in Lisp

11.3

Using defun

The eval function is precisely what is used in the ordinary evaluation of
s-expressions. By making quote and eval available to the programmer,
Lisp greatly simplifies the development of meta-interpreters: variations on the
standard Lisp interpreter that define alternative or extended behaviors for
the Lisp language. This important programming methodology is illustrated
in the “infix-interpreter” of Section 15.2 and the design of an expert system
shell in Section 17.2.

Programming in Lisp: Creating New Functions

Common Lisp includes a large number of built-in functions, including:

- A full range of arithmetic functions, supporting integer, rational, real
and complex arithmetic.

- A variety of looping and program control functions.

- List manipulation and other data structuring functions.
- Input/output functions.

- Forms for the control of function evaluation.

- Functions for the control of the environment and operating system.

Lisp includes too many functions to list in this chapter; for a more detailed
discussion, consult a specialized Lisp text, the manual for your particular
implementation, or see Chapter 20.

In Lisp, we program by defining new functions, constructing programs
from this already rich repertoire of built-in functions. These new functions
are defined using defun, which is short for define function. Once a function
is defined it may be used in the same fashion as functions that are built into
the language.

Suppose, for example, the user would like to define a function called
square that takes a single argument and returns the square of that
argument. square may be created by having Lisp evaluate the following
expression:
(defun square (x)
(* x x))

The first argument to defun is the name of the function being defined;
the second is a list of the formal parameters for that function, which must
all be symbolic atoms; the remaining arguments are zero or more s-
expressions, which constitute the body of the new function, the Lisp code
that actually defines its behavior. Unlike most Lisp functions, defun does
not evaluate its arguments; instead, it uses them as specifications to create a
new function. As with all Lisp functions, however, defun returns a value,
although the value returned is simply the name of the new function.

The important result of evaluating a defun is the side effect of creating a
new function and adding it to the Lisp environment. In the above example,
square is defined as a function that takes one argument and returns the
result of multiplying that argument by itself. Once a function is defined, it
must be called with the same number of arguments, or “actual parameters,” as
there are formal parameters specified in the defun. When a function is
called, the actual parameters are bound to the formal parameters. The body of
the function is then evaluated with these bindings. For example, the call

11.4

Using cond

Chapter 11 S-expresssions, the Syntax of Lisp 157

(square 5) causes 5 to be bound to the formal parameter X in the body
of the definition. When the body (* x X) is evaluated, Lisp first evaluates
the arguments to the function. Because x is bound to 5 by the call, this leads
to the evaluation of (* 5 5).

Morte concisely, the syntax of a defun expression is:
(defun <function name>
(<formal parameters>) <function body>)

In this definition, desctriptions of the elements of a form are enclosed in
angle brackets: < >. We use this notational convention throughout this
text to define Lisp forms. Note that the formal parameters in a defun are
enclosed in a list.

A newly defined function may be used just like any built-in function.
Suppose, for example, that we need a function to compute the length of
the hypotenuse of a right triangle given the lengths of the other two sides.
This function may be defined according to the Pythagorean theorem, using
the previously defined square function along with the built-in function
sqgrt. We have added a number of comments to this sample code. Lisp

supports “end of line comments™: it ignores all text from the first “;” to
the end of the same line.

(defun hypotenuse (x y) ; the length of the hypotenuse is
(sqrt (+ (square Xx) ; the square root of the sum of
(square y)))) ; the squares of the other sides.

This example is typical in that most Lisp programs are built up of relatively
small functions, each performing a single well-defined task. Once defined,
these functions are used to implement higher-level functions until the
desired “top-level” behavior has been defined.

Program Control in Lisp: Conditionals and Predicates

Lisp branching is also based on function evaluation: control functions
perform tests and, depending on the results, selectively evaluate alternative
forms. Consider, for example, the following definition of the absolute-
value function (note that Lisp actually has a built-in function, abs, that
computes absolute value):

(defun absolute-value (x)
(cond ((< x 0) (— x)) ;if x < 0, return —x
((>= x 0) x))) ;else return x
This example uses the function, cond, to implement a conditional branch.
cond takes as arguments a number of condition—action pairs:
(cond (< conditionl > < actionl >)
(< condition2 > < action2 >)

(< conditionn > < actionn >))

Conditions and actions may be arbitrary s-expressions, and each pair is
enclosed in parentheses. Like defun, cond does not evaluate all of its
arguments. Instead, it evaluates the conditions in order until one of them
returns a non-nil value. When this occurs, it evaluates the associated action

158 Part III: Programming in Lisp

Lisp Predicates

and returns this result as the value of the cond expression. None of the
other actions and none of the subsequent conditions are evaluated. If all of
the conditions evaluate to nil, cond returns nil.

An alternative definition of absolute-value is:
(defun absolute-value (x)
(cond ((< x 0) (— x)) ;if x < 0, return —x
(t x))) ;else, return x

This version notes that the second condition, (>= x 0), is always true if
the first is false. The “t” atom in the final condition of the cond
statement is a Lisp atom that roughly corresponds to “true.” By
convention, t always evaluates to itself; this causes the last action to be
evaluated if all preceding conditions return nil. This construct is
extremely useful, as it provides a way of giving a cond statement a default
action that is evaluated if and only if all preceding conditions fail.

Although any evaluable s-expressions may be used as the conditions of a
cond, generally these are a particular kind of Lisp function called a
predicate. A predicate is simply a function that returns a value of either true
or false depending on whether or not its arguments possess some property.
The most obvious examples of predicates are the relational operators
typically used in arithmetic such as =, >, and >=. Here are some examples
of arithmetic predicates in Lisp:

> (=9 (+ 4 5))

t
> (>= 17 4)
t
> (< 8 (+ 4 2))
nil
> (oddp 3) ;oddp tests whether or not its argument is odd
t
> (minusp 6) ;minusp tests whether its argument < 0
nil
> (numberp 17) ;numberp tests whether its argument is numeric
t
> (numberp nil)
nil

(zerop 0) ; zerop istrueifits argument= 0, nil otherwise

>
t
> (plusp 10) ;plusp is true if its argument > 0
t
>

(plusp —2)
nil

Note that the predicates in the above examples do not return “true” or
“false” but rather t or nil. Lisp is defined so that a predicate may return
nil to indicate “false” and anything other than nil (not necessarily t) to
indicate “true.” An example of a function that uses this feature is the
member predicate. member takes two arguments, the second of which
must be a list. If the first argument is a member of the second, member
returns the suffix of the second argument, containing the first argument as
its initial element; if it is not, member returns nil. For example:

Chapter 11 S-expresssions, the Syntax of Lisp 159

> (member 3 ‘(1 2 3 4 5))

(3 4 5)
One rationale for this convention is that it allows a predicate to return a
value that, in the “true” case, may be of use in further processing. It also
allows any Lisp function to be used as a condition in a cond form.

As an alternative to cond, the 1 f form takes three arguments. The first is
a test. 1f evaluates the test; if it returns a non-nil value, the i1f form
evaluates its second argument and returns the result, otherwise it returns
the result of evaluating the third argument. In cases involving a two-way
branch, the if construct generally provides cleaner, more readable code
than cond. For example, absolute-value could be defined using the
if form:

(defun absolute-value (x)
(if (< x 0) (= x) X))

In addition to if and cond, Lisp offers a wide selection of alternative
control constructs, including iterative constructs such as do and while
loops. Although these functions provide Lisp programmers with a wide
range of control structures that fit almost any situation and programming
style, we will not discuss them in this section; the reader is referred to a
more specialized Lisp text for this information.

One of the more interesting program control techniques in Lisp involves
the use of the logical connectives and, or, and not. not takes one
argument and returns t if its argument is nil and nil otherwise. Both
and and or may take any number of arguments and behave as you would
expect from the definitions of the corresponding logical operators. It is
important to note, however, that and and or are based on conditional
evalnation.

In evaluating an and form, Lisp evaluates its arguments in left-to-right
order, stopping when any one of the arguments evaluates to nil or the
last argument has been evaluated. Upon completion, the and form returns
the value of the last argument evaluated. It therefore returns non-nil only
if all its arguments return non-nil. Similarly, the or form evaluates its
arguments only until a non-nil value is encountered, returning this value
as a result. Both functions may leave some of their arguments unevaluated,
as may be seen by the behavior of the print statements in the following
example. In addition to printing its argument, in some Lisp environments
print returns a value of nil on completion.

> (and (oddp 2) (print “eval second statement”))

nil

> (and (oddp 3) (print “eval second statement”))

eval second statement

> (or (oddp 3) (print “eval second statement”))

t

> (or (oddp 2) (print “eval second statement”))

eval second statement
Because (oddp 2) evaluates to nil in the first expressions, the and
simply returns nil without evaluating the print form. In the second
expression, however, (oddp 3) evaluates to t and the and form then

160

Part III: Programming in Lisp

evaluates the print. A similar analysis may be applied to the or
examples. It is important to be aware of this behavior, particulatly if some
of the arguments are forms whose evaluations have side effects, such as the
print function. The conditional evaluation of logical connectives makes
them useful in controlling the flow of execution of Lisp programs. For
example, an or form may be used to try alternative solutions to a problem,
evaluating them in order until one of them returns a non-nil result.

Exercises

1. Which of the following are legitimate s-expressions? If any is not,
explain why it isn’t.

(geo rge fred john)

(a b (cd(ef (gh)))

(3 +5)

(quote (eval (+ 2 3)))

(or (oddp 4) (* 4 5 6)
2. Create a small database in Lisp for some application, such as for
professional contacts. Have at least five fields in the data-tuples where at
least one of the fields is itself a list of items. Create and test your own
assess functions on this database.

3. Create a cond form that uses and and or that will test the items in the
database created in exercise 2. Use these forms to test for properties of the
data-tuples, such as to print out the name of a male person that makes
more than a certain amount of money.

4. Create a function called my-member that performs the function of the
member example that was presented in Section 11.4.

12 Lists and Recursive Search

Chapter Lisp processing of arbitrary symbol structures
Objectives Building blocks for data structures

Designing accessors

The symbol list as building block
car
cdr
cons

Recursion as basis of list processing
cdr recursion
car-cdr recursion

The tree as representative of the structure of a list

Chapter 12.1 Functions, Lists, and Symbolic Computing
Contents 12.2 Lists as Recursive Structures
12.3 Nested Lists, Structure, and car/cdr Recursion

12.1 Functions, Lists, and Symbolic Computing

Symbolic Ajthough the Chapter 11 introduced Lisp syntax and demonstrated a few
Computing ,¢.f) Lisp functions, it did so in the context of simple arithmetic
examples. The real power of Lisp is in symbolic computing and is based on
the use of lists to construct arbitrarily complex data structures of symbolic
and numeric atoms, along with the forms needed for manipulating them.
We illustrate the ease with which Lisp handles symbolic data structures, as
well as the naturalness of data abstraction techniques in Lisp, with a simple
database example. Our database application requires the manipulation of
employee records containing name, salary, and employee number fields.

These records are represented as lists, with the name, salary, and number fields
as the first, second, and third elements of a list. Using nth, it is possible to
define access functions for the various fields of a data record. For example:

(defun name-field (record)
(nth 0 record))
will have the behavior:
> (name-field ‘((Ada Lovelace) 45000.00 38519))
(Ada Lovelace)

Similarly, the functions salary-field and number-field may be
defined to access the appropriate fields of a data record. Because a name is
itself a list containing two elements, a first name and a last name, it is useful
to define functions that take a name as argument and return either the first
or last name as a result.

161

162

Part III: Programming in LISP

(defun first-name (name)
(nth 0 name))
will have the behavior:

> (first-name (name-field ‘((Ada Lovelace) 45000.00
338519)))

Ada
In addition to accessing individual fields of a data record, it is also
necessary to implement functions to create and modify data records. These
are defined using the built-in Lisp function 1ist. 1ist takes any number
of arguments, evaluates them, and returns a list containing those values as
its elements. For example:

> (list 1 2 3 4)

(123 4)

> (list ‘(Ada Lovelace) 45000.00 338519)

((Ada Lovelace) 45000.00 338519)
As the second of these examples suggests, 1ist may be used to define a
constructor for records in the database:

(defun build-record (name salary emp-number)

(list name salary emp-number))

will have the behavior:
> (build-record ‘(Alan Turing) 50000.00 135772)
((Alan Turing) 50000.00 135772)

Now, using build-record and the access functions, we may construct
functions that return a modified copy of a record. For example
replace-salary will behave:

(defun replace-salary-field (record new-salary)
(build-record (name-field record)

new-salary

(number-field record)))

> (replace-salary-field ‘((Ada Lovelace) 45000.00
338519) 50000.00)

((Ada Lovelace) 50000.00 338519)

Note that this function does not actually update the record itself but
produces a modified copy of the record. This updated version may be
saved by binding it to a global variable using setf (Section 13.1).
Although Lisp provides forms that allow a particular element in a list to be
modified in the original structure (i.e., without making a copy), good Lisp
programming style generally avoids their use, and they are not covered in
this text. For Lisp applications involving all but extremely large structures,
modifications are generally done by creating a new copy of the structure.

In the above examples, we created an abstract data type for employee
records. The various access and update functions defined in this section
implement a specialized language appropriate to the meaning of the
records, freeing the programmer from concerns about the actual list
structures being used to implement the records. This simplifies the

12.2

Car/cdr
Recursion

Chapter 12 Lists and Recursive Search 163

development of higher-level code, as well as making that code much easier
to maintain and understand.

Generally, Al programs manipulate large amounts of varied knowledge
about problem domains. The data structures used to represent this
knowledge, such as objects and semantic networks, are complex, and
humans generally find it easier to relate to this knowledge in terms of its
meaning rather than the particular syntax of its internal representation.
Therefore, data abstraction techniques, always good practice in computer
science, are essential tools for the Al programmer. Because of the ease
with which Lisp supports the definition of new functions, it is an ideal
language for data abstraction.

Lists as Recursive Structures

In the previous section, we used nth and list to implement access
functions for records in a simple “employee” database. Because all
employee records were of a determinate length (three elements), these two
functions were sufficient to access the fields of records. However, these
functions are not adequate for performing operations on lists of unknown
length, such as searching through an unspecified number of employee
records. To do this, we must be able to scan a list iteratively or recursively,
terminating when certain conditions are met (e.g., the desired record is
found) or the list is exhausted. In this section we introduce list operations,
along with the use of recursion to create list-processing functions.

The basic functions for accessing the components of lists are car and cdr.
car takes a single argument, which must be a list, and returns the first
element of that list. cdr also takes a single argument, which must also be a
list, and returns that list with its first argument removed:

> (car ‘(a b ¢)) ;note that the list is quoted
a

> (cdr ‘(a b c))

(b c)

> (car ‘((a b) (c d))) ;the first element of
(a b) ;a list may be a list

> (cdr ‘((a b) (c d)))
((c d))

> (car (cdr ‘(a b c d)))
b

The way in which car and cdr operate suggests a recursive approach to
manipulating list structures. To perform an operation on each of the elements of a list:

1f the list is empty, quit.

Otherwise, operate on the first element and recurse on the
remainder of the list.

Using this scheme, we can define a number of useful list-handling
functions. For example, Common Lisp includes the predicates member,
which determines whether one s-expression is a member of a list, and
length, which determines the length of a list. We define our own

164

Part III: Programming in LISP

versions of these functions: my-member takes two arguments, an
arbitrary s-expression and a list, my—-1list. It returns nil if the s-
expression is not a member of my-1ist; otherwise it returns the list
containing the s-expression as its first element:
(defun my-member (element my-list)
(cond ((null my-list) nil)
((equal element (car my-list)) my-list)
(t (my-member element (cdr my-list)))))
my-member has the behavior:
> (my-member 4 ‘(1 2 3 4 5 6))
(4 5 6)
> (my-member 5 ‘(a b c d))
nil
Similarly, we may define our own versions of length and nth:
(defun my-length (my-list)
(cond ((null my-list) 0)
(t (+ (my-length (cdr my-list)) 1))))
(defun my-nth (n my-list)
(cond ((zerop n) (car my-list))
; zerop tests if argument is zero
(t (my-nth (— n 1) (cdr my-list)))))
It is interesting to note that these examples, though presented here to illustrate
the use of car and cdr, reflect the historical development of Lisp. Early
versions of the language did not include as many built-in functions as
Common Lisp does; programmers defined their own functions for checking
list membership, length, etc. Over time, the most generally useful of these
functions have been incorporated into the language standard. As an easily

extensible language, Common Lisp makes it easy for programmers to create
and use their own library of reusable functions.

In addition to the functions car and cdr, Lisp provides a number of
functions for constructing lists. One of these, 1ist, which takes as
arguments any number of s-expressions, evaluates them, and returns a list
of the results, was introduced in Section 10.1. A more primitive list
constructor is the function cons, that takes two s-expressions as
arguments, evaluates them, and returns a list whose car is the value of the
first argument and whose cdr is the value of the second:

> (cons 1 ‘(2 3 4))

(1 2 3 4)

> (cons ‘(a b) ‘“(c d e))
((a b) ¢ de)

cons bears an inverse relationship to car and cdr in that the car of the
value returned by a cons form is always the first argument to the cons, and
the cdr of the value returned by a cons form is always the second argument
to that form:

Chapter 12 Lists and Recursive Search 165

> (car (cons 1 ‘(2 3 4)))

1
> (cdr (cons 1 ‘(2 3 4)))
(2 3 4)

An example of the use of cons is seen in the definition of the function
filter-negatives, which takes a list of numbers as an argument and
returns that list with any negative numbers removed. filter-negatives
recursively examines each element of the list; if the first element is negative, it
is discarded and the function returns the result of filtering the negative
numbers from the cdr of the list. If the first element of the list is positive, it
is “consed” onto the result of filter-negatives from the rest of the
list:
(defun filter-negatives (number-list)

(cond ((null number-list) nil)
((plusp (car number-list))

(cons (car number-list)
(filter-negatives
(cdr number-list))))
(t (filter-negatives (cdr number-list)))))
This function behaves:
> (filter-negatives ‘(1 -1 2 =2 3 —4))
(1 2 3)
This example is typical of the way cons is often used in recursive functions
on lists. car and cdr tear lists apart and “drive” the recursion; cons
selectively constructs the result of the processing as the recursion “unwinds.”
Another example of this use of cons is in redefining the built-in function
append:
(defun my-append (listl list2)
(cond ((null listl) list2)
(t (cons (car listl)
(my-append (cdr listl) 1list2)))))
which yields the behavior:
> (my-append ‘(1 2 3) ‘(4 5 6))
(12345 6)
Note that the same recursive scheme is used in the definitions of my-
append, my-length, and my-member. Each definition uses the car
function to remove (and process) the first element of the list, followed by a
recursive call on the shortened (tail of the) list; the recursion “bottoms
out” on the empty list. As the recursion unwinds, the cons function
reassembles the solution. This particular scheme is known as cdr recursion,

because it uses the cdr function to lineatly scan and process the elements
of a list.

166 Part III: Programming in LISP

12.3

Car/cdr
Recursion and
Nested
Structure

Nested Lists, Structure, and car/cdr Recursion

Although both cons and append may be used to combine smaller lists
into a single list, it is important to note the difference between these two
functions. If cons is called with two lists as arguments, it makes the first
of these a new first element of the second list, whereas append returns a
list whose elements are the elements of the two arguments:

> (cons ‘(1 2) ‘(3 4))

((1 2) 3 4)
> (append ‘(1 2) ‘(3 4))
(1 2 3 4)

The lists (1 2 3 4) and ((1 2) 3 4) have fundamentally different
structures. This difference may be noted graphically by exploiting the
isomorphism between lists and trees. The simplest way to map lists onto trees
is to create an unlabeled node for each list, with descendants equal to the
elements of that list. This rule is applied recursively to the elements of the list
that are themselves lists; elements that are atoms are mapped onto leaf nodes
of the tree. Thus, the two lists mentioned above generate the different tree
structures illustrated in Figure 12.1.

Figure 12.1. Mapping lists onto trees showing structural differences.

This example illustrates the representational power of lists, particulatly as a
means of representing any tree structure such as a search tree or a parse tree
(Figure 16.1). In addition, nested lists provide a way of hierarchically
structuring complex data. In the employee records example of Section 12.1,
the name field was itself a list consisting of a first name and a last name. This
list could be treated as a single entity or its individual components could be
accessed.

The simple cdr-recursive scheme discussed in the previous section is not
sufficient to implement all manipulations on nested lists, because it does not
distinguish between items that are lists and those that are simple atoms.
Suppose, for example, that the length function defined in Section 12.2 is
applied to a nested list structure:

> (length “((1 2) 3 (1 (4 (5)))))
3

Chapter 12 Lists and Recursive Search 167

In this example, 1length returns 3 because the list has 3 elements, (1 2),
3,and (1 (4 (5))). This is, of course, the correct and desired behavior
for a length function.

On the other hand, if we want the function to count the number of afoms in
the list, we need a different recursive scheme, one that, in addition to scanning
along the elements of the list, “opens up” non-atomic list elements and
recursively applies itself to the task of counting their atoms. We define this
function, called count-atoms, and observe its behaviot:

(defun count-atoms (my-list)
(cond ((null my-list) 0)
((atom my-list) 1)
(t (+ (count-atoms (car my-list))
(count-atoms
(cdr my-list))))))
> (count-atoms ‘((1 2) 3 (((4 5 (6))))))
6

The above definition is an example of car-cdr recursion. Instead of just
recurring on the cdr of the list, count-atoms also recurs on the car of
its argument, with the + function combining the two components into an
answer. Recursion halts when it encounters an atom or empty list (null).
One way of thinking of this scheme is that it adds a second dimension to
simple c¢dr recursion, that of “going down into” each of the list elements.
Compare the diagrams of calls to length and count-atoms in Figure
12.2. Note the similarity of car-cdr recursion and the recursive definition
of s-expressions given in Section 11.1.1.

Another example of the use of car-cdr recursion is in the definition of
the function flatten. flatten takes as argument a list of arbitrary
structure and returns a list that consists of the same atoms in the same
order but with all the atoms at the same level. Note the similarity between
the definition of flatten and that of count-atoms: both use car-
cdr recursion to tear apart lists and drive the recursion, both terminate
when the argument is either null or an atom, and both use a second
function (append or +) to construct an answer from the results of the
recursive calls.
(defun flatten (1lst)
(cond ((null 1st) nil)
((atom 1lst) (list 1lst))
(t (append (flatten (car 1lst))
(flatten (cdr 1lst))))))
Examples of the behavior of f1latten include:
> (flatten ‘(a (b c) (((d) e £))))
(a bcdef)
> (flatten ‘(a b c)); already flattened
(a b c)

168 Part III: Programming in LISP

> (flatten ‘(1 (2 3) (4 (5 6) 7)))
(1234567)

car-cdr recursion is the basis of our implementation of unification in
Section 15.2. In Chapter 13, we introduce variables and design algorithms for
search.

Figure 12.2, Tree representations of linear and tree-recursive functions.

Exercises

1. Create trees, similar to those of Figure 12.1, which show the structures
of the following lists.

(+ 4 (*5 (+6 7 8)))
(+ (* (+ 4 5) 6 7 8))
(+ (* (+ 4 (*56)) 7) 8)

Chapter 12 Lists and Recursive Search 169

2. Write a recursive Lisp function that will reverse the elements of a list.
(Do not use the built-in reverse function.) What is the complexity of
your implementation? It is possible to reverse a list in linear time; can you
do so?

3. Write a Lisp function that will take a list nested to any depth and print
the mirror image of that list. For instance, the function should have the
behavior:

> (mirror ‘((a b) (c (d e))))
(((e d) c) (b a))
Note that the mirroring operation operates at all levels of the list’s

representation.

4. Consider the database example of section 12.1. Write a function, £ind,
to return all records that have a given value particular value for a particular
field. To make this more interesting, allow users to specify the fields to be
searched by name. For example, evaluating the expression:

(find ‘salary-field ‘50000.00
‘(((Alan Turing) 50000.00 135772)
((Ada Lovelace) 45000.00 338519)))
should return:
((Alan Turing) 50000.00 135772)
5. The Towers of Hanoi problem is based on the following legend:

In a Far Eastern monastery, there is a puzzle consisting of three
diamond needles and 64 gold disks. The disks are of graduated
sizes. Initially, the disks are all stacked on a single needle in
decreasing order of size. The monks are attempting to move all the
disks to another needle under the following rules:

Only one disk may be moved at a time.
No disk can ever rest on a smaller disk.

Legend has it that when the task has been completed, the universe will end.
Write a Lisp program to solve this problem. For safety’s sake (and to write
a program that will finish in your lifetime) do not attempt the full 64-disk
problem. Four or five disks is more reasonable.
6. Write a compiler for arithmetic expressions of the form:

(op operandl operand2)
where op is either +, —, *, or / and the operands ate cither numbers or
nested expressions. An exampleis (* (+ 3 6) (— 7 9)). Assume
that the target machine has instructions:

(move value register)

(add register-1 register-2)

(subtract register-1 register-2)

(times register-1 register-2)

(divide register-1 register-2)

170 Part III: Programming in LISP

All the arithmetic operations will leave the result in the first register
argument. To simplify, assume an unlimited number of registers. Your

compiler should take an arithmetic expression and return a list of these
machine operations.

13 Variables, Datatypes, and Search

Chapter Variables introduced
Objectives Basic support for type systems

Fundamental to search

Creating and binding variables
set
let

Depth-first search in Lisp:
Use of production system architecture
Backtracking supports search of all options

Chapter 13.1 Variables and Datatypes
Contents 13.2 Search: The Farmer, Wolf, Goat, and Cabbage Problem

13.1 Variables and Datatypes

We begin this chapter by demonstrating the creation of variables using
set and let and discussing the scope of their bindings. We then
introduce datatypes and discuss run-time type checking. We finish this
chapter with a sample search, where we use variables for state and
recursion for generation of the state-space graph.

.. Binding [isp is based on the theory of recursive functions; early Lisp was the first
Variables USISI:agt example of a functional or applicative programming language. An important
aspect of purely functional languages is the lack of any side effects as a
result of function execution. This means that the value returned by a
function call depends only on the function definition and the value of the
parameters in the call. Although Lisp is based on mathematical functions, it
is possible to define Lisp forms that violate this property. Consider the
following Lisp interaction:

> (f 4)

5

> (f 4)

6

> (f 4)

7
Note that £ does not behave as a true function in that its output is not
determined solely by its actual parameter: each time it is called with 4, it
returns a different value. This implies that f is retaining its state, and that
each execution of the function creates a side effect that influences the

behavior of future calls. £ is implemented using a Lisp built-in function
called set:

171

172

Part III: Programming in LISP

(defun £ (x)
(set ‘inc (+ inc 1))
(+ x inc))

set takes two arguments. The first must evaluate to a symbol; the second
may be an arbitrary s-expression. set evaluates the second argument and
assigns this value to the symbol defined by the first argument. In the above
example, if inc is first set to 0 by the call (set ‘inc 0), cach
subsequent evaluation will increment its parameter by one.

set requires that its first argument evaluate to a symbol. In many cases,
the first argument is simply a quoted symbol. Because this is done so often,
Lisp provides an alternative form, setq, which does not evaluate its first
argument. Instead, setq requires that the first argument be a symbol. For
example, the following forms are equivalent:

> (set ‘x 0)
0
> (setqg x 0)
0

Although this use of set makes it possible to create Lisp objects that are
not pure functions in the mathematical sense, the ability to bind a value to
a variable in the global environment is a useful feature. Many programming
tasks are most naturally implemented using this ability to define objects
whose state persists across function calls. The classic example of this is the
“seed” in a random number generator: each call to the function changes
and saves the value of the seed. Similarly, it would be natural for a database
program (such as was described in Section 11.3) to store the database by
binding it to a variable in the global environment.

So far, we have seen two ways of giving a value to a symbol: explicitly, by
assignment using set or setq, or implicitly, when a function call binds
the calling parameters to the formal parameters in the definition. In the
examples seen so far, all variables in a function body were either bownd or
free. A bound variable is one that appears as a formal parameter in the
definition of the function, while a free variable is one that appears in the
body of the function but is not a formal parameter. When a function is
called, any bindings that a bound variable may have in the global
environment are saved and the variable is rebound to the calling parametet.
After the function has completed execution, the original bindings are
restored. Thus, setting the value of a bound variable inside a function body
has no effect on the global bindings of that variable, as seen in the Lisp
interaction:

> (defun foo (x)
(setg x (+ x 1)) ;increment bound variable x
X) ;return its value.
foo
> (setq y 1)
1

Defining Local
Variables Using
let

Chapter 13 Variables, Datatypes, and Search 173

> (foo y)

2

>y ;note that value of y is unchanged.

1
In the example that began this section, X was bound in the function £,
whereas inc was free in that function. As we demonstrated in the
example, free variables in a function definition are the primary source of
side effects in functions.
An interesting alternative to set and setq is the generalized assignment
function, setf. Instead of assigning a value to a symbol, setf evaluates
its first argument to obtain a memory location and places the value of the
second argument in that location. When binding a value to a symbol,
setf behaves like setq:

> (setqg x 0)

0

> (setf x 0)

0
However, because we may call setf with any form that corresponds to a
memory location, it allows a more general semantics. For example, if we
make the first argument to setf a call to the car function, setf will
replace the first element of that list. If the first argument to setf is a call
to the cdr function, set £ will replace the tail of that list. For example:

> (setf x ‘“(a b c)) ;X is bound to a list.

(a b c)

> x ;The value of x is a list.

(a b c)

> (setf (car x) 1) ;car of x is a memory location.

1

> x ;setf changed value of car of x.

(1 b c)

> (setf (cdr x) ‘(2 3))

(2 3)

> x ;Note that x now has a new tail.

(1 2 3)
We may call setf with most Lisp forms that correspond to a memory
location; these include symbols and functions such as car, cdr, and nth.
Thus, setf allows the program designer great flexibility in creating,
manipulating, and even replacing different components of Lisp data
structures.

let is a useful function for explicitly controlling the binding of
variables. 1et allows the creation of local variables.

As an example, consider a function to compute the roots of a quadratic
equation. The function quad-roots will take as arguments the three
parameters a, b, and c of the equation ax* + bx + c = 0 and

174

Part III: Programming in LISP

return a list of the two roots of the equation. These roots will be
calculated from the formula:

X = =b +/- sqrt(b2 — 4ac)

2a
For example:

> (quad-roots 1 2 1)

(=1.0 —-1.0)
> (quad-roots 1 6 8)
(—2.0 —4.0)

In computing quad-roots, the value of
sqrt(b2 — 4ac)

is used twice. For reasons of efficiency, as well as elegance, we should
compute this value only once, saving it in a variable for use in computing
the two roots. Based on this idea, an initial implementation of quad-
roots might be:

(defun quad-roots-1 (a b c¢)
(setq temp (sgrt (— (* b b) (* 4 a ¢c))))
(list (/ (+ (— b) temp) (* 2 a))
(/ (= (= b) temp) (* 2 a))))
Note that the above implementation assumes that the equation does not have
imaginary roots, as attempting to take the square root of a negative number

would cause the sgrt function to halt with an error condition. Modifying the
code to handle this case is straightforward and not relevant to this discussion.

Although, with this exception, the code is correct, evaluation of the function
body will have the side effect of setting the value of temp in the global
environment:

> (quad-roots-1 1 2 1)

(=1.0 —1.0)

> temp

0.0

It is much more desirable to make temp local to the function quad-roots,
thereby eliminating this side effect. This can be done through the use of a 1let
block. A 1et expression has the syntax:

(let (<local-variables>) <expressions>)

where the elements of (<local-variables>) are cither symbolic atoms
ot pairs of the form:

(<symbol> <expression>)

When a 1et form (or block as it is usually called) is evaluated, it establishes a
local environment consisting of all of the symbols in (<local-
variables>). If a symbol is the first element of a pair, the second element
is evaluated and the symbol is bound to this result; symbols that are not
included in pairs are bound to nil. If any of these symbols are already bound
in the global environment, these global bindings are saved and restored when
the 1let block terminates.

Data Types in
Common Lisp

Chapter 13 Variables, Datatypes, and Search 175

After these local bindings are established, the <expressions> are
evaluated in order within this environment. When the let statement
terminates, it returns the value of the last expression evaluated within the
block. The behavior of the let block is illustrated by the following
example:

> (setqg a 0)

0

> (let ((a 3) b)
(setq b 4)
(+ a b))

7

> a

0

> Db

ERROR — b is not bound at top level.

In this example, before the 1et block is executed, a is bound to 0 and b is
unbound at the top-level environment. When the let is evaluated, a is bound
to 3 and b is bound to nil. The setq assigns b to 4, and the sum of a and
b is returned by the let statement. Upon termination of the let, a and b
are restored to their previous values, including the unbound status of b.
Using the 1et statement, quad-roots can be implemented with no global
side effects:
(defun quad-roots-2 (a b c)
(let (temp) (setq temp (sqrt (— (* b b)
(* 4 ac))))
(list (/ (+ (=b) temp) (* 2 a))
(/ (= (= Db) temp) (* 2 a)))))
Alternatively, temp may be bound when it is declared in the let statement,
giving a somewhat more concise implementation of quad-roots. In this
final version, the denominator of the formula, 2a, is also computed once and
saved in a local variable, denom:
(defun quad-roots-3 (a b c)
(let ((temp (sqgrt (—. (* b b) (* 4 ac))))
(denom (* 2 a)))
(list (/ (+ (— b) temp) denom)
(/ (— (— b) temp) denom))))
In addition to avoiding side effects, quad-roots=-3 is the most efficient of
the three versions, because it does not recompute values unnecessarily.

Lisp provides a number of built-in data types. These include integers,
floating-point numbers, strings, and characters. Lisp also includes such
structured types as arrays, hash tables, sets, and structures. All of these
types include the appropriate operations on the type and predicates for
testing whether an object is an instance of the type. For example, lists are
supported by such functions as 1istp, which identifies an object as a list;

176

Part III: Programming in LISP

null, which identifies the empty list, and constructors and accessors such
as list, nth, car, and cdr.

However, unlike such strongly typed languages as C or Pascal, where all
expressions can be checked for type consistency before run time, in Lisp it
is the data objects that are typed, rather than variables. Any Lisp symbol
may bind to any object. This provides the programmer with the power of
typing but also with a great deal of flexibility in manipulating objects of
different or even unknown types. For example, we may bind any object to
any variable at run time. This means that we may define data structures
such as frames, without fully specifying the types of the values stored in
them. To supportt this flexibility, Lisp implements run-time type checking.
So if we bind a value to a symbol, and try to use this value in an erroneous
fashion at run time, the Lisp interpreter will detect an error:

> (setq x ‘a)

a
> (+ x 2)
> > Error: a is not a valid argument to +.
>

> While executing: +

Users may implement their own type checking using either built-in or user-
defined type predicates. This allows the detection and management of type
errors as needed.

The preceding pages are not a complete description of Lisp. Instead, they
are intended to call the readet’s attention to interesting features of the
language that will be of use in implementing AI data structures and
algorithms. These features include:

* The naturalness with which Lisp supports a data abstraction
approach to programming.

* The use of lists to create symbolic data structures.
* The use of cond and recursion to control program flow.

* The recursive nature of list structures and the recursive
schemes involved in their manipulation.

* The use of quote and eval to control function evaluation

* The use of set and let to control variable bindings and side
effects.

The remainder of the Lisp section builds on these ideas to demonstrate the
use of Lisp for typical Al programming tasks such as pattern matching and
the design of graph search algorithms. We begin with a simple example, the
Farmer, Wolf, Goat, and Cabbage problem, where an abstract datatype is
used to describe states of the wortld.

13.2

A Functional
Approach to
Search

Chapter 13 Variables, Datatypes, and Search 177

Search: The Farmer, Wolf, Goat, and Cabbage Problem

To introduce graph search programming in Lisp, we next represent and
solve the farmer, wolf, goat, and cabbage problem:

A farmer with his wolf, goat, and cabbage come to the edge of a
river they wish to cross. There is a boat at the river’s edge, but, of
course, only the farmer can row it. The boat also can carry only
two things (including the rower) at a time. If the wolf is ever left
alone with the goat, the wolf will eat the goat; similarly, if the goat
is left alone with the cabbage, the goat will eat the cabbage. Devise
a sequence of crossings of the river so that all four characters
arrive safely on the other side of the river.

This problem was first presented in Prolog in Section 4.2. The Lisp version
searches the same space and has structural similarities to the Prolog solution;
however, it differs in ways that reflect Lisp’s imperative/functional otientation.
The Lisp solution searches the state space in a depth-first fashion using a list
of visited states to avoid loops.

The heart of the program is a set of functions that define states of the world as
an abstract data type. These functions hide the internals of state representation
from higher-level components of the program. States are represented as lists
of four elements, where each element denotes the location of the farmer, wollf,
goat, or cabbage, respectively. Thus, (e w e w) represents the state in
which the farmer (the first element) and the goat (the third element) are on the
east bank and the wolf and cabbage are on the west. The basic functions
defining the state data type will be a constructor, make-state, which takes
as arguments the locations of the farmer, wolf, goat, and cabbage and returns a
state, and four access functions, farmer-side, wolf-side, goat-
side, and cabbage-side, which take a state and return the location of an
individual. These functions are defined:

(defun make-state (f w g c¢) (list £ w g c))
(defun farmer-side (state)
(nth 0 state))
(defun wolf-side (state)
(nth 1 state))
(defun goat-side (state)
(nth 2 state))
(defun cabbage-side (state)
(nth 3 state))
The rest of the program is built on these state access and construction
functions. In particular, they are used to implement the four possible actions

the farmer may take: rowing across the river alone or with either of the wolf,
goat, or cabbage.

Each move uses the access functions to tear a state apart into its components.
A function called opposite (to be defined shortly) determines the new
location of the individuals that cross the river, and make-state reassembles

178 Part III: Programming in LISP

these into the new state. For example, the function farmer-takes-self
may be defined:

(defun farmer-takes-self (state)
(make-state (opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(cabbage-side state)))

Note that farmer-takes-self returns the new state, regardless of whether
it is safe or not. A state is unsafe if the farmer has left the goat alone with the
cabbage or left the wolf alone with the goat. The program must find a solution
path that does not contain any unsafe states. Although this “safe” check may
be done at a number of different stages in the execution of the program, our
approach is to perform it in the move functions. This is implemented by using
a function called safe, which we also define shortly. safe has the following
behavior:
> (safe ‘(w w w w)) ;safe state, return unchanged
(Www w)
> (safe ‘(e w w e)) ;wolf eats goat, return nil
nil
> (safe ‘(w w e e)) ;goat eats cabbage, return nil
nil
safe is used in each move-across-the-river function to filter out the unsafe
states. Thus, any move that moves to an unsafe state will return nil instead
of that state. The recursive path algorithm can check for this nil and use it
to prune that state. In a sense, we are using safe to implement a production
system style condition-check prior to determining if a move rule can be applied.
For a detailed discussion of the production system pattern for computation
see Luger (2009, Chapter 6). Using safe, we next present a final definition
for the four move functions:
(defun farmer-takes-self (state)
(safe
(make-state (opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(cabbage-side state))))

(defun farmer-takes-wolf (state)
(cond ((equal (farmer-side state)
(wolf-side state))
(safe (make-state
(opposite (farmer-side state))
(opposite (wolf-side state))
(goat-side state)
(cabbage-side state))))
(t nil)))

Chapter 13 Variables, Datatypes, and Search 179

(defun farmer-takes-goat (state)
(cond ((equal (farmer-side state)
(goat-side state))
(safe (make-state
(opposite (farmer-side state))
(wolf-side state)
(opposite (goat-side state))
(cabbage-side state))))
(t nil)))
(defun farmer-takes-cabbage (state)
(cond ((equal (farmer-side state)
(cabbage-side state))
(safe (make-state
(opposite (farmer-side state))
(wolf-side state)
(goat-side state)
(opposite
(cabbage-side state)))))
(t nil)))
Note that the last three move functions include a conditional test to determine
whether the farmer and the prospective passenger are on the same side of the
river. If they are not, the functions return nil. The move definitions use the
state manipulation functions already presented and a function opposite,
which, for any given side, returns the other side of the river:
(defun opposite (side)
(cond ((equal side ‘e) ‘w)
((equal side ‘w) ‘e)))
Lisp provides a number of different predicates for equality. The most
stringent, eq, is true only if its arguments evaluate to the same object, i.ec.,

point to the same memory location. equal is less strict: it requires that its
arguments be syntactically identical, as in:

> (setqg 11 ‘(1 2 3))

(1 2 3)

> (setqg 12 ‘(1 2 3))
(1 2 3)

> (equal 11 12)

t

> (eq 11 12)

nil

> (setq 13 11)
(1 2 3)

> (eq 11 13)
t

180

Part III: Programming in LISP

We define safe using a cond to check for the two unsafe conditions: (1) the
farmer on the opposite bank from the wolf and the goat and (2) the farmer on
the opposite bank from the goat and the cabbage. If the state is safe, it is
returned unchanged; otherwise, safe returns nil:
(defun safe (state)
(cond ((and (equal (goat-side state)
(wolf-side state))
(not (equal (farmer-side state)
(wolf-side state))))
nil)
((and (equal (goat-side state)
(cabbage-side state))
(not (equal (farmer-side state)
(goat-side state))))
nil)
(t state)))

path implements the backtracking search of the state space. It takes as
arguments a state and a goal and first checks to see whether they are
equal, indicating a successful termination of the search. If they are not
equal, path generates all four of the neighboring states in the state space
graph, calling itself recursively on each of these neighboring states in turn to
try to find a path from them to a goal. Translating this simple definition
directly into Lisp yields:

(defun path (state goal)
(cond ((equal state goal) ‘success)
(t (or
(path (farmer-takes-self state) goal)
(path (farmer-takes-wolf state) goal)
(path (farmer-takes-goat state) goal)
(path (farmer-takes-cabbage state)

goal)))))

This version of the path function is a simple translation of the recursive path
algorithm from English into Lisp and has several “bugs” that need to be
corrected. It does, however, capture the essential structure of the algorithm
and should be examined before continuing to correct the bugs. The first test in
the cond statement is necessary for a successful completion of the search
algorithm. When the equal state goal pattern matches, the recursion
stops and the atom success is returned. Otherwise, path generates the
four descendant nodes of the search graph and then calls itself on each of the
nodes in turn.

In particular, note the use of the or form to control evaluation of its
arguments. Recall that an or evaluates its arguments in turn until one of them
returns a non-nil value. When this occurs, the or terminates without
evaluating the other arguments and returns this non-nil value as a result.
Thus, the or not only is used as a logical operator but also provides a way of

Chapter 13 Variables, Datatypes, and Search 181

controlling branching within the space to be searched. The or form is used
here instead of a cond because the value that is being tested and the value
that should be returned if the test is non-nil are the same.

One problem with using this definition to change the problem state is that a
move function may return a value of nil if the move may not be made or if it
leads to an unsafe state. To prevent path from attempting to generate the
children of a nil state, it must first check whether the current state is nil. If
it is, path should return nil.

The other issue that needs to be addressed in the implementation of path is
that of detecting potential loops in the search space. If the above
implementation of path is run, the farmer will soon find himself going back
and forth alone between the two banks of the river; that is, the algorithm will
be stuck in an infinite loop between identical states, both of which it has
already visited.

To prevent this looping from happening, path is given a third parameter,
been-1list, a list of all the states that have already been visited. Each time
that path is called recursively on a new state of the world, the parent state
will be added to been-1ist. path uses the member predicate to make
sure the current state is not a member of been-1ist, i.e., that it has not
already been visited. This is accomplished by checking the current problem
state for membership in been-1ist before generating its descendants.
path is now defined:
(defun path (state goal been-1list)
(cond ((null state) nil)
((equal state goal)
(reverse (cons state been-1list)))
((not (member state been-list
:test #’'equal))
(or (path (farmer-takes-self state) goal
(cons state been-list))
(path (farmer-takes-wolf state) goal
(cons state been-list))
(path (farmer-takes-goat state) goal
(cons state been-list))
(path (farmer-takes-cabbage state)
goal
(cons state been-list))))))
In the above implementation, member is a Common Lisp built-in function
that behaves in essentially the same way as the my-member function defined
in Section 12.2. The only difference is the inclusion of :test #'equal in
the argument list. Unlike our “home-grown” member function, the Common
Lisp built-in form allows the programmer to specify the function that is used

in testing for membership. This wrinkle increases the flexibility of the function
and should not cause too much concern in this discussion.

Rather than having the function return just the atom success, it is better to
have it return the actual solution path. Because the series of states on the

182

Part III: Programming in LISP

solution path is already contained in the been-1ist, this list is returned
instead. Because the goal is not already on been-1ist, it is consed onto
the list. Also, because the list is constructed in reverse order (with the start
state as the last element), the list is reversed (constructed in reverse order using
another Lisp built-in function, reverse) prior to being returned.

Finally, because the been-1ist parameter should be kept “hidden” from
the user, a top-level calling function may be written that takes as arguments a
start and a goal state and calls path with a nil value of been-1ist:

(defun solve-fwgc (state goal)
(path state goal nil))

Finally, let us compare our Lisp version of the farmer, wolf, goat, and
cabbage problem with the Prolog solution presented in Section 4.2. Not
only does the Lisp program solve the same problem, but it also searches
exactly the same state space as the Prolog version. This underscores the
point that the state space conceptualization of a problem is independent of
the implementation of a program for searching that space. Because both
programs search the same space, the two implementations have strong
similarities; the differences tend to be subtle but provide an interesting
contrast between declarative and procedural programming styles.

States in the Prolog version are represented wusing a predicate,
state(e,e,e,e), and the Lisp implementation uses a list. These two
representations are more than syntactic variations on one another. The Lisp
representation of state is defined not only by its list syntax but also by the
access and move functions that constitute the abstract data type “state.” In the
Prolog version, states are patterns; their meaning is determined by the way in
which they match other patterns in the Prolog rules.

The Lisp version of path is slightly longer than the Prolog version. One
reason for this is that the Lisp version must implement a search strategy,
whereas the Prolog version takes advantage of Prolog’s built-in search
algorithm. The control algorithm is explicit in the Lisp version but is
implicit in the Prolog version. Because Prolog is built on declarative
representation and theorem-proving techniques, the Prolog program is
more concise and has a flavor of describing the problem domain, without
directly implementing the search algorithm. The price paid for this
conciseness is that much of the program’s behavior is hidden, determined
by Prolog’s built-in inference strategies. Programmers may also feel more
pressure to make the problem solution conform to Prolog’s
representational formalism and search strategies. Lisp, on the other hand,
allows greater flexibility for the programmer. The price paid here is that the
programmer cannot draw on a built-in representation or search strategy
and must implement this explicitly.

In Chapter 14 we present higher-level functions, that is, functions that can
take other functions as arguments. This gives the Lisp language much of
the representational flexibility that meta-predicates (Chapter 5) give to
Prolog.

Chapter 13 Variables, Datatypes, and Search 183

Exercises

1. Write a random number generator in Lisp. This function must maintain
a global variable, seed, and return a different random number each time the
function is called. For a description of a reasonable random number
algorithm, consult any basic algorithms text.

2. Create an “inventory supply” database. Build type checks for a set of six
useful queries on these data tuples. Compare your results with the Prolog
approach to this same problem as seen in Chapter 5. 2.

3. Write the functions initialize, push, top, pop, and 1list-
stack to maintain a global stack. These functions should behave:

> (initialize)

nil

> (push ‘foo)

foo

> (push ‘bar)

bar

> (top)

bar

> (list-stack)

(bar foo)

> (pop)

bar

> (list-stack)

(foo)

> (pop)

foo

> (list-stack)

()

4. Sets may be represented using lists. Note that these lists should not
contain any duplicate elements. Write your own Lisp implementations of
the set operations of union, intersection, and set difference. (Do not use
Common Lisp’s built-in versions of these functions.)

5. Solve the Water Jug problem, using a production system architecture
similar to the Farmer, Wolf, Goat, and Cabbage problem presented in
Section 13.2.

There are two jugs, one holding 3 gallons and the other 5 gallons
of water. A number of things that can be done with the jugs: they
can be filled, emptied, and dumped one into the other either until
the poured-into jug is full or until the poured-out-of jug is empty.
Devise a sequence of actions that will produce 4 gallons of water
in the larger jug. (Hint: only integer values of water are used.)

6. Implement a depth-first backtracking solution (such as was used to solve
the farmer, wolf, goat, and cabbage problem in Section 13.2) to the

184 Part III: Programming in LISP

missionary and cannibal problem:

Three missionaries and three cannibals come to the bank of a river
they wish to cross. There is a boat that will hold only two people,
and any of the group can row it. If there are ever more
missionaries than cannibals on any side of the river the cannibals
will get converted. Devise a series of moves to get everyone across
the river with no conversions.

14 Higher-Order Functions and Flexible
Search

Chapter Lisp higher-order functions
Objectives Lisp functions
map
filter
Lisp functions as arguments of functions
funcall
apply
Designing search algorithms in Lisp
General production system framework
Use of open and closed lists
Algorithms designed in Lisp
Depth-first search
Breadth-first search
Best first search
Programmer implements typing as needed

Chapter 14.1 Higher-Order Functions and Abstraction
Contents 14.2 Search Strategies in Lisp

14.1 Higher-Order Functions and Abstraction

One of the most powerful techniques that Lisp and other functional
programming languages provide is the ability to define functions that take
other functions as parameters or return them as results. These functions
are called higher-order functions and are an important tool for procedural
abstraction.

Maps and A fi/seris a function that applies a test to the elements of a list, eliminating
Filters those that fail the test. filter-negatives, presented in Section 12.2,
was an example of a filter. Maps takes a list of data objects and applies a
function to each one, returning a list of the results. This idea may be
further generalized through the development of general maps and filters
that take as arguments both lists and the functions or tests that are to be

applied to their elements.

To begin with an example, recall the function filter-negatives
from Section 12.2. This function took as its argument a list of numbers and
returned that list with all negative values deleted. Similarly, we can define a
function to filter out all the even numbers in a list. Because these two
functions differ onfy in the name of the predicate used to filter elements
from the list, it is natural to think of generalizing them into a single
function that takes the filtering predicate as a second parameter:

185

186

Part III: Programming in Lisp

(defun filter-evens (number-list)
(cond ((null number-list) nil)

((oddp (car number-list))
(cons (car number-list)
(filter-evens
(cdr number-list))))
(t (filter-evens (cdr number-list)))))
This combination of function applications may be defined using a Lisp

form called funcall, which takes as arguments a function and a series of
arguments and applies that function to those arguments:

(defun filter (list-of-elements test)
(cond ((null list-of-elements) nil)
((funcall test (car list-of-elements))
(cons (car list-of-elements)
(filter (cdr list-of-elements)
test)))
(t (filter (cdr list-of-elements)
test))))
The function, £ilter, applies the test to the first element of the list. If
the test returns non-nil, it conses the element onto the tresult of
filter applied to the cdr of the list; otherwise, it just returns the

filtered cdr. This function may be used with different predicates passed in
as parameters to perform a variety of filtering tasks:
> (filter ‘(1 3 =9 5 =2 =7 6) #'plusp)
;Filter out all negative numbers.
(135 6)
> (filter ‘(1 2 3 4 5 6 7 8 9) #'evenp)
;Filter out all odd numbers.
(2 4 6 8)
> (filter ‘(1 a b 3 ¢ 4 7 d) #'numberp)
;Filter out all non-numbers.
(134 7)
When a function is passed as a parameter, as in the above examples, it
should be preceded by a #’ instead of just ‘. The purpose of this
convention is to flag arguments that are functions so that they may be
given appropriate treatment by the Lisp interpreter. In particular, when a
function is passed as an argument in Common Lisp, the bindings of its free
variables (if any) must be retained. This combination of function definition
and bindings of free variables is called a lexzcal closure; the #' informs Lisp
that the lexical closure must be constructed and passed with the function.
More formally, funcall is defined:
(funcall <function> <arg,> <arg,> .. <arg,>)
In this definition, <function> is a Lisp function and <arg,>
<arg,> are zero or more arguments to the function. The result of

Chapter 14 Higher-Order Functions and Flexible Search 187

evaluating a funcall is the same as the result of evaluating
<function> with the specified arguments as actual parameters.

apply is a similar function that performs the same task as funcall but
requires that its arguments be in a list. Except for this syntactic difference,
apply and funcall behave the same; the programmer can choose the
function that seems more convenient for a given application. These two
functions are similar to eval in that all three of them allow the user to
specify that the function evaluation should take place. The difference is
that eval requires its argument to be an s-expression that is evaluated;
funcall and apply take a function and its arguments as separate
parameters. Examples of the behavior of these functions include:

> (funcall #'plus 2 3)
(apply #'plus ‘(2 3))
(eval ‘(plus 2 3))

(funcall #'car ‘(a b c))

(apply #'car ‘((a b c)))

o V. o9 vV ooV u VvV u

Another important class of higher-order functions consists of mapping
functions, functions that will apply a given function to all the elements of a
list. Using funcall, we define the simple mapping function map-
simple, which returns a list of the results of applying a functional to all
the elements of a list. It has the behavior:

(defun map-simple (func list)

(cond ((null list) nil)
(t (cons (funcall func (car list))
(map-simple func (cdr list))))))

> (map-simple #'1+ ‘(1 2 3 4 5 6))

(23456 7)

> (map-simple #'listp ‘(1 2 (3 4) 5 (6 7 8)))

(nil nil t nil t)
map-simple is a simplified version of a Lisp built-in function mapcar,
that allows more than one argument list, so that functions of more than
one argument can be applied to corresponding elements of several lists:

> (mapcar #'1+ ‘(1 2 3 4 5 6)) ;Same as map-simple.

(23456 7)

> (mapcar #'+ ‘(1 2 3 4) ‘(5 6 7 8))

(6 8 10 12)

> (mapcar #'max ‘(3 9 1 7) ‘(2 5 6 8))

(3 9 6 8)

188 Part III: Programming in Lisp

Functional
Arguments and
Lambda
Expressions

mapcar is only one of many mapping functions provided by Lisp, as well
as only one of many higher-order functions built into the language.

In the preceding examples, function arguments were passed by their name
and applied to a series of arguments. This requires that the functions be
previously defined in the global environment. Frequently, however, it is
desirable to pass a function definition directly, without first defining the
function globally. This is made possible through the 1ambda expression.

Essentially, the 1ambda expression allows us to separate a function definition
from the function name. The origin of lambda expressions is in the lambda
caleulns, a mathematical model of computation that provides (among other
things) a particularly thoughtful treatment of this distinction between an object
and its name. The syntax of a 1ambda expression is similar to the function
definition in a defun, except that the function name is replaced by the term
lambda. That is:
(lambda (<formal-parameters>) <body>)

Lambda expressions may be used in place of a function name in a funcall
or apply. The funcall will execute the body of the lambda expression
with the arguments bound to the parameters of the funcall. As with
named functions, the number of formal parameters and the number of actual
parameters must be the same. For example:

> (funcall #’'(lambda (x) (* x x)) 4)

16
Here, x is bound to 4 and the body of the lambda expression is then
evaluated. The result, the square of 4, is returned by funcall. Other
examples of the use of lambda expressions with funcall and apply
include:

> (apply #'(lambda (x y) (+ (* x X) y)) ‘(2 3))

7

> (funcall #'’'(lambda (x) (append X X)) ‘(a b c))

(a bcaboc)

> (funcall #'’'(lambda (x1 x2)

(append (reverse x1) x2)) ‘(a b c) ‘(d e f))
(c badefi)

Lambda expressions may be used in a higher-order function such as
mapcar in place of the names of globally defined functions. For example:

> (mapcar #'(lambda (x) (* x x)) ‘(1 2 3 4 5))

(1 49 16 25)

> (mapcar #'(lambda (x) (* x 2)) ‘(1 2 3 4 5))

(2 4 6 8 10)

> (mapcar #'(lambda (x) (and (> x 0) (< x 10)))
‘(1 24 5 -9 8 23))

(t nil t nil t nil)

Without 1ambda expressions the programmer must define every function in
the global environment using a defun, even though that function may be
used only once. Lambda expressions free the programmer from this

14.2

Breadth-First
and Depth-First
Search

Chapter 14 Higher-Order Functions and Flexible Search 189

necessity: for example, if it is desired to square each element in a list, the
lambda form is passed to mapcar as the first of the above examples
illustrates. It is not necessary to define a squaring function first.

Search Strategies in Lisp

The use of higher-order functions provides Lisp with a powerful tool for
procedural abstraction. In this section, we use this abstraction technique to
implement general algorithms for breadth-first, depth-first, and best-first
search. These algorithms implement the search algorithms using the open
list — the current state list — and the closed list — the already visited states —
to manage search through the state space, see Luger (2009, Chapters 3 and
4) and Chapter 4 of this book for similar search algorithms in Prolog.

The Lisp implementation of breadth-first search maintains the open list as
a first-in-first-out (FIFO) structure. We will define open and closed as
global variables. This is done for several reasons: first to demonstrate the
use of global structures in Lisp; second, to contrast the Lisp solution with
that in Prolog; and third, it can be argued that since the primary task of this
program is to solve a search problem, the state of the search may be
represented globally. Finally, since open and closed may be large, their use
as global variables seems justified. General arguments of efficiency for the
local versus the global approach often depend on the implementation
details of a particular language. Global variables in Common Lisp are
written to begin and end with *. Breadth-first search may be defined:

(defun breadth-first ()
(cond ((null *open*) nil)
(t (let ((state (car *opent*)))
(cond ((equal state *goal*) ‘success)

(t (setq *closed* (cons state
closed))

(setq *open* (append
(cdr *opent*)
generate-descendants
state *moves*)))
(breadth-first)))))))
(defun run-breadth (start goal)
(setqg *open* (list start))
(setqg *closed* nil)
(setq *goal* goal)
(breadth-first))
In our implementation, the *open* list is tested: if it is nil, the algorithm
returns nil, indicating failure as there ate no more states to evaluste; If
open is not nil, it examines the first element of *open*. If this is
equal to the goal, the algorithm halts and returns success; otherwise, it
calls generate-descendants to produce the children of the current
state, adds them to the *open#* list, and recurs. run-breadth is an
initialization function that sets the initial values of *open*, *closed*, and
goal. generate-descendants is passed both the state

190

Part III: Programming in Lisp

and *moves* as parameters. *moves* is a list of the functions that
generate moves. In the farmer, wolf, goat, and cabbage problem, assuming the
move definitions of Section 13.2, *moves* would be:

(setqg *moves*
‘(farmer-takes-self farmer-takes-wolf

farmer-takes-goat farmer-takes-cabbage))

generate-descendants takes a state and returns a list of its
children. In addition to generating child states, it disallows duplicates in the
list of children and eliminates any children that are already in the *open* or
closed list. In addition to the state, generate-descendants is
given a list of moves; these may be the names of defined functions, or they
may be lambda definitions. generate-descendants uses a 1let block
to save the result of a move in the local variable child. We define
generate-descendants:

(defun generate-descendants (state moves)
(cond ((null moves) nil)
(t (let ((child (funcall (car moves)
state))

(rest (generate-descendants state
(cdr moves))))

(cond ((null child) rest)
((member child rest :test
#'equal) rest)
((member child *open* :test
#'equal) rest)
((member child *closed* :test
#'equal) rest)
(t (cons child rest)))))))

As first noted in Section 13.2, the calls to the member function use an
additional parameter, :test #'equal. The member function allows the
user to specify any test for membership. This allows us to use predicates of
arbitrary complexity and semantics to test membership. Though Lisp does not
require that we specify the test, the default comparison is the predicate eq. eq
requires that two objects be identical, which means they have the same
location in memory; we are using a weaker comparison, equal, that only
requires that the objects have the same value. By binding the global variable
moves to an appropriate set of move functions, the search algorithm just
presented may be used to search any state space graph in a breadth-
first fashion.

One difficulty that remains with this implementation is its inability to print
the list of states along the path from a start to a goal. Although all the
states that lead to the goal are present in the closed list when the algorithm
halts, these are mixed with all other states from eatlier levels of the search
space. We can solve this problem by recording both the state and its
parent, and reconstructing the solution path from this information. For
example, if the state (€ e e e) generates the state (W e w e),a
record of both states, ((w e w e) (e e e e)), is placed on

Chapter 14 Higher-Order Functions and Flexible Search 191

open. Later, after the children of the state have been generated, the
same (<state> <parent>) pair is placed on *closed*.

When the current state equals the goal, the ancestor information is used to
build the path from the goal to the start state by going back to successive
parents. This augmented version of breadth-first search begins by
defining state records as an abstract data type:

(defun build-record (state parent)
(list state parent))
(defun get-state (state-tuple) (nth 0 state-tuple))
(defun get-parent (state-tuple) (nth 1 state-tuple))
(defun retrieve-by-state (state list)
(cond ((null list) nil)

((equal state (get-state (car list)))
(car list))

(t (retrieve-by-state state
(cdr list)))))

build-record constructs a (<state> <parent>) pair. get-
state and get-parent access the appropriate ficlds of a record.
retrieve-by-state takes a state and a list of state records and
returns the record whose state field matches that state.

build-solution uses retrieve-by-state to chain back from state
to parent, constructing a list of successive states that led to a goal. When
initializing *open*, we will give the starting state a parent of nil; build-
solution stops when passed a null state.
(defun build-solution (state)
(cond ((null state) nil)
(t (cons state (build-solution (get-parent
(retrieve-by-state state *closed*)))))))

The remainder of the algorithm is similar to the breadth-first search of
Section 3.2:

(defun run-breadth (start goal)
(setqg *open* (list (build-record start nil)))
(setqg *closed* nil)
(setq *goal* goal)
(breadth-first))
(defun breadth-first ()
(cond ((null *open*) nil)
(t (let ((state (car *opent*)))
(setq *closed* (cons state *closed¥*))

(cond ((equal (get-state state)
goal¥)

(build-solution *goal*))

(t (setq *open* (append (cdr
*open¥)

(generate-descendants

192 Part III: Programming in Lisp

(get-state state)
moves)))
(breadth-first)))))))

(defun generate-descendants (state moves)
(cond ((null moves) nil)
(t (let ((child (funcall
(car moves) state))

(rest (generate-descendants
state (cdr moves))))

(cond ((null child) rest)

((retrieve-by-state child rest)
rest)

((retrieve-by-state child *open*)
rest)

((retrieve-by-state child
closed) rest)

(t (cons (build-record child
state)

rest)))))))

Depth-first search is implemented by modifying breadth-first search to
maintain *open* as a stack. This simply involves reversing the order of
the arguments to append.

Best-First Best-first search may be implemented through straightforward
Search modifications to the breadth-first search algorithm. Specifically, the
heuristic evaluation is saved along with each state. The tuples on *open*
are then sorted according to this evaluation. The data type definitions for
state records are an extension of those used in breadth-first search:
(defun build-record (state parent depth weight)
(list state parent depth weight))
(defun get-state (state-tuple) (nth 0 state-tuple))
(defun get-parent (state-tuple) (nth 1 state-tuple))
(defun get-depth (state-tuple) (nth 2 state-tuple))
(defun get-weight (state-tuple) (nth 3 state-tuple))
(defun retrieve-by-state (state list)
(cond ((null list) nil)

((equal state (get-state (car list)))
(car list))

(t (retrieve-by-state state
(cdr list)))))
best-first and generate-descendants are defined:

(defun best-first ()
(cond ((null *open*) nil)
(t (let ((state (car *opent*)))
(setq *closed* (cons state *closed¥*))

Chapter 14 Higher-Order Functions and Flexible Search 193

(cond ((equal (get-state state)
goal¥)
(build-solution *goal*))
(t (setg *open+*
(insert-by-weight
(generate-descendants
(get-state state)
(+ 1 (get-depth
state))
moves)
(cdr *open*)))
(best-first)))))))

(defun generate-descendants (state depth moves)
(cond ((null moves) nil)
(t (let ((child (funcall (car moves) state))

(rest (generate-descendants state
depth (cdr moves))))

(cond ((null child) rest)

((retrieve-by-state child rest)
rest)

((retrieve-by-state child *open*)
rest)

((retrieve-by-state child *closed¥*)
rest)

(t (cons (build-record child state
depth (+ depth (heuristic
child)))
rest)))))))

The only differences between best-first and breadth-first
search are the use of insert-by-weight to sort the records on
open by their heuristic weights and the computation of search depth
and heuristic weights in generate-descendants.

Completion of best-first requires a definition of insert-by-
weight. This function takes an unsorted list of state records and inserts
them, one at a time, into their appropriate positions in *open*. It also
requires a problem-specific definition of a function heuristic. This
function takes a state and, using the global *goal*, computes a heuristic
weight for that state. We leave the creation of these functions as an
exercise for the reader.

Exercises

1. Create a type check that prevents the member check predicate (that
checks whether an item is a member of a list of items) from crashing when
called on member (a, a). Will this “fix” address the append(nil,
6, 6) anomaly that is described in Chapter 10? Test it and determine
your success.

194

Part III: Programming in Lisp

2. Implement build-solution and eliminate-duplicates
for the breadth-first search algorithm of Section 14.2.

3. Create a depth-first, a breadth-first, and best first search for the Water
Jugs problem (Chapter 13, number 5). This will require you to create a
heuristic measure for the Water Jugs problem, as well as create an
insert-by-weight function for maintaining the priority queue.

4. Create a depth-first, a breadth-first, and best first search for the
Missionaries and Cannibals problem (Chapter 13, number 6). This will
require you to create a heuristic measure for the Missionaties and
Cannibals problem, as well as create an insert-by-weight function
for maintaining the priority queue.

5. Write a Lisp program to solve the 8-queens problem. (This problem is to
find a way to place eight queens on a chessboard so that no queen may
capture any other through a single move, i.e., no two queens are on the
same row, column, or diagonal.) Do depth-first, breadth-first, and best-first
solutions to this problem.

6. Write a Lisp program to solve the full 8 x 8 version of the Knight’s Tour
problem. This problem asks you to find a path from any square to any other
square on the chessboard, using only the knight. Do a depth-first, breadth-
first, and best-first solutions for this problem.

15 Unification and Embedded Languages
in Lisp

Chapter Pattern matching in Lisp:
Objectives Database examples

Full unification as required for Predicate Calculus problem solving
Needed for applying inference rules
General structure mapping
Recursive for embedded structures

Building interpreters and embedded languages
Example: read-eval-print loop

Example: infix interpreter

Chapter 15.1 Pattern Matching: Introduction
Contents 15.2 Interpreters and Embedded Languages

15.1 Pattern Matching: Introduction

In Chapter 15 we first design an algorithm for matching patterns in general
list structures. This is the basis for the unify function which supports full
pattern matching and the return of sets of unifying substitutions for
matching patterns in predicate calculus expressions. We will see this as the
basis for interpreters for logic programming and rule-based systems in
Lisp, presented in Chapters 16 and 17.

Pattern Dattern matching is an important Al methodology that has already been
Matchlnl?isln discussed in the Prolog chapters and in the presentation of production
P systems. In this section we implement a recursive pattern matcher and use

it to build a pattern-directed retrieval function for a simple database.

The heart of this retrieval system is a function called match, which takes
as arguments two s-expressions and returns t if the expressions match.
Matching requires that both expressions have the same structure as well as
having identical atoms in corresponding positions. In addition, match
allows the inclusion of wvariables, denoted by ?, in an s-expression.
Variables are allowed to match with any s-expression, either a list or an
atom, but do not save bindings, as with full unification (next). Examples of
the desired behavior for match appear below. If the examples seem
reminiscent of the Prolog examples in Part II, this is because match is
actually a simplified version of the unification algorithm that forms the
heart of the Prolog environment, as well as of many other pattern-directed
Al systems. We will later expand match into the full unification algorithm
by allowing named variables and returning a list of bindings required for a
match.

195

196

Part III: Programming in Lisp

> (match ‘(likes bill wine) ‘(likes bill wine))
t
> (match ‘(likes bill wine) ‘(likes bill milk))
nil

(match ‘(likes bill ?) ‘(likes bill wine))

>
t
> (match ‘(likes ? wine) ‘(likes bill ?))
t
>

(match ‘(likes bill ?) ‘(likes bill (prolog lisp

smalltalk))

t

> (match ‘(likes ?) ‘(likes bill wine))

nil
match is used to define a function called get-matches, which takes as
arguments two s-expressions. The first argument is a pattern to be matched
against elements of the second s-expression, which must be a list. get—
matches returns a list of the elements of the list that match the first
argument. In the example below, get-matches is used to retrieve
records from an employee database as described eatlier in Part II1.

Because the database is a large and relatively complex s-expression, we
have bound it to the global variable *database* and use that variable as
an argument to get-matches. This was done to improve readability of
the examples.
> (setq *database* ‘(((lovelace ada) 50000.00 1234)
((turing alan) 45000.00 3927)
((shelley mary) 35000.00 2850)
((vonNeumann john) 40000.00 7955)
((simon herbert) 50000.00 1374)
((mccarthy john) 48000.00 2864)
((russell bertrand) 35000.00 2950))
database

> (get-matches ‘((turing alan) 45000.00 3927)
database)

((turing alan) 45000.00 3927)
> (get-matches ‘(? 50000.00 ?) *database*)
;people who make 50000

(((lovelace ada) 50000.00 1234) ((simon herbert)
50000.00 1374))

> (get-matches ‘((? john) ? ?) *databasex*)
;all people named john

(((vonNeumann john) 40000.00 7955) ((mccarthy john)
48000.00 2864))
We implement get-matches using cdr recursion: each step attempts
to match the target pattern with the first element of the database (the car
of the list). If the is a match, the function will cons it onto the list of

Chapter 15 Unification and Embedded Languages 197

matches returned by the recursive call to form the answer for the pattern.
get-matches is defined:

(defun get-matches (pattern database)
(cond ((null database) ())

((match pattern (car database))
(cons (car database)

(get-matches pattern
(cdr database))))

(t (get-matches pattern
(cdr database)))))

The heart of the system is the match function, a predicate that determines
whether or not two s-expressions containing variables actually match.
match is based on the idea that two lists match if and only if their
respective cars and cdrs match, suggesting a car-cdr recursive
scheme for the algorithm.

The recursion terminates when either of the arguments is atomic (this
includes the empty list, nil, which is both an atom and a list). If both
patterns are the same atom or if one of the patterns is a variable atom, ?,
which can match with anything, then termination is with a successful
match; otherwise, the match will fail. Notice that if either of the patterns is
a variable, the other pattern need not be atomic; variables may match with
variables or with s-expressions of arbitrary complexity.

Because the handling of the terminating conditions is complex, the
implementation of match uses a function called match-atom that takes
two arguments, one or both of which is an atom, and checks to see
whether the patterns match. By hiding this complexity in match-atom
the car-cdr recursive structure of match is more apparent:

(defun match (patternl pattern2)
(cond (or (atom patternl) (atom pattern2))

(match-atom patternl pattern2))
(t (and (match (car patternl) (car pattern2))

(match (cdr patternl)
(cdr pattern2))))))

The implementation of match-atom makes use of the fact that when it
is called, at least one of the arguments is an atom. Because of this
assumption, a simple test for equality of patterns is all that is needed to test
that both patterns are the same atom (including both being a vatiable); it
will fail either if the two patterns are different atoms or if one of them is
nonatomic. If the first test fails, the only way match can succeed is if one
of the patterns is a variable. This check constitutes the remainder of the
function definition.

Finally, we define a function variable-p to test whether or not a
pattern is a variable. Treating variables as an abstract data type now will
simplify later extensions to the function, for example, the extension of the
function to named variables as in Prolog.

198

Part III: Programming in Lisp

A Recursive
Unification
Function

(defun match-atom (patternl pattern2)

(or (equal patternl pattern2)
(variable-p patternl)
(variable-p pattern2)))

(defun variable-p (x) (equal x ‘?))

We have just completed the implementation of a recursive pattern-
matching algorithm that allowed the inclusion of unnamed variables in
patterns. Our next step will be to extend this simple pattern matcher into
the full unification algorithm. See Luger (2009, Section 2.3) for a
pseudocode version of this algorithm.

The function, unify, allows named variables in both of the patterns to be
matched, and returns a substitution list of the variable bindings required
for the match. This unification function is the basis of the inference
systems for logic and expert system interpreters developed later in
Chapters 16 and 17.

As follows the definition of unification, patterns are either constants,
variables, or list structures. We will distinguish variables from one another
by their names. Named variables will be represented as lists of the form
(var <name>), where <name> is usually an atomic symbol. (var
xX), (var y), and (var newstate) are all examples of legal
variables.

The function unify takes as arguments two patterns to be matched and a
set of wariable substitutions (bindings) to be employed in the match.
Generally, this set will be empty (nil) when the function is first called. On
a successful match, unify returns a (possibly empty) set of substitutions
required for a successful match. If no match was possible, unify returns
the symbol failed; nil is used to indicate an empty substitution set,
i.e., a match in which no substitutions were required. An example of the
behavior of unify, with comments, is:
> (unify ‘(p a (var x)) ‘(p a b) ())
(((var x) . b))
;Returns substitution of b for (var x).
> (unify ‘(p (var y) b) ‘(p a (var x)) ())
(((var x) . b) ((var y) . a))
;Variables appear in both patterns.
> (unify ‘(p (var x)) ‘(p (q a (var y))) ())
(((var x) q a (var y)))
;Variable is bound to a complex pattern.
> (unify ‘(p a) ‘(p a) ())
nil
;nil indicates no substitution required.
> (unify ‘(p a) ‘(q a) ())
failed

;Returns atom “failed” to indicate failure.

Chapter 15 Unification and Embedded Languages 199

« »

We will explain the “.” notation, as in ((var X) . b), after we
present the function unify. unify, like the pattern matcher of earlier in
this section, uses a car-cdr recursive scheme and is defined by:

(defun unify (patternl pattern2 substitution-list)
(cond ((equal substitution-list ‘failed)
‘failed)
((varp patternl)
(match-var patternl
pattern2 substitution-list))
((varp pattern2)
(match-var pattern2
patternl substitution-list))
((is-constant-p patternl)
(cond ((equal patternl pattern2)
substitution-list)
(t ‘failed)))
((is-constant-p pattern2) ‘failed)
(t (unify (cdr patternl)
(cdr pattern2)
(unify (car patternl)
(car pattern2)
substitution-list)))))

On entering unify, the algorithm first checks whether the
substitution-list is equal to failed. This could occur if a
prior attempt to unify the cars of two patterns had failed. If this
condition is met, the entire unification operation fails, and the function
returns failed.

Next, if either pattern is a variable, the function match-var is called to
perform further checking and possibly add a new binding to
substitution-1list. If neither pattern is a variable, unify tests
whether either is a constant, returning the unchanged substitution list if
they are the same constant, otherwise it returns failed.

The last item in the cond statement implements the tree-recursive
decomposition of the problem. Because all other options have failed, the
function concludes that the patterns are lists the must be unified
recursively. It does this using a standard tree-recursive scheme: first, the
cars of the patterns are unified using the bindings in substitution-
list. The result is passed as the third argument to the call of unify on
the cdrs of both patterns. This allows the variable substitutions made in
matching the cars to be applied to other occurrences of those vatiables in
the cdrs of both patterns.

match-var, for the case of matching a variable and a pattern, is defined:

200

Part III: Programming in Lisp

(defun match-var (var pattern substitution-list)
(cond ((equal var pattern) substitution-list)
(t (let ((binding
(get-binding var substitution-list)))
(cond (binding (unify
(get-binding-value binding)
pattern substitution-list))
((occursp var pattern) ‘failed)
(t (add-substitution var pattern
substitution-list)))))))
match-var first checks whether the variable and the pattern are the same;

unifying a variable with itself requires no added substitutions, so
substitution-list is returned unchanged.

If var and pattern are not the same, match-var checks whether the
variable is already bound. If a binding exists, unify is called recursively to
match the value of the binding with pattern. Note that this binding
value may be a constant, a variable, or a pattern of arbitrary complexity;
requiring a call to the full unification algorithm to complete the match.

If no binding currently exists for var, the function calls occursp to test
whether var appears in pattern. As explained in (Luger 2009), the
occurs check is needed to prevent attempts to unify a variable with a
pattern containing that variable, leading to a circular structure. For
example, if (var X)wasboundto (p (var x)),any attempt to apply
those substitutions to a pattern would result in an infinite structure. If var
appears in pattern, match-var returns failed; otherwise, it adds the
new substitution pair to substitution-list wusing add-
substitution

unify and match-var are the heart of the unification algorithm.
occursp (which performs a tree walk on a pattern to find any
occurrences of the variable in that pattern), varp, and is-constant-
P (which test whether their argument is a variable or a constant,
respectively) appear below. Functions for handling substitution sets ate
discussed below.
(defun occursp (var pattern)
(cond ((equal var pattern) t)
((or (varp pattern)
(is-constant-p pattern))
nil)
(t (or (occursp var (car pattern))
(occursp var (cdr pattern))))))
(defun is-constant-p (item)
(atom item))

Chapter 15 Unification and Embedded Languages 201

(defun varp (item)
(and (listp item)
(equal (length item) 2)

(equal (car item) ‘var)))

Sets of substitutions are represented using a built-in Lisp data type called
the association list or a-list. This is the basis for the functions add-
substitutions, get-binding, and binding-value. An
association list is a list of data records, ot key/data pairs. The car of each
record is a key for its retrieval; the cdr of each record is called the datum.
The datum may be a list of values or a single atom. Retrieval is
implemented by the function assoc, which takes as arguments a key and
an association list and returns the first member of the association list that
has the key as its car. An optional third argument to assoc specifies the
test to be used in comparing keys. The default test is the Common Lisp
function eql, a form of equality test requiring that two arguments be the
same object (i.e., either the same memory location or the same numeric
value). In implementing substitution sets, we specify a less strict test,
equal, which requires only that the arguments match syntactically (i.e.,
are designated by identical names). An example of assoc’s behavior
appears next:

> (assoc 3 ‘((1 a) (2 b) (3 c) (4 d)))

(3 ¢)

> (assoc ‘d ‘((abc) (bcde) (de f) (c de))

:test #’'equal)

(d e f)

> (assoc ‘c ‘((a . 1) (b . 2) (¢ . 3) (d . 4)) :test

#'equal)

(c . 3)
Note that assoc returns the entire record matched on the key; the datum
may be retrieved from this list by the cdr function. Also, notice that in the
last call the members of the a-list are not lists but a structure called dozted
pairs,eg., (a . 1).
The dotted pair, or cons pair, is actually the fundamental constructor in
Lisp. It is the result of consing one s-expression onto another; the list
notation that we have used throughout the chapter is just a notational
variant of dotted pairs. For example, the value returned by (cons 1
nil) isactually (1 . nil); this is equivalent to (1). Similarly, the list
(1 2 3) may be written in dotted pair notation as (1 . (2 . (3
. nil))). Although the actual effect of a cons is to create a dotted
pair, the list notation is cleaner and is generally preferred.

If two atoms are consed together, the result is always written using dotted
pair notation. The cdr of a dotted pair is the second element in the pair,
rather than a list containing the second atom. For example:

> (cons ‘a 'b)

(a . b)

202

Part III: Programming in Lisp

> (car ‘(a . b))
a
> (cdr ‘(a . b))
b

Dotted pairs occur naturally in association lists when one atom is used as a
key for retrieving another atom, as well as in other applications that require
the formation and manipulation of pairs of atomic symbols. Because
unifications often substitute a single atom for a variable, dotted pairs
appear often in the association list returned by the unification function.

Along with assoc, Common Lisp defines the function acons, which
takes as arguments a key, a datum, and an association list and returns a new
association list whose first element is the result of consing the key onto
the datum. For example:

> (acons ‘a 1 nil)

((a . 1))
Note that when acons is given two atoms, it adds their cons to the
association list:

> (acons ‘pets ‘(emma jack clyde)

‘((name . bill) (hobbies music skiing movies)
(job . programmer)))
((pets emma jack clyde) (name . bill) (hobbies music

skiing movies) (job . programmer))

The members of an association list may themselves be ecither dotted pairs
or lists.

Association lists provide a convenient way to implement a variety of tables
and other simple data retrieval schemes. In implementing the unification
algorithm, we use association lists to represent sets of substitutions: the
keys are the variables, and the data are the values of their bindings. The
datum may be a simple variable or constant or a more complicated
structure.

Using association lists, the substitution set functions are defined:
(defun get-binding (var substitution-list)
(assoc var substitution-list :test #’'equal))
(defun get-binding-value (binding) (cdr binding))
(defun add-substitution (var pattern
substitution-list)

(acons var pattern substitution-list))

This completes the implementation of the unification algorithm. We will
use the unification algorithm again in Section 15.1 to implement a simple
Prolog in Lisp interpreter, and again in Section 16.2 to build an expert
system shell.

Chapter 15 Unification and Embedded Languages 203

15.2 Interpreters and Embedded Languages

The top level of the Lisp interpreter is known as the read-eval-print loop.
This describes the interpreter’s behavior in reading, evaluating, and printing
the value of s-expressions entered by the user. The eval function, defined
in Section 11.2, is the heart of the Lisp interpreter; using eval, it is
possible to write Lisp’s top-level read-eval-print loop in Lisp itself.
In the next example, we develop a simplified version of this loop. This
version is simplified chiefly in that it does not have the error-handling
abilities of the built-in loop, although Lisp does provide the functionality
needed to implement such capabilities.

To write the read-eval-print loop, we use two more Lisp functions,
read and print. read is a function that takes no parameters; when it is
evaluated, it returns the next s-expression entered at the keyboard. print
is a function that takes a single argument, evaluates it, and then prints that
result to standard output. Another function that will prove useful is
terpri, a function of no arguments that sends a newline character to
standard output. terpri also returns a value of nil on completion.
Using these functions, the read-eval-print loop is based on a
nested s-expression:

(print (eval (read)))

When this is evaluated, the innermost s-expression, (read), is evaluated
first. The value returned by the read, the next s-expression entered by the
user, is passed to eval, where it is evaluated. The result of this evaluation
is passed to print, where it is sent to the display screen. To complete the
loop we add a print expression to output the prompt, a terpri to
output a newline after the result has been printed, and a recursive call to
repeat the cycle. Thus, the final read-eval-print loop is defined:

(defun my-read-eval-print ()
(print ‘:) ;output a prompt (“:")
(print (eval (read)))
(terpri) ;output a newline
(my-read-eval-print)) ;do it all again

This may be used “on top of” the built-in interpretet:

> (my-read-eval-print)

:(+ 1 2);note the alternative prompt

3

: ;etc

As this example illustrates, by making functions such as quote and eval
available to the user, Lisp gives the programmer a high degree of control
over the handling of functions. Because Lisp programs and data are both
represented as s-expressions, we may write programs that perform any
desired manipulations of Lisp expressions ptior to evaluating them. This
underlies much of Lisp’s power as an imperative representation language
because it allows arbitrary Lisp code to be stored, modified, and evaluated
when needed. It also makes it simple to write specialized interpreters that

204

Part III: Programming in Lisp

may extend or modify the behavior of the built-in Lisp interpreter in some
desired fashion. This capability is at the heart of many Lisp-based expert
systems, which read user queries and respond to them according to the
expertise contained in their knowledge base.

As an example of the way in which such a specialized interpreter may be
implemented in Lisp, we modify my-read-eval-print so that it
evaluates arithmetic expressions in an infix rather than a prefix notation, as
we see in the following example (note the modified prompt, infix->):

infix-> (1 + 2)

3

infix-> (7 — 2)

5

infix-> ((5 + 2) * (3 — 1)) ;Loop handles nesting.
15

To simplify the example, the infix interpreter handles only arithmetic
expressions. A further simplification restricts the interpreter to binary
operations and requites that all expressions be fully parenthesized,
eliminating the need for more sophisticated parsing techniques or worties
about operator precedence. However, it does allow expressions to be
nested to arbitrary depth and handles Lisp’s binary arithmetic operators.

We modify the previously developed read-eval-print loop by
adding a function that translates infix expressions into prefix expressions
prior to passing them on to eval. A first attempt at writing this function
might look like:

(defun simple-in-to-pre (exp)
(list (nth 1 exp)
;Middle element becomes first element.

(nth 0 exp)
;first operand

(nth 2 exp)

;second operand
simple-in-to-pre is effective in translating simple expressions;
however, it is not able to correctly translate nested expressions, that is,
expressions in which the operands are themselves infix expressions. To
handle this situation propetly, the operands must also be translated into
prefix notation. Recursion is halted by testing the argument to determine
whether it is a number, returning it unchanged if it is. The completed
version of the infix-to-prefix translator is:

(defun in-to-pre (exp)
(cond ((numberp exp) exp)
(t (list (nth 1 exp)
(in-to-pre (nth 0 exp))
(in-to-pre (nth 2 exp))))))

Using this translator, the read-eval-print loop may be modified to
interpret infix expressions, as defined next:

Chapter 15 Unification and Embedded Languages 205

(defun in-eval ()
(print ‘infix->)
(print (eval (in-to-pre (read))))
(terpri)

(in-eval))
This allows the interpretation of binary expressions in infix form:
> (in-eval)
infix->(2 + 2)
4
infix->((3 * 4) — 5)
7

In the above example, we have implemented a new language in Lisp, the
language of infix arithmetic. Because of the facilities Lisp provides for
symbolic computing (lists and functions for their manipulation) along with
the ability to control evaluation, this was much easier to do than in many
other programming languages. This example illustrates an important Al
programming methodology, that of meta-linguistic abstraction.

Very often in Al programming, a problem is not completely understood, or
the program required to solve a problem is extremely complex. Meta-
linguistic abstraction uses the undetlying programming language, in this case,
Lisp, to implement a specialized, high-level language that may be more
effective for solving a particular class of problems. The term “meta-
linguistic abstraction” refers to our use of the base language to implement
this other programming language, rather than to directly solve the problem.
As we saw in Chapter 5, Prolog also gives the programmer the power to
create meta-level interpreters. The power of meta-interpreters to support
programming in complex domains was discussed in Part I.

Exercises

1. Newton’s method for solving roots takes an estimate of the value of the
root and tests it for accuracy. If the guess does not meet the required
tolerance, it computes a new estimate and repeats. Pseudo-code for using
Newton’s method to get the squate root of a number is:

function root-by-newtons-method (x, tolerance)
guess := 1;
repeat
guess := 1/2(guess + x/guess)
until absolute-value(x — guess guess) < tolerance
Write a recursive Lisp function to compute square roots by Newton’s
method.

2. Write a random number generator in Lisp. This function must maintain
a global variable, seed, and return a different random number each time the
function is called. For a description of a reasonable random number
algorithm, consult any basic algorithms text.

206 Part III: Programming in Lisp

3. Test the unify form of Section 15.1 with five different examples of
your own creation.

4. Test the occursp form of Section 15.1 on five different examples of
your own creation

5. Write a binary post-fix interpreter that takes arbitrarily complex
structures in post-fix form and evaluates them. Two examples of post-fix
are (3 4 +) and (6 (5 4 +) *).

16 Logic Programming in Lisp

Chapter A Lisp-based logic programming interpreter:
Objectives An example of meta-linguistic abstraction
Critical components of logic interpreter
Predicate Calculus like facts and rules
Horn clause form
Queries processed by unification against facts and rules
Successful goal returns unification substitutions
Supporting technology for logic interpreter
Streams
Stream processing
Stream of variables substitutions filtered through conjunctive subgoals
gensym used to standardize variables apart
Exercises expanding functionality of logic interpreter
Adding and, not
Additions of numeric and equality relations

Chapter 16.1 A Simple Logic Programming Language
Contents 16.2 Streams and Stream Processing
16.3 A Stream-Based Logic Programming Interpreter

16.1 A Simple Logic Programming Language

Example As an example of meta-linguistic abstraction, we develop a Lisp-based logic
programming interpreter, using the unification algorithm from Section
15.2. Like Prolog, our logic programs consist of a database of facts and
rules in the predicate calculus. The interpreter processes queries (or goals)
by unifying them against entries in the logic database. If a goal unifies with
a simple fact, it succeeds; the solution is the set of bindings generated in
the match. If it matches the head of a rule, the interpreter recursively
attempts to satisfy the rule premise in a depth-first fashion, using the
bindings generated in matching the head. On success, the interpreter prints
the original goal, with variables replaced by the solution bindings.

For simplicity’s sake, this interpreter supports conjunctive goals and
implications: or and not are not defined, nor are features such as arithmetic,
I/0, ot the usual Prolog built-in predicates. Although we do not implement
full Prolog, and the exhaustive nature of the search and absence of the et
prevent the proper treatment of recursive predicates, the shell captures the
basic behavior of the logic programming languages. The addition to the
interpreter of the other features just mentioned is an interesting exercise.

Our logic programming interpreter supports Horn clauses, a subset of full
predicate calculus (Luger 2009, Section 14.2). Well-formed formulae
consist of terms, conjunctive expressions, and rules written in a Lisp-

207

208

Part III: Programming in Lisp

oriented syntax. A compound term is a list in which the first element is a
predicate name and the remaining elements are the arguments. Arguments
may be either constants, variables, or other compound terms. As in the
discussion of unify, we represent variables as lists of two elements, the
word var followed by the name of the variable. Examples of terms
include:

(likes bill music)

(on block (var x))

(friend bill (father robert))
A conjunctive expression is a list whose first element is and and whose
subsequent arguments are either simple terms or conjunctive expressions:

(and (smaller david sarah) (smaller peter david))

(and (likes (var x) (var y))

(likes (var z) (var y)))
(and (hand-empty)
(and (on block-1 block-2)
(on block-2 table)))

Implications are expressed in a syntactically sweetened form that simplifies
both their writing and recognition:

(rule if <premise> then <conclusion>)
where <premise> is either a simple or conjunctive proposition and
<conclusion> is always a simple proposition. Examples include

(rule if (and (likes (var x) (var z))

(likes (var y) (var z)))

then (friend (var x) (var y)))

(rule if (and (size (var x) small)
(color (var x) red)
(smell (var x) fragrant))
then (kind (var x) rose))
The logic database is a list of facts and rules bound to a global variable,
assertions. We can define an example knowledge base of 1ikes
relationships by a call to setqg (we could have used the function
defvar):
(setqg *assertions*
‘((likes george beer)
(likes george kate)
(likes george kids)
(likes bill kids)
(likes bill music)
(likes bill pizza)
(likes bill wine)
(rule if (and (likes (var x) (var z))
(likes (var y) (var z)))

then (friend (var x) (var y)))))

16.2

Chapter 16 Logic Programming in Lisp 209

The top level of the interpreter is a function, logic-shell, that reads
goals and attempts to satisfy them against the logic database bound to
assertions. Given the above database, logic-shell will have

the following behavior, where comments follow the ;:

> (logic-shell) ; Prompts with a ?
?(likes bill (var x))

(likes bill kids)

(likes bill music)

(likes bill pizza)

(likes bill wine)

?(likes george kate)

(likes george kate)

?(likes george taxes) ; Failed query returns nothing.
?(friend bill george)

(friend bill george) ;From (and(likes bill kids)
; (likes george kids)).
?(friend bill roy) ;roy notin knowledge base, fail.
?(friend bill (var x))
(friend bill george) ;From (and(likes bill kids)
(likes george kids)).
(friend bill bill) ;From (and(likes bill kids)
; (likes bill kids)).
(friend bill bill) ; From (and(likes bill music)
; (likes bill music)).
(friend bill bill) ;From (and(likes bill pizza)
; (likes bill pizza)).
(friend bill bill) ;From (and(likes bill wine)
; (likes bill wine)).
?2quit
bye
>

Before discussing the implementation of the logic programming
interpreter, we introduce the s#ream data type.

Streams and Stream Processing

As the preceding example suggests, even a small knowledge base can
produce complex behaviors. It is necessary not only to determine the truth
or falsity of a goal but also to determine the variable substitutions that
make that goal be true in the knowledge base. A single goal can match with
different facts, producing different substitution sets; conjunctions of goals
require that all conjuncts succeed and also that the variable bindings be
consistent throughout. Similarly, rules require that the substitutions formed
in matching a goal with a rule conclusion be made in the rule premise when
it is solved. The management of these multiple substitution sets is the
major source of complexity in the interpreter. Streams help address this

210

Part III: Programming in Lisp

complexity by focusing on the movement of a sequence of candidate
variable substitutions through the constraints defined by the logic database.

A stream 1s a sequence of data objects. Perhaps the most common example of
stream processing is a typical interactive program. The data from the keyboard
are viewed as an endless sequence of characters, and the program is organized
around reading and processing the current character from the input stream.
Stream processing is a generalization of this idea: streams need not be
produced by the user; they may also be generated and modified by functions.
A generator is a function that produces a continuing stream of data objects. A
map function applies some function to each of the elements of a stream. A filter
eliminates selected elements of a stream according to the constraints of some
predicate.

The solutions returned by an inference engine may be represented as a stream
of different variable substitutions under which a goal follows from a
knowledge base. The constraints defined by the knowledge base are used to
modify and filter a stream of candidate substitutions, producing the result.
Consider, for example, the conjunctive goal (using the logic database from the
preceding section):
(and (likes bill (var z))
(likes george (var z)))

The stream-oriented view regards each of the conjuncts in the expression as a
filter for a stream of substitution sets. Each set of variable substitutions in the
stream is applied to the conjunct and the result is matched against the
knowledge base. If the match fails, that set of substitutions is eliminated from
the stream; if it succeeds, the match may create new sets of substitutions by
adding new bindings to the original substitution set.

Figure 16.1 A stream of variable substitutions filtered through
conjunctive subgoals.
Figure 16.1 illustrates the stream of substitutions passing through this
conjunctive goal. It begins with a stream of candidate substitutions containing
only the empty substitution set and grows after the first proposition matches
against multiple entries in the database. It then shrinks to a single substitution
set as the second conjunct eliminates substitutions that do not allow (likes

16.3

Chapter 16 Logic Programming in Lisp 211

george (var z)) to succeed. The resulting stream, ((((var z) .
kids))), contains the only variable substitution that allows both subgoals in
the conjunction to succeed in the knowledge base.

As this example illustrates, a goal and a single set of substitutions may
generate several new substitution sets, one for each match in the
knowledge base. Alternatively, a goal will eliminate a substitution set from
the stream if no match is found. The stream of substitution sets may grow
and shrink as it passes through a series of conjuncts.

The basis of stream processing is a set of functions to create, augment, and
access the elements of a stream. We can define a simple set of stream
functions using lists and the standard list manipulators. The functions that
constitute a list-based implementation of the stream data type are:
;cons-stream adds a new first element to a stream.
(defun cons-stream (element stream)

(cons element stream))

;head-stream returns the first element of the stream.
(defun head-stream (stream) (car stream))
;tail-stream returns the stream with first element deleted.
(defun tail-stream (stream) (cdr stream))
;jempty-stream-p is true if the stream is empty.
(defun empty-stream-p (stream) (null stream))
;jmake-empty-stream creates an empty stream.
(defun make-empty-stream () nil)
;combine-stream appends two streams.
(defun combine-streams (streaml stream2)
(cond ((empty-stream-p streaml) stream2)
(t (cons-stream (head-stream streaml)
(combine-streams
(tail-stream stream 1)
stream2)))))
Although the implementation of streams as lists does not allow the full
power of stream-based abstraction, the definition of a stream data type
helps us to view the program from a data flow point of view. For many
problems, such as the logic programming interpreter of Section 16.3, this
provides the programmer with a powerful tool for organizing and
simplifying the code. In Section 17.1 we discuss some limitations of this

list-based implementation of streams and present an alternative approach
using streams with delayed evaluation.

A Stream-Based Logic Programming Interpreter

We invoke the interpreter through a function called logic-shell, a
straightforward variation of the read-eval-print loop discussed in
Section 15.3. After printing a prompt, “?”, it reads the next s-expression
entered by the user and binds it to the symbol goal. If goal is equal to
quit, the function halts; otherwise, it calls solve to generate a stream of

212

Part III: Programming in Lisp

substitution sets that satisfy the goal. This stream is passed to print-
solutions, which prints the goal with each of these different
substitutions. The function then recurs. logic-shell is defined:
(defun logic-shell ()
(print ‘2)
(let ((goal (read)))
(cond ((equal goal ‘quit) ‘bye)
(t (print-solutions goal
(solve goal nil))
(terpri)
(logic-shell)))))
solve is the heart of the interpreter. solve takes a goal and a set of
substitutions and finds all solutions that are consistent with the knowledge
base. These solutions are returned as a stream of substitution sets; if there
are no matches, solve returns the empty stream. From the stream
processing point of view, solve is a source, or generator, for a stream of
solutions. solve is defined by:
(defun solve (goal substitutions)
(declare (special *assertions*))
(if (conjunctive-goal-p goal)
(filter-through-conj-goals (body goal)
(cons-stream substitutions
(make-empty-stream)))
(infer goal substitutions *assertions*)))
The declaration special tells the Lisp compiler that *assertions*
is a special, or global, variable and should be bound dynamically in the
environment in which solve is called. (This special declaration is not
required in many modern versions of Lisp.)

solve first tests whether the goal is a conjunction; if it is, solve calls
filter-through-conj-goals to perform the filtering described in
Section 16.2. If goal is not a conjunction, Solve assumes it is a simple
goal and calls infer, defined below, to solve it against the knowledge
base. solve calls filter-through-conj-goals with the body of
the conjunction (i.e., the sequence of conjuncts with the and operator
removed) and a stream that contains only the initial substitution set. The
result is a stream of substitutions representing all of the solutions for this
goal. We define filter-through-conj-goals by:

(defun filter-through-conj-goals (goals
substitution-stream)

(if (null goals) substitution-stream
(filter-through-conj-goals (cdr goals)
(filter-through-goal (car goals)
substitution-stream))))

If the list of goals is empty, the function halts, returning
substitution-stream unchanged. Otherwise, it calls filter-

Chapter 16 Logic Programming in Lisp 213

through-goal to filter substitution-stream through the first
goal on the list. It passes this result on to a recursive call to filter-
through-conj-goals with the remainder of the goal list. Thus, the
stream is passed through the goals in left-to-right order, growing or
shrinking as it passes through each goal.

filter-through-goal takes a single goal and uses it as a filter to the
stream of substitutions. This filtering is done by calling solve with the
goal and the first set of substitutions in the substitution-stream.
The result of this call to solve is a stream of substitutions resulting from
matches of the goal against the knowledge base. This stream will be empty
if the goal does not succeed under any of the substitutions contained in the
stream, ot it may contain multiple substitution sets representing alternative
bindings. This stream is combined with the result of filtering the tail of the
input stream through the same goal:
(defun filter-through-goal
(goal substitution-stream)
(if (empty-stream-p substitution-stream)
(make-empty-stream)
(combine-streams
(solve goal
(head-stream substitution-stream))
(filter-through-goal goal
(tail-stream substitution-stream)))))

To summarize, filter-through-conj-goals passes a stream of
substitution sets through a sequence of goals, and filter-through-
goal filters substitution-stream through a single goal. A
recursive call to solve solves the goal under each substitution set.

Whereas solve handles conjunctive goals by calling filter-
through-conj-goals, simple goals are handled by infer, defined
next, which takes a goal and a set of substitutions and finds all solutions
in the knowledge base, kb, infer’s third parameter, a database of logic
expressions. When solve first calls infer, it passes the knowledge base
contained in the global variable *assertions*. infer secarches kb
sequentially, trying the goal against each fact or rule conclusion.

The recursive implementation of infer builds the backward-chaining
search typical of Prolog and many expert system shells. It first checks
whether kb is empty, returning an empty stream if it is. Otherwise, it binds
the first item in kb to the symbol assertion using a Let* block. let* is
like 1et except it is guaranteed to evaluate the initializations of its local
variables in sequentially nested scopes, i.c., it provides an order to the
binding and visibility of preceding variables. It also defines the variable
match: if assertion is a rule, 1let* initializes match to the substitutions
required to unify the goal with the conclusion of the rule; if assertion
is a fact, let* binds match to those substitutions required to unify
assertion with goal. After attempting to unify the goal with the first
element of the knowledge base, infer tests whether the unification
succeeded. If it failed to match, infer recurs, attempting to solve the

214

Part III: Programming in Lisp

goal using the remainder of the knowledge base. If the unification
succeeded and assertion is a rule, infer calls solve on the premise of
the rule using the augmented set of substitutions bound to match.
combine-stream joins the resulting stream of solutions to that
constructed by calling infer on the rest of the knowledge base. If
assertion is not a rule, it is a fact; infer adds the solution bound to
match to those provided by the rest of the knowledge base. Note that
once the goal unifies with a fact, it is solved; this terminates the search. We
define infer:

(defun infer (goal substitutions kb)
(if (null kb)
(make-empty-stream)
(let* ((assertion
(rename-variables (car kb)))
(match (if (rulep assertion)

(unify goal (conclusion assertion)
substitutions)

(unify goal assertion substitutions))))
(if (equal match ‘failed)
(infer goal substitutions (cdr kb))
(if (rulep assertion)
(combine-streams
(solve (premise assertion) match)
(infer goal substitutions
(cdr kb)))
(cons-stream match
(infer goal substitutions
(cdr kb))))))))

Before the first element of kb is bound to assertion, it is passed to
rename-variables to give each variable a unique name. This
prevents name conflicts between the variables in the goal and those in the
knowledge base entry; e.g.,, if (var X) appears in a goal, it must be
treated as a different variable than a (var x) that appears in the rule or
fact. (This notion of standardizing variables apart is an important
component of automated reasoning in general. Luger (2009, Section 14.2)
demonstrates this in the context of resolution refutation systems). The
simplest way to handle this is by renaming all variables in assertion
with unique names. We define rename-variables at the end of this
section.

This completes the implementation of the core of the logic programming
interpreter. To summarize, solve is the top-level function and generates
a stream of substitution sets (substitution-stream) that represent
solutions to the goal using the knowledge base. filter-through-
conj-goals solves conjunctive goals in a left-to-right order, using each
goal as a filter on a stream of candidate solutions: if a goal cannot be
proven true against the knowledge base using a substitution set in the

Chapter 16 Logic Programming in Lisp 215

stream, filter-through-conj-goals eliminates those
substitutions from the stream. If the goal is a simple literal, solve calls
infer to generate a stream of all substitutions that make the goal succeed
against the knowledge base. Like Prolog, our logic programming
interpreter takes a goal and finds all variable bindings that make it true
against a given knowledge base.

All that remain are functions for accessing components of knowledge base
entries, managing variable substitutions, and printing solutions. print-—
solutions takes as arguments a goal and a substitution-
stream. For each set of substitutions in the stream, it prints the goal with
variables replaced by their bindings in the substitution set.
(defun print-solutions (goal substitution-stream)
(cond ((empty-stream-p substitution-stream)
nil)
(t (print (apply-substitutions goal
(head-stream
substitution-stream)))
(terpri)
(print-solutions goal
(tail-stream substitution-stream)))))
The replacement of variables with their values under a substitution set is
done by apply-substitutions, which does a car-cdr recursive tree
walk on a pattern. If the pattern is a constant (is—constant-p), it is
returned unchanged. If it is a variable (varp), apply-
substitutions tests if it is bound. If it is unbound, the variable is
returned; if it is bound, apply-substitutions calls itself recursively
on the value of this binding. Note that the binding value may be either a
constant, another variable, or a pattern of arbitrary complexity:
(defun apply-substitutions
(pattern substitution-list)
(cond ((is-constant-p pattern) pattern)
((varp pattern)
(let ((binding
(get-binding pattern
substitution-1list)))
(cond (binding (apply-substitutions
(get-binding-value binding)
substitution-1list))
(t pattern))))
(t (cons (apply-substitutions
(car pattern)
substitution-list)
(apply-substitutions (cdr pattern)
substitution-list)))))

216

Part III: Programming in Lisp

infer renamed the variables in each knowledge base entry before
matching it with a goal. This is necessary, as noted above, to prevent
undesired name collisions in matches. For example, the goal (p a (var
x)) should match with the knowledge base entry (p (var x) b),
because the scope of each (var x) is restricted to a single expression. As
unification is defined, however, this match will not occur. Name collisions
are prevented by giving each variable in an expression a unique name. The
basis of our renaming scheme is a Common Lisp built-in function called
gensym that takes no arguments; each time it is called, it returns a unique
symbol consisting of a number preceded by # : G. For example:

> (gensym)
#:G4

> (gensym)
#:G5

> (gensym)
#:G6

>

Our renaming scheme replaces each variable name in an expression with
the result of a call to gensym. rename-variables performs certain
initializations (described below) and calls rename-rec to make
substitutions recursively in the pattern. When a variable (varp) is
encountered, the function rename is called to return a new name. To allow
multiple occurrences of a variable in a pattern to be given consistent
names, each time a variable is renamed, the new name is placed in an
association list bound to the special variable *name-1ist*. The special
declaration makes all references to the variable dynamic and shared among
these functions. Thus, each access of *name-list* in rename will
access the instance of *name-list* declared in rename-
variables. rename-variables initializes *name-list* to
nil when it is first called on an expression. These functions are defined:

(defun rename-variables (assertion)
(declare (special *name-list*))
(setqg *name-list* nil)
(rename-rec assertion))
(defun rename-rec (exp)
(declare (special *name-list*))
(cond ((is-constant-p exp) exp)
((varp exp) (rename exp))
(t (cons (rename-rec (car exp))
(rename-rec (cdr exp))))))

(defun rename (var)

(declare (special *name-list*))

Chapter 16 Logic Programming in Lisp 217

(list ‘var (or (cdr (assoc var *name-list*
:test #’'equal))
(let ((name (gensym)))
(setqg *name-list*
(acons var name *name-list*))
name))))

The final functions access components of rules and goals and are self-
explanatory:

(defun premise (rule) (nth 2 rule))
(defun conclusion (rule) (nth 4 rule))

(defun rulep (pattern)
(and (listp pattern) (equal (nth 0 pattern)
‘rule)))

(defun conjunctive-goal-p (goal)
(and (listp goal) (equal (car goal) ‘and)))

(defun body (goal) (cdr goal))

In Chapter 17 we extend the ideas of Chapter 16 to delayed evaluation
using lexical closures. Finally we build a goal-driven expert system shell in
Lisp.

Exercises

1. Expand the logic programming interpreter to include Lisp write
statements. This will allow rules to print messages directly to the user. Hint:
modify solve first to examine if a goal is a write statement. If it is,
evaluate the write and return a stream containing the initial substitution
set.

2. Rewrite print-solutions in the logic programming interpreter so that it
prints the first solution and waits for a user response (such as a carriage
return) before printing the second solution.

3. Implement the general map and filter functions, map-stream and
filter-stream, described in Section 16.3.

4. Expand the logic programming interpreter to include or and not
relations. This will allow rules to contain more complex relationships
between its premises.

5. Expand the logic programming language to include arithmetic
comparisons, =, <, and >. Hint: as

in Exercise 1, modify solve to detect these comparisons before calling
infer. If an expression is a comparison, replace any variables with their
values and evaluate it. If it returns nil, solve should return the empty
stream; if it returns non-nil, solve should return a stream containing

218 Part III: Programming in Lisp

the initial substitution set. Assume that the expressions do not contain
unbound variables.

6. For a more challenging exercise, expand the logic programming
interpreter to define = so that it will function like the Prolog is operator
and assign a value to an unbound variable and simply do an equality test if
all elements are bound.

17 Lisp-shell: An Expert System Shell in
Lisp

Chapter This chapter defines streams (lists) and delayed evaluation with functions
Objectives delay
force
Stream processing based on lexical closures
Freezes evaluation of stream
Closures preserve variable bindings and scope
lisp-shell created as full expert system shell in Lisp
Unification based on stream processing
Askable list organizes user queries
Full certainty factor system based on Stanford Certainty Factor Algebra
Demonstration of 1isp-shell with a “plant identification” data base
Exercises on extending function of 1isp-shell

Chapter 17.1 Streams and Delayed Evaluation
Contents 17.2 An Expert System Shell in Lisp

17.1 Streams and Delayed Evaluation

Why delayed A5 we demonstrated in the implementation of Logic-shell in Chapter
evaluation? 16, a stream-oriented view can help with the organization of a complex
program. However, our implementation of streams as lists did not provide
the full benefit of stream processing. In particular, this implementation
suffers from inefficiency and an inability to handle potentially infinite data

streams.

In the list implementation of streams, all of the elements must be computed
before that stream (list) can be passed on to the next function. In logic-
shell this leads to an exhaustive search of the knowledge base for each
intermediate goal in the solution process. In order to produce the first solution
to the top-level goal, the program must produce a list of all solutions. Even if
we want only the first solution on this list, the program must still search the
entire solution space. What we would really prefer is for the program to
produce just the first solution by searching only that portion of the space
needed to produce that solution and then to delay finding the rest of the goals
until they are needed.

A second problem is the inability to process potentially infinite streams of
information. Although this problem does not arise in logic-shell, it
occurs naturally in the stream-based solution to many problems. Assume, for
example, that we would like to write a function that returns a stream of the
first n odd Fibonacci numbers. A straightforward implementation would use a
generator to produce a stream of Fibonacci numbers, a filter to eliminate the

219

220 Part III: Programming in Lisp

Delayed
Evaluation and
Function Closures

even-valued numbers from the stream, and an accumulator to gather these
into a solution list of n elements, as in Figure 17.1. Unfortunately, the stream
of Fibonacci numbers is infinite in length and we cannot decide in advance
how long a list will be needed to produce the first n odd numbers.

Figure 17.1. A stream implementation that finds the first n odd
Fibonacci numbers.

Instead, we would like the generator to produce the stream of Fibonacci
numbers one at a time and pass each number through the filter until the
accumulator has gathered the n values required. This behavior more closely
fits our intuitive notion of evaluating a stream than does the list-based
implementation of Chapter 16. We accomplish this by use of delayed evalnation.

Instead of letting the generator run to completion to produce the entire
stteam of results, we let the function produce the first element of the
stteam and then freeze or delay its execution until the next element is
needed. When the program needs the next element of the stream, it causes
the function to resume execution and produce only that element and again
delay evaluation of the rest of the stream. Thus, instead of containing the
entire list of numbers, the stream consists of just two components, its first
element and the frozen computation of the rest of the stream, as shown in
Figure 17.2.

A list-based stream containing an indeterminate number of elements:
(e; e, €5 €, « «)

A stream with delayed evaluation of its tail containing two elements
but capable of producing any number of elements:

(e; . <delayed evaluation of rest of stream>)

Figure 17.2 A list-based and delayed evaluation of streams.

Chapter 17 Lisp-Shell: An Expert System Shell in Lisp 221

We use function closures to create the delayed portion of the stream that was
illustrated by Figure 16.1. A closure consists of a function, along with all its
variable bindings in the current environment; we may bind a closure to a
variable, or pass it as a parameter, and evaluate it using funcall. Essentially,
a closure “freezes” a function application until a later time. We can create
closures using the Lisp form function. For example, consider the following
Lisp transcript:

> (setqg v 10)
10

> (let ((v 20)) (setqg f closure (function (lambda (
) v))))
#<COMPILED-LEXICAL-CLOSURE #x28641E>

> (funcall f closure)
20
>

10

The initial setq binds v to 10 in the global environment. In the 1et block,
we create a local binding of v to 20 and create a closure of a function that
returns this value of v. It is interesting to note that this binding of v does not
disappear when we exit the 1et block, because it is retained in the function
closure that is bound to £_closure. It is a lexical binding, however, so it
doesn’t shadow the global binding of v. If we subsequently evaluate this
closure, it returns 20, the value of the local binding of v, even though the
global v is still bound to 10.

The heart of this implementation of streams is a pair of functions, delay and
force. delay takes an expression as argument and does not evaluate it;
instead it takes the unevaluated argument and returns a closure. force takes
a function closure as argument and uses funcall to force its application.
These functions are defined:

(defmacro delay (exp) ‘(function (lambda () ,exp)))

(defun force (function-closure)
(funcall function-closure))

delay is an example of a Lisp form called a macro. We cannot define delay
using defun because all functions so defined evaluate their arguments before
executing the body. Macros give us complete control over the evaluation of
their arguments. We define macros using the defmacro form. When a
macro is executed, it does not evaluate its arguments. Instead, it binds the
unevaluated s-expressions in the call to the formal parameters and evaluates its
body swice. The first evaluation is called a macro-expansion; the second evaluates
the resulting form.

To define the delay macro, we introducethe backgnote or *. Backquote
prevents evaluation just like a quote, except that it allows us to evaluate
selectively elements of the backquoted expression. Any eclement of a
backquoted s-expression preceded by a comma is evaluated and its value
inserted into the resulting expression. For example, assume we have the call
(delay (+ 2 3)).Theexpression (+ 2 3) is not evaluated; instead it
is bound to the formal parameter, exp. When the body of the macro is

222

Part III: Programming in Lisp

evaluated the first time, it returns the backquoted expression with the formal
parameter, exp, replaced by its value, the unevaluated s-expression (+ 2
3). This produces the expression (function (lambda () (+ 2
3))). This is evaluated again, returning a function closure.

If we later pass this closure to force, it will evaluate the expression
(lambda () (+ 2 3)). Thisis a function that takes no arguments and
whose body evaluates to 5. Using force and delay, we can implement
streams with delayed evaluation. We rewrite cons—-stream as a macro that
takes two arguments and conses the value of the first onto the delayed
evaluation of the second. Thus, the second argument may be a function that
will return a stream of any length; it is not evaluated. We define tail-
stream so that it forces the evaluation of the tail of a stream. These are
defined:
(defmacro cons-stream (exp stream) ‘(cons ,exp
(delay ,stream)))
(defun tail-stream (stream) (force (cdr stream)))

We also redefine combine-streams as a macro that takes two streams but
does not evaluate them. Instead, it uses delay to create a closure for the
second stream and passes this and the first stream to the function comb-f£.
comb-f£ is similar to our eatlier definition of combine-streams, except
that in the event that the first stream is empty, it forces evaluation of the
second stream. If the first stream is not empty, the recursive call to comb-f£ is
done using our delayed version of cons-stream. This freezes the recursive
call in a closure for later evaluation.

(defmacro combine-streams (streaml stream2)
‘(comb-f ,streaml (delay ,stream2)))
(defun comb-f (streaml stream2)
(if (empty-stream-p streaml)
(force stream2)
(cons-stream (head-stream streaml)

(comb-f (tail-stream streaml) stream2))))

If we add these definitions to the versions of head-stream, make-
empty-stream, and empty-stream-p from Section 16.2, we have a
complete stream implementation with delayed evaluation.

We can use these functions to solve our problem of producing the first n odd
Fibonacci numbers. £ibonacci-stream returns a stream of all the
Fibonacci numbers; note that fibonacci-stream is a nonterminating
recursive function. Delayed evaluation prevents it from looping forever; it
produces the next element only when needed. filter-odds takes a stream
of integers and eliminates the even elements of the stream. accumulate
takes a stream and a number n and returns a /st of the first n elements of the
stream.

(defun fibonacci-stream (fibonacci-1 fibonacci-2)
(cons-stream (+ fibonacci-1 fibonacci-2)

(fibonacci-stream fibonacci-2

(+ fibonacci-1 fibonacci-2))))

17.2

Implementing
Certainty
Factors

Chapter 17 Lisp-Shell: An Expert System Shell in Lisp 223

(defun filter-odds (stream)
(cond ((evenp (head-stream stream))
(filter-odds (tail-stream stream)))
(t (cons-stream (head-stream stream)
(filter-odds (tail-stream stream))))))
(defun accumulate-into-list (n stream)
(cond ((zerop n) nil)
(t (cons (head-stream stream)
(accumulate-into-list (— n 1)
(tail-stream stream))))))

To obtain a list of the first 25 odd Fibonacci numbers, we call
accumulate-into-list:

(accumulate-into-list 25
(filter-odds (fibonacci-stream 0 1)))

We may use these stream functions in the definition of the logic programming
interpreter of Section 16.3 to improve its efficiency under certain
circumstances. Assume that we would like to modify print-solutions
so that instead of printing all solutions to a goal, it prints the first and waits for
the user to ask for the additional solutions. Using our implementation of lists
as streams, the algorithm would still search for all solutions before it could
print out the first. Using delayed evaluation, the first solution will be the head
of a stream, and the function evaluations necessary to find the additional
solutions will be frozen in the tail of the stream.

In the next section we modify this logic programming interpreter to
implement a Lisp-based expert system shell called 1isp-shell. Before
presenting the expert system shell, however, we mention two additional
stream functions that are used in its implementation. In Section 16.3, we
presented a general mapping function and a general filter for lists. These
functions, map-simple and filter, can be modified to function on
stteams. We use filter-stream and map-stream in the next
section; their implementation is an exercise.

An Expert System Shell in Lisp

The expert system shell developed in this section is an extension of the
backward-chaining engine of Section 16.3. The major modifications include
the use of certainty factors to manage uncertain reasoning, the ability to ask
the user for unknown facts, and the use of a working memory to save user
responses. This expert system shell is called 1isp-shell.

The logic programming interpreter returned a stream of the substitution
sets under which a goal logically followed from a database of logical
assertions. Bindings that did not allow the goal to be satisfied using the
knowledge base were either filtered from the stream or not generated in
the first place. In implementing reasoning with certainty factors, however,
logic truth values (t, f) are replaced by a numeric value between —1 and 1.

224

Part III: Programming in Lisp

This replacement requires that the stream of solutions to a goal not only
contain the variable bindings that allow the goal to be satisfied; they must
also include measures of the confidence under which each solution follows
from the knowledge base. Consequently, instead of processing streams of
substitution sets, 1isp-shell processes streams of pairs: a set of
substitutions and a number representing the confidence in the truth of the
goal under those variable substitutions

We implement stream elements as an abstract data type: the functions for
manipulating the substitution and certainty factor pairs are subst-
record, which constructs a pair from a set of substitutions and a
certainty factor; subst-1ist, which returns the set of bindings from a
pair; and subst-cf, which returns the certainty factor.

Internally, records ate represented as dotted pairs, of the form
(<substitution 1list>. <cf>). We next create functions that
handle these pairs, the first returning a list of bindings, the second
returning a certainty factor, and the third creating substitution-set certainty-
factor pairs:

(defun subst-list (substitutions)
(car substitutions))

(defun subst-cf (substitutions)
(cdr substitutions))

(defun subst-record (substitutions cf)
(cons substitutions cf))

Similarly, rules and facts are stored in the knowledge base with an attached
certainty factor. Facts are represented as dotted pairs, (<assertion>.
<cf>), where <assertion> is a positive literal and <cf> is its
certainty measure. Rules are in the format (rule if <premise>
then <conclusion> <cf>), where <cf> is the certainty factor.
We next create a sample rule for the domain of recognizing different types
of flowers:

(rule if (and (rose (var x)) (color (var x) red))

then (kind (var x) american-beauty) 1)
The functions for handling rules and facts are:

(defun premise (rule)
(nth 2 rule))

(defun conclusion (rule)
(nth 4 rule))

(defun rule-cf (rule)
(nth 5 rule))

(defun rulep (pattern)
(and (listp pattern)
(equal (nth 0 pattern) ‘rule)))

Chapter 17 Lisp-Shell: An Expert System Shell in Lisp 225

(defun fact-pattern (fact)
(car fact))

(defun fact-cf (fact)
(cdr fact))

Using these functions, we implement the balance of the rule interpreter
through a series of modifications to the logic programming interpreter first
presented in Section 16.3.

Architecture of solve is the heart of lisp-shell. solve does not return a solution stream
lisp-shell directly but first passes it through a filter that eliminates any substitutions
whose certainty factor is less than 0.2. This prunes results that lack

sufficient confidence.

(defun solve (goal substitutions)
(filter-stream
(if (conjunctive-goal-p goal)
(filter-through-conj-goals
(cdr (body goal))
(solve (car (body goal))
substitutions))
(solve-simple-goal goal
substitutions))
‘(lambda (x)
(< 0.2 (subst-cf x)))))

This definition of solve has changed only slightly from the definition of
solve in logic-shell. It is still a conditional statement that
distinguishes between conjunctive goals and simple goals. One difference is
the use of the general filter filter-stream to prune any solution
whose certainty factor falls below a certain value. This test is passed as a
lambda expression that checks whether or not the certainty factor of a
substitution set/cf pair is less than 0.2. The other difference is to use
solve-simple-goal in place of infer. Handling simple goals is
complicated by the ability to ask for user information. We define solve-
simple-goal as:
(defun solve-simple-goal (goal substitutions)
(declare (special *assertions*))
(declare (special *case-specific-data*))
(or (told goal substitutions
*case-specific-data¥)
(infer goal substitutions *assertions¥*)

(ask-for goal substitutions)))

solve-simple-goal uses an or form to try three different solution
strategies in order. First it calls told to check whether the goal has already
been solved by the user in response to a previous query.

226

Part III: Programming in Lisp

User responses are bound to the global variable *case-specific-
data*; told secarches this list to try to find a match for the goal. This
keeps 1isp-shell from asking for the same piece of information twice.
If this fails, the information was not asked for earlier, and solve-
simple-goal attempts to infer the goal using the rules in
assertions. Finally, if these fail, it calls ask-for to query the user
for the information. These functions are defined below.

The top-level read-solve-print loop has changed little, except for the
inclusion of a statement initializing *case-specific-data* to nil
before solving a new goal. Note that when solve is called initially, it is
not just passed the empty substitution set, but a pair consisting of the
empty substitution set and a certainty factor of 0. This certainty value has
no real meaning: it is included for syntactic reasons until a meaningful
substitution set and certainty factor pair is generated by user input or by a
fact in the knowledge base.
(defun lisp-shell ()
(declare (special *case-specific-data¥*))
(setqg *case-specific-data* ())
(prinl ‘lisp-shell>)
(let ((goal (read)))
(terpri)
(cond ((equal goal ‘quit) ‘bye)
(t (print-solutions goal
(solve goal
(subst-record nil 0)))

(terpri)

(lisp-shell)))))
filter-through-conj-goals is not changed, but filter-
through-goal must compute the certainty factor for a conjunctive
expression as the minimum of the certainties of the conjuncts. To do so, it
binds the first element of substitution-stream to the symbol
subs in a let block. It then calls solve on the goal and this
substitution set; passing the result through the general mapping function,
map-stream, which takes the stream of substitution pairs returned by
solve and recomputes their certainty factors as the minimum of the
certainty factor of the result and the certainty factor of the initial
substitution set. These functions are defined:

(defun filter-through-conj-goals (goals
substitution-stream)
(if (null goals)
substitution-stream
(filter-through-conj-goals (cdr goals)
(filter-through-goal (car goals)

substitution-stream))))

Chapter 17 Lisp-Shell: An Expert System Shell in Lisp 227

(defun filter-through-goal (goal
substitution-stream)
(if (empty-stream-p substitution-stream)
(make-empty-stream)
(let ((subs (head-stream
substitution-stream)))
(combine-streams
(map-stream (solve goal subs)
‘(lambda (x)
(subst-record (subst-list x)
(min (subst-cf x)
(subst-cf subs)))))
(filter-through-goal goal
(tail-stream
substitution-stream))))))
The definition of infer has been changed to take certainty factors into
account. Although its overall structure reflects the version of infer
written for the logic programming interpreter in Section 16.2, we must now
compute the certainty factor for solutions to the goal from the certainty
factors of the rule and the certainties of solutions to the rule premise.
solve-rule calls solve to find all solutions to the premise and uses
map-stream to compute the resulting certainties for the rule conclusion.
(defun infer (goal substitutions kb)
(if (null kb)
(make-empty-stream)
(let* ((assertion
(rename-variables (car kb)))
(match (if (rulep assertion)
(unify goal (conclusion assertion)
subst-list substitutions))
(unify goal assertion
(subst-1list substitutions)))))
(if (equal match 'failed)
(infer goal substitutions
(cdr kb))
(if (rulep assertion)
(combine-streams

(solve-rule assertion
(subst-record match

(subst-cf substitutions)))
(infer goal substitutions
(cdr kb)))

228

Part III: Programming in Lisp

(cons-stream
(subst-record match
(fact-cf assertion))
(infer goal substitutions
(cdr kb))))))))

((defun solve-rule (rule substitutions)
(map-stream
(solve (premise rule) substitutions)
‘(lambda (x) (subst-record
(subst-1list x)
(* (subst-cf x)
(rule-cf rule))))))
Finally, we modify print-solutions to use certainty factors:
(defun print-solutions (goal substitution-stream)
(cond ((empty-stream-p substitution-stream)nil)

(t (print (apply-substitutions goal
(subst-list (head-stream

substitution-stream))))
(write-string “cf =*)
(prinl (subst-cf (head-stream

substitution-stream)))
(terpri)
(print-solutions goal
(tail-stream
substitution-stream)))))

The remaining functions, such as apply-substitutions and
functions for accessing rules and goals, are unchanged from Section 16.2.

The remainder of Lisp-shell consists of the functions ask-for and
told, which handle user interactions. These are straightforward, although
the reader should note that we have made some simplifying assumptions.
In particular, the only response allowed to queries is either “y” or “n”. This
causes the binding set passed to ask—for to be returned with a cf of
either 1 or —1, respectively; the user may not give an uncertain response
directly to a query. ask-rec prints a query and reads the answer,
repeating until the answer is either y or n. The reader may expand ask-
rec to take on any value within the —1 to 1 range. (-1 and 1, of course,
offers an arbitrary range; particular applications may use other ranges.)

askable verifies whether the user may be asked for a particular goal.
Any asked goal must exist as a pattern in the global list *askables*; the
architect of an expert system may in this way determine which goals may
be asked for and which may only be inferred from the knowledge base.
told searches through the entries in the global *case-specific-
data* to find whether the user has already answered a query. It is similar
to infer except it assumes that everything in *case-specific-
data* is stored as a fact. We define these functions:

Chapter 17 Lisp-Shell: An Expert System Shell in Lisp 229

(defun ask-for (goal substitutions)
(declare (special *askables*))
(declare (special *case-specific-data*))
(if (askable goal *askables¥*)
(let* ((query (apply-substitutions goal
(subst-list substitutions)))

(result (ask-rec query)))
((setqg *case-specific-data*

(cons (subst-record query result)
case-specific-data))
(cons-stream

(subst-record (subst-list substitutions)
result)

(make-empty-stream)))))
(defun ask-rec (query)
(prinl query)
(write-string “>*")
(let ((answer (read)))
(cond ((equal answer ‘y) 1)
((equal answer ‘n) — 1)
(t (print
“answer must be y or n”)
(terpri)
(ask-rec query)))))
(defun askable (goal askables)
(cond ((null askables) nil)
((not (equal (unify goal car askables) ())
‘failed)) t)
(t (askable goal (cdr askables)))))
(defun told (goal substitutions case-specific-data)
(cond ((null case-specific-data)
(make-empty-stream))
(t (combine-streams

(use-fact goal (car case-specific-data)
substitutions)

(told goal substitutions

(cdr case-specific-data))))))

This completes the implementation of our Lisp-based expert system shell.
In the next section we use 1isp-shell to build a simple classification
expert system.

Classification

-1ass! We now present a small expert system for classifying trees and bushes.
Using lisp-shell

Although it is far from botanically complete, it illustrates the use and
behavior of the 1isp-shell software. The knowledge base resides in

230 Part III: Programming in Lisp

two global variables: *assertions*, which contains the rules and facts
of the knowledge base, and *askables*, which lists the goals that may
be asked of the user. The knowledge base used in this example is
constructed by two calls to setq:

(setqg *assertions* ‘(

(rule
if (and (size (var x) tall)
(woody (var x)))
then (tree (var x)) .9)
(rule
if (and (size (var x) small)
(woody (var x)))
then (bush (var x)) .9)
(rule
if (and (tree (var X)) (evergreen (var X))
(color (var x) blue))
then (kind (var x) spruce) .8)
(rule
if (and (tree (var X)) (evergreen (var X))
(color (var x) green))
then (kind (var x) pine) .9)
(rule
if (and (tree (var x)) (deciduous (var x))
(bears (var x) fruit))
then (fruit-tree (var x)) 1)
(rule
if (and (fruit-tree (var x))
(color fruit red)
(taste fruit sweet))
then (kind (var x) apple-tree) .9)
(rule
if (and (fruit-tree (var x))
(color fruit yellow)
(taste fruit sour))
then (kind (var x) lemon-tree) .8)
(rule
if (and (bush (var x))
(flowering (var x))
(thorny (var x)))
then (rose (var x)) 1)
(rule
if (and (rose (var x)) (color (var x) red))

then (kind (var x) american-beauty) 1)))

Chapter 17 Lisp-Shell: An Expert System Shell in Lisp 231

(setqg *askables* “‘(
(size (var x) (var y))
(woody (var Xx))
(soft (var x))
(color (var x) (var y))
(evergreen (var X))
(thorny (var x))
(deciduous (var x))
(bears (var x) (var y))
(taste (var x) (var y))
(flowering (var x))))
A sample run of the trees knowledge base appears below. The reader is
encouraged to trace through the rule base to observe the order in which
rules are tried, the propagation of certainty factors, and the way in which
possibilities are pruned when found to be false:
> (lisp-shell)
lisp-shell>(kind tree-1 (var x))
(size tree-1 tall) >y
(woody tree-1) >y
(evergreen tree-1) >y
(color tree-1 blue) >n
(color tree-1 green) >y
(kind tree-1 pine) cf 0.81
(deciduous tree-1) >n
(size tree-1 small) >n
lisp-shell>(kind bush-2 (var x))
(size bush-2 tall) >n
(size bush-2 small) >y
(woody bush-2) >y
(flowering bush-2) >y
(thorny bush-2) >y
(color bush-2 red) >y
(kind bush-2 american-beauty) cf 0.9
lisp-shell>(kind tree-3 (var x))
(size tree-3 tall) >y
(woody tree-3) >y
(evergreen tree-3) >n
(deciduous tree-3) >y
(bears tree-3 fruit) >y
(color fruit red) >n
(color fruit yellow) >y

(taste fruit sour) >y

232

Part III: Programming in Lisp

(kind tree-3 lemon-tree) cf 0.72
(size tree-3 small) >n
lisp-shell>quit

bye

?

In this example, several anomalies may be noted. For example, 1isp-
shell occasionally asks whether a tree is small even though it was told
the tree is tall, or it asks whether the tree is deciduous even though the tree
is an evergreen. This is typical of the behavior of expert systems. The
knowledge base does not know anything about the relationship between
tall and small or evergreen and deciduous: they are just patterns to be
matched. Because the search is exhaustive, all rules are tried. If a system is
to exhibit deeper knowledge than this, these relationships must be coded in
the knowledge base. For example, a rule may be written that states that
small implies not tall. In this example, 1isp-shell is not capable of
representing these relationships because we have yet to implement the not
operator. This extension is left as an exercise.

Exercises

1. Rewrite the solution to finding the first n odd Fibonacci numbers
problem of Section 17.1 so that it uses the general stream filter, filter-
stream, instead of filter-odds. Modify this to return the first n
even Fibonacci numbers and then modify it again to return the squares of
the first n Fibonacci numbers.

2. Select a problem such as automotive diagnosis or classifying different
species of animals and solve it using 1isp-shell.

3. Expand the expert system shell of Section 17.2 to allow the user
responses other than y or n. For example, we may want the user to be
able to provide bindings for a goal. Hint: This may be done by changing
the ask-for and related functions to let the user also enter a pattern,
which is matched against the goal. If the match succeeds, ask for a certainty
factor.

4. Extend 1isp-shell to include not. For an example of how to treat
negation using uncertain reasoning, refer to the Prolog-based expert system
shell in Chapter 6.

5. In Section 16.3, we presented a general mapping function and a general
filter for lists. These functions, map-simple and filter, can be
modified to function on streams. Create the filter-stream and
map-stream functions used in 17.2.

6. Extend 1isp-shell to produce an answer even when all rules fail to
match. In other words, remove the nil as a possible result for 1isp-—
shell.

18 Semantic Networks, Inheritance, and
CLOS

Chapter We build Semantic Networks in Lisp:
Objectives Supported by property lists
First implementation (eatly 1970s) of object systems
Object systems in Lisp include:
Encapsulation
Inheritance
Hierarchical
Polymorphism
The Common Lisp Object System (CLOS)
Encapsulation
Inheritance
Inheritance search programmer designed
Example CLOS implementation
Further implementations in exercises
Chapter 18.1 Intr.oductiqn . _
Contents 18.2 Object-Oriented Programming Using CLOS
18.3 CLOS Example: A Thermostat Simulation

18.1 Semantic Networks and Inheritance in Lisp

This chapter introduces the implementation of semantic networks and
inheritance, and a full object-oriented programming system in Lisp. As a
family of representations, semantic networks provide a basis for a large
variety of inferences, and are widely used in natural language processing
and cognitive modeling. We do not discuss all of these, but focus on a
basic approach to constructing network representations using property lists.
After these are discussed and used to define a simple semantic network, we
define a function for class inheritance. Finally, since semantic networks and
inheritance are important precursors of object-oriented design, we present
CLOS, the Common Lisp Object System, Section 18.2, and an example
implementation in 18.3.

ASimple Tisp is a convenient language for representing any graph structure,

Sﬁ::‘?v':’t:ﬁ including semantic nets. Lists provide the ability to create objects of
arbitrary complexity and these objects may be bound to names, allowing
for easy reference and the definition of relationships between them.
Indeed, all Lisp data structures are based on an internal implementation as
chains of pointers, a natural isomorph to graph structures.

For example, labeled graphs may be represented using association lists: each
node is an entry in an association list with all the arcs out of that node stored
in the datum of the node as a second association list. Arcs are described by an

233

234 Part III: Programming in Lisp

association list entry that has the arc name as its key and that has the arc
destination as its datum. Using this representation, the built-in association list
functions are used to find the destination of a particular arc from a given node.
For example, the labeled, directed graph of Figure 18.1 is represented by the
association list:

((a (1 . b))
(b (2 . ¢))
(c (2 . b) (3. a)))

Figure 18.1 A simple labeled directed graph

This approach is the basis of many network implementations. Another way to
implement semantic networks is through the use of property lists.

Essentially, property lists are a built-in feature of Lisp that allows named
relationships to be attached to symbols. Rather than using setq to bind an
association list to a symbol, with property lists we can program the direct
attachment of named attributes to objects in the global environment. These
are bound to the symbol not as a value but as an additional component called
the property list.

Functions for managing property lists are get, setf, remprop, and
symbol-plist. get, which has the syntax:

(get <symbol> <property-name>)

may be used to retrieve a property from <symbol> by its <property-
name>. For example, if the symbol rose has a color property of red and
a smell property of sweet, then get would have the behavior:

(get ‘rose ‘color)

red

(get ‘rose ‘smell)

sweet

(get ‘rose ‘party-affiliation)

nil
As the last of these calls to get illustrates, if an attempt is made to retrieve a

nonexistent property, one that is not on the property list, get returns a value
of nil.

Properties are attached to objects using the setf function, which has the
syntax:

(setf <form> <value>)

Chapter 18 Semantic Networks, Inheritance, and CLOS 235

setf is a generalization of setq. The first argument to setf is taken from
a large but specific list of forms. setf does not use the value of the form
but the location where the value is stored. The list of forms includes car
and cdr. setf places the value of its second argument in that location. For
example, we may use setf along with the list functions to modify lists in the
global environment, as the following transcript shows:

? (setg x ‘(abcde))

(a bcde)

? (setf (nth 2 x) 3)

3

? X

(a b 3 de)
We use setf, along with get, to change the value of properties. For
instance, we may define the properties of a rose by:

> (setf (get ‘rose ‘color) ‘red)

red

> (setf (get ‘rose ’‘smell) ‘sweet)

sweet
remprop takes as arguments a symbol and a property name and causes a
named property to be deleted. For example:

> (get ‘rose ‘color)

red

> (remprop ‘rose ‘color)

color

> (get ‘rose ‘color)

nil
symbol-plist takes as argument a symbol and returns its property list.
For example:

> (setf (get ‘rose ‘color) ‘red)

red

> (setf (get ‘rose ’‘smell) ‘sweet)

sweet

> (symbol-plist ‘rose)

(smell sweet color red)
Using property lists, it is straightforward to implement a semantic network.
For example, the following calls to setf implement the semantic network
description of species of birds from Figure 2.1. The isa relations define
inheritance links.

(setf (get ‘animal ‘covering) ‘skin)

(setf (get ‘bird ‘covering) ‘feathers)

(setf (get ‘bird ‘travel) ‘flies)

(setf (get ‘bird ‘isa) animal)

236

Part III: Programming in Lisp

(setf (get ‘fish ‘isa) animal)

(setf (get ‘fish ‘travel) ‘swim)

(setf (get ‘ostrich ‘isa) ‘bird)

(setf (get ‘ostrich ‘travel) ‘walk)

(setf (get ‘penguin ‘isa) ‘bird)

(setf (get ‘penguin ‘travel) ‘walk)

(setf (get ‘penguin ‘color) ‘brown)

(setf (get ‘opus ‘isa) ‘penguin)

(setf (get ‘canary ‘isa) ‘bird)

(setf (get ‘canary ‘color) ‘yellow)

(setf (get ‘canary ‘sound) ‘sing)

(setf (get ‘tweety ‘isa) ‘canary)

(setf (get ‘tweety ‘color) ‘white)

(setf (get ‘robin ‘isa) ‘bird)

(setf (get ‘robin ‘sound) ‘sings)

(setf (get ‘robin ‘color) ‘red)
Using this representation of semantic nets, we now define control functions
for hierarchical inheritance. This is simply a search along isa links until a
parent is found with the desired property. The parents are searched in a depth-
first fashion, and search stops when an instance of the property is found. This
is typical of the inheritance algorithms provided by many commercial systems.

Variations on this approach include the use of breadth-first search as an
inheritance search strategy.

inherit-get is a variation of get that first tries to retrieve a property
from a symbol; if this fails, inherit-get calls get-from-parents
to implement the search. get-from-parents takes as its first
argument either a single parent or a list of parents; the second argument is
a property name. If the parameter parents is nil, the search halts with
failure. If parents is an atom, it calls inherit-get on the parent to
either retrieve the property from the parent itself or continue the search. If
parents is a list, get-from-parents calls itself recursively on the
car and cdr of the list of parents. The tree walk based function
inherit-get is defined by:
(defun inherit-get (object property)
(or (get object property)
(get-from-parents (get object ‘isa)
property)))
(defun get-from-parents (parents property)
(cond ((null parents) nil)
((atom parents)
(inherit-get parents property))

(t (or (get-from-parents (car parents)
property)

(get-from-parents (cdr parents)
property)))))

18.2

Object-
Orientation
Defined

Chapter 18 Semantic Networks, Inheritance, and CLOS 237

In the next section we generalize our representations for things, classes,
and inheritance using the CLOS object-oriented programming library.

Object-Oriented Programming Using CLOS

In spite of the many advantages of functional programming, some
problems are best conceptualized in terms of objects that have a state that
changes over time. Simulation programs are typical of this. Imagine trying
to build a program that will predict the ability of a steam heating system to
heat a large building: we can simplify the problem by thinking of it as a
system of objects (rooms, thermostats, boilers, steam pipes, etc.) that
interact to change the temperature and behavior of each other over time.
Object-oriented languages support an approach to problem solving that
lets us decompose a problem into interacting objects. These objects have a
state that can change over time, and a set of functions or methods that
define the object’s behaviors. Essentially, object-otiented programming lets
us solve problems by constructing a model of the problem domain as we
understand it. This model-based approach to problem solving is a natural
fit for artificial intelligence, an effective programming methodology in its
own right, and a powerful tool for thinking about complex problem
domains.

There are a number of languages that support object-oriented
programming. Some of the most important are Smalltalk, C++, Java and
the Common Lisp Object System (CLOS). At first glance, Lisp, with its
roots in functional programming, and object orientation, with its emphasis
on creating objects that retain their state over time, may seem wotlds apart.
However, many features of the language, such as dynamic type checking
and the ability to create and destroy objects dynamically, make it an ideal
foundation for constructing an object-oriented language. Indeed, Lisp was
the basis for many of the early object-oriented languages, such as Smalltalk,
Flavors, KEE, and ART. As the Common Lisp standard was developed,
the Lisp community has accepted CLOS as the preferred way to do object-
oriented programming in Lisp.

In order to fully support the needs of object-oriented programming, a
programming language must provide three capabilities: 1) encapsulation, 2)
polymorphism, and 3) inberitance. The remainder of this introduction describes
these capabilities and an introduction to the way in which CLOS supports
them.

Encapsulation. All modern programming languages allow us to
create complex data structures that combine atomic data items into a
single entity. Object-oriented encapsulation is unique in that it
combines both data items and the procedures used for their
manipulation into a single structure, called a c/ass. For example, the
abstract data types seen previously (e.g., Section 10.2) may quite
propetly be seen as classes. In some object-oriented languages, such
as Smalltalk, the encapsulation of procedures (or methods as they
are called in the object-oriented community) in the object definition
is explicit. CLOS takes a different approach, using Lisp’s type-
checking to provide this same ability. CLOS implements methods as

238

Part III: Programming in Lisp

Defining
Classes and
Instances in
CLOS

generic functions. These functions check the type of their parameters to
guarantee that they can only be applied to instances of a certain
class. This gives us a logical binding of methods to their objects.

Polymorphism. The word polymorphic comes from the roots
“poly”, meaning many, and “morphos”, meaning form. A function is
polymorphic if it has many different behaviors, depending on the
types of its arguments. Perhaps the most intuitive example of
polymorphic functions and their importance is a simple drawing
program. Assume that we define objects for each of the shapes
(square, circle, line) that we would like to draw. A natural way to
implement this is to define a method named draw for each object
class. Although each individual method has a different definition,
depending on the shape it is to draw, all of them have the same
name. Every shape in our system has a draw behavior. This is much
simpler and more natural than to define a differently named
function (draw-square, draw-circle, etc.) for every shape. CLOS
supports polymorphism through generic functions. A generic
function is one whose behavior is determined by the types of its
arguments. In our drawing example, CLOS enables us to define a
generic function, draw, that includes code for drawing each of the
shapes defined in the program. On evaluation, it checks the type of
its argument and automatically executes the appropriate code.

Inheritance. Inheritance is a mechanism for supporting class
abstraction in a programming language. It lets us define general
classes that specify the structure and behavior of their
specializations, just as the class “tree” defines the essential attributes
of pine trees, poplars, oaks, and other different species. In Section
18.1, we built an inheritance algorithm for semantic networks; this
demonstrated the ease of implementing inheritance using Lisp’s
built-in data structuring techniques. CLOS provides us with a more
robust, expressive, built-in inheritance algorithm.

The basic data structure in CLOS is the class. A class is a
specification for a set of object instances. We define classes using the
defclass macro. defclass has the syntax:

(defclass <class-name> (<superclass-name>*)
(<slot-specifier>%*))

<class-name> is a symbol. Following the class name is a list of direct
superclasses (called superclass); these are the class’s immediate
parents in the inheritance hierarchy. This list may be empty. Following the
list of parent classes is a list of zero or more slot-specifiers. A
slot-specifier is cither the name of a slot or a list consisting of a
slot-name and zero or more slot-options:

slot-specifier ::= slotname |
(slot-name [slot-option])

For instance, we may define a new class, rectangle, which has slots
values for length and width:

Chapter 18 Semantic Networks, Inheritance, and CLOS 239

> (defclass rectangle()
(length width))
#<standard-class rectangle>

make-instance allows us to create instances of a class, taking as its
argument a class name and returning an instance of that class. It is the
instances of a class that actually store data values. We may bind a symbol,
rect, to an instance of rectangle using make-instance and
setq:

> (setq rect (make-instance ‘rectangle))
#<rectangle #x286AC1>

The slot options in a defclass define optional properties of slots. Slot
options have the syntax (where ““|” indicates alternative options):

slot-option ::= :reader <reader-function-name> |
:writer <writer-function-name>|
:accessor <reader-function-name> |
:allocation <allocation-type> |
:initarg <initarg-name> |

sinitform <form>

We declare slot options using keyword arguments. Keyword arguments are
a form of optional parameter in a Lisp function. The keyword, which
always begins with a “:”, precedes the value for that argument. Available
slot options include those that provide accessors to a slot. The
:reader option defines a function called reader-function-name
that returns the value of a slot for an instance. The :writer option
defines a function named writer-function-name that will write to
the slot. :accessor defines a function that may read a slot value or may
be used with setf to change its value.

In the following transcript, we define rectangle to have slots for
length and width, with slot accessors get-length and get-
width, respectively. After binding rect to an instance of rectangle
using make-instance, we use the accessor, get-length, with
setf to bind the length slot to a value of 10. Finally, we use the
accessor to read this value.
> (defclass rectangle ()
((length :accessor get-length)
(width :accessor get-width)))
#<standard-class rectangle>
> (setq rect (make-instance ‘rectangle))
#<rectangle #x289159>
> (setf (get-length rect) 10)
10
> (get-length rect)
10

240

Part III: Programming in Lisp

In addition to defining accessors, we can access a slot using the
primitive function slot-value. slot-value is defined for all slots;
it takes as arguments an instance and a slot name and returns the value of
that slot. We can use it with setf to change the slot value. For example,
we could use slot-value to access the width slot of rect:

> (setf (slot-value rect ‘width) 5)
5

> (slot-value rect ‘width)

5

tallocation lets us specify the memory allocation for a slot.
allocation-type may be ecither :instance or :class. If
allocation type is :instance, then CLOS allocates a local slot for each
instance of the type. If allocation type is :class, then all instances share
a single location for this slot. In :class allocation, all instances will share
the same value of the slot; changes made to the slot by any instance will
affect all other instances. If we omit the :allocation specifier,
allocation defaults to : instance.

tinitarg allows us to specify an argument that we can use with make-
instance to specify an initial value for a slot. For example, we can
modify our definition of rectangle to allow us to initialize the
length and width slots of instances:

> (defclass rectangle ()

((length :accessor get-length
tinitarg init-length)
(width :accessor get-width :initarg init-width)))
#<standard-class rectangle>
>(setq rect (make-instance ‘rectangle
‘init-length 100 ‘init-width 50))

#<rectangle #x28D081>

> (get-length rect)

100

> (get-width rect)

50
tinitform lets us specify a form that CLOS evaluates on each call to
make-instance to compute an initial value of the slot. For example, if
we would like our program to ask the user for the values of each new
instance of rectangle, we may define a function to do so and include it in
an initform:

> (defun read-value (query) (print query) (read))

read-value

> (defclass rectangle ()

((length :accessor get-length

tinitform (read-value “enter length”))

Defining
Generic
Functions and
Methods

Chapter 18 Semantic Networks, Inheritance, and CLOS 241

(width :accessor get-width
tinitform (read-value “enter width”))))
#<standard-class rectangle>
> (setq rect (make-instance ‘rectangle))
“enter length” 100
“enter width” 50
#<rectangle #x290461>
> (get-length rect)
100
> (get-width rect)
50

A generic function is a function whose behavior depends upon the type of
its arguments. In CLOS, generic functions contain a set of wethods, indexed
by the type of their arguments. We call generic functions with a syntax
similar to that of regular functions; the generic function retrieves and
executes the method associated with the type of its parameters.

CLOS uses the structure of the class hierarchy in selecting a method in a
generic function; if there is no method defined directly for an argument of
a given class, it uses the method associated with the “closest” ancestor in
the hierarchy. Generic functions provide most of the advantages of
“purer” approaches of methods and message passing, including inheritance
and overloading. However, they are much closer in spirit to the functional
programming paradigm that forms the basis of Lisp. For instance, we can
use generic functions with mapcar, funcall, and other higher-order
constructs in the Lisp language.

We define generic functions using either defgeneric or defmethod.
defgeneric lets us define a generic function and several methods using
one form. defmethod enables us to define each method separately,
although CLOS combines all of them into a single generic function.
defgeneric has the (simplified) syntax:

(defgeneric f-name lambda-list <method-description>%*)

<method-description> ::= (:method specialized-lambda-
list form)

defgeneric takes a name of the function, a lambda list of its
arguments, and a series of zero or more method descriptions. In a method
description, specialized-lambda-1list is just like an ordinary
lambda list in a function definition, except that a formal parameter may
be replaced with a (symbol parameter-specializer) pair: symbol is the name
of the parameter, and parameter-specializer is the class of the argument. If
an argument in a method has no parameter specializer, its type defaults to
t, which is the most general class in a CLOS hierarchy. Parameters of type
t can bind to any object. The specialized lambda list of each method
specifier must have the same number of arguments as the lambda list in
the defgeneric. A defgeneric creates a generic function with the
specified methods, replacing any existing generic functions.

242 Part III: Programming in Lisp

As an example of a generic function, we may define classes for
rectangle and circle and implement the appropriate methods for
finding areas:

(defclass rectangle ()

((length :accessor get-length
:initarg init-length)

(width :accessor get-width :initarg init-width)))
(defclass circle ()
((radius :accessor get-radius
tinitarg init-radius)))
(defgeneric area (shape)
(:method ((shape rectangle))
(* (get-length shape)
(get-width shape)))
(:method ((shape circle))
(* (get-radius shape) (get-radius shape) pi)))
(setqg rect (make-instance ‘rectangle ‘init-length 10
‘init-width 5))
(setq circ (make-instance ‘circle ‘init-radius 7))
We can use the area function to compute the area of either shape:

> (area rect)

50

> (area circ)
153.93804002589985

We can also define methods using defmethod. Syntactically,
defmethod is similar to defun, except it uses a specialized 1ambda
list to declare the class to which its arguments belong. When we define a
method using defmethod, if there is no generic function with that name,
defmethod creates one; if a generic function of that name already exists,
defmethod adds a new method to it. For example, suppose we wish to
add the class square to the above definitions, we can do this with:

(defclass square ()

((side :accessor get-side :initarg init-side)))

(defmethod area ((shape square))

(* (get-side shape)
(get-side shape)))

(setqg sgr (make-instance ‘square ‘init-side 6))
defmethod does not change the previous definitions of the area
function; it simply adds a new method to the generic function:

> (area sqr)

36

Inheritance in
CLOS

Chapter 18 Semantic Networks, Inheritance, and CLOS 243

> (area rect)

50

> (area circ)
153.93804002589985

CLOS is a multiple-inheritance language. Along with offering the program
designer a very flexible representational scheme, multiple inheritance
introduces the potential for creating anomalies when inheriting slots and
methods. If two or more ancestors have defined the same method, it is
crucial to know which method any instance of those ancestors will inherit.
CLOS resolves potential ambiguities by defining a class precedence list, which
is a total ordering of all classes within a class hierarchy.

Each defclass lists the direct parents of a class in left-to-right order.
Using the order of direct parents for each class, CLOS computes a partial
ordering of all the ancestors in the inheritance hierarchy. From this partial
ordering, it derives the total ordering of the class precedence list through a
topological sort. The precedence list follows two rules:

1. Any direct parent class precedes any more distant ancestor.

2. In the list of immediate parents of defclass, cach class
precedes those to its right.

CLOS computes the class precedence list for an object by topologically
sorting its ancestor classes according to the following algorithm. Let C be
the class for which we are defining the precedence list:

1. Let S, be the set of C and all its superclasses.

2. For each class, ¢, in S, define the set of ordered pairs:
R, = {(c, c1), (C1y C3)y « (Cp_1s Cp)}

where ¢, through ¢, are the direct parents of ¢ in the order

they are listed in defclass. Note that each R, defines a #o7a/
order.

3. Let R be the union of the R_s for all elements of S_. R may or
may not define a partial ordering. If it does not define a partial
ordering, then the hierarchy is inconsistent and the algorithm
will detect this.

4. Topologically sort the elements of R by:
a. Begin with an empty precedence list, P.
Find a class in R having no predecessors. Add it to the

end of P and remove the class from S, and all pairs

containing it from R. If there are several classes in S,
with no predecessor, select the one that has a direct
subclass nearest the end in the current version of P.

c. Repeat the two previous steps until no element can be
found that has no predecessor in R.

244

Part III: Programming in Lisp

18.3

d. If S, is not empty, then the hierarchy is inconsistent; it
may contain ambiguities that cannot be resolved using
this technique.

Because the resulting precedence list is a total ordering, it resolves any
ambiguous orderings that may have existed in the class hierarchy. CLOS
uses the class precedence list in the inheritance of slots and the selection of
methods.

In selecting a method to apply to a given call of a generic function, CLOS
first selects all applicable methods. A method is applicable to a generic
function call if each parameter specializer in the method is consistent with
the corresponding argument in the generic function call. A parameter
specializer is consistent with an argument if the specializer either matches
the class of the argument or the class of one of its ancestors.

CLOS then sorts all applicable methods using the precedence lists of the
arguments. CLOS determines which of two methods should come first in
this ordering by comparing their parameter specializers in a left-to-right
fashion. If the first pair of corresponding parameter specializers are equal,
CLOS compares the second, continuing in this fashion until it finds
corresponding parameter specializers that are different. Of these two, it
designates as more specific the method whose parameter specializer
appears leftmost in the precedence list of the corresponding argument.
After ordering all applicable methods, the default method selection applies
the most specific method to the arguments. For more details, see Steele

(1990).
CLOS Example: A Thermostat Simulation

The properties of object-oriented programming that make it a natural way
to organize large and complex software implementations are equally
applicable in the design of knowledge bases. In addition to the benefits of
class inheritance for representing taxonomic knowledge, the message-
passing aspect of object-oriented systems simplifies the representation of
interacting components.

As a simple example, consider the task of modeling the behavior of a steam
heater for a small office building. We may naturally view this problem in
terms of interacting components. For example:

¢ FEach office has a thermostat that turns the heat in that office
on and off; this functions independently of the thermostats in
other offices.

* The boiler for the heating plant turns itself on and off in
response to the heat demands made by the offices.

* When the demand on the boiler increases, there may be a time
lag while more steam is generated.

* Different offices place different demands on the system; for
example, corner offices with large windows lose heat faster than
inner offices. Inner offices may even gain heat from their
neighbors.

Chapter 18 Semantic Networks, Inheritance, and CLOS 245

* The amount of steam that the system may route to a single
office is affected by the total demand on the system.

These points are only a few of those that must be taken into account in
modeling the behavior of such a system; the possible interactions ate
extremely complex. An object-oriented representation allows the
programmer to focus on describing one class of objects at a time. We
would represent thermostats, for example, by the temperature at which
they call for heat, along with the speed with which they respond to changes
in temperature.

The steam plant could be characterized in terms of the maximum amount of
heat it can produce, the amount of fuel used as a function of heat produced,
the amount of time it takes to respond to increased heat demand, and the rate
at which it consumes water.

A room could be described in terms of its volume, the heat loss through its
walls and windows, the heat gain from neighboring rooms, and the rate at
which the radiator adds heat to the room.

The knowledge base is built up of classes such as room and thermostat,
which define the properties of the class, and instances such as room-322
and thermostat-211, which model individual situations.

The interactions between components are described by messages between
instances. For example, a change in room temperature would cause a message
to be sent to an instance of the class thermostat. If this new
temperature is low enough, the thermostat would switch after an
appropriate delay. This would cause a message to be sent to the heater
requesting more heat. This would cause the heater to consume more oil, or,
if already operating at maximum capacity, to route some heat away from other
rooms to respond to the new demand. This would cause other
thermostats to turn on, and so forth.

Using this simulation, we can test the ability of the system to respond to
external changes in temperature, measure the effect of heat loss, or determine
whether the projected heating is adequate. We could use this simulation in a
diagnostic program to verify that a hypothesized fault could indeed produce a
particular set of symptoms. For example, if we have reason to believe that a
heating problem is caused by a blocked steam pipe, we could introduce such a
fault into the simulation and see whether it produces the observed symptoms.

The significant thing about this example is the way in which an object-oriented
approach allows knowledge engineers to deal with the complexity of the
simulation. It enables them to build the model a piece at a time, focusing only
on the behaviors of simple classes of objects. The full complexity of the
system behavior emerges when we execute the model.

The basis of our CLOS implementation of this model is a set of object
definitions. Thermostats have a single slot called setting. The
setting of each instance is initialized to 65 using initform. heater-
thermostat is a subclass of thermostat for controlling heaters (as
opposed to air conditioners); they have a single slot that will be bound to an
instance of the heater class. Note that the heater slot has a class
allocation; this captures the constraint that the thermostats in different
rooms of a building control the single building’s heater-obj.

246 Part III: Programming in Lisp

(defclass thermostat ()
((setting :initform 65

taccessor therm-setting)))

(defclass heater-thermostat (thermostat)
((heater :allocation :class
:initarg heater-obj)))

A heater has a state (on or off) that is initialized to off, and a
location. It also has a slot, rooms-heated, that will be bound to a list
of objects of type room. Note that instances, like any other structure in Lisp,
may be elements of a list.

(defclass heater ()
((state :initform ‘off
traccessor heater-state)
(location :initarg loc)
(rooms-heated)))

room has slots for temperature, initialized to 65 degrees;
thermostat, which will be bound to an instance of thermostat; and
name, the name of room.

(defclass room ()
((temperature :initform 65
taccessor room-temp)
(thermostat :initarg therm
taccessor room-thermostat)
(name :initarg name
taccessor room-name)))

These class definitions define the hierarchy of Figure 18.2.

Figure 18.2. A class hierarchy for the room/heater/thermostat simulation.

Chapter 18 Semantic Networks, Inheritance, and CLOS 247

We represent our particular simulation as a set of instances of these classes.
We will implement a simple system of one room, one heater, and one
thermostat:

(setf office-heater (make-instance ‘heater ‘loc
‘office))

(setf room-325 (make-instance ‘room
‘therm (make-instance ‘heater-thermostat
‘heater-obj office-heater)
‘name ‘room-325))

(setf (slot-value office-heater ‘rooms-heated) (list
room-325))

Figure 18.3 shows the definition of instances, the allocation of slots, and
the bindings of slots to values.

Figure 18.3. The creation of instances and binding of slots in the
simulation.

We define the behavior of rooms through the methods change-temp,
check-temp, and change-setting. change-temp sets the
temperature of a room to a new value, prints a message to the user,
and calls check-temp to determine whether the heater should come
on. Similarly, change-setting changes the thermostat setting,
therm-setting, and calls check-temp, which simulates the
thermostat. If the temperature of the room is less than the
thermostat setting, it sends the heater a message to turn on; otherwise it
sends an of £ message.

248 Part III: Programming in Lisp

(defmethod change-temp ((place room) temp-change)

(let ((new-temp (+ (room-temp place)
temp-change)))

(setf (room-temp place) new-temp)
(terpri)
(prinl “the temperature in”)
(prinl (room-name place))
(prinl “ is now *)
(prinl new-temp)
(terpri)
(check-temp place)))
(defmethod change-setting ((room room) new-setting)

(let ((therm (room-thermostat room)))
(setf (therm-setting therm) new-setting)
(prinl “changing setting of thermostat in”)
(prinl (room-name room))
(prinl “ to ")
(prinl new-setting)
(terpri)
(check-temp room)))

(defmethod check-temp ((room room))
(let* ((therm (room-thermostat room))
(heater (slot-value therm ‘heater)))

(cond ((> (therm-setting therm)

(room-temp room))
(send-heater heater ‘on))
(t (send-heater heater ‘off)))))

The heater methods control the state of the heater and change the temperature
of the rooms. send-heater takes as arguments an instance of heater
and a message, new-state. If new-state is on it calls the turn-on
method to start the heater; if new-state is of f it shuts the heater
down. After turning the heater on, send-heater calls heat-rooms to
increase the temperature of each room by one degree.

(defmethod send-heater ((heater heater) new-state)
(case new-state
(on (if (equal (heater-state heater) ‘off)
(turn-on heater))
(heat-rooms (slot-value heater

‘rooms-heated) 1))

Chapter 18 Semantic Networks, Inheritance, and CLOS 249

(off (if (equal (heater-state heater) ‘on)
(turn-off heater)))))
(defmethod turn-on ((heater heater))
(setf (heater-state heater) ‘on)
(prinl “turning on heater in”")
(prinl (slot-value heater ‘location))
(terpri))
(defmethod turn-off ((heater heater))
(setf (heater-state heater) ‘off)
(prinl “turning off heater in”)
(prinl (slot-value heater ‘location))
(terpri))
(defun heat-rooms (rooms amount)
(cond ((null rooms) nil)
(t (change-temp (car rooms) amount)
(heat-rooms (cdr rooms) amount))))
The following transcript illustrates the behavior of the simulation.

> (change-temp room-325 5)

“the temperature in “room-325” is now “60
“turning on heater in “office

“the temperature in “room-325"” is now “61
“the temperature in “room-325” is now *“62
“the temperature in “room-325"” is now “63
“the temperature in “room-325"” is now “64
“the temperature in “room-325” is now “65
“turning off heater in “office

nil

> (change-setting room-325 70)

“changing setting of thermostat in “room-325”" to *“70
“turning on heater in “office

“the temperature in “room-325"” is now “66
“the temperature in “room-325” is now “67
“the temperature in “room-325"” is now “68
“the temperature in “room-325” is now “69
“the temperature in “room-325” is now *“70
“turning off heater in “office

nil

250

Part III: Programming in Lisp

Exercises

1. Create two semantic network representations (Section 17.1) for an
application of your choice. Build the representation first using association
lists and then build it using property lists. Comment on the differences in
these two approaches for representing semantic information.

2. Add to the CLOS simulation of Section 18.3 a cooling system so that if
any room’s temperature gets above a certain temperature it starts to cool.
Also add a “thermal” factor to each room so that it heats and cools as a
function of its volume and insulation value.

3. Create a CLOS simulation in another domain, e.g., a building that has
both heating and cooling. You can add specifics to each room such as an
insulation value that mitigates heat/cooling loss. See the discussion at the
beginning of Section 18.3 for parameters you might build in to your
augmented system.

4. Create a CLOS simulation for an ecological situation. For example, you
might have classes for grass, wolves, cattle, and weather. Then make a set
of rules that balances their ecological survival across time.

19 Machine Learning in Lisp

Chapter 1D3 algorithm and inducing decision trees from lists of examples.
Objectives A basic Lisp implementation of ID3
Demonstration on a simple credit assessment example.
Chapter 19.1 Learning: The ID3 Algorithm
Contents 19.2 Implementing ID3

19.1 Learning: The ID3 Algorithm

In this section, we implement the ID3 induction algorithm described in
Luger (2009, Section 10.3). ID3 infers decision trees from a set of training
examples, which enables classification of an object on the basis of its
properties. Each internal node of the decision tree tests one of the
properties of a candidate object, and uses the resulting value to select a
branch of the tree. It continues through the nodes of the tree, testing
various properties, until it reaches a leaf, where each leaf node denotes a
classification. ID3 uses an information theoretic test selection function to
order tests so as to construct a (nearly) optimal decision tree. See Table
19.1 for a sample data set and Figure 19.1 for an ID3 induced decision tree.
The details for the tree induction algorithms may be found in Luger (2009,
Section 10.3) and in Quinlan (1980).

The ID3 algorithm requires that we manage a number of complex data
structures, including objects, properties, sets, and decision trees. The heart of
our implementation is a set of structure definitions, aggregate data types
similar to records in the Pascal language or structures in C. Using
defstruct, Common Lisp allows us to define types as collections of
named slots; defstruct constructs functions needed to create and
manipulate objects of that type.

Along with the use of structures to define data types, we exploit higher order
functions such as mapcar. As the stream-based approach to our expert
system shell demonstrated, the use of maps and filters to apply functions to
lists of objects can often capture the intuition behind an algorithm with greater
clarity than less expressive programming styles. The ability to treat functions as
data, to bind function closures to symbols and process them using other
functions, is a cornerstone of Lisp programming style.

A Credit History This chapter will demonstrate the ID3 implementation using a simple
Example ./ dit assessment example. Suppose we want to determine a person’s credit

risk (high, moderate, low) based on data recorded from past loans. We can

represent this as a decision tree, where each node examines one aspect of a

person’s credit profile. For example, if one of the factors we care about is

251

252

A Credit History
Example

Part III: Programming in Lisp

This chapter will demonstrate the ID3 implementation using a simple
credit assessment example. Suppose we want to determine a person’s credit
risk (high, moderate, low) based on data recorded from past loans. We can
represent this as a decision tree, where each node examines one aspect of a
person’s credit profile. For example, if one of the factors we care about is
collateral, then the collateral node will have two branches: no collateral and
adequate collateral.

The challenge a machine learning algorithm faces is to construct the “best”
decision tree given a set of training examples. Exhaustive training sets are
rare in machine learning, either because the data is not available, or because
such sets would be too large to manage effectively. ID3 builds decision
trees under the assumption that the simplest tree that correctly classifies all
training instances is most likely to be correct on new instances, since it
makes the fewest assumptions from the training data. ID3 infers a simple
tree from training data using a greedy algorithm: select the test property
that gives the most information about the training set, partition the
problem on this property and recur. The implementation that we present
illustrates this algorithm.

We will test our algorithm on the data of table 19.1.

Credit
No. | Risk History | Debt Collateral Income
1. high bad high none $0 to $15k
2. high unknown | high none $15k to $35k
3. moderate | unknown | low none $15k to $35k
4, high unknown | low none $0 to $15k
5. low unknown | low none over $35k
6. low unknown | low adequate over $35k
7. high bad low none $0 to $15k
8. moderate | bad low adequate over $35k
9. low good low none over $35k
10. | low good high adequate over $35k
11. high good high none $0 to $15k
12. moderate | good high none $15k to $35k
13. low good high none over $35k
14. high bad high none $15k to $35k

Table 19.1 Training data for the credit example
Figure 19.1 shows a decision tree that correctly classifies this data.
defstruct allows us to create structure data items in Lisp. For example,

using defstruct, we can define a new data tpe, employee, by
evaluating a form. employee is the name of the defined type; name,

Defining
Structures
Using Defstruct

Chapter 19 Machine Learning in Lisp 253

Figure 19.1 A decision tree that covers the data of Table 19.1

(defstruct employee

name

address

serial-number

department

salary)
Here, defstruct takes as its arguments a symbol, which will become
the name of a new type, and a number of slot specifiers. Here, we have
defined five slots by name; slot specifiers also allow us to define different
properties of slots, including type and initialization information, see Steele

(1990).
Evaluating the defstruct form has a number of effects, for example:
(defstruct <type name>
<slot name 1>

<slot name 2>

<slot name n>)

defstruct defines a function, named according to the scheme: make-
<type name>, that lets us create instances of this type. For example,
after defining the structure, employee, we may bind new-employee
to an object of this type by evaluating:

(setq new-employee (make-employee))

We can also use slot names as keyword arguments to the make function,
giving the instance initial values. For example:

254 Part III: Programming in Lisp

(setq new-employee
(make-employee
:name ‘(Doe Jane)
taddress “1234 Main, Randolph, vVt~
:serial-number 98765
:department ‘Sales
:salary 4500.00))
defstruct makes <type name> the name of a data type. We may
use this name with typep to test if an object is of that type, for example:
> (typep new-employee ‘employee)
t
Furthermore, defstruct defines a function, <type-name>-p, which
we may also use to test if an object is of the defined type. For instance:
> (employee-p new-employee)
t
> (employee-p ‘(Doe Jane))
nil
Finally, defstruct defines an accessor for each slot of the structure.
These accessors are named according to the scheme:
<type name>-<slot name>
In our example, we may access the values of various slots of new-
employee using these accessors:
> (employee-name new-employee)
(Doe Jane)
> (employee-address new-employee)
#1234 Main, Randolph, Vt”
> (employee-department new-employee)
Sales

We may also use these accessors in conjunction with setf to change the
slot values of an instance. For example:

> (employee-salary new-employee)

4500.0

> (setf (employee-salary new-employee) 5000.00)
5000.0

> (employee-salary new-employee)

5000.0

So we see that using structures, we can define predicates and accessors of a
data type in a single Lisp form. These definitions are central to our
implementation of the ID3 algorithm.

When given a set of examples of known classifications, we use the sample
information offered in Table 19.1, ID3 induces a tree that will correctly
classify all the training instances, and has a high probability of correctly

Chapter 19 Machine Learning in Lisp 255

classifying new people applying for credit, see Figure 19.1. In the
discussion of ID3 in Luger (2009, Section 10.3), training instances are
offered in a tabular form, explicitly listing the properties and their values
for each instance. Thus, Table 19.1 lists a set of instances for learning to
predict an individual’s credit risk. Throughout this section, we will continue
to refer to this data set.

Tables are only one way of representing examples; it is more general to
think of them as objects that may be tested for various properties. Our
implementation makes few assumptions about the representation of
objects. For each property, it requires a function of one argument that may
be applied to an object to return a value of that property. For example, if
credit-profile-1 is bound to the first example in Table 19.1, and
history is a function that returns the value of an object’s credit history,
then:

> (history credit-profile-1)

bad
Similarly, we require functions for the other properties of a credit profile:

> (debt credit-profile-1)

high

> (collateral credit-profile-1)

none

> (income credit-profile-1)

0-to-15k

> (risk credit-profile-1)

high
Next we select a representation for the credit assignment example, making
objects as association lists in which the keys are property names and their

data are property values. Thus, the first example of Table 19.1 is
represented by the association list:

((risk . high) (history . bad) (debt . high)
(collateral . none)(income . 0-15k))

We now use defstruct to define instances as structures. We represent
the full set of training instances as a list of association lists and bind this list
to examples:
(setq examples
‘(((risk . high) (history . bad) (debt . high)
(collateral . none) (income . 0-15k))
((risk . high) (history . unknown)
(debt . high)(collateral . none)
(income . 15k-35k))
((risk . moderate) (history . unknown)
(debt . low) (collateral . none)
(income . 15k-35k))
((risk . high) (history . unknown) (debt . low)

(collateral . none) (income . 0-15k))

256 Part III: Programming in Lisp

((risk . low) (history . unknown) (debt . low)
(collateral . none) (income . over-35k))
((risk . low) (history . unknown) (debt . low)
(collateral . adequate)
(income . over-35k))

((risk . high) (history . bad) (debt . low)
(collateral . none) (income . 0-15k))
((risk . moderate) (history . bad) (debt . low)

(collateral . adequate)
(income . over-35k))
((risk . low) (history . good) (debt . low)
(collateral . none) (income . over-35k))
((risk . low) (history . good) (debt . high)
(collateral . adequate) (income . over-35k))
((risk . high) (history . good) (debt . high)
(collateral . none) (income . 0-15k))
((risk . moderate) (history . good)
(debt . high) (collateral . none)
(income . 15k-35k))
((risk . low) (history . good) (debt . high)
(collateral . none) (income . over-35k))
((risk . high) (history . bad) (debt . high)
(collateral . none) (income . 15k-35k))))

Since the purpose of a decision tree is the determination of risk for a
new individual, test-instance will include all properties except
risk:
(setqg test-instance
‘((history . (debt .

none)

good) low)

(collateral . (income . 15k-35k)))

Given this representation of objects, we next define property:
(defun history (object)

(cdr (assoc ‘history object :test #’'equal)))

(defun debt (object)

(cdr (assoc ‘debt object :test #'equal)))
(defun collateral (object)

(cdr (assoc ‘collateral object :test

#'equal)))

(defun income (object)

(cdr (assoc ‘income object :test #'equal)))
(defun risk (object)

(cdr (assoc ‘risk object :test #’equal)))

Chapter 19 Machine Learning in Lisp 257

A property is a function on objects; we represent these functions as
a slot in a structure that includes other useful information:

(defstruct property

name
test

values)

The test slot of an instance of property is bound to a function that
returns a property value. name is the name of the property, and is
included solely to help the user inspect definitions. values is a list of all
the values that may be returned by test. Requiring that the values of each
property be known in advance simplifies the implementation greatly, and is
not unreasonable.

We now define decision-tree using the following structures:

(defstruct decision-tree
test-name
test
branches)
(defstruct leaf

value)

Thus decision-tree is cither an instance of decision-tree or
an instance of leaf. leaf has one slot, a value corresponding to a
classification. Instances of type decision-tree represent internal
nodes of the tree, and consist of a test, a test-name and a set of
branches. test is a function of one argument that takes an object and
returns the value of a property. In classifying an object, we apply test to
it using funcall and use the returned value to select a branch of the
tree. test-name is the name of the property. We include it to make it
easier for the user to inspect decision trees; it plays no real role in the
program’s execution. branches is an association list of possible subtrees:
the keys are the different values returned by test; the data are subtrees.

For example, the tree of Figure 19.1 would correspond to the following set
of nested structures. The #S is a convention of Common Lisp 1/0O; it
indicates that an s-expression represents a structure.
#S(decision-tree
ttest-name income
:test #<Compiled-function income #x3525CE>
tbranches
((0-15k . #S(leaf :value high))
(15k-35k . #S(decision-tree
:test-name history
ttest
#<Compiled-function history #x3514D6>

:branches

258

Part III: Programming in Lisp

((good . #S(leaf :value moderate))
(bad . #S(leaf :value high))
(unknown . #S(decision-tree
ttest-name debt
ttest
#<Compiled-function debt #x351A7E>
tbranches
((high . #S(leaf :value high))
(low . #S(leaf
:value moderate))))))))
(over-35k . #S(decision-tree
:test-name history
ttest
#<Co..d-fun.. history #x3514D6>
tbranches
((good . #S(leaf :value low))
(bad . #S(leaf :value
moderate))
(unknown . #S(leaf :value

low)))))))

Although a set of training examples is, conceptually, just a collection of
objects, we will make it part of a structure that includes slots for other
information used by the algorithm. We define example-£frame as:

(defstruct example-frame
instances
properties
classifier
size
information)

instances is a list of objects of known classification; this is the training
set used to construct a decision tree. properties is a list of objects of
type property; these are the properties that may be used in the
nodes of that tree. classifier is also an instance of property; it
represents the classification that ID3 is attempting to learn. Since the
examples are of known classification, we include it as another property.
size is the number of examples in the instances slog
information is the information content of that set of examples. We
compute size and information content from the examples. Since
these values take time to compute and will be used several times, we save
them in these slots.

ID3 constructs trees recursively. Given a set of examples, each an instance
of example-frame, it selects a property and uses it to partition the set
of training instances into non-intersecting subsets. Each subset contains all
the instances that have the same value for that property. The property

19.2

Chapter 19 Machine Learning in Lisp 259

selected becomes the test at the current node of the tree. For each subset
in the partition, ID3 recursively constructs a subtree using the remaining
properties. The algorithm halts when a set of examples all belong to the
same class, at which point it creates a leaf.

Our final structure definition is partition, a division of an example set
into subproblems using a particular property. We define the type
partition:
(defstruct partition
test-name
test
components

info-gain)

In an instance of partition, the test slot is bound to the property
used to create the partition. test-name is the name of the test,
included for readability. components will be bound to the subproblems
of the partition. In our implementation, components is an
association list: the keys are the different values of the selected test; each
datum is an instance of example-frame. info-gain is the
information gain that results from using test as the node of the tree. As
with size and information in the example-frame structure, this
slot caches a value that is costly to compute and is used several times in the
algorithm. By organizing our program around these data types, we make
our implementation more cleatly reflect the structure of the algorithm.

Implementing ID3

The heart of our implementation is the function build-tree, which
takes an instance of example-frame, and recursively constructs a
decision tree.
(defun build-tree (training-frame)
(cond
;Case 1: empty example set.
((null (example-frame-instances training-frame))
(make-leaf :value
“unable to classify: no examples”))
;Case 2: all tests have been used.
((null (example-frame-properties
training-frame))
(make-leaf :value (list-classes
training-frame)))
;Case 3: all examples in same class.
((zerop (example-frame-information
training-frame))

(make-leaf :value (funcall (property-test

260

Part III: Programming in Lisp

(example-frame-classifier
training-frame))

(car (example-frame-instances
training-frame)))))

;Case 4: select test and recur.
(t (let ((part (choose-partition
(gen-partitions training-frame))))
(make-decision-tree
ttest-name
(partition-test-name part)
ttest (partition-test part)
:branches (mapcar #'(lambda (x)
(cons (car X)
(build-tree (cdr x))))
(partition-components
part)))))))

Using cond, build-tree analyzes four possible cases. In case 1, the
example frame does not contain any training instances. This might occur if
ID3 is given an incomplete set of training examples, with no instances for a
given value of a property. In this case it creates a leaf consisting of the
message: “unable to classify: no examples”.

The second case occurs if the properties slot of training-frame is
empty. In recursively building the decision tree, once the algorithm selects a
property, it deletes it from the properties slot in the example frames for
all subproblems. If the example set is inconsistent, the algorithm may
exhaust all properties before arriving at an unambiguous classification of
training instances. In this case, it creates a leaf whose value is a list of all
classes remaining in the set of training instances.

The third case represents a successful termination of a branch of the tree. If
training-frame has an information content of zero, then all of the
examples belong to the same class; this follows from Shannon’s definition of
information, see Luger (2009, Section 13.3). The algorithm halts, returning a
leaf node in which the value is equal to this remaining class.

The first three cases terminate tree construction; the fourth case recursively
calls build-tree to construct the subtrees of the current node. gen-—
partitions produces a list of all possible partitions of the example set,
using each test in the properties slot of training-frame. choose-
partition selects the test that gives the greatest information gain. After
binding the resulting partition to the variable part in a 1let block, build-
tree constructs a node of a decision tree in which the test is that used in the
chosen partition, and the branches slot is bound to an association list of
subtrees. Each key in branches is a value of the test and each datum is a
decision tree constructed by a recursive call to build-tree. Since the
components slot of part is already an association list in which the keys
are property values and the data are instances of example-frame, we
implement the construction of subtrees using mapcar to apply build-
tree to cach datum in this association list.

Chapter 19 Machine Learning in Lisp 261

gen-partitions takes one argument, training-frame, an object of
type example-frame-properties, and generates all partitions of its
instances. Each partition is created using a different property from the
properties slot. gen-partitions employs a function, partition,
that takes an instance of an example frame and an instance of a property; it
partitions the examples using that property. Note the use of mapcar to
generate a partition for each element of the example-frame-
properties slotof training-frame.
(defun gen-partitions (training-frame)
(mapcar #'(lambda (x)
(partition training-frame x))
(example-frame-properties training-frame)))
choose-partition searches a list of candidate partitions and chooses the
one with the highest information gain:
(defun choose-partition (candidates)
(cond ((null candidates) nil)
((= (list-length candidates) 1)
(car candidates))
(t (let ((best (choose-partition
(cdr candidates))))
(if (> (partition-info-gain (car candidates))
(partition-info-gain best))
(car candidates) best)))))
partition is the most complex function in the implementation. It takes as
arguments an example frame and a property, and returns an instance of a
partition structure:
(defun partition (root-frame property)
(let ((parts (mapcar #'(lambda (x)
(cons x (make-example-frame)))
(property-values property))))
(dolist (instance
(example-frame-instances root-frame))
(push instance (example-frame-instances
(cdr (assoc (funcall
(property-test property)
instance)
parts)))))
(mapcar #'(lambda (x)
(let ((frame (cdr x)))
(setf (example-frame-properties frame)
(remove property

(example-frame-properties
root-frame)))

262

Part III: Programming in Lisp

(setf (example-frame-classifier frame)
(example-frame-classifier
root-frame))
(setf (example-frame-size frame)
(list-length
(example-frame-instances frame)))
(setf

(example-frame-information frame)
(compute-information

(example-frame-instances frame)
(example-frame-classifier

root-frame)))))
parts)
(make-partition
ttest-name (property-name property)
ttest (property-test property)
:components parts
tinfo-gain
(compute-info-gain root-frame parts))))

partition begins by defining a local variable, parts, using a let
block. It initializes parts to an association list whose keys are the
possible values of the test in property, and whose data will be the
subproblems of the partition. partition implements this using
the dolist macro. dolist binds local variables to each element of a list and
evaluates its body for each binding At this point, they are empty instances
of example-frame: the instance slots of each subproblem are bound to
nil. Using a dolist form, partition pushes each element of the
instances slot of root-£frame onto the instances slot of the appropriate
subproblem in parts. push is a Lisp macro that modifies a list by
adding a new first element; unlike cons, push permanently adds a new
element to the list.

This section of the code accomplishes the actual partitioning of root-
frame. After the dolist terminates, parts is bound to an association list in
which each key is a value of property and each datum is an example frame
whose instances share that value. Using mapcar, the algorithm then
completes the information required of each example frame in parts,
assigning appropriate values to the properties, classifier, size
and information slots. It then constructs an instance of partition,
binding the components slot to parts.

list-classes is used in case 2 of build-tree to create a leaf node for
an ambiguous classification. It employs a do loop to enumerate the classes
in a list of examples. The do loop initializes classes to all the values of the
classifier in training-frame. For each element of classes, it adds it to
classes-present if it can find an element of the instances slot of
training-frame that belongs to that class.

Chapter 19 Machine Learning in Lisp 263

(defun list-classes (training-frame)
(do
((classes (property-values
(example-frame-classifier
training-frame)) (cdr classes))
(classifier (property-test
(example-frame-classifier
training-frame))) classes-present)
((null classes) classes-present)
(if (member (car classes)
(example-frame-instances
training-frame)
:test #’'(lambda (x y)
(equal x (funcall
classifier y))))
(push (car classes) classes-present))))
The remaining functions compute the information content of examples.
compute-information determines the information content of a list of
examples. It counts the number of instances in cach class, and computes
the proportion of the total training set belonging to each class. Assuming this
proportion equals the probability that an object belongs to a class, it computes
the information content of examples using Shannon’s definition:
(defun compute-information (examples classifier)
(let ((class-count
(mapcar #'(lambda (x) (cons x 0))
(property-values classifier))) (size 0))
;count number of instances in each class
(dolist (instance examples)
(incf size) (incf (cdr (assoc

(funcall (property-test classifier)
instance) class-count))))

;compute information content of examples
(sum #' (lambda (x) (if (= (cdr x) 0) O
(* =1
(/ (cdr x) size)
(log (/ (cdr x) size) 2))))
class-count)))
compute-info-gain gets the information gain of a partition by
subtracting the weighted average of the information in its components from
that of its parent examples.
(defun compute-info-gain (root parts)
(— (example-frame-information root)
(sum #' (lambda (x)

264

Part III: Programming in Lisp

(* (example-frame-information (cdr x))
(/ (example-frame-size (cdr x))
(example-frame-size root))))
parts)))
sum computes the values returned by applying £ to all elements of 1ist-
of-numbers:
(defun sum (f list-of-numbers)
(apply ‘+ (mapcar f list-of-numbers)))
This completes the implementation of build-tree. The remaining
component of the algorithm is a function, classify, that takes as
arguments a decision tree as constructed by build-tree, and an object to
be classified; it determines the classification of the object by recursively
walking the tree. The definition of classify is straightforward:
classify halts when it encounters a leaf, otherwise it applies the test from
the current node to instance, and uses the result as the key to select a
branch in a call to assoc.
(defun classify (instance tree)
(if (leaf-p tree)
(leaf-value tree)
(classify instance
(cdr (assoc
(funcall (decision-tree-test tree)
instance)
(decision-tree-branches tree))))))
Using the object definitions just defined, we now call build-tree on the
credit example of Table 19.1. We bind tests to a list of property definitions for
history, debt, collateral and income. classifier tests the
risk of an instance. Using these definitions we bind the credit examples to an
instance of example-frame.
(setq tests
(list (make-property
:name ‘history
:test #'history
:values ‘(good bad unknown))
(make-property
:name ‘debt
ttest #'debt
:values ‘(high low))
(make-property
:name ‘collateral
:test #’'collateral

:values ‘(none adequate))

Chapter 19 Machine Learning in Lisp 265

(make-property
:name ‘income
ttest #’'income
tvalues
‘(0-to-15k 15k-to-35k over-35k))))
(setq classifier
(make-property
tname ‘risk
ttest #'risk
:values ‘(high moderate low)))
(setqg credit-examples
(make-example-frame
:instances examples
:properties tests
:classifier classifier
:size (list-length examples)

:information (compute-information
examples classifier)))

Using these definitions, we may now induce decision trees, and use them to
classify instances according to their credit risk:

> (setq credit-tree (build-tree credit-examples))
#S(decision-tree
ttest-name income
:test #<Compiled-function income #x3525CE>
tbranches
((0-to-15k . #S(leaf :value high))
(15k-to-35k . #S(decision-tree
:test-name history
ttest
#<Compiled-function history #x3514D6>
tbranches
((good . #S(leaf :value moderate))
(bad . #S(leaf :value high))
(unknown . #S(decision-tree
ttest-name debt
ttest
#<Compiled-function debt #x351A7E>
tbranches
((high . #S(leaf :value high))
(low .

#S(leaf :value moderate))))))))

266

Part III: Programming in Lisp

(over-35k . #S(decision-tree

:test-name history
:test #<Compiled-function history #x..6>
tbranches

((good . #S(leaf :value low))

(bad . #S(leaf :value moderate))

(unknown
#S(leaf :value low)))))))
>(classify ‘((history . good) (debt . low)

(collateral . none) (income . 15k-to-35k)) credit-
tree)

moderate

Exercises

1. Run the ID3 algorithm in another problem domain and set of examples
of your choice. This will require a set of examples similar to those of Table
19.1.

2. Take the credit example in the text and randomly select two-thirds of the
situations. Use these cases to create the decision tree of this chapter. Test
the resulting tree using the other one-third of the test cases. Do this again,
randomly selecting another two-thirds. Test again on the other one-third.
Can you conclude anything from your results?

3. Consider the issues of “bagging” and “boosting” presented in Luger
(2009, Section 10.3.4). Apply these techniques to the example of this
chapter.

4. There are a number of other decision-tree-type learning algorithms. Get
on the www and examine algorithms such QA4. Test your results from the
algorithms of this chapter against the results of QA4.

5. There are a number of test bed data collections available on the www for
comparing results of decision tree induction algorithms. Check out Chapter
29 and compare results for various test domains.

20

Lisp: Final Thoughts

Both Lisp and Prolog are based on formal mathematical models of
computation: Prolog on logic and theorem proving, Lisp on the theory of
recursive functions. This sets these languages apart from more traditional
languages whose architecture is just an abstraction across the architecture
of the underlying computing (von Neumann) hardware. By deriving their
syntax and semantics from mathematical notations, Lisp and Prolog inherit
both expressive power and clarity.

Although Prolog, the newer of the two languages, has remained close to its
theoretical roots, Lisp has been extended until it is no longer a purely
functional programming language. The primary culprit for this diaspora was
the Lisp community itself. The pure lisp core of the language is primarily an
assembly language for building more complex data structures and search
algorithms. Thus it was natural that each group of researchers or developers
would “assemble” the Lisp environment that best suited their needs. After
several decades of this the various dialects of Lisp were basically incompatible.
The 1980s saw the desire to replace these multiple dialects with a core
Common Lisp, which also included an object system, CLOS. Common Lisp is
the Lisp language used in Part III.

But the primary power of Lisp is the fact, as pointed out many times in Part
111, that the data and commands of this language have a uniform structure.
This supportts the building of what we call mweta-interpreters, or similarly, the use
of meta-linguistic abstraction. This, simply put, is the ability of the program
designer to build interpreters within Lisp (or Prolog) to interpret other suitably
designed structures in the language. We saw this many time in Part III,
including building a Prolog interpreter in Lisp, the design of the expert system
interpreter 1isp-shell, and the ID3 machine learning interpreter used for
data mining. But Lisp is, above all, a practical programming language that has
grown to support the full range of modern techniques. These techniques
include functional and applicative programming, data abstraction, stream
processing, delayed evaluation, and object-oriented programming.

The strength of Lisp is that it has built up a range of modern programming
techniques as extensions of its core model of functional programming. This
set of techniques, combined with the power of lists to create a variety of
symbolic data structures, forms the basis of modern Lisp programming. Part
I11 is intended to illustrate that style.

Partly as a result of the Lisp diaspora that produced Common Lisp, was the
creation of a number of other functional programming languages. With the
desire to get back to the semantic foundations on which McCarthy created
Lisp (Recursive functions of symbolic expressions and their computation by machine, 1960),

267

268

Part III: Programming in Lisp

several important functional language developments began. Among these we
mention Scheme, SML, and OCaml. Scheme, a small, sometimes called
academic Lisp, was developed by Guy Steele and Gerald Sussman in the 1970s.
Scheme chose static, sometimes called /xzcal, scope over the dynamic scope of
Common Lisp. For references on Scheme see Gerald Sussman and Guy Steele.
SCHEME: An Interpreter for Extended Lambda Calenlus, A1 Memo 349, MIT
Artificial Intelligence Laboratory, Cambridge, Massachusetts, December 1975
and The Scheme Programming Langnage by R. Kent Dybvig (1996).

Standard ML (SML) is a general-purpose functional language with compile-
time type checking. Type inference procedures use compile-time checking to
limit run-time errots. For further information see Robin Milner, Mads, Tofte,
Robert Harper, and David MacQueen. (1997). The Definition of Standard ML

(Revised). Objective Caml or Ocaml is an object-oriented extension to the
functional language Caml. It has an interactive interpreter, a byte-code
compiler, and an optimized native-code compiler. It integrates object-
orientation with functional programming with SML-like type inference. The
language is maintained by INRIA; for further details see Infroduction to Objective
Caml! by Jason Hickey (2008) and Practical OCam! by Joshua Smith (20006).

In designing the algorithms of Part III, we have been influenced by Abelson
and Sussman’s book The Structure and Interpretation of Computer Programs (1985).
Steele (1990) offers an essential guide to using Common Lisp. Valuable
tutorials and textbooks on Lisp programming include Lip (Winston and Horn
1984), Common LispCraft (Wilensky 19806), Artificial Intelligence Programming,
Charniak et al. (1987), Common Lisp Programming for Artificial Intelligence
(Hasemer and Domingue 1989), Common Lisp: A Gentle Introduction to Symbolic
Computation (Touretzky 1990), On Lisp: Advanced Techniques for Common Lisp
(Graham 1993), and ANST Common Lisp (Graham 1995).

A number of books explore the use of Lisp in the design of Al problem
solvers. Building Problem Solvers (Forbus and deKleer 1993) is an encyclopedic
treatment of Al algorithms in Lisp and an invaluable reference for Al
practitioners. Also, see any of a number of general Al texts that take a more
Lisp-centered approach to the basic material, including The Elements of Artificial
Intelligence Using Common Lisp by Steven Tanimoto (1990). Finally, we mention
Practical Common Lisp an introductory book on Common Lisp by Peter Seibel
(2004).

PART IV: AI Programming in Java

for now we see as through a glass darkly.
—~Paul to the Corinthians

The map is not the territory; the name is not the thing named.

—Alfred Korzybski

What have I learned but the proper use of several tools?.
—Gary Snyder “What Have | Learned”

Java is the third language this book examines, and it plays a different role in
the development of Artificial Intelligence programming than do Lisp and
Prolog. These earlier languages were tied intimately to the intellectual
development of the field and, to a large extent, they both reflect and helped
to shape its core ideas. We can think of Lisp as a test bed for the basic
ideas of functional programming and the specification for the Physical
Symbol System Hypothesis (Newell and Simon 19706): that dynamic
operations on symbol structures are a necessary and sufficient specification
for intelligent activity.

Similarly, Prolog was a direct exploration of declarative specifications of
knowledge and intelligence. Java’s place in the history of Al is different.
Rather than shaping the development of artificial intelligence itself, Java,
especially its object-oriented features and inheritance, are a product of
earlier Al language research, especially SmallTalk and Flavors. Our
inclusion of Java in this book is also evidence that Artificial Intelligence has
grown up, in that most of its tools and techniques are now considered to
be language independent. In fact, In Part V, Chapters 26, 29 and 31 present
Java-based Artificial Intelligence software available on the Internet.

Developed in the eatly 1990s by the Sun Microsystems Corporation, Java
was an effort to realize the full power of object-oriented programming,
OOP, in a language expressly designed for large-scale software engineering.
In spite of their power and flexibility, eatly object-oriented languages
including SmallTalk, Flavors, and the Common Lisp Object System
(CLOS), languages developed by the AI community itself, did not receive
the attention they deserved from the software engineering community.
Java, implementing many of the features of these ecatly tools, has been
more widely accepted.

Although the reasons given for the rejection of these eatlier, elegant
languages may appear to contemporary programmers to surpass rational

269

270

Part IV Introduction: Programming in Java

understanding, there were some common themes we can mention. Many
programmers, particularly those trained on languages like Basic, C, or
Fortran, found their Lisp-like syntax odd. Other programmers expressed
concern at potential inefficiencies introduced by the interpreted nature of
these languages, their implementation linked to dynamic binding, and the
limitations of their approach to automatic garbage collection.

It is also possible that these early object-oriented languages were simply
lost in the PC revolution. The limited processor speed and memory of
these carly desktop machines made them poor platforms for memory
intensive, dynamic languages like SmallTalk and Lisp. There was at least a
perception that the most suitable languages for PC programming were C
for systems programming and serious applications development, and Basic
for the kind of rapid development at which OOP languages excel. For
whatever reasons, in spite of the clear power of object-oriented
programming the most widely used OOP language at the time of Java’s
development was C++, a language deeply flawed by a poor
implementation of OOP’s dynamic features, a failure to handle types
propetly, and lack of automatic garbage collection.

Java offers a credible alternative to this. Although it presented the
programmer with the familiar C-style syntax, Java implemented such
fundamental object-oriented features as dynamic method binding, interface
definitions, garbage collection, and object-oriented encapsulation. It
addressed the efficiency problems of interpreted languages by pre-
compiling the source code into a machine independent intermediate form.
This not only made Java faster than interpreted languages while preserving
their dynamic capabilities, but also made it possible to compile Java
programs that would run on any platform that implemented an appropriate
Java Virtual Machine.

Java also offers a number of useful features for practical software
engineering, such as the ability to define packages that collected class
definitions under a bounded name space. What is perhaps most important,
Java was developed expressly as a programming language for interactions
with the World-Wide-Web. Based on Java’s platform independence, such
constructs as Applets, which allowed embedding a Java program in a web
page, and later developments like Servlets, WebStart, Java classes for
handling XML, and other features have made it the web programming
language of choice.

These features also suppott the relationship between Java and Artificial
Intelligence programming. As a credible implementation of object-oriented
programming, Java offers many of the capabilities that Al programmers
desire. These include the ability to easily create dynamic object structures,
strong encapsulation, dynamic typing, true inheritance, and automatic
garbage collection. At the same time, Java offers these features in a
language that supports large-scale software engineering through packages,
growing numbers of reusable software libraries, and rich development
environments.

As Artificial Intelligence has matured and moved out of the laboratory into
practical use, these features of Java make it well suited for Al applications.

Part IV Introduction: Programming in Java 271

Java supports the patterns of Al programming much more easily than
C++, and does so in the context of a powerful software engineering
language and environment. What is perhaps most important, Java
accomplishes this in a way that promises to make it easy to apply the power
of Al to the unlimited resources of the World-Wide-Web. Indeed, one of
our major goals in writing this book is to examine the integration of Java
into Al practice and thus, as noted above, we have several chapters that
explicitly link the development of Al software directly to web-available
Java tools.

In working through this section on Al Programming in Java, we
recommend the reader keep these goals in mind, to think in terms of using
Java to embed AI capability in larger, more general programs. Our
approach will be to focus most directly on the implementation of the basic
Al structures of search and representation in the Java idiom, and leave the
more general topics of web programming and large-scale software
engineering in Java to the many fine books on these topics. Thus, our
intent is to prepare the reader to develop these powerful Al techniques in
an object-oriented idiom that simplifies integrating them into practical,
large-scale, software applications.

Chapter 21 begins Part IV and describes how Al representations and
algorithms can be created within the object-oriented paradigm. Although
some representations, including semantic networks and frames, fit the
OOP paradigm well, others, including predicate calculus representation,
state-space search, and reasoning through expert system rule systems
require more thought. Chapter 22 begins this task by presenting an object-
oriented structure that supports state-space search that is general enough to
supportt alternative search algorithms including depth- breadth- and best
first search.

Chapters 23 - 25 present OOP representations for the predicate calculus,
unification, and production system problem solving. These three chapters
fit together into a coherent group as we first create a Java formalism for
the predicate calculus and then show inference systems based on a
unification algorithm written in Java. Finally, in Chapter 25 we present a
full goal-driven expert system shell able to answer the traditional how and
why queties. These three chapters are designed to be general in that their
approach to representational issues is not to simply support building
specific tools, such as a rule based expert system, Rather these chapters are
focused on the general issues of predicate calculus representation, the
construction and use of a unification algorithm with backtracking, and the
design of a predicate calculus based architecture for search

Chapter 26 is short, an introduction to web based expert system shells,
with a focus on JESS, a Java-based Expert System Shell developed by
Sandia National Laboratories.

Chapter 27 is the first of three chapters presenting Java-based machine
learning algorithms. We begin, Chapter 27, with a Java version of the ID3
decision tree algorithm. This is a information theoretic unsupervised
algorithm that learns patterns in data. Chapter 28 develops genetic
operators and shows how genetic algorithms can be used to learn patterns

272 Part IV Introduction: Programming in Java

in complex data sets. Finally, Chapter 29 introduces a number of web-
based machine learning software tools written in Java.

Chapters 30 and 31 present natural language processing algorithms written
in Java. Chapter 30 builds data structures for the Earley algorithm, an
algorithm that adopts techniques from dynamic programming for efficient
text based sentence parsing. Finally, Chapter 31 describes a number of
natural language processing tools available on the internet, including
LingPipe from the University of Pennsylvania, software tools available
from the Stanford University language processing group, and Sun
Microsystems’ speech API.

21 Java, Representation, and Object-
Oriented Programming

Chapter The primary representational constructs for Java are introduced including:
Objectives Objects and classes
Polymorphism
Encapsulation
Inheritance constructs presented
Single inheritance
Interfaces
Scoping and access
Java Standard Libraries
The Java idiom

Chapter 21.1 Introduction to O-O Representation and Design
Contents 21.2 Object Orientation
21.3 Classes and Encapsulation
21.4 Polymorphism
21.5 Inheritance
21.6 Interfaces
21.7 Scoping and Access
21.8 The Java Standard Library
21.9 Conclusions: Design in Java

21.1 Introduction to 0-O Representation and Design

Java has its roots in several languages and their underlying ways of thinking
about computer programming. Its syntax resembles C++, its semantics
reflects Objective-C, and its philosophy of development owes a
fundamental debt to Smalltalk. However, over the years, Java has matured
into its own language. This chapter traces the roots of Java to the ideas of
object-oriented programming, a way of thinking about programming,
program structure, and the process of development that it shares with
these earlier languages.

The origins of object-oriented programming are within the artificial
intelligence research community. The first implementation of this
programming paradigm was built at Xerox’s Palo Alto Research Center
with the creation of Smalltalk. The first release was Smalltalk-72 (in 1972).
Object-orientation was a critical component of the early Al research
community’s search for representational techniques that supported
intelligent activity both in humans and machines. The 1960s and 1970s saw
the Al community develop semantic nets, frames, flavors, as well as other
techniques, all of which had a role in the eventual development of object
systems (see Luger 2009, Section 7.1).

273

274

Part IV: Programming in Java

21.2

This chapter will quickly cover the fundamentals of Java, but its purpose is
not to teach the basics of Java programming, nor to provide a
comprehensive guide of Java features. This chapter builds a conceptual
framework with which to understand and reason about Java-style problem
solving, as well as to set the stage for subsequent chapters.

Object-Orientation

In previous sections of this book, we discussed functional and declarative
(or logic-based) programming as implemented in Lisp and Prolog
respectively. Each of these programming models has its strengths and clear
advantages for certain tasks. The underlying focus of OOP and Java is the
desire to model a problem as a composition of pieces that interact with one
another in meaningful ways. Among the goals of this approach is helping
us to think about programs in terms of the semantics of the problem
domain, rather than of the underlying computer; supporting incremental
prototyping by letting us build and test programs one object at a time; and
the ability to create software by assembling prefabricated parts, much like
manufacturers create goods from raw inputs. Indeed, OOP grew out of a
need for a different software representation and development process
altogether.

The key to OOP is its representational flexibility supporting the
decomposition of a problem into components for which one can define
behaviors and characteristics: A typical car has an engine that transfers
power to the wheels, both of which are attached to a frame and enclosed in
a body. Each of these components can be further broken down: an engine
consists of valves, pistons, and so forth. We can proceed down to some
atomic level, at which components are no longer composed of some
fundamentally simpler part. This introduces the idea of abstraction,
whereby we regard some composition of pieces as a single thing; for
example, a car. In Java, these pieces are called objects. One of the central
ideas of object-orientation is that these objects are complete definitions of
their “real-world” correlates. They define both the data and behaviors
needed to model those objects.

A major consequence of OOP is the goal of creating general, reusable
objects that can be used to build different programs, much like how a 9-
volt battery from any vendor can be plugged into thousands of entirely
different devices. This requires separating the definition of what an object
does from the implementation of how it does it, just as the battery’s
specification of its voltage frees its users from worrying about the number
of cells or the chemical reactions inside it. This idea has been very
important to the growth of Java.

Originally, the Java language started out small, with only a few constructs
morte than languages like C. However, as it has found use, Java has grown
through the efforts of developers to create packages of reusable objects to
manage everything from user interface development, the creation of data
structures, to network communication. In fact, if we look closely at Java, it
retains this flavor of a small kernal that is enhanced by numerous reusable
packages the programmer can draw upon in their work. To support this

21.3

Chapter 21 Java, Representation, and Object-Oriented Programming 275

growth, Java has provided rich, standardized mechanisms for creating and
packaging reusable software components that not only support hiding
implementation details behind object interfaces, but also give us a rich
language of types, variable scoping, and inheritance to manage these
interface definitions.

Classes and Encapsulation

The first step in building reusable composite parts is the ability to describe
their composition and behaviors. Java uses the notion of classes to desctibe
objects. A class is simply a blueprint for an object. It describes an object’s
composition by defining state variables, and the object’s behaviors by
defining methods. Collectively, state variables and methods are called the
fields of an object.

In general, a program can create multiple objects of a given class; these
individual objects are also called instances of a class. Typically, the state
variables of each instance have distinct values. Although all members of a
class have the same structure and types of behaviors, the values stored in
state variables are unique to the instance. Methods, on the other hand, are
simply lists of operations to perform. All instances of a class share the
same methods.

Let’s say we ate designing a class to model microwave ovens. Such a class
would be composed of a magnetron and a timer (among other things), and
would provide methods for getting the object to do something, such as
cooking the food. We next show how this class may look in Java.
Magnetron and Timer are classes defined elsewhere in the program, and
mag and t are state variables of those types. setTimer and cookMyFood
are the methods. State variables establish what is called an assembly, or
“has a,” relationship between classes. In this example, we would say that a
Microwave “has a” Magnetron and “has a” Timer. This approach is
analogous to the early Al notion of inheritance reflected in semantic
networks (Luger 2009, Section 7.1).

public class Microwave {
private Magnetron mag;
private Timer t;
public void setTimer (Time howLongToCook) {...}
public Food cookMyFood (Food coldFood) {...}
}

Objects encapsulate their internal workings. A well-designed object does
not allow other objects to access its internal structure directly. This further
reinforces the separation of what an object does from how it does it. This
pays benefits in the maintenance of software: a programmer can change the
internals of an object, perhaps to improve performance or fix some bug,
but as long as they do not change the syntax or semantics of the object
interface, they should not affect its ability to fit into the larger program.
Think again of the Microwave class (ot the oven itself). You don’t touch
the magnetron. You don’t even have to know what a magnetron is. You
control the behavior that matters to you by adjusting relevant settings via

276

Part IV: Programming in Java

21.4

the interface, and leave the rest to the microwave alone. Java provides the
access modifiers to control what it exposes to the rest of the program.
These modifiers can be private, public, and protected, and are described in
further detail in Section 21.6.

Polymorphism

Polymorphism has its roots in the Greek words “polos” meaning many, and
“morphos” meaning form, and refers to a particular behavior that can be
defined for different classes of objects. Whether you drive a cat or a truck,
you start it by inserting a key and turning it. Even if you only know how to
start a car, you can easily start a truck because the interface to both is the
same. The mechanical and electrical events that occur, when we start a
truck’s diesel engine say, are different from those of starting a car, but at a
level of abstraction, the actions atre the same. If we were defining cars and
trucks in an object-oriented language, we would say that the start method is
polymorphic across both types of vehicles.

Java supports polymorphism by allowing different objects to respond to
different methods with the same name. In other wortds, two different
classes can provide method implementations of the same name. Let’s say
we have two classes, one modeling microwave ovens and the other
modeling traditional stoves. Both can implement their own
startCooking method, even if they do so in fundamentally different
ways, using completely different method codes to do it.

Polymorphism is one benefit of OOP’s separation of an object’s interface
from its implementation, and it provides several benefits. It simplifies the
management of different classes of related types, and lets us write code that
will work with arbitrary classes at some point in the future. For example,
we can write a program for controlling a car object, leaving it up to some
other developer to actually provide the car object itself. Let’s say your code
makes calls to the car methods turnOn and shiftGear. With such a
framework, a developer might decide to plug in a truck object instead of a
car. If the appropriate measures are taken, it can actually work — even
though we never expected our program to work with trucks.

The benefits of polymorphism are in simplifying the structure of the
software by exploiting similarities between classes, and in simplifying the
addition of new objects to existing code. As a more practical example,
suppose we want to add a new type of text field to a user interface package.
Assume this new field only allows users to enter numbers, and ignores
letter keys. If we give this new text field object the same methods as the
standard text field (polymorphism), we can substitute it into programs
without changing the surrounding code.

This leads to a concept at the heart of both Al and Java: semantics. What is
it that makes the car object and the truck object semantically similar? How
do you write code that lets somebody swap a car for a truck? These
questions introduce the notion of inberitance.

21.5

Chapter 21 Java, Representation, and Object-Oriented Programming 277

Inheritance

Cars and trucks are both travel vehicles. Traditional stoves and microwave
ovens are both cooking appliances. To model these relationships in Java,
we would first create superclasses for the more general, abstract things (travel
vehicles and cooking appliances). We would then create classes for the
more specific, concrete things (cars, trucks, stoves and microwave ovens)
by making them subclasses of the appropriate superclasses. Superclasses and
subclasses are also referred to as parent classes and child classes, respectively.

What does this buy us? Two things: consolidation and reuse. To write a
class to model a car, and then one to model a truck, it should be obvious
that there is considerable overlap between the two definitions. Rather than
duplicating the definition of such common functions like starting,
stopping, accelerating, and so on, in each object, we can consolidate the
descriptions in the methods of the more abstract notion of a vehicle.
Furthermore, we can then use the vehicle superclass to quickly create a
motorcycle class: motorcycles will inherit the general functionality of a
vehicle (starting, stopping, etc), but will add those properties that are
unique to it, such as having two wheels.

In Java terminology, the classes for each of cars, trucks, and motorcycles
are said to extend ot inberit from the class for vehicle. The code skeletons
for implementing this inheritance are shown next. In particular, note that
there is nothing in the Vehicle class that specifies that it is to be used as
a superclass. This is important, as another developer might at some point
want to extend our class, even if the desire to do so never entered our
mind when we originally designed the software. In Java, most classes can
later be extended to create new subclasses.

public class Vehicle

{
public void start() /* code defines start*/
public void stop() /* code defines stop */
public void drive() /* code defines drive */
public boolean equals (Vehicle a)
/* code defines if two vehicles are same */
public int getWheels() { return 4;}
}
public class Motorcycle extends Vehicle
{
public int getWheels() { return 2;}
/* Overrides Vehicle method */
}
public class Car extends Vehicle
{

/* define methods that are unique to Car here */

278

Part IV: Programming in Java

public class Truck extends Vehicle

{

/*define methods unique to Truck here*/
}

To develop this idea further, imagine that we wanted a class to model
dump trucks. Again, we have overlap with existing components. Only this
time, there may be more overlap with the class for trucks than the class for
travel vehicle. It might make more sense to have dump trucks inherit from
trucks. Thus, a dump truck is a truck, which is a travel vehicle. Figure 21.1
illustrates this entire class hierarchy using an inheritance diagram, an
indispensable design aid.

We next discuss znberitance-based polymorphism. When we extend a superclass,
our new subclass inherits all public fields of its parent. Any code that uses
an object of our subclass can call the public methods or access the public
state variables it inherited from its parent class. In other words, any
program written for the superclass can treat our subclass exactly as if it
were an instance of the superclass. This capability enables polymorphism
(Section 21.3), and is crucial for code reuse; it allows us to write programs
that will work with classes that have not even been written yet.

The ability to extend most classes with subclasses establishes a semantic
relationship: we know that dump trucks are trucks, and that trucks are
travel vehicles, therefore trucks are travel vehicles. Furthermore, we know
how to start travel vehicles, so we cleatly know how to start dump trucks.
In Java, if the class Vehicle has a method start, then so does the
class DumpTruck. We next present fragments of code that illustrate how
polymorphism is enabled by inheritance.

Since DumpTruck and Car are descendants of Vehicle, variables of type
Vehicle can be assigned objects of either type:

Vehicle trashTruck = new DumpTruck();

Vehicle dreamCar = new Car();
Methods that take arguments of type Vehicle can take instances of any
descendants:

if (dreamCar.equals(trashTruck))

then

Finally, methods that return type travelvehicle can return instances
of any subclass. The following example illustrates this, and also shows an
example of the Factory design pattern. A Factory pattern defines a class
whose function is to return instances of another class, often testing to
determine variations on those instances.

Chapter 21 Java, Representation, and Object-Oriented Programming 279

Figure 21.1: An inheritance diagram of our travelvehicle class hierarchy.
Arrows denote “extends,” also known as the “is a” relationship. For
example, a dump truck is a truck, which is a travelvehicle.

class Vehicle Factory()

{

public Vehicle getCar(Person customer)

{
if (customer.job = “Construction”)
then return new Truck();
if (customer.job = “Salesman”__

then return new Car();

// etc.
}

We have seen semantic relationships and type hierarchies before. In
Section 2.4 we used them to model symbolic knowledge in the form of
semantic networks and frames. Semantic relationships serve the same
purpose in Java. We are using classes to represent things in a hierarchically
organized way. Java can credit classical Al research as the source of

modeling knowledge using semantic hierarchies on a computer (see Luger
2009, Section 7.1).

Another important aspect of inheritance and polymorphism is the ability to
give different classes the same methods, but to give them different
definitions for each class. A common application of this is the ability to
change a method definition in a descendant. For example, suppose we

280

Part IV: Programming in Java

21.6

want to change the start method for a motorcycle from using a starter to a
simple kick-start. We would still make motorcycle a descendant of
Automobile, but would redefine the start method:

class Motorcycle extends Vehicle

{
public void start()
{
// Motorcycles use this definition of start
// instead of Vehicle's
}
}

We make one final point on inheritance. In our class hierarchy,
DumpTruck has exactly one parent: Truck. That parent has only one
parent as well: Vehicle. Every class in Java has exactly one parent. What
is the parent of Vehicle? When a class does not explicitly state which
class it extends, it automatically inherits from the generic class called
Object.

Object is the root of all class hierarchies in Java. This automatic
inheritance means that every single object in a Java program is, by
inheritance, an instance of the Object class. This superclass provides
certain facilities to every single object in a Java program, many of which are
rarely used directly by the programmer, but which can, in turn, be used by
other classes in the Java Standard Library.

In some languages (e.g., C++ and CLOS), classes can inherit from multiple
parents. This capability is known as maltiple inberitance. Java does not
support multiple inheritance, opting instead for single inheritance. There is
an ongoing debate between proponents of each approach, primarily related
to program integrity and inadvertent creation of side effects, but we will
not go into theses issues here.

Interfaces

Up to this point, the word znferface has been used to refer to the public
fields of a class. Here we introduce a special Java construct that also
happens to be known as an “interface”. Although these concepts ate
related, it is important to distinguish between the two.

A Java interface is a mechanism for standardizing the method names of
classes for some purpose. It is effectively a contract that a class can agree
to. The term of this agreement is that a class will implement at least those
methods named in the interface definition.

A Java interface definition consists of the interface name, and a list of
method names. A class that agrees to implement the methods in an
interface is said to implement that interface. A class specifies the interfaces
it implements in the class declaration using an implements clause. If a class
agrees to implement an interface, but lacks even one of the prescribed
methods, it won’t even compile. For example, consider the interface:

Chapter 21 Java, Representation, and Object-Oriented Programming 281

interface Transportation

{
public int getPassengerCapacity();
public double getMaximumSpeed();
public double getCost();

}

The definition of the Transportation interface does not define the
implementation of the methods getPassengerCapacity(),
getMaximumSpeed(), or getCost(). It only states that any
instance of Transportation must define these methods. If we had
changed the definition of the class Automobile to read as follows, then
we would be required to define the methods of Transportation in
the class Vehicle.

class Vehicle implements Transportation

This feels a bit like inheritance. After all, when we extend a parent class, we
are promising that all public fields from that parent class are available,
allowing programs to treat our new class like the parent class. Even if the
inherited fields are overridden, they ate sure to exist. However, there are
conceptual and practical differences between inheritance and Java
interfaces.

What is most important is that interfaces are only a specification of the
methods in a class. They carry no implementation information. This allows
us to define “contracts” between classes for how classes should behave
without concern for their implementation. Suppose, for example, we
wanted to define a class to manage all our vehicles. This class, which we
call Fleet, could be defined to manage instances of the interface
Transportation. Any class that implemented that interface could be
in Fleet:

class Fleet

{
public void add(Transportation v)
{
//Define add here
}
public double getTotalCost()
{
//sum of getCost on all Transportation
}
}

This technique will be extremely important in using Java for building Al
applications, since it allows us to create general tools for searching problem

282

Part IV: Programming in Java

21.7

spaces, pattern matching, and so on without knowing what types of spaces
we will be searching or objects we will be matching. We simply create the
interface such objects must define, and write our search engines to handle
those interfaces.

At the operational level, classes can implement any number of interfaces.
The methods defined in the interfaces can even ovetlap. Because the
implementing class does not actually inherit method implementations from
the interface, overlap is irrelevant. This gives us many of the benefits of
multiple inheritance, and yet retains some security from unwanted side
effects. Finally, interfaces provide another mechanism to enable
polymorphism. As long as we know that a specific object can perform
certain operations, we can ask it to do so.

Interfaces are especially useful when writing frameworks that require some
specific behavior from objects of some class, but that do not care at all
about the object’s family. Thus, the framework does not constrain the
semantic relationships of the class, which may come from a completely
different developer, and might not have even been written yet. Java
frameworks that impose such constraints often over-step their boundary,
particularly when an interface would have been sufficient.

Scoping and Access

Java allows programmers to specify the context in which declarations and
variables have an effect. This context is known as the scgpe. For example, if
we declare a variable inside of a method, that variable is only accessible
within that method.

Fields declared private are only accessible by methods in the same class; not
even children of the class can access these fields. Although we often would
like child classes to be able to access these variables, it is usually good style
to define all member variables as private, and to provide public
accessor functions to them. For example:

public class Foo

{
private int value;
public int getValue()
{
return value;
}
public void setValue(int newValue)
{
value = newValue;
}
}

The reason for enforcing the private scope of member variables so strongly
is to maintain the separation of interface and implementation. In the
previous example, the class Foo does not expose the representation of the

21.8

Chapter 21 Java, Representation, and Object-Oriented Programming 283

variable value. It only makes a commitment to provide such a value
through accessor functions getValue() and setValue(int
newValue). This allows programmers to change the internal
representation of value in subtle ways without affecting child classes. For
example, we may, at some time, want to have the class Foo notify other
classes when value changes using Java’s event model. If value were
public, we could not be sure some external method did not simply assign
directly to it without such a notification. Using this private variable/public
accessor pattern makes this easy to guarantee.

In contrast, protected fields are accessible by inherited methods, and public
fields are accessible by anybody. As a rule, protected scope should be used
carefully, as it violates the separation of interface and implementation in
the parent class.

Fields declared static are unique to the class, not to the instance. This means
that there is only a single value of a static variable, and all instances of a
given class will access that value. Because this creates the potential for
interesting side-effects, it should be used judiciously. Static methods do not
require an instance in order to be called. As such, static methods cannot
access non-static state variables, and have no this variable.

Another useful modifier is final. You cannot create subclasses of a class that
is declared £inal, or override a final method in a subclass. This allows
the programmer to limit modifications to methods of a parent class. It also
allows the creation of constants in classes, since variables declared £inal
cannot be changed. Generally, final variables are declared static as
well:

public class Foo

{
public static final double pi = 3.1416;

The Java Standard Library

In pursuing the goal of widespread reuse of software components, Java
comes prepackaged with a substantial collection of classes and interfaces
known as the Java Standard Library. This library provides a variety of
facilities, including priority queues, file I/O, regular expressions,
interprocess communication, multithreading, and graphical user interface
components, to name just a few.

The Java standard library has proven to one of Java’s most strategic assets.
At a minimum, developers can focus on high-level objects by reusing
common components, instead of building every application from a few
basic commands. Using the techniques described above, standardization
saves developers from having to learn multiple libraries that provide
identical functionality, which is a common problem with other languages
for which multiple software vendors distribute their own libraries. The Java
library continues to grow driven by emerging challenges and technologies.

284

Part IV: Programming in Java

21.9

Conclusions: Designing in Java

As we strive to acquire the Java idiom, and not simply “learn the language”,
we must begin to think in Java. As stated earlier, Java and OOP emerged
out of a need to improve the entire process of creating software. More
than other languages, Java is linked to a particular set of assumptions about
how it will be used. For example, rewse is an important aspect of this
approach. When possible, we should not build Java programs from scratch
using the basic language, but should look for reusable classes in the
standard libraries, and may even want to consider commercial vendors or
open source providers for complex functionality. In addition, Java
programmers should always try to generalize their own code to create
classes for possible later reuse.

One intention of object-oriented programming is to simplify later program
maintenance by organizing code around structures that reflect the structure
of the problem domain. This not only makes the code easier to understand,
especially for other programmers, but also tends to reduce the impact of
future changes. In maintenance, it is important for the change process to
be reasonable to the customer: change requests that seem small to the
customer should not take a long time. Because the final uset’s estimate of
the complexity of a requested change reflects her or his own conceptual
model of the problem, capturing this model in the computer code helps to
insure a reasonable change process.

Finally, the ability to create classes that hide their internal structure makes
Java an ideal language for prototyping (Luger 2009, Section 8.1). We can
build a program up one class at a time, debugging and testing classes as we
go. This sort of iterative approach is ideal for the kinds of complex projects
common to modern Al, and programmers should design classes to support
such an iterative approach. Guidelines for this approach to programming
include:

Try to make the breakdown of the program into classes reflect
the logical structure of the problem domain. This not only
involves defining classes to reflect objects in the domain, but
also anticipating the source of pressures to change the program,
and making an effort to isolate anticipated changes.

Always make vatiables private, and expose public
methods only as needed.

Keep methods small and specialized. Java methods almost never
take more than a full screen of code, with the vast majority
consisting of less than a dozen lines.

Use inheritance and interface definitions to “program by
contract”. This idea extends such useful ideas as strong variable
typing to allow the programmer to tightly control the
information passing between objects, further reducing the
possibility of bugs in the code.

Finally, we should remember that this is not simply a book on
programming in Java, but one on Al programming in Java. A primary goal

Chapter 21 Java, Representation, and Object-Oriented Programming 285

of Artificial Intelligence has always been to find general patterns of
complex problem solving, and to express them in a formal language.
Although Java does not offer the clear Al structures found in Lisp and
Prolog, it does offer the programmer a powerful tool for creating them in
the form of reusable objects/classes.

In writing this chapter, we faced a very difficult challenge: how can we
write a meaningful introduction to so complex a language as Java, without
falling into the trap of trying to write a full introductory text in the
language. Our criteria for organizing this chapter was to emphasize those
features of Java that best support the kinds of abstraction and structuring
that support the complexity of Al programming. As with Lisp and Prolog,
we will not approach Java simply as a programming language, but as a
language for capturing the patterns of Al programming in general, reusable
ways.

We should not simply think of Java as a programming language, but as a
language for creating specialized languages: powerful classes and tools we
can use to solve our programs. In a very real sense, master Java
programmers do not program in Java, as much as they use it to define
specialized languages and packages tailored to solve the various problems
they face. This technique is called meta-linguistic abstraction, and it is at the
heart of OOP. Essentially meta-linguistic abstraction means using a base
language to define a specialized language that is better suited to a particular
problem.

Meta-linguistic abstraction is a powerful programming tool that undetlies
many of the examples that follow in later chapters, especially search
engines, the design of expert systems shells, and control structures for
genetic algorithms and machine learning. We can think of these generalized
search strategies, representations, or expert-system shells as specialized
languages built on the Java foundation. All the features of Java described in
this chapter, including inheritance, encapsulation, polymorphism, scoping,
and interfaces serve this goal.

Exercises

1. Create an inheritance hierarchy for a heating and air conditioning system
for a building using centralized heating/cooling sources. Attempt to make
the overall control parallel and asynchronous. Capture your design with an
inheritance diagram (see Figure 25.3).

2. Expand on problem 1, where each floor of the building has a number of
rooms that need to be heated/cooled. Create a room hierarchy where the
generic room has a fixed set of attributes and then each individual room
(office, common room store room) inherits different properties. Each
room should have its individual controller to communicate with the
general-purpose heating/cooling system.

3. Problems 1 and 2 can be even further expanded, where each room has
its own volume, insulation factor (the area of windows, say), and
heating/cooling requirements. Suppose you want to design the ultimate
“oreen” or conservation-oriented structure. How might you design such a
building?

286 Part IV: Programming in Java

4. Create an inheritance hierarchy for an elevator control system. Take, for
example a fifteen-storey building and three elevators. Capture your design
with an inheritance diagram (see Figure 25.3).

5. Create Java structure code, similar to that in Sections 21.4.2, 21.5 and
21.6 for implementing the examples you created in questions you
considered from exercises 1 - 4.

6. Consult the Java Library. What software components therein might
support your program designs for question 3?

22 Problem Spaces and Search

Chapter Uninformed state space search strategies are revisited:
Objectives Depth-first search
Breadth-first search
Heuristic or best-first search is presented
Java idioms are created for implementing state-space search
Establishing a framework
Interface class
Solver
AbstractSolver

Implements search algorithms

Chapter 22.1 Abstraction and Generality in Java
Contents 22.2 Search Algorithms
22.3 Abstracting Problem States
22.4 Traversing the Solution Space
22.5 Putting the Framework to Use

22.1 Abstraction and Generality in Java

This book, like the history of programming languages in general, is a story
of increasingly powerful abstraction mechanisms. Because of the
complexity of the problems it addresses and the rich body of theory that
defines those problems in computational terms, Al has proven an ideal
vehicle for developing languages and the abstraction mechanisms that give
them much of their value. Lisp advanced ideas of procedural abstraction by
following a mathematical model — recursive functions — rather than the
explicitly machine influenced structures of earlier languages. The result was
a sophisticated approach to wvariable binding, data structures, function
definition and other ideas that made Lisp a powerful test bed for ideas
about symbolic computing and programming language design. In
particular, Lisp contributed to the development of object-oriented
programming through a variety of Lisp-based object languages culminating
in the Common Lisp Object System (CLOS). Prolog took a more radical
approach, combining unification based pattern matching, automated
theorem proving, and built-in search to render procedural mechanisms
almost completely implicit and allow programmers to approach programs
in a declarative, constraint-based manner.

This chapter continues exploring abstraction methods, taking as its focus
the object-oriented idiom, and using the Java programming language as a
vehicle. It builds on Java’s object-orientated semantics, employing such
mechanisms as inheritance and encapsulation. It also explores the
interaction between Al theory and program architecture: the problems of

287

288

Part IV: Programming in Java

22.2

rendering theories of search and representation into code in ways that
honor the needs of both. In doing so, it provides a foundation for the
search engines used in expert systems, cognitive models, automated
reasoning tools, and similar approaches that we present later. As we
develop these ideas, we urge the reader to consider the ways in which Al
theories of search and representation shaped programming techniques, and
the abstractions that project that theory into working computer programs.

One of the themes we have developed throughout this book concerns
generality and reuse. Through the development of object-oriented
programming, many of these ideas have evolved into the notion of a
framework: a collection of code that furnishes general, reusable
components (typically data structures, algorithms, software tools, and
abstractions) for building a specific type of software. Just as a set of
modular building components simplifies house construction, frameworks
simplify the computational implementation of applications.

Creating useful frameworks in Java builds on several important abstraction
mechanisms and design patterns. Class inheritance is the most basic of
these, allowing us to specify frameworks as general classes that are
specified to an application. However, class inheritance is only the starting
point for the subtler problems of implementing search algorithms.
Additional forms of abstractions we use include interfaces and generic
collections.

Our approach follows the development of search algorithms leading to the
Lisp and Prolog search shells in Chapters 4 and 14 respectively, but
translates it into the unique Java idiom. We encourage the reader to reflect
on the differences between these approaches and their implications for
programming. Before implementing a framework for basic search, we
present a brief review of the theory of search.

Search Algorithms

Search is ubiquitous in computer science, particularly in Artificial
Intelligence where it is the foundation of both theoretical models of
problem solving, practical applications, and general tools and languages
(including Prolog). This chapter uses the theory of search and Java idioms
to develop a framework for implementing search strategies. We have
explored the theory of Artificial Intelligence search elsewhere (Luger 2009,
Chapters 3, 4, and 06), but will review the key theoretical ideas briefly.

Both the analysis of problem structure and the implementation of problem
solving algorithms depend upon modeling the structure of a problem
graphically: as a state-space. The elements defining a state-space are:

A formal representation of possible states of a problem
solution. We can think of these as all possible steps in a solution
process, including both complete solutions and partial steps
toward them. An example of a state might be a configuration of a
puzzle like the Rubik’s cube, an arrangement of tiles in the 16-
puzzle, or a complex set of logical assertions in an expert system.

Chapter 22 Problem Spaces and Search 289

Operators for generating new states from a given state. In
our puzzle example, these operators are legal moves of the
puzzle. In more sophisticated applications, they can be logical
inferences, steps in data interpretation, or heuristic rules for
expert reasoning. These operators not only generate the next
states in a problem solving process, but also define the arcs or
links in a state-space graph.

Some way of recognizing a goal state.
A starting state of the problem, represented as the root of

the graph.

Figure 22.1 shows a portion of the state-space for the 8-puzzle, an example
we will develop later in this chapter.

1 3 11 4 1 3 114|3
71 4|6 7|6 7|1 8|6 7|6
5(8|2 5(8|2 5 2 5(8|2
\ /
" /,/‘ ‘
Left | Right Up Down / Left Right Up Down
Y X 4 v
3 113 4|3 1143 1143 1| 4 1|1 4 1143
6 714|6 117|686 517|686 718|686 718|686 716|3 716|2
2 5|82 5|82 8|2 5|2 5|2 5|82 5|8

Voo

Figure 22.1. A sample state space to be searched. The goal is to have the
numbers in clockwise order from the upper left hand corner. States are
generated by "moving” the blank.

B s I o B [N Y

Our discussion begins with two basic “uninformed” algorithms: depth-first
search (DFS) and breadth-first search (BFS). We call these “uninformed”
because they do not use knowledge of the problem-space to guide search,
but proceed in a fixed order. DFS picks a branch of the search space and
follows it until it finds a goal state; if the branch ends without finding a
goal, DFS “backs up” and tries another branch. In contrast, breadth-first
search goes through the state space one layer at a time.

Figure 22.2 illustrates the difference between these approaches for the 8-
puzzle problem, where depth-first search is given a five level depth bound.
Note that although both searches find solutions, breadth-first search finds
the solution that is closest to the root or start state. This is always true
because BFS does not consider a solution path of distance d from the start
until it has considered all solution paths of distance d—1 from the start.

290

Part IV: Programming in Java

2|8|3

116(4

7 5
2283 3283 4293
1|64 1 4 1164
7[5 7[/6[5 7[5

2|8|3 2|/8|3 2 3 2|8|3 2|8(3
6|4 114 1/8|4 14 116
117|5 7|6|5 7|6|5 7|6|5 7|54
10 11 12 /k 14 /k 16 /k 18 /&
8|3 2|83 8|3 2|8|3 2|3 2|3 2|8 2|e|3 2|e|3 2|8
2|64 6 4 214 7114 1184 1|84 114(3 114|5 1 6 116]|3
1175 1175 7|6|5 6|5 7|6|5 7|6(5 7|65 7|6 7|54 7|5(4
20 2 22 23 24 >\ 26 °7\ / / \
8 3 2 3 2|e|3 2(8|3 8 32|83]|1]|2]|3|[2[3[4]|2 8l(2[8[3]|2]8]|3]|2 3|l2]8|3]||2 8
2|6|4 6|84 6|4 6|74 214|714 el4fl1|8 1]4(3]|[1] 4|5 1|6f[1]|8]|6]||1|5]|6]|1]|6]3
1|75 1|7]5 117|5 1 5 7|86[5]|6 5(7]|6|5)||7|6|5|7][6]5]|7 6(7|5[4]|7]|5]|4]||7 41|7|5|4
i J
\\'\\ 28 29 30 31 32 33
8|3 8|6|3 2|3)2|3 2|8 2|8|3||2|8]|3]||2|8]|3]|8e|3 gl1l3|l2]8]3||2]8]|3]|1]|2]|3
2|6|4|l2 4||6/8|4||6|8|4|l6]|4[3|l6|4|5||6|7|4]|6[7|4]|l2[1][4]2 4|7 4|7]1[4]|le 4
1|75 |75 | 751|751 |7]|5)11|7 1{5|(1]5 7|16(5|7]6|5][6]1]5(l&6]|5 716|5
34 35 36 37 38 39 40 41 42 43 44 45 46

Goal

Figure 22.2. Depth-first search (a), using a depth bound of five levels,
and breadth-first search (b) of the 8-puzzle. States are generated by
“moving” the blank space.

These algorithms search a state-space in very different orders, but share a
common general structure: both go through an iterative process of
selecting a state in the graph, beginning with the start-state, quitting with
success if the state is a goal, and generating its child states if it is not. What
distinguishes them is how they handle the collection of child states. The
following pseudo code gives a basic search implementation:

Chapter 22 Problem Spaces and Search 291

Search(start-state)

{
place start-state on state-list;
while (state-list is not empty)
{
state = next state on state-list;
if(state is goal)
finish with success;
else
generate all children of state and
place those not previously visited
on state-list;
}
}

This algorithm is the general structure for all the implementations of search
in this chapter: what distinguishes different search algorithms is how they
manage unvisited states. DFS manages the state-1ist as a stack, while
BES uses a guene. The theoretical intuition here is that the last-in/first-out
nature of a stack gives DIS its aggressive qualities of pursuing the current
path. The first-in/first-out state management of a queue assures the
algorithm will not move to a deeper level until all prior states have been
visited. (It is worth noting that the Prolog interpreter maintains execution
states on a stack, giving the language its depth-first character).

However, BES and DES proceed blindly through the space. The order of
the states they visit depends only on the structure of the state space, and as
a result DFS and/or BFS may not find a goal state efficiently (or at all).
Most interesting problems involve multiple transitions from each problem
state. Iterating on these multiple child states through the entire problem
space often leads to an exponential growth in the number of states
involved in the state-1ist. For small enough spaces, we can find a
solution through uninformed search methods. Larger spaces, however,
must be searched intelligently, through the use of heuristics. Best-first search
is our third algorithm; it uses heuristics to evaluate the set of states on
state-1list in order to choose which of several possible branches in a
state space to pursue next. Although there are general heuristics, such as
means-ends analysis and inheritance (Luger 2009), the most powerful
techniques exploit knowledge unique to the particular problem domain.

A general implementation of best-first or heuristic search computes a
numerical estimate of each state’s “distance” from a solution. Best-first
search always tries the state that has the closest estimate of its distance to a
goal. We can implement best-first search using the same general algorithm
as the other state space searches presented above, however we must assign
a heuristic rank to each state on the state-1ist, and maintain it as a
sorted list, guaranteeing that the best ranked states will be evaluated first.
state-1list is thus handled as a priority queue.

292

Part IV: Programming in Java

21.3

This summary of search is not intended as a tutorial, but rather as a brief
refresher of the background this chapter assumes. We refer readers who
need further information on this theory to an Al text, such as Luger (2009,
see Chapters 3 and 4).

Abstracting Problem States

We begin with the search pseudo-code defined above, focusing on the
problem of representing states of the search space, as is typical of Al
programming. This also reflects architectures we have used throughout the
book: the separation of representation and control. Because of the relative
simplicity of the search algorithms we implement, we approach this as
separate implementations of states and search engines.

Our goal is to define an abstract representation of problem states that
suppotts the general search algorithm and can be easily specialized through
the mechanism of class inheritance. Our basic approach will be to define a
class, called State, that specifies the methods common to all problem
states and to define subclasses that add problem-specific information to it,
as we see in Figure 22.3.

Figure 22.3. State representation for search containing problem-specific
specifications.

In many cases, general class definitions like State will implement methods
to be used (unless overridden) by descendant classes. However, this is only
one aspect of inheritance; we may also define method names and the types
of their arguments (called the method signature), without actually
implementing them. This mechanism, implemented through abstract
classes and methods, allows us to specify a sort of contract with future
extensions to the class: we can define other methods in the framework to
call these methods in instances of State‘s descendants without knowing
how they will implement them. For example, we know that all states must
be able to produce next moves, determine if they are a solution, or
calculate their heuristic value, even though the implementation of these is
particular to specific problem states.

We can specify this as an abstract class:

Chapter 22 Problem Spaces and Search 293

public abstract class State

{
public abstract Set<State> getPossibleMoves();
public abstract boolean isSolution();
public abstract double getHeuristic();

}

Note that both the methods and the class itself must be labeled
abstract. The compiler will treat efforts to instantiate this class as
errors. Abstract methods are an important concept in object-oriented
programming, since the signature provides a full specification of the
method’s interface, allowing us to define code that uses these methods
prior to their actual implementation.

Requiring the state class to inherit from the State base class raises a
number of design issues. Java only allows inheritance from a single parent
class, and the programmer may want to use the functionality of another
parent class in creating the definition of the state. In addition, it seems
wasteful to use a class definition if all we are defining are method
signatures; generally, object-oriented programming regards classes as
containing at least some state variables or implemented methods.

Java provides a mechanism, the znterface, which addresses this problem. If
all we need is a specification — essentially, a contract — for how to interact
with instances of a class, we leave the implementation to future developers,
we can define it as an interface. In addition to having a single parent
class, a class can be declared to implement multiple interfaces.

In this case, we will define State as an interface. An interface is like a
class definition in which all methods are abstract: it carries no
implementation, but is purely a contract for how the class must be
implemented. In addition to the above methods, our interface will
also define methods for getting the parent of the state, and its distance
from the goal:

public interface State

{
public Iterable<State> getPossibleMoves();
public boolean isSolution();
public double getHeuristic();
public double getDistance();
public State getParent();
}

Note in this situation the expression Iterable<State> returned by
getPossibleMoves (). The expression, Iterable<State> is part of
Java’s generies capability, which was introduced to the language in Java 1.5.
Generics use the notation Collection-Type<Element-Type> to
specify a collection of elements of a specific type, in this case, an
Iterable collection of objects of type State. In eatlier versions of

294

Part IV: Programming in Java

Java, collections could contain any descendants of Object, the root of
Java’s class hierarchy. This prevented adequate type checking on collection
elements, creating the potential for run-time type errors. Generics prevent
this, allowing us to specify the type of collection elements.

Like State, Iterable<State> is an interface, rather than a class
definition. Iterable defines an interface for a variety of classes that allow
us to iterate over their members. This includes the Set, List, Stack,
PriorityQueue and other collection classes. We could define this
collection of child states using a specific data structure, such as a list, stack,
etc. However, it is generally a bad idea to constrain later specialization of
framework classes unnecessarily. Suppose the developer has good reason
to collect child states in a different data structure? Once again, by using an
interface to define a data type, we create a contract that will allow our
search framework to implement functions that use classes, while leaving
their instantiation to future programmers.

This interface is adequate to implement the search algorithms of Section
22.1, but before implementing the rest of our framework, note that two of
the methods specified in the State interface are general enough to be
defined for most, if not all, problems: getDistance() computes the
distance from the start state, and getParent () returns the parent state
in the search space. To simplify the work for future programmers, we
implement a class, AbstractState, that provides a default
implementation of these methods.

public abstract class AbstractState implements
State

private State parent = null;
private double distance = 0;

public AbstractState() {}
public AbstractState(State parent)

{
this.parent = parent;
this.distance = parent.getDistance() + 1;
}
public State getParent()
{
return parent;
}
public double getDistance()
{
return distance;
}

22.4

Chapter 22 Problem Spaces and Search 295

Note that AbstractState implements the State interface, so classes
that extend it can be used in our framework, freeing the programmer for
the need to implement certain methods. It may seem that we have gone in
a circle in this discussion, first defining State as an abstract class, then
arguing that it should be an Interface, and now reintroducing an
abstract class again. However, there are good reasons for this approach.
Figure 22.4 illustrates a common Java design pattern, the use of an
interface to specify an implementation “contract”, with an abstract class
providing default implementations of general methods.

Figure 22.4. A Java design pattern: using an interface to specify a
contract.

The pattern of specifying method signatures in an interface and providing
default implementations of certain methods in an abstract class, is common
in Java. By defining all methods required of the framework in an interface
and using the interface to specify all types, we do not constrain future
programmers in any way. They can bypass the abstract class entirely to
address efficiency concerns, the needs of a problem that may not fit the
default implementations, ot simply to improve on the defaults. In many
situations, however, programmers will use the abstract class
implementation to simplify coding.

The next section repeats this pattern in implementing the control portion
of our framework: the depth-first, breadth-first, and best-first search
algorithms described earlier.

Traversing the Problem Space

Although simple, the State interface fully specifies the “contract”
between the search framework and developers of problem-specific state
representations. It gives the method signatures for testing if a state is a
goal, and for generating child states. It leaves the specific representation to
descendant classes. The next task is to address the implementation of
search itself: defining the list of states and the mechanisms for moving

296

Part IV: Programming in Java

through them in search. As with State, we will begin with an
interface definition:

public interface Solver

{
public List<State> solve(State initialState);
}

Although simple, this captures a number of constraints on solvers. In
addition to requiring an initial state as input, the solve method returns the
list of visited states as a result. Once again, it defines the returned
collection using a generic interface. A List<E> is a collection of ordered
elements of type E. As with Set<E>, the list interface is supported by a
variety of implementations.

Using the pattern of Figure 224, we will provide an abstract
implementation of Solver. The code fragment below implements a
general search algorithm that does not specify the management of open
states:

private Set<State> closed = new HashSet<State>();

public List<State> solve(State initialState)
{ //Reset closed and open lists
closed.clear();
clearOpen();
addState(initialState);
while (hasElements())

{

State s = nextState();

if (s.isSolution())
return findPath(s);

closed.add(s);

Iterable<State> moves =
s.getPossibleMoves();

for (State move : moves)
if (!closed.contains(move))

addState(move);
}

return null;

}

In this method implementation, we maintain a closed list of visited states
to detect loops in the search. We maintain closed as a Set<State> and
implement it as a HashSet<State> for efficiency. We use the
Set<state> interface since the closed list will contain no duplicates.

The solve method begins by clearing any states from the closed list,
and adding the initial state to the open list using the addState method.
We specify addState as an abstract method, along with the methods

Chapter 22 Problem Spaces and Search 297

hasElements () and nextState(). These methods allow us to add and
remove states from the open list, and test if the list is empty. We specify
them as abstract methods to hide the implementation of the open list,
allowing the particular implementation to be defined by descendents of
AbstractSolver.

The body of the method is a loop that:

Tests for remaining elements in the open list, using the abstract
method hasElements();

Acquires the next state from the list using the abstract method
nextState();

Tests to see if it is a solution and returns the list of visited states
using the method £indPath (to be defined);

Adds the state to the closed list; and

Generates child states, placing them on the open list using the
abstract addState () method.

Perhaps the most significant departure from the Lisp and Prolog versions
of the algorithm is the use of an iterative loop, rather than recursion to
implement search. This is mainly a question of style. Like all modern
languages, Java supports recursion, and it is safe to assume that the
compiler will optimize tail recursion so it is as efficient as a loop. However,
Java programs tend to favor iteration and we follow this style.

We have now implemented the general search algorithm. We complete the
definition of the AbstractSolver class by defining the findPath
method and specifying the abstract methods that its descendents must
implement:

public abstract class AbstractSolver implements
Solver

{

private Set<State> closed =
new HashSet<State>();

public List<State> solve(State initialState)
{ // As defined above
}

public int getVisitedStateCount()

{

return closed.size();
}
private List<State> findPath(State solution)

{
LinkedList<State> path =
new LinkedList<State>();
while (solution != null) {
path.addFirst(solution);

solution = solution.getParent();

298

Part IV: Programming in Java

}

return path;
}
protected abstract boolean hasElements();
protected abstract State nextState();
protected abstract void addState(State s);
protected abstract void clearOpen();

}

Note once again how the abstract methods hide the implementation of the
maintenance of open states. We can then implement the different search
algorithms by creating subclasses of AbstractSolver and
implementing these methods. Depth-first search implements them using a
stack structure:

public class DepthFirstSolver extends AbstractSolver

{
private Stack<State> stack = new Stack<State>();
protected void addState(State s)
{
if (!stack.contains(s))
stack.push(s);
}
protected boolean hasElements()
{
return !stack.empty();
}
protected State nextState()
{
return stack.pop();
}
protected void clearOpen()
{
stack.clear();
}
}

Similarly, we can implement breadth-first search as a subclass of
AbstractSolver that uses a LinkedList implementation

public class BreadthFirstSolver extends
AbstractSolver

private Queue<State> queue =
new LinkedList<State>();

protected void addState(State s)
{

Chapter 22 Problem Spaces and Search 299

if (!queue.contains(s))

queue.offer(s);

}
protected boolean hasElements()
{
return !queue.isEmpty();
}
protected State nextState()
{
return queue.remove();
}
protected void clearOpen()
{
queue.clear();
}

}

Finally, we can implement the best-first search algorithm by extending
AbstractSolver and using a priority queue, PriorityQueue, to implement
the open list:

public class BestFirstSolver extends AbstractSolver

{

private PriorityQueue<State> queue = null;

public BestFirstSolver()

{

queue = new PriorityQueue<State>(1,
new Comparator<State>()

{
public int compare(State sl, State s2)
{
//£(x) = distance + heuristic
return Double.compare (
sl.getDistance() + sl.getHeuristic(),
s2.getDistance() + s2.getHeuristic());
}
})i

}

protected void addState(State s)

{

if (!queue.contains(s))

queue.offer((State)s);

300 Part IV: Programming in Java

22.5

protected boolean hasElements()

{

return !queue.isEmpty();
}
protected State nextState()
{

return queue.remove();
}
protected void clearOpen()
{

queue.clear();
}

}

In defining the open list as a PriorityQueue, this algorithm passes in
a comparator for states that uses the heuristic evaluators defined in the
State interface.

Note that both BreadthFirstSolver and BestFirstSolver
define the open list using the interface Queue<State>, but instantiate
them as LinkedList<State> and PriorityQueue<State>
respectively. This suggests we could gain further code reuse by combining
these definitions into a common superclass. This is left as an exercise.

Putting the Framework to Use

All that remains in order to apply these search algorithms is to define an
appropriate state representation for a problem. As an example, we define a
state representation for the framer, wolf, goat and cabbage, FWGC, problem as
a subclass of AbstractState. (We have presented representations and
generalized search strategies for the FWGC problem in both Prolog,
Chapter 4 and Lisp, Chapter 13. These different language-specific
approaches to the same problem can offer insight into the design patterns
and idioms of each language.)

The first step in this implementation is representing problem states. A
simple, and for this problem effective, way to do so is to define the
location of each element of the problem. Following a common Java idiom,
we will create a user-defined type for locations using the Java enum
capability. This simplifies readability of the code. We will also create two
constructors, one that creates a default starting state with everyone on the
east bank, and a private constructor that can create arbitrary states to be
used in generating moves:

public class FarmerWolfGoatState extends
AbstractState

enum Side

{
EAST { public Side getOpposite()

Chapter 22 Problem Spaces and Search 301

{ return WEST; } },

WEST { public Side getOpposite()
{ return EAST; } };

abstract public Side getOpposite();
}
private Side farmer = Side.EAST;
private Side wolf = Side.EAST;
Side.EAST;

private Side goat
private Side cabbage = Side.EAST;
/[**
* Constructs a new default state with everyone on the east side.
*/
public FarmerWolfGoatState()
{}
[/ **
* Constructs a move state from a parent state.
*/

public FarmerWolfGoatState(
FarmerWolfGoatState parent,
Side farmer, Side wolf,
Side goat, Side cabbage)

super (parent);
this.farmer = farmer;
this.wolf = wolf;
this.goat = goat;
this.cabbage = cabbage;

}

Having settled on a representation, the next step is to define the abstract
methods specified in AbstractState. We define isSolution() as a
straightforward check for the goal state, i.e., if everyone is on the west
bank:

public boolean isSolution()

{
return farmer==Side.WEST &&
wolf==Side.WEST &&
goat==Side.WEST &&
cabbage==Side.WEST;
}

The most complex method is getPossibleMoves(). To simplify this
definition, we will use the getOpposite() method defined above, and
addifsafe(. . .) will add the state to the set of moves if it is legal:

302 Part IV: Programming in Java

private final void addIfSafe(Set<State> moves)

{

}

boolean unsafe =
(farmer != wolf && farmer != goat) ||
(farmer != goat && farmer != cabbage);
if (!unsafe)

moves.add(this);

Although simple, these methods have some interest, particularly their use
of the final specification. This indicates that the method will not be
redefined in a subclass. They also indicate to the compiler that it can
substitute the actual method code for a function call as a compiler
optimization. We implement getPossibleMoves

public Iterable<State> getPossibleMoves|()

{

Set<State> moves = new HashSet<State>();
if (farmer==wolf) / /Move wolf
new FarmerWolfGoatState(
this, farmer.getOpposite(),
wolf.getOpposite(),
goat,
cabbage).addIfsafe(moves);
if (farmer==goat) / /Move goat
new FarmerWolfGoatState(
this, farmer.getOpposite(),
wolf,

goat.getOpposite(),
cabbage) .addIfSafe(moves);

if (farmer==cabbage) / /Move cabbage
new FarmerWolfGoatState(
this, farmer.getOpposite(),
wolf,
goat,
cabbage.getOpposite()).
addIfsafe(moves);
new FarmerWolfGoatState(/ /Move just farmer
this, farmer.getOpposite(),
wolf,
goat,
cabbage) .addIfSafe(moves);
return moves;

Chapter 22 Problem Spaces and Search 303

Although we will leave implementation of getHeuristic() as an
exercise, there are a few more details we must address. Among the
methods defined in Object (the root of the Java hierarchy), are equals
and hashCode. We must override the default definitions of these because
two states should be considered equal if the four participants are at the
same location, ignoring the move count and parent states that are also
recorded in states. Simple definitions of these methods are:

public boolean equals(Object o)

{
if (o==null ||
! (o instanceof FarmerWolfGoatState))
return false;
FarmerWolfGoatState fwgs =
(FarmerWolfGoatState)o;
return farmer == fwgs.farmer &&
wolf == fwgs.wolf &&
cabbage == fwgs.cabbage &&
goat == fwgs.goat;
}
public int hashCode()
{
return (farmer == Side.EAST ? 1 : 0)+
(wolf == Side.EAST ? 2 : 0)+
(cabbage == Side.EAST ? 4 : 0)+
(goat == Side.EAST ? 8 : 0);
}

This chapter examined a number of Java techniques and idioms. Perhaps
the most important, however, is the use of interfaces and abstract classes to
specify a contract for viable extensions to the basic search methods. This
was essential to our approach to building reusable search methods, and will
continue to be an important abstraction method throughout Part IV.

Exercises

1. Building on the code and design patterns suggested in Chapter 22, finish
coding and run the complete solution of the Farmer, Wolf, Coat, and
Cabbage problem. Implement depth-first, breadth-first, and best-first
solutions.

2. At the end of section 22.4, we noted that the LinkedList<State>
and PriorityQueue<State> used to manage the open list in
BreadthFirstSolver and BestFirstSolver respectively both
used the interface Queue<State>. This suggests the possibility of
creating a superclass of both solvers to provide shared definitions of the
open list functions. Rewrite the solver framework to include such a class.
What are the advantages of doing so for the maintainability,
understandability, and usefulness of the framework? The disadvantages?

304

Part IV: Programming in Java

3. The current solver stops when it finds the first solution. Extend it to
include 2 nextSolution() method that continues the search until it
finds a next solution, and a reset() method that resets the search to the
beginning.

4. Use the Java framework of Section 22.5 to create depth-first, breadth-
first, and best-first solutions for the Missionary and Cannibal problem.

Three missionaries and three cannibals come to the bank of a
river they wish to cross. There is a boat that will hold only two,
and any of the group is able to row. If there are ever more
missionaries than cannibals on any side of the river the cannibals
will get converted. Devise a series of moves to get all the people
across the river with no conversions.

5. Use and extend your code of problem 4 to check alternative forms of
the missionary and cannibal problem—for example, when there are four
missionaries and four cannibals and the boat holds only two. What if the
boat can hold three? Try to generalize solutions for the whole class of
missionary and cannibal problems.

6. Use the Java framework of Section 22.5 to create depth-first, breadth-
first, and best-first solutions for the Water Jugs problem:

There are two jugs, one holding 3 and the other 5 gallons of
water. A number of things can be done with the jugs: they can
be filled, emptied, and dumped one into the other either until
the poured-into jug is full or until the poured-out-of jug is
empty. Devise a sequence of actions that will produce 4 gallons
of water in the larger jug. (Hint: use only integers.)

23 A Java Representation for Predicate
Calculus and Unification

Chapter A brief introduction to the predicate calculus
Objectives Predicates with:
Atoms
Variables
Functions
A unification algorithm
A car/crd recursive tree walk
Ignoring occurs check
Techniques proposed for mapping predicate calculus to an object system
A meta-linguistic interpreter
Class hierarchy for PCExpression
Built Unifiable interface
Important discussion on design issues
Building a representation for predicate calculus based reasoning
Discussion in Section 23.3 and 23.5
First of three chapters covering predicate calculus
Representation and unification (Ch 23)
Reasoning with the predicate calculus (Ch 24)
A rule-based expert system shell in Java (Ch 25)

Chapter 23.1 Introduction to the Task
Contents 23.2 A Review of the Predicate Calculus and Unification
23.3 Building a Predicate Calculus Problem Solver in Java
23.4 Design Discussion
23.5 Conclusion: Mapping Logic into Objects

23.1 Introduction to the Task

Although Java supports classes, inheritance, relations, and other structures
used in knowledge representation, we should not think of it as a
representation language in itself, but as a general purpose programming
language. In Al applications, Java is more commonly used to implement
interpreters for higher-level representations such as logic, frames, semantic
networks, or state-space search. Generally speaking, representing the
elements of a problem domain directly in Java classes and methods is only
feasible for well-defined, relatively simple problems. The complex, ill-
formed problems that artificial intelligence typically confronts require
higher-level representation and inference languages for their solution.

The difference between Al representation languages and Java is a matter of
semantics. As a general programming language, Java grounds object-
oriented principles in the practical virtual machine architecture — the
abstract architecture at the root of Java’s platform independence — rather

305

306

Part IV: Programming in Java

than in mathematical systems or knowledge representation theories.
Although Java draws on ideas from knowledge representation, such as class
inheritance, its undetlying semantics is procedural, defining loops,
branches, wvariable scoping, memory addresses, and other machine
constructs. This contrasts with higher-level knowledge trepresentation
languages, which draw their semantics from mathematical (formal logic or
the lambda calculus), psychological (frames, semantic networks), or neural
(genetic and connectionist network) theories of symbols, reference, and
reasoning. The power of higher-level representation languages is in
addressing the specific problems of reasoning about complex domains.
This also simplifies the verification and validation of code, since a theory-
based implementation can support code integrity better than the
combination of machine semantics and often ill-defined user requirements.

Meta-linguistic abstraction is the technique of using one language to implement
an interpreter for another language whose structure better fits a given class
of problems. The term, meta-linguistic, refers to the use of a language’s
constructs to represent the elements of the target language, rather than
elements of the final problem domain, as seen in Figure 23.1. We can think
of meta-linguistic abstraction as a series of mappings, the arrows in Figure
23.1. The eclements of a representation language, in this case, predicate
calculus, are mapped into Java classes, and the entities in our problem
domain are mapped into the representation language. If done carefully, this
simplifies both mappings and their implementation — indeed, one of the
benefits of this approach is that the theoretical basis of the representation
language serves as a well-defined, mathematically grounded basis for the
implementation. In turn, this simplifies both the implementation of the
representation language, and the development of problem solvers.

Figure 23.1. Creating an interpreter in Java to represent predicate
calculus expressions, which, capture the semantics of a problem domain.
The search engines of Chapter 22 hinted at this technique through their
use of solver and state classes to describe general search elements rather
than defining classes for a particular problem, e.g, farmers, wolves, goats,
and cabbages. Chapters 23, 24 and 25 provide a more sophisticated
example of meta-linguistic abstraction, using Java to build an inference
engine for first-order predicate calculus.

Implementing a logic-based reasoner in an object-oriented language like
Java offers an interesting challenge, largely because the predicate calculus’s
“flat” declarative semantics is so different from that of Java. In the
predicate calculus every predicate is a statement that is either true or false

Chapter 23 A Java Representation for the Predicate Calculus and Unification 307

23.2

for the domain of discourse; there is no hierarchy within predicate
relationships, nor is there inheritance of predicates, variables, or truth-
values across predicate expressions. In addition, the scope of variables is
limited to a single predicate. What predicate calculus gives us in turn is
representational generality and theoretically supported algorithms for
logical inference and variable binding through unification.

In building a predicate calculus problem solver, we begin with simple
predicate calculus expressions, and then implement a unification algorithm
that determines the variable substitutions that make two expressions
equivalent (Luger 2009, Section 2.3.3).

Chapter 24 addresses the representation of more complex logical
expressions (and, or, not and implies), and then uses the unification
algorithm as the basis of a logic problem-solver that searches an and/or
graph of logical inferences. This problem solver then implements a depth-
first search with backtracking, and constructs a proof tree for each solution
found. This can be seen as building a Prolog interpreter in Java.

A Review of the Predicate Calculus and Unification

The predicate calculus is, first of all, a formal language: it is made up of
tokens and a grammar for creating predicate names, variables, and
constants. Chapter 2 of Luger (2009) describes predicate calculus in detail,
but we offer a brief summary in this section.

The afomic unit of meaning in the predicate calculus is the predicate senfence
or expression. A simple predicate expression, or simple sentence, consists of
a predicate name, such as likes or friends in the following examples,
followed by zero or more arguments. The arguments of predicates can be
atoms (represented, by convention, as symbols beginning with a lower case
letter), variables (symbols beginning with an upper case letter), or functions
(in the same syntactic form as predicates). A function may itself have zero
or motre arguments, expressions separated by commas and enclosed by
parentheses. A function is interpreted in the traditional manner, that is, by
replacing it and its arguments, which are taken from its domain of
definition, by the unique constant that is the function’s evaluation. For
example, father_of (david) is evaluated to george, when george is
the computed father of david. Although our interpreter allows functions
in expressions and will match them as patterns, we do not support their
interpretation. Examples of simple sentences include:

likes(george, kate).
likes(kate, wine).
likes(david, kate).
likes(kate, father of(david)).
Predicate calculus also allows the construction of complex sentences using
the operators, A (and), v (or), = (not), and € (implies). For example,
friends(X, Y) € likes(X, Z) A likes(Y, Z)
can be interpreted as stating that X and Y are friends if there is some

individual Z such that X and Y both have the 1ikes relationship with Z.
When using variables in logical expressions, there are various possibilities

308 Part IV: Programming in Java

Horn Clauses
and Unification

for their interpretation. Predicate calculus uses variable quantification to
specify the scope of meaning of the variables in a sentence. The above
sentence is more properly written using the existential (3)and
universal (V) quantifiers:

VX, Y (friends(X, Y) €
317 (likes(X, 2) A likes(Y, Z)))

This can be read: “for all X and Y, X and Y are friends if there exists a Z
such that X likes Z and Y likes Z.”

In developing an inference engine for predicate calculus, we will follow
Prolog conventions and restrict ourselves to a subset of logical expressions
called Horn Claunse Logic. Although their theoretical definition is more
complex, for our purposes, we can think of a Horn clause as an
implication, or rule, with only a single predicate on the left hand side of the
implication, €. The right hand side, or “body” of the clause can be empty,
a simple predicate, or any syntactically well-formed expression made up of
simple predicates. Horn clauses may consist of the body only; these are
called goal clauses. Examples in propositional form include:

P € gArAs
p €
g ATAS

Following Prolog conventions, we extend the definition to allow Vv
(o1), and = (not) in the body of the Horn clause. In order to accommodate
Java syntax, we vary these syntactic conventions in ways that will be
evident over the next few chapters.

The power of Horn clauses is in their simplification of logical reasoning.
As we will see in the next chapter, restricting the head of implications to a
single predicate simplifies the development of a backward chaining search
engine. To answer the query of whether two people X and Y can be found
who are friends, a search engine must determine if there are any variable
substitutions for X, Y, and Z that satisfy the likes(X, 2) and
likes(Y, 2) relationships. In this case, the substitutions george/X,
david/Y, and kate/Z lead to the conclusion: friends(george,
david). Upwnification is the algorithm for matching predicate calculus
expressions and managing the variable substitutions generally required for
such matches. Unification, combined with the use of search to try all
possible matches, form the heart of a logic problem solver.

Logic-based reasoning requires determining the equivalence of two
expressions. For example, consider the reasoning schema, »odus ponens:

Given: g(X) € p(X) and p(george)
Infer: g(george)

We can read this as “if p of X implies g of X, and p(george) are
both true, then we infer that g (george) is true as well.” This inference
is a result of the equivalence of the fact “p(george)” and the premise
“p(X)” in the implication. What makes this difficult for the predicate
calculus is the more complex structure of sentences, and, mote
importantly, the handling of variables. In the example above, the sentence

Chapter 23 A Java Representation for the Predicate Calculus and Unification 309

likes(X, Z2) A likes(Y, Z)

matched the sentences likes(george, kate) and likes(david,
kate) under the variable bindings george/X, david/Y and kate/Z.
Note that, although the variable z appears in two places in the sentence, it
can only be bound once: in this case, to kate. In another example, the
expression likes (X, X) could not match the sentence since X can only
be bound to one constant. The algorithm for determining the bindings
under which two predicate expressions match is called #nification.

The unification algorithm determines a minimal set of variable bindings
under which two sentences are equivalent. This minimal set of bindings is
called the wnifier. It maintains these bindings in a substitution set, a list of
variables paired with the expressions (constants, functions or other
variables) to which they are bound. It also insures consistency of these
bindings throughout their scope. It is also important to recognize that in
the above example, where X is bound to george, it is possible for the
variable X to appear in different predicates with different scopes and
bindings. Unification must manage these different contexts as well.

Luger (2009, Chapter 2) defines the unification algorithm as returning a
substitution set if two expressions unify. The algorithm treats the
expressions as lists of component expressions, a technique we will use in
our own implementation:
function unify(E1l, E2)
begin
case
both E1 and E2 are constants or empty list:
if E1 = E2 then
return the empty substitution set
else return FAIL;
El is a variable:
if E1 is bound then
return unify(binding of E1, E2);
if E1 occurs in E2 then return FAIL;
return the substitution set {E1/E2};
E2 is a variable:
if E2 is bound then
return unify(binding of E2, El);
if E2 occurs in El then return FAIL
else return the substitution set {E2/El};
either E1 or E2 are different lengths:
return FAIL;
otherwise:
HEl = first element of EIl;
HE2 = first element of E2;
S1 = unify(E1l, E2);
if 81 = FAIL then return Fail;

310 Part IV: Programming in Java

23.3

Representing
Basic
Predicates

TE1l apply S1 to the tail of E1;
TE2 apply S1 to the tail of E2;
S2 = unify (TEl, TE2);

if S2 = FAIL then return FAIL

else return the composition of S1 and S2;

Although the algorithm is straightforward, a few aspects of it are worth
noting. This is a recursive algorithm, and follows the pattern of head/tail
recursion already discussed for Lisp and Prolog. We will retain a recursive
approach in the Java implementation, although we will adapt it to an
object-oriented idiom. Variables may bind to other variables; in this case, if
cither of the wvariables becomes bound to a constant or function
expression, then both will share this binding. Finally, note that before
binding a variable to an expression, the algorithm first checks if the
variable is in the expression. This is called the occurs check, and it is necessary
because, if a variable binds to an expression that contains it, replacing all
occurrences of the variable with the expression will result in an infinite
structure. We will omit the occurs check in our implementation, both for
efficiency (as with Prolog) and to simplify the discussion. We do, however,
leave its implementation as an exercise.

Building a Predicate Calculus Problem Solver in Java

As with any object-oriented implementation, we began with representation,
defining the elements of the predicate calculus as Java classes. In the
present chapter, we define the classes Constant, Variable, and
SimpleSentence. In Chapter 24 we define the classes And, and Rule
(or Implies). We will leave the definition of Or and Not as an exercise.

We organize Constant, Variable, and SimpleSentence into a
hierarchy, with the interface PCExpression as its root. As we develop
the algorithm, this interface will come to define signatures for methods
shared across all predicate calculus expressions.

public interface PCExpression {}
We also create a child interface, called Unifiable, that defines the
signature for the unify (. . .) method, which is the focus of this
chapter. For now, we leave the arguments to unify unspecified.

public interface Unifiable extends PCExpression

{ public boolean unify(. . .); }

The reason for introducing the Unifiable interface will become evident
as the discussion moves into Chapter 24.

Based on these interfaces, we define the classes shown in the hierarchy of
Figure 23.2.

Chapter 23 A Java Representation for the Predicate Calculus and Unification 311

Figure 23.2. The class hierarchy for PCExpression.
Constant, Variable and SimpleSentence are all subclasses of
Unifiable. Each instance of these classes will have a one-to-one
relationship to its corresponding expression. This simplifies testing if
constants or variables are the same: they are the same if and only if they ate
the same Java object. We can test this using the “==” operator. A
SimpleSentence is an assembly of instances of Unifiable. This
recursive structure allows sentences such as:

likes(kate, wine).
likes(david, X).
likes(kate, father of(david))

Note that we do not distinguish between predicate expressions and
functions in this implementation. This works for our implementation since
we are not evaluating functions, and the syntax of predicate expressions
and functions is the same. Introducing evaluable functions into this model
is left as an exercise. Under this approach, an initial implementation of
Constant is straightforward:

public class Constant implements Unifiable

{
private String printName = null;
private static int nextId = 1;

private int id;

public Constant()

{
this.id = nextId++;
}
public Constant(String printName)
{

this();

312 Part IV: Programming in Java

this. printName= printName;

}
public String toString()
{
if (printName!= null)
return printName;
return "constant " + id;
}

//unify and other functions to be defined shortly.
}

This definition includes a printName member variable, which we will
use to display constants like george or kate in our carlier example. This
practice of distinguishing the display name of an object from its internal
representation is a common object-oriented practice that allows us to
optimize internal representation while maintaining a familiar “face” for
printing objects. Variable has a nearly identical definition:

public class Variable implements Unifiable
{

private String printName = null;

private static int nextId = 1;

private int id;

public Variable()

{
this.id = nextId++;
}
public Variable(String printName)
{
this();
this.printName = printName;
}
public String toString()
{
if (printName != null)
return printName + " " + id;
return "V" + id;
}

//unify and other functions to be defined shortly.
}

The id member variable in these classes setves several purposes. It can
serve as an identifier for unnamed constants or variables. Although,
generally speaking, unnamed constants and variables can be confusing, we
include them for completeness and to be consistent with similar features in
Prolog. A more important use of the id variable is in the Variable class.

Chapter 23 A Java Representation for the Predicate Calculus and Unification 313

As mentioned eatlier, the same variable name may be used in different
sentences, where it is treated as different variables. By appending the id to
the printName in the toString method, we enable the programmer
to more easily distinguish variables in this case, simplifying tracing of
program execution.

Also note the introduction of the constructor Variable (Variable
v). This pattern is called a copy constructor, and serves the same function as
the clone method. We prefer this approach because the semantics of
clone are problematic, with programmers frequently redefining it to
reflect their own needs. Using a copy constructor emphasizes that the
semantics of the copy are specific to the class. In the case of Variable,
we define copying to use the same printName but a different id; this
will be important for dealing with occurrences of the same variable in
different contexts, as presented in Chapter 24.

As we mentioned, for the portion of the definition displayed above,
Constant and Variable are essentially the same, and this part of their
definition could be placed in a common parent class. We have chosen not
to do so, feeling that the functionality is so simple that a common parent
definition would buy us too little in the way of maintainability to justify the
added complexity of doing so. However, like many design decisions, this is
a matter of taste. We encourage the reader to explore the trade-offs of this
decision on her own.

Finally, we define SimpleSentence as an array of type Unifiable:

public class SimpleSentence implements Unifiable

{

private Unifiable[] terms;

public SimpleSentence(Constant predicateName,
Unifiable... args)

{
this.terms = new Unifiable[args.length + 1];
terms[0] = predicateName;
System.arraycopy(args, 0, terms, 1,

args.length);

}

private SimpleSentence(Unifiable... args)

{
terms = args

}

public String toString()

{

String s = null;
for (Unifiable p : terms)
if (s == null)
s = p.toString();

314 Part IV: Programming in Java

Defining
unify(...) and
Substitution
Sets

else
S += n n + p;
if (s == null)

return "null";

return u(u + s + u)u;

}
public int length()
{
return terms.length;
}
public Unifiable getTerm(int index)
{
return terms[index];
}

//unify and other functions to be defined shortly.

}

Representing a simpleSentence as an array of Unifiable
simplifies access to its elements using the length and getTerm
methods. These will be important to our implementation of the unify
method. Although first-order predicate calculus requires that the first term
of a simple sentence be a constant, to gain the benefits of using an array of
type Unifiable to represent simple sentences, we did not make this
distinction internally. Instead, we enforce it in the constructor. This
approach maintains the integrity of the Predicate Calculus implementation,
while giving is the internal simplicity of representing a simple sentence as
an array of items of type Unifiable.

To complete this part of the implementation, we need to define the
unify method. unify has the signature:
public SubstitutionSet unify(Unifiable p,
SubstitutionSet s)

A call to unify takes a Unifiable expression and a
SubstitutionSet containing any bindings from the algorithm so far.
For example, if expl and exp2 are both of type Unifiable, and s is
an initial SubstitutionSet, we unify the expressions by:

expl.unify(exp2, s)
ot by:

exp2.unify(expl, s)
Both calls are equivalent. If the unification succeeds, unify will return a
new substitution set, adding additional variable bindings to those passed in
the parameters. If it fails, unify will return null. In either case, the
original SubstitutionSet will be unchanged. The class maintains

variable bindings as a list of Variable/Unifiable pairs, using the
HashMap collection type:

Chapter 23 A Java Representation for the Predicate Calculus and Unification 315

public class SubstitutionSet
{
private HashMap<Variable, Unifiable> bindings =
new HashMap<Variable, Unifiable>();
public SubstitutionSet()({}
public SubstitutionSet(SubstitutionSet s)
{ this.bindings =
new HashMap<Variable,
Unifiable>(s.bindings);

}
public void clear()
{
bindings.clear();
}
public void add(Variable v, Unifiable exp)
{
bindings.put(v, exp);
}
public Unifiable getBinding(Variable v)
{
return (Unifiable)bindings.get(v);
}
public boolean isBound(Variable v)
{
return bindings.get(v) != null;
}
public String toString()
{
return "Bindings:[" + bindings + "]1";
}

}

This is a straightforward implementation that does little more than “wrap”
the HashMap in the SubstitutionSet object (see the design
discussion in section 23.3.1 for the reasons behind this approach). Finally,
we will define unify for each class. Implementing it for Constant is
straightforward and addresses two cases: if the expression to be matched is
equal to the constant, unify returns a new substitution set; if the expression
is a variable, it calls unify on that variable.

public class Constant implements Unifiable
{

//constructors and other methods as defined above.

316

Part IV: Programming in Java

public SubstitutionSet unify(Unifiable exp,
SubstitutionSet s)

{
if (this == exp)
return new SubstitutionSet(s);
if (exp instanceof Variable)
return exp.unify(this, s);
return null;
}

}
Defining unify for a variable is a bit more complicated, since it must
manage bindings:

public class Variable implements Unifiable

{

// constructors and other methods as defined above

public SubstitutionSet unify(Unifiable p,
SubstitutionSet s)

{
if (this == p) return s;
if(s.isBound(this))
return s.getBinding(this).unify(p, s);
SubstitutionSet sNew = new SubstitutionSet(s);
sNew.add(this, p);
return sNew;
}

}

This definition checks three cases. The first is if the expressions are equal:
anything matches itself. Second, it checks if the variable is bound in the
substitution set s; if it is, it retrieves the binding, and calls unify on it
Finally, the variable is unbound and the algorithm adds the binding to a
new substitution set and returns it.

We define unify for SimpleSentence as unifying two lists by
moving through them, unifying corresponding elements. If this succeeds, it
returns the accumulated substitutions.

public SubstitutionSet unify(Unifiable p,
SubstitutionSet s)

if (p instanceof SimpleSentence)
{
SimpleSentence s2 = (SimpleSentence) p;
if (this.length() != s2.length())
return null;

SubstitutionSet sNew = new SubstitutionSet(s);

Chapter 23 A Java Representation for the Predicate Calculus and Unification 317

for (int i = 0; i < this.length(); i++)

{
sNew = this.getTerm(i).unify(s2.getTerm(i),
sNew) ;
if (sNew == null)
return null;
}

return sNew;

}

if(p instanceof Variable)
return p.unify(this, s);

return null;

}

This method tests two cases. If the argument p is a simple sentence, it casts
p to an instance of SimpleSentence: s2. As an efficiency measure,
the method checks to make sure both simple sentences are the same
length, since they cannot match otherwise. Then, the method iterates down
the elements of each simple sentence, attempting to unify them recursively.
If any pair of elements fails to unify the entire unification fails. The second
case is if pis a Variable. If so, the method calls unify on p.

_Testing the To simplify testing of the algorithm, we write one more method to replace
unify Algorithm any bound variable with its binding. We will define this method signature
at the level of the interface PCExXpression

public interface PCExpression

{

public PCExpression
replaceVariables(SubstitutionSet s);

}
Defining the method for a constant is straightforward:

public class Constant implements Unifiable

{
/ / Use constructors and other methods as defined above.
public PCExpression
replaceVariables(SubstitutionSet s)
{
return this;
}
}

In the case of variables, the method must search the substitution set to find
the binding of the variable. Since a variable may be bound to other
variables, the method must search until it finds a constant binding or a
final, unbound variable:

public class Variable implements Unifiable

{

318 Part IV: Programming in Java

/ /Use constructors and other methods as defined above.
public PCExpression replaceVariables(
SubstitutionSet s)

{
if(s.isBound(this))
return
s.getBinding(this).replaceVariables(s);
else
return this;
}

}

Finally, a SimpleSentence replaces variables with bindings in all its
terms, and then creates a new sentence from the results:

public class SimpleSentence implements Unifiable
{
/ / Use constructors and other methods as defined above.
public PCExpression

replaceVariables(SubstitutionSet s)

Unifiable[] newTerms = new
Unifiable[terms.length];
for(int i = 0; i < length(); i++)
newTerms[i] =
(Unifiable)terms[i].replaceVariables(s);
return new SimpleSentence(newTerms);
}

Using these definitions of our key objects, an example UnifyTester
can create a list of expressions and try a series of goals against them:

public class UnifyTester

{
public static void main(String[] args)
{

Constant friend = new Constant("friend"),
bill = new Constant("bill"),
george = new Constant('"george"),
kate = new Constant("kate"),
merry = new Constant("merry");

Variable X = new Variable("X"),

Y = new Variable("Y");

Vector<Unifiable> expressions =

new Vector<Unifiable>();
expressions.add(new SimpleSentence(friend,

bill, george));

Chapter 23 A Java Representation for the Predicate Calculus and Unification 319

expressions.add(new SimpleSentence(friend,
bill, kate));

expressions.add(new SimpleSentence(friend,
bill, merry));

expressions.add(new SimpleSentence(friend,
george, bill));

expressions.add(new SimpleSentence(friend,
george, kate));

expressions.add(new SimpleSentence(friend,

kate, merry));

//Test 1
Unifiable goal = new SimpleSentence(friend, X,
Y);
Iterator iter = expressions.iterator();
SubstitutionSet s;
System.out.println("Goal = " + goal);
while(iter.hasNext()){
Unifiable next = (Unifiable)iter.next();
s = next.unify(goal, new SubstitutionSet());
if(s != null)
System.out.println(
goal.replaceVariables(s));
else
System.out.println("False");
}
//Test 2
goal = new SimpleSentence(friend, bill, Y);
iter = expressions.iterator();
System.out.println("Goal = " + goal);
while(iter.hasNext()){
Unifiable next = (Unifiable)iter.next();

s = next.unify(goal, new SubstitutionSet());
if(s != null)

System.out.println(
goal.replaceVariables(s));
else
System.out.println("False");

}

UnifyTester creates a list of simple sentences, and tests if several
goals bind with them. It produces the following output:

320 Part IV: Programming in Java

23.4

Why define the
substitutionSet
class?

Goal = (friend X 1 Y 2)
(friend bill george)
(friend bill kate)
(friend bill merry)
(friend george bill)
(friend george kate)
(friend kate merry)
Goal = (friend bill Y 2)
(friend bill george)
(friend bill kate)
(friend bill merry)
False

False

False

We leave the creation of additional tests to the reader.

Design Discussion

Although simple, the basic unify method raises a number of interesting
design questions. This section addresses these in more detail.

The SubstitutionSet class has a very simple definition that adds
little to the HashMap class it uses. Why not use HashMap directly? This
idea of creating specialized data structures around Java’s general collection
classes gives us the ability to address problem specific questions while
building on more general functionality. A particular example of this is in
detecting problem specific errors. Although the SubstitutionSet
class defined in this chapter works when used propetly, it could be used in
ways that might lead to subtle bugs. Specifically, consider the add()
method:

public void add(Variable v, Unifiable exp)
{

bindings.put(v, exp);
}

As defined, this method would allow a subtle bug: a programmer could add
a binding for a wvariable that is already bound. Although our
implementation makes sure the variable is not bound before adding a
binding, a more robust implementation would prevent any such errors,
throwing an exception if the variable is bound:

public void add(Variable v, Unifiable exp)
{
if (isBound(v)
/ /Throw an appropriate exception.
else

bindings.put(v, exp);

Chapter 23 A Java Representation for the Predicate Calculus and Unification 321

Why is unify a
method of
unifiable?

Why introduce
the interface
definition:
unifiable?

Finishing this method is left as an exercise.

An alternative approach to our implementation would make unify a
method of SubstitutionSet. If we assume that expl and exp2 are
Unifiable, and s is 2 SubstitutionSet, unifications would look
like this:
s.unify(expl, exp2);

This approach makes sense for a number of reasons.
SubstitutionSet provides an essential context for unification. Also,
it avoids the somewhat odd syntax of making one expression an argument
to a method of another (expl.unify(exp2, s)), even though they
are equal arguments to what is intuitively a binary operator. Although
harmless, many programmers find this asymmetry annoying.

In preparing this chapter, we experimented with both approaches. Our
reasons for choosing the approach we did is that adding the unify
method to the SubstitutionSet made it more than a “unification-
friendly” data structure, giving it a more complex definition. In particular,
it had to test the types of its arguments, an action our approach avoids. A
valuable design guideline is to attempt to make all objects have simple,
well-defined behaviors as this can reduce the impact of future changes in
the design. Exercise 4 asks the reader to implement and evaluate both
approaches.

Early in the chapter, we introduced the Unifiable interface to define
the unify method signature, rather than making unify a method of
PCExpression. This raises a design question, since, as defined in
(Luger 2009), the unification algorithm can apply to all Predicate Calculus
expressions (including expressions containing izplies, and, or and no?).

The short answer to this question is that we could have placed the
unification functionality in PCExpression. However, as we move into
expressions containing operators, we encounter the added problems of
search, particularly for implications, which can be satisfied in different
ways. We felt it better to separate simple unification (this chapter) from the
problems of search we present in Chapter 24) for several reasons.

First, since unifying two expressions with operators such as and
decomposes into unifying their component terms, we can isolate the
handling of variable bindings to simple sentences.

Second, our intuitions suggest that adding search to our problem solver
naturally creates a new context for our design. Separating search from
unification simplifies potential problems of adding specialized search
capabilities to our problem solver.

Finally, our goal in a logic problem solver is not only to find a set of
variable bindings that satisfy a goal, but also to construct a trace of the
solution steps. This trace, called a proof #ree, is an important structure in
expert systems reasoning, as presented in Chapter 25. For simplicity sake,
we did not want to include atomic items, e.g., constants and variables, into
the proof tree. As we will see in the next chapter, introducing the
Unifiable interface helps with this.

322

Part IV: Programming in Java

23.5 Conclusion: Mapping Logic into Objects

In the introduction to this chapter, we argued for the benefits of meta-
linguistic abstraction as an approach to developing large-scale problem
solvers, knowledge systems, learning programs, and other systems common
to Artificial Intelligence. There are a number of advantages of taking this
approach including:

Reuse. The most obvious benefit of meta-linguistic abstraction is in reuse
of the high-level language. The logic reasoner we are constructing, like the
Prolog language it mirrors, greatly simplifies solving a wide range of
problems that involve logical reasoning about objects and relations in a
domain. The Prolog chapters of this book illustrate the extent of logic’s
applicability. By basing our designs on well-structured formalisms like
logic, we gain a much more powerful foundation for code reuse than the
ad-hoc approaches often used in software organizations, since logic has
been designed to be a general representation language.

Expressiveness. The expressiveness of any language involves two
questions. What can we say in the language? What can we say easily?
Formal language theories have traditionally addressed the first question, as
reflected in the Chomsky hierarchy of formal languages (Luger 2009,
Section 15.2), which defines a hierarchy of increasingly powerful languages
going from regular expressions to Turing complete languages like Java,
Lisp, or Prolog. Predicate calculus, when coupled with the appropriate
interpreter is a complete language, although there are benefits to less
expressive languages. For example, regular expressions are the basis of
many powerful string-processing languages. The second question, what can
we say easily, is probably of more practical importance to Artificial
Intelligence. Knowledge representation research has given us a large
number of languages, each with their own strengths. Logic has unique
power as a model of sound reasoning, and a well-defined semantics.
Semantic networks and Frames give us a psychologically plausible model of
memory otganization. Semantic networks also support reasoning about
relationships in complex linguistic or conceptual spaces. Genetic
algorithms implement a powerful heuristic for searching the intractable
spaces found in learning and similar problems by unleashing large
populations of simple, hill-climbing searches throughout the space.
Although knowledge representation research is not in its infancy, it is still a
young field that will continue to provide formalisms for the design of
meta-languages.

Support for Design. Although languages like logic are very different from
an object-oriented language like Java, object-orientation is surprisingly well
suited to building interpreters for meta-linguistic abstraction. The reason
for this is that, as formal languages, representation schemes have cleatly
defined objects and relations that support the standard object-oriented
design process of mapping domain objects, relations, and behaviors into
Java classes and methods. Although, as discussed above, design still
involves hard choices with no easy answer, objects provide a strong
framework for design.

Chapter 23 A Java Representation for the Predicate Calculus and Unification 323

Semantics and Interpretation. In this chapter, we have focused on the
representation of predicate calculus expressions. The other aspect of meta-
linguistic abstraction is semantic: how are these expressions interpreted in
problem solving. Because many knowledge representation languages, when
properly designed, have their foundations in formal mathematics, they
offer a clear basis for implementing program behavior. In the example of
predicate calculus, this foundation is in logic reasoning using inference
rules like modus ponens and resolution. These provide a clear blueprint for
implementing program behavior. As was illustrated by our approach to
unification in this chapter, and logic-based reasoning in the next, meta-
linguistic abstraction provides a much sounder basis for building quality
software in complex domains.

Exercises

1. In the friends example of Section 23.1, check whether there are any
other situations where friends(X, Y) is true. How many solutions to this
query are there? How might you prevent someone from being friends of
themselves?

2. Review the recursive list-based unification algorithm in Luger (2009,
Section 2.3.3). Run that algorithm on the predicate pairs of
friends(george, X, Y), friends(X, fred, Z), and friends(Y, bill,
tuesday). Which pairs unify, which fail and why? The unification
algorithm in this chapter is based on the Luger (2009, Section 2.3.3)
algorithm without the backtrack component and occurs check.

3. Section 23.3.1 suggested augmenting the SubstitutionSet data
structure with problem-specific error detection. Do so for the class
definition, beginning with the example started in that section. Should we
define our own exception classes, or can we use built-in exceptions? What
other error conditions could we present?

4. Rewrite the problem solver to make unify a method of
SubstitutionSet, as discussed in 23.3.2. Compare this approach with
the chapter’s approach for ease of understanding, ecase of testing,
maintainability, and robustness.

5. As defined, the unify method creates a new instance of
SubstitutionSet each time it succeeds. Because object creation is a
relatively expensive operation in Java, this can introduce inefficiencies into
the code. Our reasons for taking this approach include helping the
programmer avoid inadvertent changes to the SubstitutionSet once
we introduce unification into the complex search structures developed in
the next chapter. What optimizations could reduce this overhead, while
maintaining control over the SubstutionSet?

6. Add a class Function to define evaluable functions to this model. A
reasonable approach would be for the class Function to define a default
evaluation method that returns the function as a pattern to be unified.
Subclasses of Function can perform actual evaluations of interest. Test
your implementation using functions such as simple arithmetic operations,
or an equals method that returns true or false.

324 Part IV: Programming in Java

7. Representing predicate calculus expressions as Java objects simplifies our
implementation, but makes it hard to write the expressions. Write a “front
end” to the problem solver that allows a user to enter logical expressions in
a friendlier format. Approaches could include a Lisp or Prolog like format
or, what is more in the spirit of Java, an XML syntax.

24 A Logic-Based Reasoning System

Chapter Predicate calculus representation extended:
Objectives Continued use of meta-linguistic abstraction

Java interpreter for predicate calculus expressions

Search supported by unification

Proof trees implemented
Capture logic inferences
Represent structure of logic-based implications
Reflect search path for producing proofs

Tester class developed
Tests code so far built

Extensions proposed for user transparency

Java idioms utilized

Implement separation of representation and search
Use of static structures

Chapter 24.1 Introduction
Contents 242 [ogical Reasoning as Searching an And/Or Graph
24.3 The Design of a Logic-Based Reasoning System
24.4 Implementing Complex Logic Expressions
24.5 Logic-Based Reasoning as And/Or Graph Search
24.6 Testing the Reasoning System
24.7 Design Discussion

24.1 Introduction

Chapter 23 introduced meta-linguistic abstraction as an approach to solving
the complex problems typically found in Artificial Intelligence. That
chapter also began a three-chapter (23, 24, and 25) exploration this idea
through the development of a reasoning engine for predicate calculus.
Chapter 23 outlined a scheme for representing predicate calculus
expressions as Java objects, and developed the unification algorithm for
finding a set of variable substitutions, if they exist, that make two
expressions in the predicate calculus equivalent. This chapter extends that
work to include more complex predicate expressions involving the logical
operators and, A, or, V, nof, -, and implication, <=, and develops a
reasoning engine that solves logic queries through the backtracking search
of a state space defined by the possible inferences on a set of logic
expressions.

24.2 Reasoning in Logic as Searching an And/Or Graph

A logic-based reasomer searches a space defined by sequences of wvalid
inferences on a set of predicate logic sentences. For example:

325

326

Part IV: Programming in Java

likes(kate, wine).

likes(george, kate).

likes(david, kate).

friends(X, Y) < likes(X, Z) A likes(Y, Z).

We can see intuitively that, because both likes (george, kate)
and likes (david, kate) are true, it follows from the “friends
rule” that friends(george, david) is true. A more detailed
explanation of this reasoning demonstrates the search process that
constructs these conclusions formally. We begin by unifying the goal
quety, friends (george, david), with the conclusion, or head of
the friends predicate under the substitutions {george/X,
david/Y}, as seen in Figure 24.1.

Figure 24.1. The set of variable substitutions, found under unification, by

which the two friends predicates are identical.
Figure 24.2 illustrates the result of propagating these substitutions through
the body of the rule. As the figure suggests, under the inference rule of
modus ponens, friends (george, david) is true if there exists some
binding for Z such that 1ikes(george, Z) and likes(david,
Z) are true. When viewed in terms of search, this leads to the sub-goal of
proving the rule premise, or that the “tail,” of the rule is true. Figure 24.2
illustrates this structure of reasoning as a graph. The arc joining the
branches between the two 1ikes predicates indicates that they are joined
by a logical and. For the conclusion friends (george, david) to
be true, we must find a substitution for Z under which both
likes(george, Z) and likes(david, Z) are true. Figure 24.2
is an example of a representation called an and/or graph (Luger 2009,
Section 3.3). And/or graphs represent systems of logic relationships as a
graph that can be searched to find valid logical inferences. And nodes
require that all child branches be satisfied (found to be true) in order for
the entire node to be satisfied. Or nodes only require that one of the child
branches be satisfied.

Chapter 24 A Logic-Based Reasoning System 327

Figure 24.2. Substitution sets supporting the graph search of the

friends predicate.
As we continue building this graph, the next step is to match the sentence
likes(george, Z) with the different 1ikes predicates. The first
attempt, matching likes(george, Z) with likes(kate,
wine) fails to unify. Trying the second predicate, likes (george,
kate) results in a successful match with the substitution {kate/Z}, as
in Figure 24.3.

Figure 24.3 Substitution sets supporting the search to satisfy the
friends predicate.
Note that the branches connecting the goal 1ikes (george, Z) to
the different attempted matches in the graph are not connected. This
indicates an or node, which can be satisfied by matching any one of the
branches.

328

Part IV: Programming in Java

The final step is to apply the substitution {kate/Z} to the goal sentence
likes(david, Z), and to try to match this with the logic
expressions. Figure 24.4 indicates this step, which completes the search
and proves the initial friends goal to be true. Note again how the
algorithm tries the alternative branches of the o7 nodes of the graph to find
a solution.

Figure 24.4. A search-based solution of the friends relationship.

This process of trying alternative branches of a state space can be
implemented as a backtracking search. If a goal in the search space fails,
such as trying to match likes(george, Z) and likes(kate,
wine), the algorithm backtracks and tries the next possible branch of the
search space. The basic backtracking algorithm is given in (Luger 2009,
Section 3.2) as:

If some state S does not offer a solution to a search problem, then open and
investigate its first child Sq and apply the backtrack procedure recursively to this
node. If no solution emerges from the subtree rooted by Sy then fail S¢ and apply
backtrack recursively to the second child Sy. Continuing on, if no solution
emerges from any of the children of S, then fail back to S’s parent and apply
backtrack to S’s first sibling.

Before implementing our logic-based reasoner as a backtracking search of
and/or graphs, there is one more concept we need to introduce. That is
the notion of a proof tree. If we take only the successful branches of our
search, the result is a tree that illustrates the steps supporting the
conclusion, as can be seen in Figure 24.5. In implementing a logic-based
reasoning system, we not only search an and/or graph, but also construct
the proof tree illustrating a successful search.

24.3

Chapter 24 A Logic-Based Reasoning System 329

Figure 24.5. A proof tree showing the successful satisfaction of the
friends predicate.

The Design of a Logic-Based Reasoning System

The first step in designing a logic-based reasoning system is to create a
representation for the logical operators and, A, or, v, nof, =, and

implication, <—. Figure 24.6 begins this process by adding several classes
and interfaces to those described in Figure 23.2.

Figure 24.6. Classes and interfaces for a logic-based inference system.

330

Part IV: Programming in Java

24.4

The basis of this extension is the interface, Goal. Expressions that will
appear as goals in an and/or graph must implement this interface. These
include SimpleSentence, and the basic logical operators. We will add
methods to this interface shortly, but first it is worth looking at a number
of interesting design decisions supported by this object model.

The first of these design decisions is to dividle PCEXpressions into
two basic groups: Unifiable, which defines the basic unification
algorithm, and Goal which defines nodes of our search space. It is worth
noting that, when we were developing this algorithm, our initial approach
did not make this distinction, but included both basic unification and the
search of logical operators in the unify method, which was specified in
the top-level interface, PCExpression.

We chose to re-factor the code and divide this functionality among the
two interfaces because 1) the initial approach complicated the unify
method considerably, and 2) since the objects Constant and
Variable did not appear in proof trees, we had to treat these as
exceptions, complicating both search and construction of proof trees.
Note also that SimpleSentence implements both interfaces. This is
an example of how Java uses interfaces to achieve a form of multiple
inheritance.

Another important aspect of this design is the introduction of the
AbstractOperator class. As indicated in the model of Figure 24.6,
an AbstractOperator is the parent class of all logical operators. This
abstract class defines the basic handling of the arguments of operators
through the methods firstOperand, tailOperands, and
isEmpty. These methods will enable a recursive search to find solutions
to the different operands.

To complete our logical representation language, we need to define Horn
Clause rules. Rules do not correspond directly to nodes in an and/or
graph; rather, they define relationships between nodes. Consequently, the
Rule class will be a direct descendant of PCExpression, as
shown 1in Figure 24.7, where a rule is a Horn Clause, taking a
SimpleSentence as its conclusion, or head, and a Goal as its premise,
or tail.

This completes the classes defining our logic-based language. The next
section gives their implementation, which is fairly straightforward, and
Section 24.5 adds new classes for searching the and/or graph defined by
inferences on these expressions. This decision to define separate classes
for the representation and search reflects common Al programming
practice.

Implementing Complex Logic Expressions

Implementing complex expressions starts with the Goal interface.
Although Section 24.5 adds a method to this definition, for now, it is a
methodless interface:

public interface Goal extends PCExpression {}

Chapter 24 A Logic-Based Reasoning System 331

Figure 24.7. A Horn clause Rule representation as an instance of
PCExpression.

Later, we modify SimpleSentence to implement this interface, but
first, we define a new class, called AbstractOperator, that defines
the basic methods for accessing the arguments of n-ary operators. In
keeping with common Java practice, we implement several patterns for
accessing operators, including retrieval of operands by number using the
methods operandCount () and getOperand(int i). Since we
also want to support recursive algorithms for manipulating operands, we
implement a head/ tail approach similar to the car/cdr pattern widely
used in Lisp. We do this through the methods firstOperand(),
getOperatorTail(), and isEmpty(). We also define the
replaceVariables () method required of all PCExpressions,
taking advantage of the class’ general representation of operands.

Implementation of these methods is straightforward, and we do not
discuss it other than to present the code:

public abstract class AbstractOperator

implements Goal, Cloneable

{
protected ArrayList<Goal> operands;
public AbstractOperator(Goal... operands)
{

Goal[] operandArray = operands;
this.operands = new ArrayList<Goal>();
for(int i = 0; i < operandArray.length;i++)
{

this.operands.add(operandArray[i]);

332

Part IV: Programming in Java

public AbstractOperator (ArrayList<Goal>

operands)

{

this.operands = operands;
}
public void setOperands(ArrayList<Goal>

operands)

{

this.operands = operands;
}
public int operandCount()
{

return operands.size();
}
public Goal getOperand(int i)
{

return operands.get(i);
}
public Goal getFirstOperand()
{

return operands.get(0);
}

public AbstractOperator getOperatorTail()
throws CloneNotSupportedException

{
ArrayList<Goal> tail = new
ArrayList<Goal>(operands);
tail.remove(0);
AbstractOperator tailOperator =
(AbstractOperator)this.clone();
tailOperator.setOperands(tail);
return tailOperator;
}
public boolean isEmpty()
{
return operands.isEmpty();
}

public PCExpression
replaceVariables(SubstitutionSet s)

throws CloneNotSupportedException

Chapter 24 A Logic-Based Reasoning System 333

{
ArraylList<Goal> newOperands =
new ArrayList<Goal>();
for(int i = 0; i < operandCount(); i++)
newOperands.add((Goal)
getOperand(i).
replaceVariables(s));
AbstractOperator copy =
(AbstractOperator) this.clone();
copy.setOperands (newOperands) ;
return copy;
}

}

The And operator is a simple extension to this class. At this time, our
implementation includes just the toString () method. Note use of the
accessors defined in AbstractOperator():

public class And extends AbstractOperator

{

public And(Goal... operands)
{
super (operands) ;
}
public And(ArrayList<Goal> operands)
{
super (operands) ;
}
public String toString()
{
String result = new String("(AND ");
for(int i = 0; i < operandCount(); i++)
result = result +
getOperand(i).toString();
return result;
}

}
We leave implementation of Or and Not as exercises.

Finally, we implement Rule as a Horn Clause, having a
SimpleSentence as its conclusion, or lead, and any Goal as its
premise, or fail. At this time, we provide another basic implementation,
consisting of accessor methods and the replaceVariables()
method required for all classes implementing PCExpression. Also, we
allow Rule to have a head only (i.e., body = null), as follows from the

334 Part IV: Programming in Java

definition of Horn Clauses. These rules correspond to simple assertions,
such as 1ikes (george, kate).

public class Rule implements PCExpression

{

private SimpleSentence head;

private Goal body;

public Rule(SimpleSentence head)

{
this(head, null);
}
public Rule(SimpleSentence head, Goal body)
{
this.head = head;
this.body = body;
}
public SimpleSentence getHead()
{
return head;
}
public Goal getBody()
{
return body;
}

public PCExpression

replaceVariables(SubstitutionSet s)

throws CloneNotSupportedException

ArraylList<Goal> newOperands =
new ArrayList<Goal>();
for(int i = 0; i < operandCount(); i++)
newOperands.add((Goal)getOperand(i).
replaceVariables(s));
AbstractOperator copy =
(AbstractOperator)this.clone();
copy.setOperands (newOperands) ;
return copy;

}
public String toString()

{
if (body == null)
return head.toString();

24.5

Chapter 24 A Logic-Based Reasoning System 335

return head + " :- " + body;

}
}

Up to this point, the implementation of complex expressions has been
straightforward, focusing on operators for manipulating their component
structures. This is because their more complex semantics is a consequence
of how they are interpreted in problem solvers. The next section discusses
the design of the logic-based reasoning engine that supports this
interpretation.

Logic-Based Reasoning as And/Or Graph Search

The basis of our implementation of and/or graph search is a set of classes
for defining nodes of the graph. These will correspond to simple
sentences, and the operators And, Or, and Not. In this section we define
nodes for And with simple sentences, leaving Or and Not as exercises.
Our approach is to construct an and/or graph as we search. When the
search terminates in success, this graph will be the proof #ree for that
solution. If additional solutions are desited, a call to a
nextSolution() method causes the most recent subgoal to fail,
resuming the search at that point. If there are no further solutions from
that subgoal, the search will continue to “fail back” to a parent goal, and
continue searching. The implementation will repeat this backtracking
search until the space is exhausted.

Figure 24.8 illustrates this search. At the top of the figure we begin with an
initial and/or graph consisting only of the initial goal (e.g.,
friends(george, X)). A call to the method nextSolution()
starts a search of the graph and constructs the proof tree, stopping the
algorithm. In addition to constructing the proof tree, each node stores its
state at the time the search finished, so a second «call to
nextSolution () causes the search to resume where it left off.

This technique is made possible by a programming pattern known as
continuations. Continuations have had multiple uses but the main idea is that
they allow the programmer to save the program execution at any instant
(state) in time so that it can be re-started from that point sometime in the
future. In languages that support continuations directly, this is usually
implemented by saving the program stack and program counter at the
point where the program is frozen. Java does not support this pattern
directly, so we will implement a simplified form of the continuation
pattern using object member variables to save a reference to the current
goal, the current rule used to solve it, and the current set of variable
bindings in the tree search. Figure 24.9 shows the classes we introduce to
implement this approach.

AbstractSolutionNode defines the basic functionality for every
node of the graph, including the abstract method nextSolution().
AbstractSolutionNode and its descendants will implement the
ability to search the and/or graph, to save the state of the search, and to
resume on subsequent calls to nextSolution().

336 Part IV: Programming in Java

The class RuleSet maintains the logic base, a list of rules. The intention
is that all nodes will use the same instance of RuleSet, with each
instance of AbstractSolutionNode maintaining a reference to a
particular rule in the set to enable the continuation pattern.

Figure 24.8. An example search space and construction of the proof tree.

Figure 24.9. The class structure for implementing continuations.

The descendants of AbstractSolutionNode maintain references to
their children. SimpleSentenceSolutionNode represents a simple
sentence as a goal, and maintains a reference to its child: the head of a
rule. AndSolutionNode represents an and node, and keeps a

Chapter 24 A Logic-Based Reasoning System

337

reference to the first branch of the and node (the relationship labeled
headSolutionNode) and the subsequent branches in the and node
(the relationship labeled tailSolutionNode).

We begin implementation with the RuleSet class:

public class RuleSet

{
private Rule[] rules;
public RuleSet(Rule... rules)
{
this.rules = rules;
}
public Rule getRuleStandardizedApart(int i)
{
Rule rule =
(Rule)rules[i].
standardizeVariablesApart(
new Hashtable<Variable,
Variable>());
return rule;
}
public Rule getRule(int i)
{
return rules[i];
}
public int getRuleCount()
{
return rules.length;
}
}

This definition is simple: it maintains an array of rules and allows them to
be retrieved by number. The only unusual element is the method
getRuleStandardizedApart (int i). This is necessary because
the scope of logical variables is the single predicate sentence containing it
in a single reasoning step. If we use the same rule again in the search,
which is fairly common, we will need to assign new bindings to the
variables. A simple way to insure this is to replace the variables in the rule
with new copies having the same name. This operation, called
“standardizing variables apart” must be defined for all expressions in the
rule set. To support this, we will add a new method signature to the

interface PCExpression. This interface now becomes:

public interface PCExpression

{

public PCExpression
standardizeVariablesApart(

338 Part IV: Programming in Java

Hashtable<Variable, Variable> newVars);

public PCExpression
replaceVariables(SubstitutionSet s);

}

The intention here is that the method will be recursive, with each type of
PCExpression giving it its own appropriate definition. In the method
signature, the hash table of pairs of variables keeps track of the
substitutions made so far, since a variable may occur multiple times in an
expression, and will need to use the same replacement. Defining this
requires changes to the following classes. AbstractOperator will define
it for all n-ary operators:

public abstract class AbstractOperator implements
Goal, Cloneable

{
// variables and methods as already defined
public PCExpression

standardizeVariablesApart(
Hashtable<Variable,
Variable>wVars)

throws CloneNotSupportedException

ArraylList<Goal> newOperands =
new ArrayList<Goal>();
for(int i = 0; i < operandCount(); i++)
newOperands.add((Goal)getOperand(i).
standardizeVariablesApart (newVars));
AbstractOperator copy =
(AbstractOperator) this.clone();
copy.setOperands (newOperands) ;

return copy;

}

We will also define the method for existing classes SimpleSentence,
Constant, and Variable. The definition for Constant is straightforward:
each constant returns itself.

public class Constant implements Unifiable
{
// variables and methods as previously defined
public PCExpression
standardizeVariablesApart(
Hashtable<Variable, Variable> newVars)

return this;

Chapter 24 A Logic-Based Reasoning System 339

The definition for Variable is also straightforward, and makes use of
the copy constructor defined eatlier.

public class Variable implements Unifiable
{
// variables and methods already defined.
public PCExpression standardizeVariablesApart(
Hashtable<Variable, Variable>

newvars)
{
Variable newVar = newVars.get(this);
// Check if the expression already has
// a substitute variable.
if (newVar == null) // if not create one.
{
newVar = new Variable(this);
newVars.put(this, newVar);
}
return newvar;
}

SimpleSentence defines the method recursively:

public class SimpleSentence

implements Unifiable, Goal, Cloneable

// variables and methods already defined.
public PCExpression
standardizeVariablesApart(
Hashtable<Variable, Variable>
newvars)

throws CloneNotSupportedException

Unifiable[] newTerms =
new Unifiable[terms.length];
//create an array for new terms.
for(int i = 0; i < length(); i++){
newTerms[i] =
(Unifiable)terms[i].
standardizeVariablesApart(
newVars) ;
// Standardize apart each term.
// Only variables will be affected.

340 Part IV: Programming in Java

SimpleSentence newSentence =
(SimpleSentence) clone();

newSentence.setTerms (newTerms) ;

return newSentence;

}

Once RuleSet has been defined, the implementation
AbstractSolutionNode is, again, fairly straightforward.

public abstract class AbstractSolutionNode
{
private RuleSet rules;
private Rule currentRule = null;
private Goal goal= null;
private SubstitutionSet parentSolution;
private int ruleNumber = 0;
public AbstractSolutionNode(Goal goal,
RuleSet rules,
SubstitutionSet parentSolution)

{
this.rules = rules;
this.parentSolution = parentSolution;
this.goal = goal;

}

public abstract SubstitutionSet nextSolution()

throws CloneNotSupportedException;

protected void reset(SubstitutionSet
newParentSolution)

parentSolution = newParentSolution;

ruleNumber = 0;
}

public Rule nextRule() throws
CloneNotSupportedException

if (hasNextRule())
currentRule =

rules.getRuleStandardizedApart (
ruleNumber++) ;

else
currentRule = null;
return currentRule; }
protected boolean hasNextRule()

{

return ruleNumber < rules.getRuleCount();

of

Chapter 24 A Logic-Based Reasoning System 341

protected SubstitutionSet getParentSolution()

{
return parentSolution;
}
protected RuleSet getRuleSet()
{
return rules;
}
public Rule getCurrentRule()
{
return currentRule;
}
public Goal getGoal()
{
return goal;
}

}

The member variable rules holds the rule set shared by all nodes in the
graph. RuleNumber indicates the rule currently being used to solve the
goal. ParentSolution is the substitution set as it was when the node
was created; saving it allows backtracking on resuming the continuation of
the search. These three member variables allow the node to resume search
where it left off, as required for the continuation pattern.

The variable goal stores the goal being solved at the node, and
currentRule is the rule that defined the current state of the node.
Reset () allows us to set a solution node to a state equivalent to a newly
created node. NextRule() returns the next rule in the set, with
variables standardized apart. The definition also includes the signature for
the nextSolution() method. The remaining methods are simple
accessors.

The next class we define is SimpleSentenceSolutionNode, an
extension of AbstractSolutionNode for simple sentences.

public class SimpleSentenceSolutionNode extends
AbstractSolutionNode

private SimpleSentence goal;
private AbstractSolutionNode child = null;

public SimpleSentenceSolutionNode (
SimpleSentence goal,
RuleSet rules,
SubstitutionSet parentSolution)

throws CloneNotSupportedException

super (goal, rules, parentSolution);

342 Part IV: Programming in Java

public SubstitutionSet nextSolution()

{
SubstitutionSet solution;
if(child != null)
{
solution = child.nextSolution();
if (solution != null)
return solution;
}
child = null;
Rule rule;
while(hasNextRule() == true)
{
rule = nextRule();
SimpleSentence head = rule.getHead();
solution = goal.unify(head,
getParentSolution());
if(solution != null)
{
Goal tail = rule.getBody();
if(tail == null)
return solution;
child = tail.getSolver
(getRuleSet(),solution);
SubstitutionSet childSolution =
child.nextSolution();
if(childSolution != null)
return childSolution;
}
}
return null;
}
public AbstractSolutionNode getChild()
{
return child;
}

}

This class has one member variable: child is the next node, or subgoal
in the state space. The method nextSolution() defines the use of

Chapter 24 A Logic-Based Reasoning System 343

these variables, and is one of the more complex methods in the
implementation, and we will list the steps in detail.

1. The first step in nextSolution() is to test if child is
null. If it is not, which could be the case if we are resuming
a previous search, we call nextSolution() on the child
node to see if there are any more solutions in that branch of
the space. If this returns a non-null result, the method returns
this solution.

2. If the child node returns no solution, the method sets child
to null, and resumes trying rules in a while-loop. The loop
gets each rule from the RuleSet in turn, and attempts to
unify the goal with the rule head.

3. If the goal matches a rule head, the method then checks if the
rule has a tail, or premise. If there is no tail, then this match
represents a solution to the goal and returns that substitution
set.

4. If the rule does have a tail, the method calls getSolver ()
on the rule tail to get a new child node. This is a new method,
which we will discuss shortly.

5. Finally, the method calls nextSolution() on the new
child node, returning this solution if there is one, and
continuing the search otherwise.

6. If the while-loop exhausts the rule set, the node returns null,
indicating there are no further solutions.

We have not discussed the method getSolver ()mentioned in step
#4. This is a new method for all classes implementing the Goal interface
that returns the type of solution node appropriate to that goal. By letting
each goal determine the proper type of solver for it, we can implement
nextSolution() in general terms. The revised definition of Goal:

public interface Goal extends PCExpression

throws CloneNotSupportedException

{
public AbstractSolutionNode getSolver (
RuleSet rules,
SubstitutionSet parentSolution);
}

To complete the search implementation, we define the class,
AndSolutionNode. Our approach to this implementation is to define
a new And node for each argument to the And operator and the
remaining operators. Figure 24.10 illustrates this approach. At the top of
the figure is a portion of an And/Or graph for the gopal p A g A T A s,
indicating that the top-level goal will be satisfied by a set of variable
substitutions that understands all four of its child goals.

344 Part IV: Programming in Java

Figure 24.10 A conjunctive goal (top) and the search tree used for its
solution.

The bottom of Figure 24.10 indicates the approach we will take. Instead of
allowing multiple children at an and node, we will make each node binary,
consisting of the and of the solution for the first operand (the head) and
the subsequent operands (the tail). This suppotrts a recursive algorithm
that simplifies our code. We leave it to the student to demonstrate
(preferably through a formal proof) that the two approaches are
equivalent. An additional exercise to implement and nodes by using an
iterator across a list of child nodes.

AndSolutionNode follows the structure of Figure 24.10:
public class AndSolutionNode extends

AbstractSolutionNode

private AbstractSolutionNode

headSolutionNode = null;

Chapter 24 A Logic-Based Reasoning System
private AbstractSolutionNode
tailSolutionNode = null;
private AbstractOperator operatorTail = null;
public AndSolutionNode (And goal,
RuleSet rules,
SubstitutionSet parentSolution)
throws CloneNotSupportedException
{
super (goal, rules, parentSolution);
headSolutionNode =
goal.getFirstOperand().
getSolver(rules, parentSolution);
operatorTail = goal.getOperatorTail();
}
protected AbstractSolutionNode
getHeadSolutionNode ()
{
return headSolutionNode;
}
protected AbstractSolutionNode
getTailSolutionNode /()
{
return tailSolutionNode;
}
public SubstitutionSet nextSolution()
throws CloneNotSupportedException
{
SubstitutionSet solution;
if(tailSolutionNode != null)
{
solution =
tailSolutionNode.nextSolution();
if(solution != null) return solution;

}

while(solution =
headSolutionNode.nextSolution())
!= null)

if (operatorTail.isEmpty())
return solution;
else

{

tailSolutionNode =
operatorTail.getSolver(
getRuleSet(), solution);

345

346

Part IV: Programming in Java

24.6

SubstitutionSet tailSolution =
tailSolutionNode.
nextSolution();

if(tailSolution != null)

return tailSolution;

}

return null;

}

The constructor creates a solution node, headSolutionNode, for the
first argument of the And operator, and also sets the member variable,
operatorTail, for the rest of the arguments if they exist. Note that it
does not create a solution node for the tail at this time. This is an
efficiency concern: if there are no solutions to the head subgoal, the entire
and operator will fail, and there is no need to try the rest of the operators.

As with SimpleSolutionNode, the nextSolution() method
implements the search and the supporting continuation pattern. It begins
by testing if tailSolutionNode is non-null. This is true only if there are
remaining arguments (operatorTail != null), and we have found at
least one solution to the head goal. In this case, the continuation must first
check to see if there are additional solutions to the tail goal.

When this fails, the algorithm enters a loop of testing for further solutions
to the head goal. When it finds a new solution to the head, it checks if
there is a tail goal; if not, it returns the solution. If there is a tail goal, it will
acquire the child node, a subclass of AbstractSolutionNode using the
getSolver method, and then tries for a solution to the tail goal.

This completes the implementation of the search framework for the And
operator. We leave implementation of Or and Not to the reader.

Testing the Reasoning System

Below is a simple Tester class for the reasoning system. It uses a
recursive rule for reasoning about ancestor relationships. This is a simple
test harness and is not suitable for end users. Finishing the reasoner would
involve allowing the representation of rules in a more friendly syntax, such
as Prolog, and an interactive query engine. We leave this as an exercise.
We also encourage the reader to modify this simple Tester to further
explore the code.

public class Tester
{
public static void main(String[] args)
{ / /Set up the knowledge base.
Constant parent = new Constant("parent"),

bill = new Constant("Bill"),
audrey = new Constant("Audrey"),
maria = new Constant("Maria"),

Chapter 24 A Logic-Based Reasoning System 347

tony = new Constant("Tony"),
charles = new Constant("Charles"),
ancestor = new Constant("ancestor");
Variable X = new Variable("X"),
Y = new Variable("Y"),
Z = new Variable("z");
RuleSet rules = new RuleSet(

new Rule(new SimpleSentence(parent,
bill, audrey)),

new Rule(new SimpleSentence(parent,
maria, bill)),

new Rule(new SimpleSentence(parent,
tony, maria)),

new Rule(new SimpleSentence(parent,
charles, tony)),

new Rule(new SimpleSentence(ancestor,
X, YY),

new And(new SimpleSentence(parent,
X, Y))),

new Rule(new SimpleSentence(ancestor,
X, YY),

new And(new SimpleSentence(parent,
X, 2),

new SimpleSentence(ancestor, Z, Y))));

// define goal and root of search space.

SimpleSentence goal =
new SimpleSentence(ancestor,
charles, Y);

AbstractSolutionNode root =
goal.getSolver(rules,
new SubstitutionSet());

SubstitutionSet solution;

// print out results.
System.out.println("Goal = " + goal);
System.out.println("Solutions:");
try

{

while((solution = root.nextSolution())
!= null)

System.out.println("
replaceVariables(
solution));

+ goal.

}
catch (CloneNotSupportedException e)

348 Part IV: Programming in Java

24.7

Separating
Representation
and Search

System.out.println(
"CloneNotSupportedException:" + e);

}
Design Discussion

In closing out this chapter, we would like to look at two major design
decisions. The first is our separation of representation and search through
the introduction of AbstractSolutionNode and its descendants.
The second is the importance of static structure to the design.

The separation of representation and search is a common theme in Al
programming. In Chapter 22, for example, our implementation of simple
search engines relied upon this separation for generality. In the reasoning
engine, we bring the relationship between representation and search into
sharper focus. Here, the search engine serves to define the semantics of
our logical representation by implementing a form of logical inference. As
we mentioned before, our approach builds upon the mathematics of the
representation language — in this case, theories of logic inference — to
insure the quality of our representation.

One detail of our approach bears further discussion. That is the use of the
method, getSolver (RuleSet rules, SubstitutionSet
parentSolution), which was defined in the Goal interface. This
method simplifies the handling of the search space by letting search
algorithms treat them independently of their type (simple sentence, node,
etc). Instead, it lets us treat nodes in terms of the general methods defined
by AbstractSolutionNode, and to rely upon each goal to return
the proper type of solution node. This approach is beneficial, but as is
typical of object-oriented design, there are other ways to implement it.

One of these alternatives is through a facfory pattern. This would replace
the getSolver () method of Goal with a separate class that creates
instances of the needed node. For example:

Class SolutionNodeFactory

{

public static AbstractSolutionNode

getSolver (Goal goal,
RuleSet rules,
SubstitutionSet parentSolution)

if (goal instanceof SimpleSentence)

return new SimpleSentenceSolutionNode (
goal, rules, parentSolution);

if (goal instanceof And)

return new AndSolutionNode(goal, rules,
parentSolution);

The
Importance of
Static Structure

Chapter 24 A Logic-Based Reasoning System 349

There are several interesting trade-offs between the approaches. Use of
the Factory sharpens the separation of representation and search. It
even allows us to reuse the representation in contexts that do not involve
reasoning without the difficulty of deciding how to handle the
getSolver method required by the parent interface. On the other
hand, the approach we did use allows us to get the desired solver without
using instanceof to test the type of goal objects explicitly. Because the
instanceof operator is computationally expensive, many programmers
consider it good style to avoid it. Also, when adding a new operator, such
as Or, we only have to change the operator’s class definition, rather than
adding the new class and modifying the Factory object. Both
approaches, however, are good Java style. As with all design decisions, we
encourage the reader to evaluate these and other approaches and make up
their own mind.

A more important design decision concerns the satic structure of the
implementation. By static structure, we mean the organization of classes in
a program. We call it static because this structure is not changed by
program execution. As shown in Figures 24.6, 24.7, and 24.9, our
approach has a fairly complex static structure. Indeed, in developing the
reasoner, we experimented with several different approaches (this is, we
feel, another good design practice), and many of these had considerably
fewer classes and simpler static structures. We chose this approach
because it is usually better to represent as much of the program’s semantic
structure as is feasible in the class structure of the code. There are several
reasons for this:

1. It makes the code easier to understand. Although our static
structure is complex, it is still much simpler than the dynamic
behavior of even a moderately complex program. Because it is
static, we can make good use of modeling techniques and tools
to understand the program, rather than relying on dynamic
tracing to see what is going on in program executions.

2. It simplifies methods. A well-designed static structure,
although it may be complex, does not necessarily add
complexity to the code. Rather, it moves complexity from
methods to the class structure. Instead of a few classes with
large complex methods, we tend to have more, simpler
methods. If we look at the implementation of our logic-based
reasoner, the majority of the methods were surprisingly simple:
mostly setting or retrieving values from a data structure. This
makes methods easier to write correctly, and easier to debug.

3. It makes it ecasier to modify the code. As any experienced
programmer has learned, the lifecycle of useful code inevitably
involves enhancements. There is a tendency for these
enhancements to complicate the code, leading to increased
problems with bugs as the software ages. This phenomenon
has been called software entropy. Because it breaks the
program functionality down into many smaller methods
spread among many classes, good static structure can simplify

350

Part IV: Programming in Java

code maintenance by reducing the need to make complex
changes to existing methods.

This chapter completes the basic implementation of a logic-based
reasoner, except for certain extensions including adding the operators for
or and not. We leave these as an exercise. The next chapter will add a
number of enhancements to the basic reasoner, such as asking users for
input during the reasoning process, or replacing true/false values with
quantitative measures of uncertainty. As we develop these enhancements,
keep in mind how class structure supports these extensions, as well as the
implementation patterns we use to construct them.

Exercises

1. Write a method of AbstractSolutionNode to print out a proof
tree in a readable format. A common approach to this is to indent each
node’s description ¢ * level, where level is its depth in the tree, and c is the
number of spaces each level is indented.

2. Add classes for the logical operators Or and Not. Try following the
pattern of the chapter’s implementation of And, but do so critically. If you
find an alternative approach you prefer, feel free to explore it, rewriting
Or and Not as well. If you do decide on a different approach, explain
why.

3. Extend the “user-friendly” input language from exercise 8 of chapter 22
to include And, A,Or,v,Not,—-, and Rule, <.

4. Write a Prolog-style interactive front end to the logical reasoner that will
read in a logical knowledge-base from a file using the language of exercise
2, and then enter a loop where users enter goals in the same language,
printing out the results, and then prompting for another goal.

5. Implement a factory pattern for generating solutionNodes, and
compare it to the approach taken in the chapter. A factory would be a
class, named solutionNodeFactory with a methods that would take
any needed variables and return an instance of the class
solutionNodes.

6. Give a logical proof that the two approaches to representing And nodes
in Figure 24.10 are equivalent.

7. Modify the nextSolution() method in AndSolutionNode to
replace the recursive implementation with one that iterates across all the
operators of an And operator. Discuss the trade-offs between efficiency,
understandability, and maintainability in the two approaches.

25 An Expert System Shell

Chapter Completing the meta-interpreter for rule systems in Java
Objectives Tull backtracking unification algorithm
A goal-based reasoning shell
An example rule system demonstration
The extended functionality for building expert systems
Askable predicates
Response to how and why queries
Structure presented for addition of certainty factors

Chapter 25.1 Introduction: Expert Systems
Contents 25.2 Certainty Factors and the Unification Problem Solver
25.3 Adding User Interactions
25.4 Design Discussion

25.1 Introduction: Expert Systems

In Chapter 24, we developed a unification-based logic problem solver that
solved queries through a depth-first, backward chaining search. In this
chapter, we will extend those classes to implement two features commonly
found in expert-system shells: the ability to attach confidence estimates, or
certainty factors, to inferences (see Luger 2009 for more on certainty
factors), and the ability to interact with the user during the reasoning
process. Since all the classes in this chapter will extend classes from the
unification problem solver, readers must be sure to have read that chapter
before continuing.

In developing the expert system shell, we have two goals. The first is to
explore the use of simple inheritance to extend an existing body of code.
The second is to provide the reader with a start on more extensive
modifications to the code that will be a valuable learning experience; the
exercises will make several suggestions for such extensions.

Certainty The first extension to the reasoner will be to implement a simplified
Factors | crsion of the certainty factor algebra described in Luger (2009). Certainty
factors will be numbers between -1.0 and 1.0 that measure our confidence
in an inference: -1.0 indicates the conclusion is false with maximum
certainty, and 1.0 means it is true with maximum certainty. A certainty
value of 0.0 indicates nothing is known about the assertion. Values

between -1.0 and 1.0 indicate varying degrees of confidence.

Rules have an attached certainty factor, which indicates the certainty of
their conclusion if all elements in the premise are known with complete
certainty. Consider the following rule and corresponding certainty factor:

If p then g, CF = 0.5

351

352

Part IV: Programming in Java

25.2

Adding
Certainty
Factors to
Expressions

This means that, if p is true with a confidence of 1.0 (maximum
confidence), then g can be inferred to be true with a confidence of 0.5.
This is the measure of the uncertainty introduced by the rule itself. If our
confidence in p is less, than our confidence in g will be lowered
accordingly.

In the case of the conjunction, or “and,” of two expressions, we compute
the certainty of the conjunction as the minimum of the certainty of the
operands. Note that if we limit certainty values to 1.0 (true) and -1.0 (false),
this reduces to the standard definition of “and.” For the “ot” operation,
the certainty of the expressions is the maximum of the certainty of its
individual operands. The “not” operator switches the sign of the certainty
factor of its argument. These are also intuitive extensions of the boolean
meaning of those operators.

Certainty factors propagate upward through the inference chain: given a
rule, we unify the rule premises with matching subgoals. After inferring the
certainties of the individual subgoals, we compute the certainty of the
entire rule premise according to the operators for and, or, and not.
Finally, we multiply the certainty of the premise by the certainty of the rule
to compute the certainty of the rule conclusion.

Generally, certainty factor implementations will prune a line of reasoning if
the certainty value falls below a certain value. A common pruning value is
if the certainty is less than 0.2. This can eliminate many branches of the
search space. We will not include this in the implementation of this
chapter, but will leave it as an exercise.

Certainty Factors and the Unification Problem Solver

Our basic design strategy will be to make minimal changes to the
representation of expressions, and to make most of our changes to the
nodes of the solution tree. The reasoning behind this approach is the idea
that the nodes of the solution tree define the inference strategy, whereas
logical expressions simply are a statement about the world that is
independent of its truth or reasoning. As a variation on truth-values, it
follows that we should treat certainty calculations as a part of the system’s
inference strategy, implementing them as extensions to descendents of the
class AbstractSolutionNode. This suggests we take SimpleSentence
and basic operators to represent assertions independently of their certainty,
and avoid changing them to support this new reasoning strategy.

The classes we will define will be in a new package called
expertSystemShell. To make development of the expert system shell
casier to follow, we will name classes in this package by adding the prefix
“ES” to their ancestors in the package unificationSolver defined in
the previous chapter.

We will support representation of certainty factors as an extension to the
definition of Rule from the unification problem solver. We will define a
new subclass of Rule to attach a certainty factor to the basic
representation. We define ESRule as a straightforward extension of the
Rule class by adding a private variable for certainty values, along with

Chapter 25 An Expert System Shell 353

standard accessors:

public class ESRule extends Rule

{
private double certaintyFactor;
public ESRule(ESSimpleSentence head,
double certaintyFactor)
{
this(head, null, certaintyFactor);
}
public ESRule(ESSimpleSentence head, Goal body,
double certaintyFactor)
{
super (head, body);
this.certaintyFactor = certaintyFactor;
}
public double getCertaintyFactor()
{
return certaintyFactor;
}
protected void setCertaintyFactor(double value)
{
this.certaintyFactor = value;
}
}

Note the two constructors, both of which include certainty factors in their
arguments. The first constructor supports rules with conclusions only;
since a fact is simply a rule without a premise, this allows us to add
certainty factors to facts. The second constructor allows definition of full
rules. An obvious extension to this definition would be to add checks to
make sure certainty factors stay in the range -1.0 to 1.0, throwing an out of
range exception if they are not in range. We leave this as an exercise.

This is essentially the only change we will make to our representation. Most
of our changes will be to the solution nodes in the proof tree, since these
define the reasoning strategy. To supportt this, we will define subclasses to
both SimpleSentence and And to return the appropriate type of solution
node, as required by the interface Goal (these are all defined in the
preceding chapter). The new classes are:

public class ESSimpleSentence extends SimpleSentence
{

public ESSimpleSentence(Constant functor,

Unifiable... args)

super (functor, args);

354

Reasoning with
Certainty

Part IV: Programming in Java

public AbstractSolutionNode getSolver (RuleSet
rules, SubstitutionSet parentSolution)

{
return new
ESSimpleSentenceSolutionNode(this,
(ESRuleSet)rules, parentSolution);
}
}
public class ESAnd extends And
{
public ESAnd(Goal... operands)
{
super (operands) ;
}
public ESAnd(ArrayList<Goal> operands)
{
super (operands) ;
}
public AbstractSolutionNode getSolver (RuleSet
rules, SubstitutionSet parentSolution)
{
return new ESAndSolutionNode(this, rules,
parentSolution);
}
}

These are the only extensions we will make to the representation classes.
Next, we will define reasoning with certainty factors in the classes
ESSimpleSentenceSolutionNode and ESAndSolutionNode.

Because the certainty of an expression depends on the inferences that led
to it, the certainty factors computed during reasoning will be held in
solution nodes of the proof tree, rather than the expressions themselves.
Thus, every solution node will define at least a goal, a set of variable
substitutions needed to match the goal during reasoning, and the certainty
of that conclusion. The first two of these were implemented in the
previous chapter in the class AbstractSolutionNode, and its
descendents. These classes located their reasoning in the method,
nextSolution(), defined abstractly in AbstractSolutionNode.

Factors

Our strategy will be to use the definitions of nextSolution() from the
classes SimpleSentenceSolutionNode and AndSolutionNode
defined in the previous chapter. So, for example, the basic framework of
ESSimpleSentenceSolutionNode is:

Chapter 25 An Expert System Shell 355

public class ESSimpleSentenceSolutionNode
extends SimpleSentenceSolutionNode
implements ESSolutionNode

{
private double certainty = 0.0; //default value
public ESSimpleSentenceSolutionNode (
ESSimpleSentence goal, ESRuleSet rules,
SubstitutionSet parentSolution)
{
super (goal, rules, parentSolution);
}
public synchronized SubstitutionSet
nextSolution()
throws CloneNotSupportedException
{
SubstitutionSet solution =
super.nextSolution();
// Compute certainty factor for the solution
// (see below)
return solution;
}
public double getCertainty()
{
return certainty;
}
}

This schema, which will be the same for the ESAndSolutionNode,
defines ESSimpleSentenceSolutionNode as a subclass of the
SimpleSentenceSolutionNode, adding a member variable for the
certainty associated with the current goal and substitution set. When
finding the next solution for the goal, it will call nextSolution() on the
parent class, and then compute the associated certainty factor.

The justification for this approach is that the unification problem solver of
chapter 24 will find all valid solutions (i.e. sets of variable substitutions) to
a goal through unification search. Adding certainty factors does not lead to
new substitution sets — it only adds further qualifications on our
confidence in those inferences. Note that this does lead to questions
concerning logical not: if the reasoner cannot find a set of substitutions
that make a goal true under the unification problem solver, should it fail or
succeed with a certainty of -1.0? For this chapter, we are avoiding such
semantic questions, but encourage the reader to probe them further.

We complete the definition of nextSolution() as follows

356

Part IV: Programming in Java

public synchronized SubstitutionSet nextSolution()
throws CloneNotSupportedException

{
SubstitutionSet solution = super.nextSolution();
if(solution == null)
{
certainty = 0.0;
return null;
}
ESRule rule = (ESRule) getCurrentRule();
ESSolutionNode child =
(ESSolutionNode) getChild();
if(child == null)
{
// the rule was a simple fact
certainty = rule.getCertaintyFactor();
}
else
{
certainty = child.getCertainty() *
rule.getCertaintyFactor();
}
return solution;
}

After calling super.nextSolution(), the method checks if the value
returned is null, indicating no further solutions were found. If this is the
case, it returns null to the parent class, indicating this branch of the search
space is exhausted.

If there is a solution, the method gets the current rule which was used to
solve the goal, and also gets the child node in the search space. If the child
node is null, this indicates a leaf node, and the certainty factor is simply
that of the associated rule. Otherwise, the method gets the certainty of the
child and multiplies it by the rule’s certainty factor. It saves the result in the
member variable certainty.

Note that this method is synchronized. This is necessaty to prevent a
threaded implementation from interrupting the method between
computing the solution substitution set, and the associated certainty, as this
might cause an inconsistency

The implementation of the class ESAndSolutionNode follows the
same pattern, but computes the certainty factor of the node recursively: as
the minimum of the certainty of the first operand (the head operand) and
the certainty of the rest of the operands (the tail operands).

Chapter 25 An Expert System Shell

public class ESAndSolutionNode

extends AndSolutionNode

implements ESSolutionNode

private double certainty = 0.0;

public ESAndSolutionNode(ESAnd goal,

}

RuleSet rules,

SubstitutionSet parentSolution)

super (goal, rules, parentSolution);

public synchronized SubstitutionSet

}

nextSolution()

throws CloneNotSupportedException

SubstitutionSet solution =
super.nextSolution();
if(solution == null)
{
certainty = 0.0;
return null;
}
ESSolutionNode head = (ESSolutionNode)
getHeadSolutionNode();
ESSolutionNode tail = (ESSolutionNode)
getTailSolutionNode();
if(tail == null)
certainty = head.getCertainty();
else
certainty =
Math.min(head.getCertainty(),
tail.getCertainty());

return solution;

public double getCertainty()

{

}

return certainty;

357

This completes the extension of the unification solver to include certainty
factors.

358

Part IV: Programming in Java

25.3

Adding User Interactions

Another feature common to expert system shells is the ability to ask usets
about the truth of subgoals as determined by the context of the reasoning.
The basic approach to this is to allow certain expressions to be designated
as askable. Following the patterns of the earlier sections of this chapter, we
will define askables as an extension to an existing class.

Looking at the code defined above, an obvious choice for the base class of
askable predicates is the ESSimpleSentence class. It makes sense to limit
user queries to simple sentences, since asking for the truth of a complex
operation would be confusing to users. However, our approach will define
Ask as a subset of the Rule class. There are two reasons for this:

1. In order to query users for the truth of an expression, the system
will need to access a user interface. Adding user interfaces to
ESsimpleSentences not only complicates their definition, but
also it complicates the architecture of the expert system shell by
closely coupling the interface with knowledge representation
classes.

2. So far, our architecture separates knowledge representation syntax
from semantics, with syntax being defined in descendents of the
PCExpression interface, and the semantics being defined in the
nodes of the search tree. User queries are a form of inference (may
the gods of logic forgive me), and will be handled by them.

As we will see shortly, defining Ask as an extension of the Rule class
better supports these design constraints. Although Rule is part of
representation, it is closely tied to reasoning algorithms in the solution
nodes, and we have already used it to define certainty factors. Our basic
scheme will be to modify ESSimpleSentenceSolutionNode as follows:

1. If a goal matches the head of a rule, it is true if the premise of the
rule is true;

2. If a goal matches the head of a rule with no premise, then it is true;

If a goal matches the head of an askable rule, then ask the user if it
is true.

Conditions 1 & 2 are already part of the definition of
ESSimpleSentenceSolutionNode. The remainder of this section will
focus on adding #3 to its definition.

Implementing this will require distinguishing if a rule is askable. We will do
this by adding a boolean variable to the ESRule class:

public class ESRule extends Rule

{

private double certaintyFactor;
private boolean ask = false;
// constructors and certainty factor

// accessors as defined above

Chapter 25 An Expert System Shell 359

public boolean ask()

{
return ask;
}
protected void setAsk(boolean value)
{
ask = value;
}

}

This definition sets ask to false as a default. We define the subclass Ask as:
public class ESAsk extends ESRule

{
public ESAsk(ESSimpleSentence head)
{
super (head, 0.0);
setAsk(true);
}
}

Note that ESAsk has a single constructor, which enforces the constraint
that an askable assertion be a simple sentence.

The next step in adding askables to the expert system shell is to modify the
method nextSolution() of ESSimpleSentenceSolutionNode to test
for askable predicates and query the user for their certainty value. The new
version of nextSolution() is:

public synchronized SubstitutionSet nextSolution()
throws CloneNotSupportedException

{
SubstitutionSet solution = super.nextSolution();
if(solution == null)
{

certainty = 0.0;

return null;
}
ESRule rule = (ESRule) getCurrentRule();
if(rule.ask())
{

ESFrontEnd frontEnd =

((ESRuleSet)getRuleSet()).
getFrontEnd();

certainty = frontEnd.ask((ESSimpleSentence)
rule.getHead(), solution);

return solution;

360 Part IV: Programming in Java

ESSolutionNode child =
(ESSolutionNode) getChild();
if(child == null)

{

certainty = rule.getCertaintyFactor();
}
else
{

certainty = child.getCertainty() *

rule.getCertaintyFactor();

}

return solution;
}
We will define ESFrontEnd in an interface:
public interface ESFrontEnd
{
public double ask(ESSimpleSentence goal,
SubstitutionSet subs);
}

Finally, we will introduce a new class, ESRuleSet, to extend RuleSet
to include an instance of ESFrontEnd

public class ESRuleSet extends RuleSet

{
private ESFrontEnd frontEnd = null;
public ESRuleSet(ESFrontEnd frontEnd,
ESRule... rules)
{
super((Rule[])rules);
this.frontEnd = frontEnd;
}
public ESFrontEnd getFrontEnd()
{
return frontEnd;
}
}

This is only a partial implementation of user interactions for the expert
system shell. We still need to add the ability for users to make a top-level
quety to the reasoner, and also the ability to handle “how” and “why”
queries as discussed in (Luger 2009). We leave these as an exercise.

25.4 Design Discussion

Although the extension of the unification problem solver into a simple
expert system shell is, for the most part, straightforward, there are a couple

Chapter 25 An Expert System Shell 361

interesting design questions. The first of these was our decision to, as
much as possible, leave the definitions of descendents of PCExpression
as unchanged as possible, and place most of the new material in extensions
to the solution node classes. Our reason for doing this reflects a theoretical
consideration.

Logic makes a theoretical distinction between syntax and semantics,
between the definition of well-formed expressions and the way they are
used in reasoning. Our decision to define the expert system almost entirely
through changes to the solution node classes reflects this distinction. In
making this decision, we are following a general design heuristic that we
have found useful, particulatly in Al implementations: insofar as possible,
define the class structure of code to reflect the concepts in an undetlying
mathematical theory. Like most heuristics, the reasons for this are intuitive,
and we leave further analysis to the exercises.

The second major design decision is somewhat more problematic. This is
our decision to use the nextSolution method from the unification solver to
perform the actual search, and compute certainty factors afterwards. The
benefits of this are in not modifying code that has already been written and
tested, which follows standard object-otiented programming practice.

However, in this case, the standard practice leads to certain cons that
should be considered. One of these is that, once a solution is found,
acquiring both the variable substitutions and certainty factor requires two
separate methods: nextSolution and getCertainty. This is error
prone, since the person using the class must insure that no state changes
occur between these calls. One solution is to write a convenience function
that bundles both values into a new class (say ESSolution) and returns
them. A more aggressive approach would be to ignore the current version
of nextSolution entirely, and to write a brand new version.

This is a very interesting design decision, and we encourage the reader to
try alternative approaches and discuss their trade-offs in the exercises to
this chapter.

Exercises

1. Modify the definition of the nextSolution method of the classes
ESSimpleSolutionNode and ESAndSolutionNode to fail a line of
reasoning if the certainty factor falls below a certain value (0.2 or 0.3 are
typical values). Instrument your code to count the number of nodes visited
and test it both with and without pruning.

2. Add range checks to all methods and classes that allow certainty factors
to be set, throwing an exception of the value is not in the range of -1.0 to
1.0. Either use Java’s built-in IllegalArgumentException or an
exception class of your own definition. Discuss the pros and cons of the
approach you choose.

3. In designing the object model for the unification problem solver, we
followed the standard Al practice of distinguishing between the
representation of well-formed expressions (classes implementing the
interface unifiable) and the definition of the inference strategy in the

362

Part IV: Programming in Java

nodes of the solution tree (descendents of AbstractSolutionNode).
This chapter’s expert system shell built on that distinction. More
importantly, because we were not changing the basic inference strategy
other than to add certainty estimates, we approached the expert system by
defining ~ subclasses to SimpleSentenceSolutionNode and
AndSolutionNode, and reusing the existing nextSolution method. If,
however, we were changing the search strategy drastically, or for other
reasons discussed in 25.4, it might have been more efficient to retain only
the representation and rewrite the inference strategy completely. As an
experiment to explore this option, rewrite the expert system shell without
using AbstractSolutionNode or any of its descendants. This will give
you a clean slate for implementing reasoning strategies. Although this does
not make use of previously implemented code, it may allow making the
solution simpler, easier to use, and more efficient. Implement an alternative
solution, and discuss the trade-offs between this approach and that taken
in the chapter.

4. Full implementations of certainty factors also allow the combination of
certainty factors when multiple rules lead to the same goal. L.e., if the goal g
with subsitituions s is supported by multiple lines of reasoning, what is its
certainty? (Luger 2009) discusses how to compute these values. Implement
this approach.

5. A feature common to expert systems that was not implemented in this
chapter is the ability to provide explanations of reasoning through How
and Why queries. As explained in (Luger 2009), How queries explain a fact
by displaying the proof tree that led to it. Why queries explain why a
question was asked by displaying the rule that is the current context of the
question. Implement How and Why queries in the expert system shell, and
support them through a user-friendly front end. This front-end should also
allow users to enter queries, inspect rule sets, etc. It should also support
askable predicates as discussed in the next exercise.

6. Build a front-end to support user interaction around askable predicates.
In particular, it should keep track of answers that have been received, and
avoid asking the same question twice. This means it should keep track of
both expressions and substitutions that have been asked. An additional
feature would be to support asking users for actual substitution values, and
adding them to the substitution set.

7. Revisit the design decision to, so far as possible, locate our changes in
the solution node classes, rather than descendants of PCExpression. In
particular, comment on our heuristic of organizing code to reflect the
structures implied by logical theory. Did this heuristic of following the
structure of theory work well in our implementation? Why? Do you believe
this heuristic to be generalizable beyond logic? Once again, why?

26 Case Studies: JESS and other Expert
Systems Shells in Java

Chapter This chapter examines Java expert system shells available on the world wide web
Objectives

Chapter 26.1 Introduction
Contents 26.2 JESS
26.3 Other Expert System Shells
26.4 Using Open Source Tools

26.1 Introduction

In the last three chapters we demonstrated the creation of a simple expert
system shell in Java. Chapter 22 presented a representational formalism for
describing predicate calculus expressions, the representation of choice for
expert rule systems and many other Al problem solvers. Chapter 24
created a procedure for unification. We demonstrated this algorithm with a
set of predicate calculus expressions, and then built a simple Prolog in Java
interpreter. Chapter 25 added full backtracking to our unification algorithm
so that it could check all possible unifications in the processes of finding
sets of consistent substitutions across sets of predicate calculus
specifications. In Chapter 25 we also created procedures for answering why
and how queries, as well as for setting up a certainty factor algebra.

In this chapter we present a number of expert system shell libraries written
in Java. As mentioned throughout our presentation of Java, the presence of
extensive code libraries is one of the major reasons for the broad
acceptance of Java as a problem-solving tool. We have explored these
expert shells at the time of writing this chapter. We realize that many of
these libraries will change over time and may well differ (or not even existl)
when our readers considers them. So we present their utls, current as of
January 2008, with minimal further comment.

26.2 JESS

The first library we present is JESS, the Java Expert System Shell, built and
maintained by programmers at Sandia National Laboratories in
Albuquerque New Mexico. JESS is a rule engine for the Java platform.
Unlike the unification system presented in Chapters 23 and 24, JESS is
driven by a lisp-style scripting language built in Java itself. There are
advantages and disadvantages to this approach. One main advantage of an
independent scripting language is that it is easier to work with for the code
builder. For example, Prolog has its own language that is suitable for rule

363

364

Part IV: Programming in Java

26.3

languages, which makes it easy and clear to write static rule systems.

On the other hand, Prolog is not intended to be embedded in other
applications. In the case of Java, rules may be generated and controlled by
some external mechanism, and in order to use JESS’s approach, the data
needs to be converted into text that this interpreter can handle.

A disadvantage of an independent scripting language is the disconnect
between Java and the rule engine. Once external files and strings are used
to specify rules, standard Java syntax cannot be used to verify and check
syntax. While this is not an issue for stand-alone rule solving systems, once
the user wants to embed the solver into existing Java environments, she
must learn a new language and decide how to interface and adapt the
library to her project.

In an attempt to address standardization of rule systems in Java, the Java
Community Process defined an API for rule engines in Java. The Java
Specification Request #94 defines the javax.rules package and a number of
classes for dealing with rule engines. Our impression of this system is that
it is very vague and seemingly tailored for JESS. It abstracts the rule
system as general objects with general methods for getting/setting
properties on rules.

RuleML, although not Java specific, provides a standardized XML format
for defining rules. This format can theoretically be used for any rule
interpreter, as the information can be converted into the rule interpretet’s
native representations.

JESS has its own JessML format for defining rules in XML, which can be
converted to RuleML and back using XSLT (eXtensible Stylesheet
Language Transformations). These formats, unfortunately, are rather
verbose and not necessarily intended for being read and written by people.

Web links for using JESS include:
http://www.jessrules.com/- The JESS web site,
http://jcp.org/en/jsr/detail?id=94 - JSR 94: Javar Rule Engine API,

http://www.jessrules.com/jess/docs/70/api/javax/rules/package-
summary.html - javadocs about javax.rules (from JSR 94), and

http://www.ruleml.org/ - RuleML.

Other Expert System Shells

We have done some research into other Java expert rule systems, and
found dozens of them. The following url introduces a number of these
(not all in Java):

http://www.kbsc.com/rulebase.html

The general trend of these libraries is to use some form of scripting-
language based rule engine. There is even a Prolog implementation in Javal
There are many real implementations and issues that these things
introduce, including RDF, OWL, SPARQL, Semantic Web, Rete, and
more.

Thie following url discusses a high level look at rule engines in Java (albeit

Chapter 26 Case Studies: JESS and other Expert System Shells in Java 365

from a couple years ago):

http://today.java.net/pub/a/today/2004/08/19/rulingout.html

Finally, we conclude with a set of links to the seemingly more interesting
rule engines. We only picked the engines listed as free, some are open-
source, some are not:

http://www.drools.org

http://www.agfa.com/w3c/eculer

http://jlogic.sourceforge.net/ - a prolog interpreter in Java

http://jlisa.sourceforge.net/ - A Clips-like (NASA rule based shell in C)
Rule engine accessible from Java with the power of Common Lisp.

http://mandarax.sourceforge.net/ - this one has some simple
straightforward examples on the site, but the javadocs themselves are
daunting.

http://tyruba.sourceforge.net

Related to rule interpreters designed to search knowledge-based
specifications, are interpreters intended to transfer knowledge, rules, or
general specifications between code modules. These general module
translation and integration programs are often described under the topic of
the Semantic Web:

http://www.w3.0rg/2001/SW

26.4 Using Open Source Tools

The primary advantage these tools have over our simple expert system
shell is their range of features. Jess, for example, provides a rule language
that frees the programmer from having to declare each rule as a set of
nested class instances as in our simple set of tools. An interesting thought
experiment would be to consider what it would take to write a parser for a
rule language that would construct these class instantiations from a user-
friendly rule language. A more ambitious effort, possibly suitable for an
advanced undergraduate or masters level thesis project would be to
implement such a front end.

In using these tools, the reader should not forget the lessons in extending
java classes from the earlier chapter. Inheritance allows the programmer to
extend open source code to include additional functionality if necessaty.
More often, we may simply use these tools as a module in a larger program
simply by including the jar files.

In particular, the authors have seen the Jess tool used in a number of large
applications at Sandia Laboratories and the University of New Mexico.
Typical application architecture uses Jess as an inference engine in a larger
system with databases, html front ends using Java Server Faces or similar
technologies, and various tools to assist in file I/O, session archiving, etc.

For example, a development team at Sandia Laboratories led by Kevin
Stamber, Richard Detry, and Shitley Starks has developed a system called
FAIT (Fast Analysis Infrastructure Tool) for use in the National
Infrastructure Simulation and Analysis Center (NISAC). FAIT addresses

366

Part IV: Programming in Java

the problem of charting and analyzing the interdependencies between
infrastructure elements to help the Department of Homeland Security
respond to hurricanes and other natural disasters. Although there are
databases that show the location of generating plants, sub-stations, power
lines, gas lines, telecommunication facilities, roads and other infrastructure
elements, there are two problems with this data:

1. Interdependencies between elements are not shown explicitly in
the databases. For example, databases of electrical power
generation elements do not explicitly state which substations
service which generating plants, relying on human experts to infer
this from factors like co-location, ownership by the same utility,
etc.

2. Interactions between different types of utilities, such as the effect
of an electrical power outage on telecommunications hubs or gas
pumping stations must be inferred from multiple data sources.

FAIT uses Jess to apply rules obtained from human experts to solve these
problems. What is especially interesting about the FAIT architecture is its
integration of Jess with multiple sources of infrastructure data, its use of a
geographic information system to display interdependencies on maps, and
its presentation of all this through an html front end.

The success of FAIT is intimately tied to its use of both open-source and
commercially purchased tools. If the development team had faced the
challenge of building all these components from scratch, the system would
have cost an order of magnitude more than it did — if it could have been
built at all. This approach of building extremely large systems from
collections of independently designed components using the techniques
discussed in this section has become an essential part of modern software
development.

27 ID3: Learning from Examples

Chapter Review of supervised learning and decision tree representation
Objectives Representing decision trees as recursive structures
A general decision tree induction algorithm
Information theoretic decision tree test selection heuristic

Chapter 27.1 Introduction to Supervised Learning
Contents 27.2 Representing Knowledge as Decision Trees
27.3 A Decision Tree Induction Program
27.4 ID3: An Information Theoretic Tree Induction Algorithm

27.1 Introduction to Supervised Learning

In machine learning, inductive learning refers to training a learner through use
of examples. The simplest case of this is rote learning, whereby the learner
simply memorizes the training examples and reuses them in the same
situations. Because they do not generalize from training data, rote learners
can only classify exact matches of previous examples. A further limitation
of rote learning is that the learned examples might contain conflicting
information, and without some form of generalization, the learner cannot
effectively deal with this noise. To be effective, a learner must apply
heuristics to induce reliable generalizations from multiple training examples
that can handle unseen situations with some degree of confidence.

A common inductive learning task is learning to classify specific instances
into general categoties. In supervised learning, a teacher provides the system
with categorized training examples. This contrasts with clustering and
similar unsupervised learning tasks where the learner forms its own
categories from training data. See (Luger 2009) for a discussion of these
different learning tasks. An example of a supervised inductive learning
problem, which we will develop throughout the chapter is a bank wanting
to train a computer learning system categorize new borrowers according to
credit risk on the basis of properties such as their credit
history, current debt, their collateral, and current income.
One approach would be to look at the credit risk, as determined
over time by the actual debt payoff history of data from previous
borrowers to provide categorized examples. In this chapter we do exactly
that, using the 1D3 algorithm.

27.2 Representing Knowledge as Decision Trees

A decision tree is a simple form of knowledge representation that is widely
used in both advisors and machine learning systems. Decision trees ate
recursive structures in which each node examines a property of a collection

367

368

Part IV: Programming in Java

of data, and then delegates further decision making to child nodes based on
the value of that particular property (Luger 2009, Section 10.3). The leaf
nodes of the decision tree are terminal states that return a class for the
given data collection. We can illustrate decision trees through the example
of a simple credit history evaluator that was used in (Luger 2009) in its
discussion of the ID3 learning algorithm. We refer the reader to this book
for a more detailed discussion, but will review the basic concepts of
decision trees and decision tree induction in this section.

Assume we wish to assign a credit risk of high, moderate, or low to people
based on the following properties of their credit rating:

Collateral, with possible values {adequate, none}

Income, with possible values {“0$ to $15K”, “$15K to $35K”,
“over $35K”}

Debt, with possible values {high, low}

Credit History, with possible values {good, bad, unknown}

We could represent risk criteria as a set of rules, such as “If debt is low,
and credit history is good, then risk is moderate.” Alternatively, we can
summarize a set of rules as a decision tree, as in figure 27.1. We can
perform a credit evaluation by walking the tree, using the values of the
person’s credit history properties to select a branch. For example, using the
decision tree of figure 27.1, an individual with credit history = unknown,
debt = low, collateral = adequate, and income = $15K to $35K would be
categorized as having low risk. Also note that this particular categorization
does not use the income property. This is a form of generalization, where
people with these values for credit history, debt, and collateral qualify as
having low risk, regardless of income.

Figure 27.1 A Decision Tree for the Credit Risk Problem (Luger 2009)

Chapter 27 ID3: Learning from Examples 369

Now, assume the following set of 14 training examples. Although this does
not cover all possible instances, it is large enough to define a number of
meaningful decision trees, including the tree of figure 27.1 (the reader may
want to construct several such trees. See exercise 1). The challenge facing
any inductive learning algorithm is to produce a tree that both covers all
the training examples correctly, and has the highest probability of being
correct on new instances.

risk collateral | income debt credit history
high none $0 to $15K high bad

high none $15K to $35K high unknown
moderate none $15K to $35K low unknown
high none $0 to $15K low unknown
low none over $35K low unknown
low adequate over $35K low unknown
high none $0 to $15K low bad
moderate adequate over $35K low bad

low none over $35K low good

low adequate over $35K high good
high none $0 to $15K high good
moderate none $15K to $35K high good

low none over $35K high good
high none $15K to $35K high bad

A valuable heuristic for producing such decision trees comes from the
time-honored logical principle of Occam’s Razor. This principle, first
articulated by the medieval logician, William of Occam, holds that we
should always prefer the simplest correct solution to any problem. In our
case, this would favor decision trees that not only classify all training
examples, but also that do so, on average, by examining the fewest
properties possible. The reason for this is straightforward: the simplest
decision tree that correctly handles the known examples is the tree that
makes the fewest assumptions about unknown instances. Stating it simply,
the fewer assumptions made, the less likely we are to make an erroneous
one.

Because omitting properties is a way of generalizing decision trees, and
because the order in which the properties are tested determines the ability
of the tree to omit properties while still matching all the test data, the order
of tests from root down to leaf nodes is the major factor in inducing
decision trees. This is captured in the following pseudo code for a recursive
algorithm for inducing trees:

function induce_tree (example set, Properties)

begin

if all entries in example set are the same class

then return a leaf node labeled with that class

370

Part IV: Programming in Java

27.3

else if Properties is empty
then return a leaf node with default class
else
begin
select a property, P, and
make it the root of the current tree
delete P from Properties
for each value V of P
begin
create a branch of the tree labeled with V
let partition V be elements of
example_set with values V of P
let branch V =
induce_tree (partition V, Properties)
attach branch V to root for value V of P
end
endfor
return current root
end
endif
end
This algorithm builds trees in a top-down fashion. It stops when all
examples have the same categorization, thereby pruning extraneous
branches of the tree. Using this algorithm, production of a simple (i.e.,
generalized) tree depends upon the order in which properties are selected.

This, in turn, depends upon the selection function used to select the
property to check in the current node of the tree.

For the decision tree induction, we use the original approach from the 1D3
algorithm of (Quinlan 1986) elaborated by Luger (2009, Section 10.3). This
approach uses information theory to select the property that gains the most
information about the example set. Intuitively, this heutistic should
minimize the number of properties the tree checks. We will explain it in
detail later. We should note, however, that there are several important
extensions of the early ID3 paradigm, differing only in a few operations.
For example, C4.5 and C5.0 are Quinlan's (1996) own extensions that
overcome a number of the original ID3 weaknesses. We will not
implement C4.5/C5.0 here, but we should remember that more
sophisticated or domain-specific modifications to the core decision tree
induction algorithm may be desired by future developers using this code.

A Decision Tree Induction Program

Implementing this in Java raises at least two interesting problems.
Managing trees, lists of examples, partitioning examples on various
properties, and so forth is a challenge for designing data structures. Our
example code will not be optimally efficient, but is intended to give the

Chapter 27 ID3: Learning from Examples 371

student opportunities to improve performance by using table lookup and
other techniques to reduce time spent scanning lists of examples. The
other challenge will be in maintaining the quality of training data. We take a
simplified approach of requiring all examples contain legitimate values for
all desired properties. Although the machine learning literature is filled with
techniques for managing missing or noisy data, this simple assumption will
let us investigate a number of interesting Java techniques, such as
immutable objects, error checks in constructors, etc.

Figure 27.2 shows the five classes that form the basis of our
implementation. AbstractDecisionTreeNode defines the basic
behaviors of a decision tree. It is a recursive structure, as shown by the use
of an assembly link back to itself. AbstractDecisionTreeNode will
define methods to solve a new instance by walking the tree, and the basic
tree induction algorithm mentioned above. The method to evaluate a test
property’s partition of the example space into subproblems into will be
abstract in this class, allowing definition of multiple alternative evaluation
heutistics. The class, InformationTheoreticDecisionTreeNode,
will implement the basic ID3 evaluation heuristic, which uses information
theory to select a property that gives the greatest information gain on the
set of training examples.

The remaining classes define and manage training examples. An
AbstractProperty defines properties as <name, value> pairs. It is an
abstract class, requiring subclasses define a method to test for legal <name,
value> definitions. An AbstractExample defines examples as a set of
properties and a categorization of those properties: i.c. a single row in the
example table given above. Like AbstractProperty, it requires
subclasses define domain specific checks for the wvalidity of examples.
Finally, ExampleSet maintains a set of training examples, such as is
given in the table above. It enforces checks that all examples are of the
same type, provides basic accessors, and also methods to partition an
example set on specific properties.

Figure 27.2 Class structure of decision tree nodes and examples

372 Part IV: Programming in Java

Properties as The basic definition of a property is straightforward: it consists of two

Immutable : . . . L
Objects StriNgs, defining the name and value respectively. A simple initial

implementation might be:

public class Property

{
private String name = null;

private String value = null;

public Property(String name, String value)

{
this.name = name;
this.value = value;
}
public String getName()
{
return name;
}
public String getValue()
{
return value;
}

}

Although this gives the basic structure of the class, and would work in the
program, it fails to perform any correctness checks on data values. The first
of these the opportunity to perform type checks on property values.
Referring to the credit evaluation example, the only values for debt are
“high” and “low,” and a robust program should check for them.

We can implement this by making Property an abstract class that uses
an abstract method to test for legal property values. Each property type will
be a subclass that defines this method. Our definition then becomes:

public abstract class AbstractProperty
{
private String value = null;
public AbstractProperty(String name,
String value)

throws IllegalArgumentException

if(isLegalvValue(value) == false)
throw
new IllegalArgumentException(value +
"is an illegal Value for Property " +
getName());

this.value = value;

Chapter 27 ID3: Learning from Examples 373

public final String getValue()
{

return value;

}
public abstract boolean isLegalValue(String
value);

public abstract String getName();
}

This version uses the islegalValue(..) method to check for bad
values in the constructor, throwing an I1legalArgumentException
if one is found. Since property is now an abstract class, any propetty type
must define its own subclass defining the abstract methods. Also note that,
since the name of a property is the same for all instances of a type, we have
made getName () an abstract method as well. An example of how a
property can implement this is given by this implementation of the debt
property:
public class DebtProperty extends AbstractProperty {

public static final String DEBT = "Debt";

public static final String HIGH = "high";

public static final String LOW = "low";

public DebtProperty(String value)

{

super (value);

}

public boolean isLegalValue(String value)

{
return(value.equals(HIGH) ||
value.equals(LOW));

}
public final String getName()

{

return DEBT;

}

Although simple, the implementation of AbstractProperty has
another interesting quality. Note that the member variable value is
private, and we have not provided a set method other than through the
constructor. This means that, once an instance of property is created, its
value cannot change. This pattern is called an immutable object. Because
immutable objects avoid many types of bugs (imagine the effect on the
learning algorithm of changing a property value during execution), this
should be used where it matches our intent. To reduce the chance that a
well-intentioned programmer will change this, we should write code so as
to make our intention clear. We can do this by making our get method
final, to prevent subclasses from violating the immutability pattern, and

374 Part IV: Programming in Java

Implementing
Examples

also by defining set methods that throw an exception if called. This
completes the definition of AbstractProperty as:

public abstract class AbstractProperty

{
private String value = null;
public AbstractProperty(String value)
throws IllegalArgumentException
{
if (isLegalvValue(value) == false)
throw
new IllegalArgumentException(value +
"is an illegal Property Value for " +
getName());
this.value = value;
}
public abstract boolean isLegalValue(String
value);
public abstract String getName();
public final String getValue()
{
return value;
}
//Enforcing Immutable object pattern
public final void setValue(String v)
throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
//Enforcing Immutable object pattern
public final void setName(String n)
throws UnsupportedOperationException
{
throw new UnsupportedOperationException();
}
}

Like a property, an example is conceptually simple: it is a collection of
properties describing a problem instance and a categorization of that
instance. In our credit example, the properties that form an example are
debt, collateral, credit history, and income. The example category is a risk
assessment. Each row of the example table in section 27.1 would be
represented as an example. Like the property class, however, it also
presents opportunities for insuring the validity of examples. In this case, we
will require that an example consist only of specified properties, and that a

Chapter 27 ID3: Learning from Examples 375

legal example include all properties. Examples also offer an opportunity to
use an immutable object pattern, since it makes little sense to allow
examples to change during the course of a learning session.

The structure of an example is similar to that of an
AbstractProperty: it is an abstract class that requires subclasses
define methods to support validity checks. We will follow the immutable
object pattern, providing access methods but no “add,” “set,” or other
modification methods, and requiring all properties be defined in the
constructor.

The class has two member variables. A category is a String defining
the classification of the example. In our credit example, this would be the
risk level of high, moderate, or low. The properties member variable is
a Map that indexes different properties by their name. We define two
constructors. The primary constructor does error checks to require that
each example contains all legal properties and only legal properties. The
single argument constructor allows us to define uncategorized examples.
Both of these call the private method, addProperties to add the
elements of the propertyList argument to the properties member
variable. This method also checks that the propertyList argument
contains only legal values and all legal values. The implementation of
AbstractExample is:

public abstract class AbstractExample
{
private String category = null;
private Map<String, AbstractProperty> properties
= new HashMap <String, AbstractProperty> ();
// Constructor for classified examples
public AbstractExample(String category,
AbstractProperty... propertyList)

throws IllegalArgumentException

{
if (isLegalCategory(category) == false)
throw
new IllegalArgumentException(category +
"is an illegal category for example.");
this.category = category;
addProperties(propertyList);
}

// Constructor for unclassified examples

public AbstractExample(AbstractProperty...
propertyList)
throws IllegalArgumentException

addProperties(propertyList);

376 Part IV: Programming in Java

private void addProperties(AbstractProperty]]
propertyList)
throws IllegalArgumentException

Set<String> requiredProps =

getPropertyNames|();
// check that all properties are legal

for(int i = 0; i < propertyList.length;
i++)

AbstractProperty prop =

propertyList([i];
if (requiredProps.contains(

prop.getName()) == false)
throw
new IllegalArgumentException(
prop.getName() +
"illegal Property for example.");
properties.put(prop.getName(), prop);
requiredProps.remove (prop.getName());
}
// Check that all legal properties were used
if (requiredProps.isEmpty() == false)
{
Object[] p = requiredProps.toArray();

String props = "";

for (int i = 0; i < p.length; i++)
props += (String)p[i] + " ";

throw
new IllegalArgumentException(
"Missing Properties in example: " +

props);

}
public AbstractProperty getProperty(

String name)

{
return properties.get(name);
}
public String getCategory()
{

return category;

Implementing
ExampleSet

Chapter 27 ID3: Learning from Examples 377

}
public String toString()

{
// to be defined by reader
}
public abstract Set<String> getPropertyNames();
}

This implementation of AbstractExample as an immutable object is
incomplete in that it does not include the techniques demonstrated in
AbstractProperty to enforce the immutability pattern. We leave this
as an exercise.

ExampleSet, along with AbstractDecisionTreeNode, is one of
the most interesting classes in the implementation. This is because the
decision tree induction algorithm requires a number of fairly complex
operations for partitioning the example set on property values. The
implementation presented here is simple and somewhat inefficient, storing
examples as a simple vector. This requires examination of all examples to
form partitions, retrieve examples with a specific value for a property, etc.
We leave a more efficient implementation as an exercise.

In providing integrity checks on data, we have required that all examples be
categorized, and that all examples belong to the same class.
The basic member variables and accessors are defined as:
public class ExampleSet
{
private Vector<AbstractExample> examples =
new Vector<AbstractExample>();
private HashSet<String> categories =
new HashSet<String>();
private Set<String> propertyNames = null;
public void addExample(AbstractExample e)
throws IllegalArgumentException

if(e.getCategory() == null)
throw new IllegalArgumentException(
"Example missing categorization.");
// Check that new example is of same class
// as existing examples
if((examples.isEmpty()) ||
e.getClass() ==
examples.firstElement().getClass())

examples.add(e);

categories.add(e.getCategory());

378

Part IV: Programming in Java

if (propertyNames == null)

propertyNames =
new HashSet<String>(
e.getPropertyNames());

}
else
throw new IllegalArgumentException(
"All examples must be same type.");

}
public int getSize()
{

return examples.size();
}
public boolean isEmpty()
{

return examples.isEmpty();
}

public AbstractExample getExample(int i)

{

return examples.get(i);

}
public Set<String> getCategories()
{
return new HashSet<String>(categories);
}
public Set<String> getPropertyNames /()
{
return new HashSet<String>(propertyNames);
}

// Mote complex methods to be defined.

public int getExampleCountByCategory(String cat)
throws IllegalArgumentException

// to be defined below.
}

public HashMap<String, ExampleSet> partition(
String propertyName)

throws IllegalArgumentException

// to be defined below.

Chapter 27 ID3: Learning from Examples 379

As mentioned, this implementation is fairly simple. It stores examples as a
Vector, so most retrieval or partitioning operations will require iterating
through this list. The categories and propertyNames member
variables are a convenience, allowing simpler access of these values. Since
example sets should not change during a learning session, we could use an
immutable object pattern in the ExampleSet implementation. This
implementation does not, since it would lead to extremely complex
constructor implementations. Instead, we implemented an addExample
method. This method performs simple data integrity checks, requiring that
all examples be of the same type, and prohibiting unclassified examples.
Reworking this using an immutable pattern is left as an exercise. The
remaining methods are straightforward accessors.

ExampleSet includes a number of methods to support the induction
algorithm. The first of these counts the number of examples that belong to
a given category:
public int getExampleCountByCategory(String cat)
throws IllegalArgumentException

Iterator<AbstractExample> iter =
examples.iterator();

AbstractExample example;

int count = 0;

while(iter.hasNext())

{
example = iter.next();
if (example.getCategory().equals(cat))

count++;

return count;

}

A more complex method partitions the example set according to different
examples value for a specified property. Partition takes as argument a
property name, and returns an instance of HashMap<String,
ExampleSet> where cach key is a property value, and each value is an
instance of ExampleSet containing examples that have that value for the
chosen property. Partition calls to private methods, getValues,
which returns a list of values for a property that appear in the example set,
and getExamplesByProperty, which constructs a new instance of
ExampleSet where each example has the same value for a property.

public HashMap<String, ExampleSet> partition(
String propertyName)

throws IllegalArgumentException

HashMap<String, ExampleSet> partition =

new HashMap<String, ExampleSet>();

380 Part IV: Programming in Java

Set<String> values = getValues (propertyName) ;
Iterator<String> iter = values.iterator();
while(iter.hasNext())

{
String val = iter.next();
ExampleSet examples =
getExamplesByProperty(propertyName,
val);
partition.put(val, examples);
}
return partition;
}
private Set<String> getValues(String propName)
{
HashSet<String>values = new HashSet<String>();
Iterator<AbstractExample> iter =
examples.iterator();
while(iter.hasNext())
{
AbstractExample ex = iter.next();
values.add(ex.getProperty(propName) .
getValue());
}
return values;
}

private ExampleSet getExamplesByProperty(
String propName, String value)

throws IllegalArgumentException

ExampleSet result = new ExampleSet();
Iterator<AbstractExample> iter =
examples.iterator();
AbstractExample example;
while(iter.hasNext())

{
example = iter.next();
if (example.getProperty(propName).getValue().
equals(value))
result.addExample(example);
}

return result;

}

Implementing
Decision Tree
Nodes

Chapter 27 ID3: Learning from Examples 381

Placing the partitioning algorithm in a method of ExampleSet, rather
than in the actual decision tree induction algorithm was an interesting
design decision. The reason for this choice was a desire to treat
ExampleSet as an abstract data type, including all operations on it in its
class definition.

Although this implementation works, it is inefficient, performing multiple
iterations through lists of examples. An alternative approach would
construct more complex sets of indices of examples by property and value
on construction. Trying this approach and evaluating its effectiveness is left
as an exercise.

A decision tree node will define methods to solve problems by walking the
tree, as described in section 27.1. We have also chosen to implement the
basic induction algorithm in the decision tree class. Justification for this
decision was that the inherently recursive nature of the induction algorithm
matched the recursive structure of trees, simplifying the implementation.
Because the induction algorithm is general, and could be used with a
variety of heuristics for evaluating candidate example partitions, we will
make the basic implementation of decision trees an abstract class.

The basic definition of AbstractDecisionTreeNode appears below.
Member variables include category, which is set to a categorization in
leaf nodes; for internal nodes, its value is not defined.
DecisionPropertyName is the property on which the node branches;
it is undefined for leaf nodes. Children is a HashMap that indexes child
nodes by values of decisionPropertyName. Each constructor calls
induceTree to perform tree induction. Note that the two-argument
constructor is protected. Its second argument is the list of unused
properties for consideration by the induction algorithm, and it is only used
by the induceTree method. The remaining methods defined below are
straightforward accessors.

public abstract class AbstractDecisionTreeNode
{
private String category = null;
private String decisionPropertyName = null;
private HashMap<String,AbstractDecisionTreeNode>
children = new
HashMap<String,AbstractDecisionTreeNode>();
public AbstractDecisionTreeNode (
ExampleSet examples)

throws IllegalArgumentException

induceTree (examples,
examples.getPropertyNames());
}
protected AbstractDecisionTreeNode (ExampleSet
examples, Set<String> selectionProperties)

382 Part IV: Programming in Java

throws IllegalArgumentException

induceTree (examples, selectionProperties);
}
public boolean isLeaf()

{

return children.isEmpty();
}
public String getCategory()
{

return category;

}

public String getDecisionProperty()

{
return decisionPropertyName;

}

public AbstractDecisionTreeNode getChild(String
propertyValue)

return children.get(propertyValue);

}

public void addChild(String propertyValue,
AbstractDecisionTreeNode child)

children.put(propertyValue, child);
}
public String Categorize(AbstractExample ex)
{
// defined below
}
public void induceTree(ExampleSet examples,
Set<String> selectionProperties)

throws IllegalArgumentException

{
// defined below
}
public void printTree(int level)
{
// implementation left as an exercise
}

protected abstract double

Chapter 27 ID3: Learning from Examples 383

evaluatePartitionQuality(HashMap<String,
ExampleSet> part, ExampleSet examples)
throws IllegalArgumentException;

protected abstract AbstractDecisionTreeNode
createChildNode (ExampleSet examples,

Set<String> selectionProperties)

throws IllegalArgumentException;

}
Note the two abstract methods for evaluating a candidate partition and
creating a new child node. These will be implemented on 27.3.
Categorize categorizes a new example by performing a recursive tree
walk.
public String categorize(AbstractExample ex)
{
if(children.isEmpty())
return category;
if (decisionPropertyName == null)

return category;

AbstractProperty prop =
ex.getProperty(decisionPropertyName) ;
AbstractDecisionTreeNode child =
children.get(prop.getvValue());
if(child == null)
return null;

return child.categorize(ex);

}

InduceTree performs the induction of decision trees. It deals with four
cases. The first is a normal termination: all examples belong to the same
category, so it creates a leaf node of that category. Cases two and three
occur if there is insufficient information to complete a categorization; in
this case, the algorithm creates a leaf node with a null category.

Case four performs the recursive step. It iterates through all properties that
have not been used in the decision tree (these are passed in the parameter
selectionProperties), using each property to partition the example
set. It evaluates the example set wusing the abstract method,
evaluatePartitionQuality. Once it finds the best evaluated
partition, it constructs child nodes for each branch.

public void induceTree(ExampleSet examples,
Set<String> selectionProperties)

throws IllegalArgumentException

// Case 1: All instances are the same
// categoty, the node is a leaf.

384 Part IV: Programming in Java

if (examples.getCategories().size() == 1)
{
category = examples.getCategories().
iterator().next();

return;

//Case 2: Empty example set. Create
// leaf with no classification.

if (examples.isEmpty())

return;

//Case 3: Empty property set; could not classify.
if (selectionProperties.isEmpty())
return;
// Case 4: Choose test and build subtrees .

// Initialize by partitioning on first
// unttied property.

Iterator<String> iter =
selectionProperties.iterator();

String bestPropertyName = iter.next();

HashMap<String, ExampleSet> bestPartition =
examples.partition(bestPropertyName);

double bestPartitionEvaluation =
evaluatePartitionQuality(bestPartition,
examples);

// Iterate through remaining properties.

while(iter.hasNext())

{
String nextProp = iter.next();
HashMap<String, ExampleSet> nextPart =
examples.partition(nextProp);
double nextPartitionEvaluation =
evaluatePartitionQuality(nextPart,
examples);
// Better partition found. Save.
if (nextPartitionEvaluation >
bestPartitionEvaluation)
{
bestPartitionEvaluation =
nextPartitionEvaluation;
bestPartition = nextPart;
bestPropertyName = nextProp;
}
}

// Create children; recursively build tree.

this.decisionPropertyName = bestPropertyName;

27.4

Chapter 27 ID3: Learning from Examples 385

Set<String> newSelectionPropSet =
new HashSet<String>(selectionProperties);

newSelectionPropSet.remove(decisionPropertyName) ;
iter = bestPartition.keySet().iterator();
while(iter.hasNext())

{
String value = iter.next();
ExampleSet child = bestPartition.get(value);
children.put(value,
createChildNode(child,
newSelectionPropSet));
}

ID3: An Information Theoretic Tree Induction Algorithm

The heart of the ID3 algorithm is its use of information theory to evaluate
the quality of candidate partitions of the example set by choosing
properties that gain the most information about an examples
categorization. Luger (2009) discusses this approach in detail, but we will
review it briefly here.

Shannon (1948) developed a mathematical theory of information that
allows us to measure the information content of a message. Widely used in
telecommunications to determine such things as the capacity of a channel,
the optimality of encoding schemes, etc., it is a general theory that we will
use to measure the quality of a decision property.

Shannon’s insight was that the information content of a message depended
upon two factors. One was the size of the set of all possible messages, and
the probability of each message occurring. Given a set of possible
messages, M = {m;, m, . . . m,}, the information content of any
individual message is measured in bits by the sum, across all messages in M
of the probability of each massage times the log to the base 2 of that
probability.

1(M) = 2 - p(m) log?2 p(m)

Applying this to the problem of decision tree induction, we can regard a set
of examples as a set of possible messages about the categorization of an
example. The probability of a message (a given category) is the number of
examples with that category divided by the size of the example set. For
example, in the table in section 27.1, there are 14 examples. Six of the
examples have high risk, so p(tisk = high) = 6/14. Similatly, p(risk =
moderate) = 3/14, and p(risk = low) = 5/14. So, the information in any
example in the set is:

I(example set) = -6/14 log (6/14) -3/14 log (3/14) -5/14 log (5/14)
= 6/14 % (-1.222) - 3/14 % (:2.222) - 5/14 * (-1.485)
= 1.531 bits

We can think of the recursive tree induction algorithm as gaining
information about the example set at each iteration. If we assume a set of

386 Part IV: Programming in Java

Implementing
Information
Theoretic
Evaluation

training instances, C, and a property P with n values, then P will partition C
into n subsets, {ci, c2, . .. cY}. The information needed to finish inducing
the tree can be measured as the sum of the information in each subset of
the partition, weighted by the size of that partition. That is, the expected
information gain to complete the tree, E, is computed by:

EP) =S8 (Ja]/|C]) * Ke)
Therefore, the information gained for property P is:

Gain(P) = I(C) - E(P)
The ID3 algorithm uses this value to rank candidate partitions.
We will implement this in a subclass of AbstractDecisionTreeNode
called InformationTheoreticDecisionTreeNode. This class will
implement the two abstract methods of the parent class, along with needed
constructors. The createChildNode method is called in
AbstractDecisionTreeNode to create the proper type of child node.
EvaluatePartitionQuality computes the information gain of a

partition. It calls the private methods computeInformation and
log2.

public class InformationTheoreticDecisionTreeNode
extends AbstractDecisionTreeNode

public InformationTheoreticDecisionTreeNode (
ExampleSet examples)
throws IllegalArgumentException

super (examples);
}
public InformationTheoreticDecisionTreeNode (
ExampleSet examples,
Set<String> selectionProperties)
throws IllegalArgumentException

{
super (examples, selectionProperties);
}
protected AbstractDecisionTreeNode
createChildNode (
ExampleSet examples,
Set<String> selectionProperties)
throws IllegalArgumentException
{

return new
InformationTheoreticDecisionTreeNode (

examples, selectionProperties);

Chapter 27 ID3: Learning from Examples 387

protected double evaluatePartitionQuality(
HashMap<String, ExampleSet> part,
ExampleSet examples)

throws IllegalArgumentException

double examplesInfo =
computeInformation(examples) ;

int totalSize = examples.getSize();
double expectedInfo = 0.0;

Iterator<String> iter =
part.keySet().iterator();

while(iter.hasNext())
{
ExampleSet ex = part.get(iter.next());
int partSize = ex.getSize();
expectedInfo += computeInformation(ex)
* partSize/totalSize;

return examplesInfo - expectedInfo;
}

private double computeInformation(
ExampleSet examples)

throws IllegalArgumentException

Set<String> categories =
examples.getCategories();

double info = 0.0;
double totalCount = examples.getSize();

Iterator<String> iter =
categories.iterator();

while (iter.hasNext())
{
String cat = iter.next();
double catCount = examples.
getExampleCountByCategory(cat);

info += -(catCount/totalCount)*
log2(catCount/totalCount);

}

return info;

}
private double log2(double a)

{
return Math.loglO(a)/Math.logl0(2);

388

Part IV: Programming in Java

Exercises

1. Construct two or three different trees that correctly classify the training
examples in the table of section 27.1. Compare their complexity using
average path length from root to leaf as a simple metric. What informal
heuristics would use in constructing the simplest trees to match the data?
Manually build a tree using the information theoretic test selection
algorithm from the ID3 algorithm. How does this compare with your
informal heuristics?

2. Extend the definition of AbstractExample to enforce the
immutable object pattern using AbstractProperty as an example.

3.The methods AbstractExample and AbstractProperty throw
exceptions defined in Java, such as IllegalArgumentException
or UnsupportedOperationException when passed illegal values
or implementers try to violate the immutable object pattern. An alternative
approach would use user-defined exceptions, defined as subclasses of
java.lang.RuntimeException. Implement this approach, and discuss its
advantages and disadvantages.

4. The implementation of ExampleSet in section 27.2.3 stores
component examples as a simple vector. This requires iteration over all
examples to partition the example set on a property, count categories, etc.
Redo the implementation using a set of maps to allow constant time
retrieval of examples having a certain property value, category, etc.
Evaluate performance for this implementation and that given in the
chapter.

5. Complete the implementation for the credit risk example. This will
involve creating subclasses of AbstractProperty for each property,
and an appropriate subclass of AbstractExample. Also, write a class
and methods to test your code.

28 Genetic and Evolutionary Computing

Chapter A brief introduction to the genetic algorithms
Objectives Genetic operators include
Mutation
Crossover
An example GA application worked through
The WordGuess problem
Appropriate object hierarchy created
Generalizable to other GA applications
Exercises emphasize GA interface design

Chapter 28.1 Introduction
Contents 28.2 The Genetic Algorithm: A First Pass
28.3 A GA Implementation in Java
28.4 Conclusion: Complex Problem Solving and Adaptation

28.1 Introduction

The genetic algorithm (GA) is one of a number of computer programming
techniques loosely based on the idea of natural selection. The idea of
applying principles of natural selection to computing is not new. By 1948,
Alan Turing proposed “genetical or evolutionary search” (Turing 1948).
Less than two decades later, H.J. Bremmermann performed computer
simulations of “optimization through evolution and recombination”
(Eiben and Smith 1998). It was John Holland who coined the term, genetic
algorithm (Holland 1975). However, the GA was not widely studied until
1989, when D.E. Goldberg showed that it could be used to solve a
significant number of difficult problems (Goldberg 1989). Currently, many
of these threads have come together under the heading evolutionary computing
(Luger 2009, Chapter 12).

28.2 The Genetic Algorithm: A First Pass

The Genetic Algorithm is based loosely on the concept of natural
selection. Individual members of a species who are better adapted to a
given environment reproduce more successfully. They pass their
adaptations on to their offspring. Over time, individuals possessing the
adaptation form a new species that is particularly suited to the
environment. The genetic algorithm applies the metaphor of natural
selection to optimization problems. No claim is made about its biological
accuracy, although individual researchers have proposed mechanisms both
with and without a motivating basis from nature.

A candidate solution for a genetic algorithm is often called a chromosome.
The chromosome is composed of multiple genes. A collection of

389

390 Part IV: Programming in Java

chromosomes is called a population. The GA randomly generates an initial
population of chromosomes, which are then ranked according to a fitness
Sunction (Luger 2009, Section 12.1).

Consider an example drawn from structural engineering. Structural
engineers make use of a component known as a #uss. Trusses come in
many varieties, the simplest of which should be familiar to anyone who has
noticed the interconnected triangular structures found in bridges and
cranes. Figure 28.1 is an example of the canonical 64-bar truss (Ganzerli et
al. 2003), which appears in the civil engineering literature on optimization.
The arrows are loads, expressed in a unit known as a Kip. Engineers
would like to minimize the volume of a truss, taken as the cross-sectional
area of the bars multiplied by their length.

To solve this problem using a GA, we first randomly generate a population
of trusses. Some of these will stand up under a given load, some will not.
Those that fail to meet the load test are assigned a severe penalty. The
ranking in this problem is based on volume. The smaller the truss volume,
after any penalty has been assigned, the more fit the truss. Only the fittest
individuals are selected for reproduction. It has been shown that the truss
design problem is NP-Complete (Overbay et al. 2006). Engineers have
long-recognized the difficulty of truss design, most often developing good
enough solutions with the calculus-based optimization techniques available
to them (Ganzerli et al. 2003).

By the late nineties, at least two groups were applying genetic algorithms to
very large trusses and getting promising results (Rajeev and
Krishnamoorthy 1997), (Ghasemi et al. 1999). Ganzerli et al. (2003) took
this work a step further by using genetic algorithms to optimize the 64-bar
truss with the added complexity of load uncertainty. The point here is not
simply that the GA is useful in structural engineering, but that it has been
applied in hundreds of ways in recent years, structural engineering being an
especially clear example. A number of other examples, including the
traveling salesperson and SAT problems are presented in Luger (2009,
Section 12.1). The largest venue for genetic algorithm research is The
Genetic and Evolutionary Computation Conference (GECCO 2007). Held in a
different city each summer, the papers presented range from artificial life
through robotics to financial and water quality systems.

Despite the breadth of topics addressed, the basic outline for genetic
algorithm solvers across application domains is very similar. Search
through the problem space is guided by the fitness-function. Once the fitness-
function is designed, the G.A traverses the space over many iterations,
called generations, stopping only when some pre-defined convergence
criterion is met. Further, the only substantial differences between one
application of the GA and the next is the representation of the
chromosome for the problem domain and the fitness function that is
applied to it. This lends itself very nicely to an object-oriented
implementation that can be easily generalized to multiple problems. The
technique is to build a generic GA class with specific implementations as
subclasses.

WordGuess
Example

Chapter 28 Genetic and Evolutionary Computing 391

Consider a simple problem called WordGuess (Haupt and Haupt 1998). The
user enters a target word at the keyboard. The GA guesses the word. In
this case, each letter is a gene, each word a chromosome, and the total
collection of words is the population. To begin, we randomly generate a
sequence of chromosomes of the desired length. Next, we rank the
generated chromosomes for fitness. A chromosome that is identical with
the target has a fitness of zero. A chromosome that differs in one letter has
a fitness of 1 and so on. It is easy to see that the size of the search space
for WordGuess increases exponentially with the length of the word. In the
next few sections, we will develop an object-otriented solution to this
problem.

Suppose we begin with a randomly generated population of 128 character
strings. After ranking them, we immediately eliminate the half that is least
fit. Of the 64 remaining chromosomes, the fittest 32 form 16 breeding
pairs. If each pair produces 2 offspring, the next generation will consist of
the 32 parents plus the 32 children.

21 22
19 20
17 18
70K 2 4 6 16 24 26 28
70 K
yl 3 5 7 15 23 25 27
20K 13 14
11 12
< 10
20K ™
\ 4 \
100K 100 K

Figure 28.1 A system of trusses to be optimized with a set of genetic

operators.
Having decided who may reproduce, we mate them. The GA literature is
filled with clever mating strategies, having more or less biological
plausibility. We consider two, TopDown and Tournament. In TopDown, the
fittest member of the population mates with the next most fit and so on,
until the breeding population is exhausted. Tournament is a bit more
complex, and slightly more plausible (Haupt and Haupt 1998). Here we
choose a subset of chromosomes from the breeding population. The fittest
chromosome within this subset becomes Parent A. We do the same thing
again, to find its mate, Parent B. Now we have a breeding pair. We
continue with this process until we have created as many breeding pairs as
we need.

392

Part IV: Programming in Java

Mating is how each chromosome passes its genes to future generations.
Since mating is an attempt to simulate (and simplify) recombinant DNA,
many authors refer to it as recombination (Eiben and Smith 2003). As with
pairing, many techniques are available. WordGuess uses a single technique
called Crossover. Recall that each chromosome consists of /length(chromosonse)
genes. The most natural data structure to represent a chromosome is an
array of length(chromosome) positions. A gene—in this case an alphabetic
character—is stored in each of these positions. Crossover works like this:

1. Generate a random number n, 0 <= n <
length(chromosome). This is called the Crossover Point.

2. Parent A passes its genes in positions 0 ... n to Child 1.
Parent B passes its genes in positions 0 ... n to Child 2.

Parent A passes it genes in positions n + 1
length(chromosome — 1) to the corresponding positions in
Child 2.

5. Parent B passes its genes in positions n + 1
length(chromosome — 1) to the corresponding positions in
Child 1

Figure 28.2 illustrates mating with » = 4. The parents, PA and PB produce
the two children CA and CB.

After the reproducing population has been selected, paired, and mated, the
final ingredient is the application of random mutations. The importance of
random mutation in nature is easy to see. Favorable (as well as
unfavorable!) traits have to arise before they can be passed on to offspring.
This happens through random variation, caused by any number of natural
mutating agents. Chemical mutagens and radiation are examples. Mutation
guarantees that new genes are introduced into the gene pool. Its practical
effect for the GA is to reduce the probability that the algorithm will
converge on a local minimum. The percentage of genes subject to mutation
is a design parameter in the solution process.

The decision of when to stop producing new generations is the final
component of the algorithm. The simplest possibility, the one used in
WordGuess, is to stop either after the GA has guessed the word or 1000
generations have passed. Another halting condition might be to stop when
some parameter P percent of the population is within @ standard
deviations of the population mean.

PA: CHIPOLTE PB: CHIXLOTI

CA: CHIPLOTI CB: CHIXOLTE

Figure 28.2 Recombination with crossover at the point n = 4.

28.3

The Class
Structure

Chapter 28 Genetic and Evolutionary Computing 393

The entire process can be compactly expressed through the while-loop:
GA(population)
{
Initialize(population);
ComputeCost (population);
Sort(population);
while (not converged on acceptable solution)

{
Pair(population);
Mate (population);
Mutate (population);
Sort (population);
TestConvergence (population);
}

}
A GA Implementation in Java

WordGuess is written in the Java programming language with object-
oriented (OO) techniques developed to help manage the search
complexity. An OO software system consists of a set of interrelated
structures known as classes. Each class can perform a well-defined set of
operations on a set of well-defined operands. The operations are referred
to as methods, the operands as member variables, ot just variables.

The classes interrelate in two distinct ways. First, classes may inherit
properties from one another. Thus, we have designed a class called GA. It
defines most of the major operations needed for a genetic algorithm.
Knowing that we want to adapt GA to the problem of guessing a word
typed at the keyboard, we define the class WordGuess. Once having
written code to solve a general problem, that code is available to more
specific instances of the problem. A hypothetical inheritance structure for
the genetic algorithm is shown in Figure 28.3, where the upward pointing
arrows are inheritance links. Thus, WordGuess inherits all classes and
variables defined for the generic GA.

Second, once defined, classes may make use of one another. This
relationship is called compositionality. GA contains several component classes:

* Chromosome is a representation of an individual population
member.

* Pair contains all pairing algorithms developed for the
system. By making Pair its own class, the user can add new
methods to the system without changing the core components
of the code.

* Mate contains all mating algorithms developed for the
system.

¢ SetParams, GetParams, and Parameters are
mechanisms to store and retrieve parameters.

394 Part IV: Programming in Java

The Class
Chromosome

* WordGuessTst sets the algorithm in motion.

Finally, class GA makes generous use of Java’s pre-defined classes to
represent the population, randomly generate chromosomes, and to handle
files that store both the parameters and an initial population. GA is
character-based. A Graphical User Interface (GUI) can be implemented
with Java’s facilities for GUIs and Event-Driven programming found in
the javax.swing package (sece Exercise 28.3).

Figure 28.3 The inheritance hierarchy for implementing the GA.

The variables reflect what a class knows about itself. Class Chromosome
must know how many genes it has, its fitness, and have a representation
for its genes. The number of genes and the fitness of the chromosome can
be easily represented as integers. The representation of the genes poses a
design problem. For WordGuess, a character array works nicely. For an
engineering application, we might want the chromosome to be a vector of
floating point variables. The most general representation is to use Java’s
class Object and have specific implementations, like WordGuess,
define their own chromosomes (see Exercise 28.4).

The methods describe what a class does. Class Chromosome must be
able to set and return its fitness, set and return the number of its genes,
display its genes, and determine if it is equal to another chromosome. The
Java code that implements the class Chromosome follows.

public class Chromosome

{
private int CH_numGenes;
protected int CH_cost;
private Object[] CH_gene;
public Chromosome(int genesIn)
{

CH _numGenes = genesIn;

CH gene = new char[CH numGenes];

Classes Pair
and Mate

Chapter 28 Genetic and Evolutionary Computing 395

public int GetNumGenes()

{
return CH_numGenes;
}
public void SetCost(int cost)
{
CH_cost = cost;
}
public void SetGene(int index, Object value)
{
CH_gene[index] = value;
}
public boolean Equals(String target)
{
for (int i = 0; i < CH_numGenes; i++)
if (CH_gene[i] != target.charAt(i))
return false;
return true;
}

}

Chromosomes must be paired and mated. So that we can experiment with
more than a single pairing or mating algorithm, we group multiple versions
into classes Pair and Mate. Since pairing and mating are done over an
entire population, before we define Pair and Mate we must decide upon
a representation for the population. A population is a list of chromosomes.
Java’s built-in collection classes are contained in the java.util library
and known as the Java Collection Framework. Two classes, ArrayList and
LinkedList support list behavior. It is intuitively easy to conceive of a
population as an array of chromosomes. Accordingly, we use the class
ArrayList to define a population as follows:

ArrayList<Chromosome> GA_pop;
GA_pop = new ArrayList<Chromosome>();

The first line defines a vatriable, GA_pop as type ArrayList. The
second creates an instance of GA_pop.

WordGuess implements a single paring algorithm, TopDown.
Tournament pairing is left as an exercise. Pair has to know the
population that is to be paired and the number of mating pairs. Since only
half of the population is fit enough to mate, the number of mating pairs is
the population size divided by 4. Here we can see one of the benefits of
using pre-defined classes. ArrayList provides a method that returns the
size of the list. The code for Pair follows:

public class Pair

{

private ArrayList<Chromosome> PR_pop;

396 Part IV: Programming in Java

public Pair(ArrayList<Chromosome> population)

{
PR_pop = population;
}
public int TopDown()
{
return (PR _pop.size() / 4);
}

}

Class Mate also implements a single algorithm, Crossover. It is slightly
more complex than Pair. To implement Crossover, we need four
chromosomes, one for each parent, and one for each child. We also need
to know the crossover point, as explained in Section 28.2, the number of
genes in a chromosome, and the size of the population. We now present
the member variables and the constructor for Mate:

public class Mate
{
private Chromosome MT father,
MT_ mother,
MT childl,
MT child2;
private int MT posChildl,
MT_posChild2,
MT_ posLastChild,
MT_ posFather,
MT_ posMother,
MT_numGenes,
MT_ numChromes;
public Mate (ArrayList<Chromosome> population,

int numGenes, int numChromes)

{
MT posFather = 0;
MT posMother = 1;
MT_numGenes = numGenes;
MT_ numChromes = numChromes;

MT_posChildl
MT_posChild2

population.size()/2;
MT_posChildl + 1;

MT posLastChild = population.size() - 1;
for (int i = MT posLastChild;
i >= MT posChildl; i--)
population.remove(i);
0;
1;

MT posFather
MT_ posMother

Chapter 28 Genetic and Evolutionary Computing 397

// Remaining method implemented below.

}

Mate takes a population of chromosome as a parameter and returns a
mated population. The for-loop eliminates the least fit half of the
population to make room for the two children per breeding pair.

Crossover, the only other method in Mate, is presented next. It
implements the algorithm described in Section 28.2. Making use of the
Set/Get methods of Chromosome, Crossover blends the
chromosomes of each breeding pair. When mating is complete, the
breeding pairs are in the top half of the ArrayList, the children atre in
the bottom half.

public ArrayList<Chromosome> Crossover (
ArrayList<Chromosome> population, int numPairs)

{
for (int j = 0; j < numPairs; j++)
{
MT father = population.get(MT_posFather);
MT mother = population.get(MT_posMother);
MT childl = new Chromosome(MT_numGenes) ;

MT child2 = new Chromosome(MT_ numGenes) ;
Random rnum = new Random();

int crossPoint = rnum.nextInt(MT_ numGenes);

// left side
for (int i = 0; i < crossPoint; i++)
{
MT childl.SetGene(1i,
MT father.GetGene(i));
MT child2.SetGene(1i,
MT mother.GetGene(i));
}
// tight side

for (int i = crossPoint;

< MT_ numGenes;i++)

{
MT childl.SetGene(1i,
MT mother.GetGene(i));
MT child2.SetGene(1i,
MT father.GetGene(i));
}

population.add(MT_posChildl,MT childl);
population.add(MT_posChild2,MT child2);
MT posChildl = MT posChildl + 2;
MT posChild2 = MT posChild2 + 2;

398 Part IV: Programming in Java

The GA Class

MT_ posFather
MT_ posMother

MT posFather + 2;
MT_ posMother + 2;

}

return population;

}

Having examined its subclasses, it is time to look at class GA, itself. We
never create an instance of class GA. GA exists only so that its member
variables and methods can be inherited, as in Figure 28.3. Classes that may
not be instantiated are called abstract. The classes higher in the hierarchy are
called superclasses. Those lower in the hierarchy are called swbclasses. Member
variables and methods designated protected in a super class are
available to its subclasses.

GA contains the population of chromosomes, along with the various
parameters that its subclasses need. The parameters are the size of the
initial population, the size of the pared down population, the number of
genes, the fraction of the total genes to be mutated, and the number of
iterations before the program stops. The parameters are stored in a file
manipulated through the classes Parameters, SetParams, and
GetParams. We use object semantics to manipulate the files. Since file
manipulation is not essential to a GA, we will not discuss it further. The
class declaration GA, its member variables, and its constructor follow.

public abstract class GA extends Object

{

protected int GA_numChromesInit;

protected int GA_numChromes;

protected int GA_numGenes;

protected double GA _mutFact;

protected int GA numIterations;

protected ArrayList<Chromosome> GA_ pop;

public GA(String ParamFile)

{
GetParams GP = new GetParams(ParamFile);
Parameters P = GP.GetParameters();
GA_numChromesInit = P.GetNumChromesI();
GA_numChromes = P.GetNumChromes();
GA_numGenes = P.GetNumGenes();
GA_mutFact = P.GetMutFact();
GA_numIterations = P.GetNumlIterations();
GA_pop = new ArrayList<Chromosome>();
}

//Remaining methods implemented below.
}

The first two lines of the constructor create the objects necessaty to read
the parameter files. The succeeding lines, except the last, read the file and

Chapter 28 Genetic and Evolutionary Computing 399

store the results in class GA’s members variables. The final line creates the
data structure that is to house the population. Since an ArrayList is an
expandable collector, there is no need to fix the size of the array in
advance.

Class GA can do all of those things common to all of its subclasses. Unless
you are a very careful designer, odds are that you will not know what is
common to all of the subclasses until you start building prototypes. Object-
oriented techniques accommodate an iterative design process quite nicely.
As you discover more methods that can be shared across subclasses, simply
push them up a level to the superclass and recompile the system.

Superclass GA performs general housekeeping tasks along with work
common to all its subclasses. Under housekeeping tasks, we want a super
class GA to display the entire population, its parameters, a chromosome,
and the best chromosome within the population. We also might want it to
tidy up the population by removing those chromosomes that will play no
part in evolution. This requires a little explanation. Two of the parameters
are GA_numChromesInit and GA numChromes. Performance of a
GA is sometimes improved if we initially generate more chromosomes
than are used in the GA itself (Haupt and Haput 1998). The first task, then,
is to winnow down the number of chromosomes from the number initially
generated (GA_numChromesInit) to the number that will be used
(GA_numChromes).

Under shared tasks, we want the superclass GA to create, rank, and mutate
the population. The housekeeping tasks are very straightforward. The
shared method that initializes the population follows:

protected void InitPop()

{
Random rnum = new Random();
char letter;
for (int index = 0;
index < GA_numChromesInit; index++)
{
Chromosome Chrom =
new Chromosome(GA_ numGenes) ;
for (int j = 0; j < GA_numGenes; Jj++)
{
letter = (char) (rnum.nextInt(26) + 97);
Chrom.SetGene(j,letter);
}
Chrom.SetCost(0);
GA_pop.add(Chrom) ;
}
}

Initializing the population is clear enough, though it does represent a
design decision. We use a nested £or loop to create and initialize all genes

400

Part IV: Programming in Java

within a chromosome and then to add the chromosomes to the population.
Notice the use of Java’s pseudo-random number generator. In keeping
with the object-oriented design, Random is a class with associated
methods. rnum.nextInt (26) generates a pseudo-random number in
the range [0..25]. The design decision is to represent genes as characters.
This is not as general as possible, an issue mentioned eatlier and addressed
in the exercises. We add 97 to the generated integer, because the ASCII
position of @’ is 97. Consequently, we transform the generated integer to
characters in the range [2’..”2].

Ranking the population, shown next, is very simple using the sort
method that is part of the static class, Collections. A static class is
one that exists to provide services to other classes. In this case, the
methods in Collections operate on and return classes that implement
the Collection Interface. An interface in Java is a set of specifications that
implementing classes must fulfill. It would have been possible to design GA
as an Inferface class, though the presence of common methods among
specific genetic algorithms made the choice of GA as a supetclass a more
intuitively clear design. Among the many classes that implement the
methods specified in the Collection interface is ArrayList, the class we
have chosen to represent the population of chromosomes.

protected void SortPop()
{

Collections.sort(GA_pop, new CostComparator());

}

private class CostComparator

implements Comparator <Chromosome>

{
int result;
public int compare(Chromosome objl,
Chromosome obj2)
{
result = new Integer(objl.GetCost()).
compareTo(new Integer(obj2.GetCost()));
return result;
}
}

Collections.sort requires two arguments, the object to be sorted—
the ArrayList containing the population—and the mechanism that will
do the sorting:

Collections.sort(GA_pop, new CostComparator());

The second argument creates an instance of a helper class that implements
yet another interface class, this time the Comparator interface. The second
object is sometimes called the comparator object. To implement the
Comparator interface we must specify the type of the objects to be
compared—class Chromosome, in this case—and implement its
compare method. This method takes two chromosomes as arguments,

28.4

Chapter 28 Genetic and Evolutionary Computing 401

uses the method GetCost to extract the cost from the chromosome, and
the compareTo method of the Integer wrapper class to determine which
of the chromosomes costs more. In keeping with OO, we give no
consideration to the specific algorithm that Java uses. Java documentation
guarantees only that the Comparator class “imposes a total ordering on
some collection of objects” (Interface Comparator 2007).

Mutation is the last of the three shared methods that we will consider.
The fraction of the total number of genes that are to be mutated per
generation is a design parameter. The fraction of genes mutated depends
on the size of the population, the number of genes per chromosome, and
the fraction of the total genes to mutate. For each of the mutations, we
randomly choose a gene within a chromosome, and randomly choose a
mutated value. There are two things to notice. First, we never mutate our
best chromosome. Second, the mutation code in GA is specific to genetic
algorithms where genes may be reasonably represented as characters. The
code for Mutation may be found on the Chapter 28 code library.

Conclusion: Complex Problem Solving and Adaptation

In this chapter we have shown how Darwin’s observations on speciation
can be adapted to complex problem solving. The GA, like other Al
techniques, is particularly suited to those problems where an optimal
solution may be computationally intractable. Though the GA might
stumble upon the optimal solution, odds are that computing is like nature
in one respect. Solutions and individuals must be content with having
solved the problem of adaptation only well enough to pass their
characteristics into the next generation. The extended example,
WordGuess, was a case in which the GA happens upon an exact
solution. (See the code library for sample runs). This was chosen for ease
of exposition. The exercises ask you to develop a GA solution to a known
NP-Complete problem.

We have implemented the genetic algorithm using object-oriented
programming techniques, because they lend themselves to capturing the
generality of the GA. Java was chosen as the programming language, both
because it is widely used and, because its syntax in the C/C++ tradition
makes it readable to those with little Java or, even, OO experience.

As noted, we have not discussed the classes SetParams, GetParams,
and Parameters mentioned in Section 28.3. These classes write to and
read from a file of design parameters. The source code for them can be
found in the auxiliary materials. Also included are instructions for using the
parameter files, and instructions for exercising WordGuess.

Chapter 28 was jointly written with Paul De Palma, Professor of Computer
Science at Gonzaga University.

Exercises

1. The traveling salesperson problem is especially good to exercise the GA,
because it is possible to compute bounds for it. If the GA produces a
solution that falls within these bounds, the solution, while probably not
optimal, is reasonable. See Hoffman and Wolfe (1985) and Overbay, et al.

402

Part IV: Programming in Java

(2007) for details. The problem is easily stated. Given a collection of cities,
with known distances between any two, a tour is a sequence of cities that
defines a start city, C, visits every city once and returns to C. The optimal
tour is the tour that covers the shortest distances. Develop a genetic
algorithm solution for the traveling sales person problem. Create, at least,
two new classes TSP, derived from GA, and TSPtst that sets the
algorithm in motion. See comments on mating algorithms for the traveling
salesperson problem in Luger (2009, Section 12.1.3).

2. Implement the Tournament pairing method of the class Pair.
Tournament chooses a subset of chromosomes from the population. The
most fit chromosome within this subset becomes Parent A. Do the same
thing again, to find its mate, Parent B. Now you have a breeding pair.
Continue this process until we have as many breeding pairs as we need.
Tournament is described in detail in Haupt and Haupt (1998). Does
WordGuess behave differently when Tournament is used?

3. As it stands, GA runs under command-line Unix/Linux. Use the
javax.swing package to build a GUI that allows a user to set the
parameters, run the program, and examine the results.

4. Transform the java application code into a java applet. This applet
should allow a web-based user to choose the GA to run (either
WordGuess or TSP), the pairing algorithm to run (Top-Down or
Tournament), and to change the design parameters

5. WordGuess does not make use of the full generality provided by
object-oriented programming techniques. A more general design would not
represent genes as characters. One possibility is to provide several
representational classes, all inheriting from a modified GA and all being
super classes of specific genetic algorithm solutions. Thus we might have
CHAR_GA inheriting from GA and WordGuess inheriting from CHAR-
GA. Another possibility is to define chromosomes as collections of genes
that are represented by variables of class Object. Using these, or other,
approaches, modify GA so that it is more general.

6. Develop a two-point crossover method to be included in class Mate.
For each breeding pair, randomly generate two crossover points. Parent A
contributes its genes before the first crossover and after the second to
Child A. It contributes its genes between the crossover points to Child B.
Parent B does just the opposite. See Haupt and Haupt (1998) for still other
possibilities.

29 Case Studies: Java Machine Learning
Software Available on the Web

Chapter This chapter provides a number of sources for open source and free machine
Objectives learning software on the web.

Chapter 29.1 Java Machine Learning Software
Contents

29.1 Java Machine Learning Software

There are many popular java-based open-source machine learning software
packages available on the internet. Several important and widely used ones
are described below.

Weka Wcka is a Java-based open-source software distributed under the GNU
General Public License. It was developed at the University of Waikato in
Hamilton, New Zealand in 1993.

Weka is a very popular machine learning software that is widely used for
data-mining problems. The main algorithms implemented in Weka focus
on pattern classification, regression and clustering. Tools for data
preprocessing and data visualization are also provided. These algorithms
can either be directly applied to a dataset or be called from other Java code.
Weka algorithms can also be used as building blocks for implementing new
machine learning techniques.

http://www.cs.waikato.ac.nz/ml/weka

ABLE ABLE is a freely-available Java-toolkit for agent-based machine learning
problems developed by the IBM T. J. Watson Research Center in
Yorktown Heights, NY.

The ABLE framework provides a library of packages, classes and interfaces
for implementing machine learning techniques like neural networks,
Bayesian classifiers and decision trees. It also provides a Rule Language for
rule-based inference using Boolean and fuzzy logic. The packages and
classes can be extended for developing custom algorithms. Supportt is also
provided for reading and writing text and database data, data
transformation and scaling and invocation of user-defined external
functions.

http://www.alphaworks.itbm.com/tech/able

JOONE JOONE (Java Object-Oriented Neural Engine) is a free java framework
for implementing, training and testing machine learning algorithms using
artificial neural networks (ANN). The software includes algorithms for
feed-forward neural networks, recursive neural networks, time-delay neural
networks, standard and resilient back propagation, Kohonen self-

403

404

Part IV: Programming in Java

LIBSVM

organizing maps, Principal Component Analysis (PCA), and modular
neural networks.

JOONE components can be plugged into other software packages and can
be extended to design more sophisticated algorithms. It comes with a GUI
editor to visually create and test any neural network and a Distributed Test
Environment to train many neural networks in parallel and select the best
one for a given problem.

http://www.jooneworld.com

LIBSVM (Library for Support Vector Machines) is an integrated software
solution for classification, regression and distribution-estimation using
support vector machines (SVM) developed at the National Taiwan
University. The soutrce code is freely available with both C++ and Java
versions.

The main features of the LIBSVM software are different SVM
formulations, efficient multi-class classification, cross-validation for model
selection, probability estimates, weighted SVM for unbalanced data and

automatic model selection. It also includes a GUI and interfaces for other
languages like Python, R, MATLAB, Perl, Ruby and Common Lisp.

http://www.csie.ntu.edu.tw/~cjlin/libsvm

30

Chapter
Objectives

The Earley Parser: Dynamic
Programming in Java

Sentence parsing using dynamic programming
Memoization of subpatses
Retaining partial solutions (parses) for reuse
The chart as medium for storage and reuse
Indexes for word list (sentence)
States reflect components of parse
Dot reflects extent of parsing right hand side of grammar rule
Lists of states make up components of chart
Chart linked to word list
Java Implementation of an Earley parser
Context free parser
Deterministic
Chart supports multiple parse trees
Forward development of chart composes components of successful parse
Backward search of chart produces possible parses of the sentence

Chapter 30.1 Chart Parsing: An Introduction
Contents 30.2 The Earley Parser: Components
30.3 The Earley Parser: Java Code
30.4 The Completed Parser
30.5 Generating Parse Trees from Charts and Grammar Rules (Advanced Section)
30.1 Chart Parsing: An Introduction

The Earley parser (Earley 1970) uses dynamic programming to analyze
strings of words. Traditional dynamic programming techniques (Luger
2009, Section 4.1) use an array to save (memoize) the partial solutions of a
problem for use in the generation of subsequent partial solutions. In Earley
parsing this array is called a chart, and thus this approach to parsing
sentences is often called chart parsing.

In Chapter 9, Sections 1 and 2, we first presented the full algorithms along
with the evolving chart for Earley parsing. In these sections, we presented
pseudo-code, demonstrated the “dot” as a pointer indicating the current
state of the parse for each grammar rule, and explicitly considered the state
of the chart after each step of the algorithm. We refer to Sections 9.1, 9.2,
and Luger (2009, Section 15.2.2) for these specific details if there is any
concern about how the chart-parsing algorithm works. We feel that it is
also interesting to compare the data representation and control structures
used in the declarative Prolog environment, Chapter 9, with what we next
present with the object-oriented representations of Java.

406 Part IV: Programming in Java

30.2

The Sentence

The Grammar

The Earley Parser: Components

We first discuss the data representations required by the Earley parsing
algorithm presented in Sections 9.1 and 9.2. Of course, in the present
chapter we will be using an object-oriented hierarchy to capture the
components of the parser. Consider what the pseudo-code requires:

* A sentence. The sentence needs to be in a format that
supportts pointers to any word located in that sentence so that
appropriate grammar rules can be applied.

* A grammar. The Earley parser needs a set of (context free)
grammar rules that can be applied to interpret the components
of the sentence. The parser itself has no knowledge of the parts
of speech (POS) or production rules of the grammar.

* An evolving chart. The chart is used to save partial solutions
(accepted parts of the parse) for later use. Thus, the chart is
used to contain the states as they are produced during the
algorithm. These states need to be stored in the order of their
production and without repeats.

* The states. State will capture the current activity of the parser.
Thus it will need to be a container for the current rule, which
has a left-hand-side, LHS, and a right-hand-side, RHS. Besides
instantiating a particular rule, state must also have the current
(i, J) pair that presents the seen/unseen parts of the
sentence for that rule.

We next consider how each of these constituents of the algorithm is
represented as data structures in Java. In Section 30.3 we describe the
Earley parser itself that will utilize these components.

First, we consider the set of descriptors that the sentence needs. The
primary thing we require is the ability to index into specific word locations
in the current sentence. This can be handled two ways: the use of a simple
representation, or the use of a class. The simple representation would be a
String array. This array would enable us easily to index to specific words
in the sentence. Everything that we need for the algorithm is present.

We could also use a class to represent each indexed sentence. If
Sentence is a class, we could incorporate other aspects of the sentence
into that class, such as the segmentation of a String into individual
words. If we were using the Earley algorithm in conjunction with another
algorithm (which is often required), we may need to create the Sentence
class so that we can separate the sentence’s parsing from other code.

For this presentation, we use the simple representation of a sentence as a
String array.

For the grammar rule processing required by the Earley parser we create a
class. The application of each rule needs to know the specific rules of a
grammar, and which non-terminals are parts of speech. So that both
characteristics are easily contained, a Grammar class is a good choice. The
Grammar class will need two important methods: getRHS(String
lhs),and isPOS(String lhs):

The Chart

The States

Chapter 30 The Earley Parser: Dynamic Programming in Java 407

getRHS (String lhs) will return all RHS’s of the grammar rules for
any left-hand-side, 1hs. If there are not any such rules, then it will indicate
such.

isPOS(String lhs) will return true or false based on whether
or not a component of the lhs is a part of speech.

To make the Grammar class easier to extend to more complicated
grammars, the Grammar class itself does not instantiate any rules. It is a
basic framework for the two important methods, and defines how the rules
are contained and related. To create a specific grammar, the Grammar
class needs to be extended to a new class. This new class will instantiate all
the grammar rules. As just noted, the framework of the grammar rules is a
mapping between a LHS and RHS. For each rule there will be only one
LHS for each RHS, but it is likely in the full set of grammar rules that a
particular LHS will have several possible RHSs. Later in the chapter, the
exact framework for this matching is presented.

A chart is an ordered list of the successively produced components of the
parse. A major requirement is to determine whether any newly produced
possible component of the parse is already contained in the chart.

To make it easier to maintain the charts correctly and consistently, we
create a Chart class. We could have used a simpler structure, like
Vector, to contain the states of the parse as they are produced, but the
code to manipulate the Vector would then be distributed throughout the
parser code. This dispersed code makes it much harder to make
corrections, and to debug. When we create the Chart class, the code to
manipulate the chart will be identical for all uses, and since the code is all in
one place, it will be much easier to debug. Notice that the Chart class
represents a single chart, not the evolving set of states that are created by
the Earley algorithm. Since there is no additional functionality needed
beside that already discussed, we make a Chart array for the evolving set
of chart states, rather than making another class.

A state component for the parser has one left-hand-side, LHS, one right-
hand-side, RHS, for each rule that is instantiated, as well as indices from
the sentence String array, an (1 J) pait. Because these components all
need to be represented, the easiest way to create the problem solving state,
is to make a State class. Since the State class supports the full Earley
algorithm, it will requite get methods for returning the LHS, the RHS,
and the 1 J indices. Also, as seen in the pseudo-code of Section 9.2, we
need the ability to get the term after the dot in the RHS, as well as the
ability to determine whether or not the dot is in the last (terminal) position.
Methods to support these requirements must be provided.

Throughout our discussion, LHS and RHS have been mentioned, but not
their implementation. Since the Earley parser uses context-free grammar
rules, we create the LHS as a String. The RHS on the other hand, is a
sequence of terms, which may or may not include a dot. Due to the fact
that it is used in two separate classes, and the additional requirement of dot
manipulation, we separated the RHS into its own class.

408 Part IV: Programming in Java

30.3

The RHS Class

The Earley Parser: Java Code

The Earley parser, which manipulates the components described in Section
30.2, will have its own class. This makes it easier to contain and hide the
details of the algorithm. The EarleyParser class can be implemented
in either of two ways.

First, the class could be static. When one wanted to patse a sentence, the
static method would be called, and with the grammar rules and the
sentence to be parsed as arguments, return a boolean indicating whether
the parse was successful. Alternatively, the chart itself could be returned
and examined to determine whether there was a successful parse. Second,
with the class not static, the EarleyParser would be instantiated with
a Grammar, and then a parse method could be called with a sentence.
After the parse method is called, another method would be called to obtain
the charts (if the parse method returns a boolean). We take this second
approach and start with the most basic class, the RHS class, and then work
our way towards creating the EarleyParser class.

The RHS is a String array containing a boolean that records whether
its terms contains a dot, an int recording the offset of the dot (this will
default to -1, indicating no dot), and a final static String
containing the representation of the dot. The constructor determines if
there is a dot and updates hasDot and dot accordingly.

public class RHS
{
private String[] terms;
private boolean hasDot = false;
private int dot = -1;
private final static String DOT = "@";

public RHS (String[] t)

{
terms = t;
for (int i=0; i< terms.length; i++)
{
if(terms[i].compareTo (DOT) == 0)
{
dot = i;
hasDot = true;
break;
}
}
}

// Additional methods defined below.

Chapter 30 The Earley Parser: Dynamic Programming in Java 409

RHS returns its terms, the String array, for wuse by the
EarleyParser, as well as the String prior to and after the dot. This
enables ease of queries by the EarleyParser regarding the terms in the
RHS of the grammar rule. For example,. EarleyParser gets the term
following the dot from RHS, and queries the Grammar to determine if
that term is a part of speech.

public String[] getTerms ()

{
return terms;
}
public String getPriorToDot ()
{
if (hasDot && dot >0)
return terms[dot-1];
return "";
}
public String getAfterDot ()
{
if (hasDot && dot < terms.length-1)
return terms[dot+1];
return "";
}

The final procedures required to implement RHS are manipulation of and
queries concerning the dot. The queries determine whether there is a dot,
and where the dot is located, last or first. When a dot is moved or added to
a RHS, a new RHS is returned. This is done because whenever a dot is
moved a new State must be created for it.

public boolean hasDot ()

{
return hasDot;
}
public boolean isDotLast ()
{
if (hasDot)
return (dot==terms.length-1);
return false;
}
public boolean isDotFirst ()
{

if (hasDot)
return (dot==0);

return false;

410 Part IV: Programming in Java

The Grammar
Class

public RHS addDot ()
{
String[] t = new String[terms.length+l];
t[0] = DOT;
for (int i=1; i< t.length; i++)
t[i] = terms[i-1];
return new RHS (t);

}
public RHS addDotLast ()

{
String[] t = new String[terms.length+l];
for (int i=0; i< t.length-1; i++)
t[i] = terms[i];
t[t.length-1] = DOT;
return new RHS (t);

}

public RHS moveDot ()

{
String[] t = new String[terms.length];
for (int i=0; i< t.length; i++)
{
if (terms[i].compareTo (DOT)==0)
{
t[i] = terms[i+1l];
t[i+1] = DOT;
i++;
}
else
t[i] = terms[i];
}
return new RHS (t);

}

There are two additional methods that we have not included here. These
are overrides methods of equals(Object 0), and toString().
Equivalence indicates identical terms, and placement of the dot.
toString() is overridden to make it easier to print during debug, and
when the charts are printed. Next we present one of the two classes that
contain a RHS.

The Grammar class does not instantiate the rules of a specific grammar. It
contains a HashMap that links the left-hand-side (LHS) of a grammar rule,
which is a String, to an array of RHSs, and a Vector of Strings that
are the parts of speech of the grammar.

Chapter 30 The Earley Parser: Dynamic Programming in Java 411

public class Grammar

{
HashMap<String, RHS[]> Rules;
Vector<String> POS;
public Grammar ()
{
Rules = new HashMap<String, RHS[]1>();
POS = new Vector<String>();
}
// Additional methods defined below.
}

The Grammar class supports two methods: one returning all the RHSs
associated with a LHS, and the second returning if a String is a part of
speech.

public RHS[] getRHS (String lhs)

{
RHS[] rhs = null;

if (Rules.containsKey (lhs))

{
rhs = Rules.get (1lhs);

}

return rhs;
}
public boolean isPartOfSpeech (String s)
{

return POS.contains (s);
}

For EarleyParser to function, the Grammar class must be extended.
To do this we have created SimpleGrammar that demonstrates both
creation of the rules and how these are added to the rule list.

public class SimpleGrammar extends Grammar

{

public SimpleGrammar ()

{
super();
initialize();
}
private void initialize()
{

initRules();
initPOS();

412 Part IV: Programming in Java

private void initRules|()

{
String[] sl = {"NP", "VP"};
RHS[] sRHS = {new RHS(sl)};
Rules.put ("S", sRHS);
String[] npl = {"NP","PP"};
String[] np2 = {"Noun"};
RHS[] npRHS = {new RHS(npl),

new RHS(np2)};
Rules.put ("NP", npRHS);
String[] vpl = {"Verb","NP"};
String[] vp2 = {"VP", "PP"};
RHS[] vpRHS = {new RHS(vpl),
new RHS(vp2)};
Rules.put ("VP", VvpRHS);
String[] ppl = {"Prep","NP"};
RHS[] ppRHS = {new RHS(ppl)};
Rules.put ("PP", ppRHS);
String[] nounl = {"John"};
String[] noun2 = {"Mary"};
String[] noun3 = {"Denver"};
RHS[] nounRHS = {new RHS(nounl),
new RHS(noun2),
new RHS(noun3)};

Rules.put ("Noun", nounRHS);
String[] verb = {"called"};
RHS[] verbRHS = {new RHS(verb)};
Rules.put ("Verb", verbRHS);

{"from"};

{new RHS(prep)};

String[] prep
RHS[] prepRHS

Rules.put ("Prep", prepRHS);
}
private void initPOS()
{

POS.add ("Noun");

POS.add ("Verb");

POS.add ("Prep");

}

The State class The State class contains a String representing the LHS of the rule, a
RHS that contains the dotted right-hand-side of the rule, and ints
describing Seen/UnSeen components. There are get methods, and
functions for handling the dot.

Chapter 30 The Earley Parser: Dynamic Programming in Java 413

public class State
{
private String lhs;
private RHS rhs;
private int i, Jj;
public State (String lhs, RHS rhs, int i, int j)
{

this.lhs = 1lhs;
this.rhs = rhs;
this.i = i;
this.j = j;
}
public String getLHS ()
{
return lhs;
}
public RHS getRHS ()
{
return rhs;
}
public int getI ()
{
return i;
}
public int getJd ()
{
return j;
}
public String getPriorToDot ()
{
return rhs.getPriorToDot ();
}
public String getAfterDot ()
{
return rhs.getAfterDot ();
}
public boolean isDotLast ()
{
return rhs.isDotLast ();
}

414 Part IV: Programming in Java

The Chart Class

30.4

Finally, again, the function overrides of equals(Object o) and
toString()are not included. Equivalent states are identified when the
LHS, RHS, i, and j are all identical. toString()prints out the State
in a readable format.

The Chart class contains a Vector of States. These are the states
produced by the EarleyParser. The States are inserted into the
Vector in order; this is necessary for the algorithm.

public class Chart

{
Vector<State> chart;
public Chart ()
{
chart = new Vector<State>();
}
public void addState (State s)
{
if(!chart.contains (s))
{
chart.add (s);
}
}
public State getState (int i)
{
if(i < 0 || 1 >= chart.size ())
return null;
return (State)chart.get (1i);
}
}

addstate(State s) determines whether s is already within the
Chart. If s is not in the Chart, s is added to the end of Vector.
Nothing is done when s is already in the Chart. getState(int 1)
returns the State at the i-th offset in Vector. There are checks to
enforce that i is a valid offset. toString()is overridden in Chart, in
addition to a get function that returns the size of the Chart.

The Completed Parser

We have now completed the design of the components of the Earley
parser. Figure 30.1 presents the object hierarchy that supports this design.
EarleyParser, which implements this design is presented in Section
30.4.1, while Section 30.4.2 describes main which presents two sentences
and produces their chart parses.

Chapter 30 The Earley Parser: Dynamic Programming in Java 415

Figure 30.1 The design hierarchy for the EarleyParser class.

The The EarleyParser class contains Grammar describing the grammar
EarIeyPg:':se; rules for parsing the perspective sentence. It also creates String, an array
containing the sentence to be parsed, and Chart, an array containing the
evolving states of the chart. sentence and Chart will change with each
call of parseSentence(..). Note that each of the methods of the
EarleyParser class reflect the desigh components of Sections 30.2 and 30.3

and presented in Figure 30.1.

public class EarleyParser

{
private Grammar grammar;
private String[] sentence;

private Chart[] charts;

public EarleyParser (Grammar g)

{

grammar = g;
}

public Grammar getGrammar ()

{

return grammar;
}
public Chart[] getCharts ()
{

return charts;

// Additional methods defined below.
}
parseSentence(..) takes the sentence to be patrsed, uses it to
initialize Chart to have the number of words in the sentence + 1 number

of chart states, and makes the dummy start state (“$ — @ S”, 0,
0) the first chart state. parseSentence then iterates through each of

416

Part IV: Programming in Java

the charts, and for every State in a Chart, checks to determine which
procedure is called next: completer(...) - the dot is last,
scanner(...) - the term following the dot is a part of speech, or
predictor(...) - the term following the dot is not a part of speech.
After all charts are visited, if the last State added to the last Chart is a
finish state, ("$ — S @”, 0, sentencelLength), the sentence
was successfully parsed.

public boolean parseSentence (String[] s)
{
sentence = s;
charts = new Chart[sentence.length+l];
for (int i=0; i< charts.length; i++)
charts[i] = new Chart ();
String[] startl = {"@", "S"};
RHS startRHS = new RHS (startl);
State start = new State ("$",startRHS,0,0,null);
charts[0].addState (start);
for (int i=0; i<charts.length; i++)
{
for (int j=0; j<charts[i].size (); Jj++)
{
State st = charts[i].getState (j);
String next term = st.getAfterDot ();
if (st.isDotLast ())
// State's RHS = ... @
completer (st);
else
if (grammar.isPartOfSpeech (next term))
// RHS = ... @ A ..., where A is a part of speech.
scanner (st);
else
predictor (st); // Ais NOT a part of speech.

// Determine whether a successful parse.
String[] fin = {"S","@"};
RHS finRHS = new RHS (fin);
State finish = new State ("$",finRHS,
0,sentence.length,null);
State last = charts[sentence.length].getState
(charts[sentence.length].size ()-1);
return finish.equals (last);

Chapter 30 The Earley Parser: Dynamic Programming in Java 417

We next create the predictor, scanner, and completer
procedures. First, the predictor (State s) adds all rules for the
term after the dot in s to the j-th slot in chart.
private void predictor (State s)
{
String lhs = s.getAfterDot ();
RHS[] rhs = grammar.getRHS (1lhs);
int j = s.getd ();
for (int i=0; i< rhs.length; i++)
{
State ns = new State (lhs, rhs[i].addDot (),
jr Js 8):
charts[j].addState (ns);

}

scanner (State s) determines whether the part of speech term
following the dot in s has a RHS that contains only the j-th word in the
sentence. If so, this new state is added to the (j+1)-th chart.

private void scanner (State s)

{
String lhs = s.getAfterDot ();
RHS[] rhs = grammar.getRHS (1lhs);
int 1 = s.getI ();
int j = s.getd ();
for (int a=0; a< rhs.length; a++)
{
String[] terms = rhs[a].getTerms ();
if (terms.length == 1 &&
j < sentence.length &&
terms[0].compareToIgnoreCase
(sentence[j]) == 0)
{
State ns = new State (lhs,
rhs[a].addDotLast (), j, Jj+1, s);
charts[j+1].addState (ns);
}
}
}

Finally, completer(State s) determines whether any state in the
i-th chart slot has a term following the dot that is the same as the LHS of
s. If so, new States based on those terms found are created with a
moved dot, and an updated Jj.

418 Part IV: Programming in Java

The
EarleyParser:
A Test Run

private void completer (State s)

{
String lhs = s.getLHS ();
for (int a=0; a<charts[s.getI ()].size (); a+t+)
{
State st = charts[s.getI ()].getState (a);
String after = st.getAfterDot ();
if(after != null &&
lhs.compareTo (after)==0)
{
State ns = new State (st.getLHS (),
st.getRHS ().moveDot (),
st.getI (), s.getd (), s);
charts[s.getJ ()].addState (ns);
}
}
}

After EarleyParser completes parseSentence(..), the
getCharts () method is called. These charts in conjunction with the
grammar rules can be used to determine the parse trees of the sentence.
We discuss methods for doing this in Section 30.5.

We next create methods that contain sentences that test
EarleyParser. In our example, the included Main, contains two
sentences and then uses SimpleGrammar to parse them. It then prints
out the sentences and the associated Charts for each.

public class Main
{
public static void main (String[] args)
{
String[] sentencel =
{"John", "called", "Mary"};
String[] sentence2 =
{"John", "called", "Mary",
"from", "Denver"};
Grammar grammar = new SimpleGrammar ();
EarleyParser parser =
new EarleyParser (grammar);
test (sentencel,parser);

test (sentence2,parser);

30.5

Chapter 30 The Earley Parser: Dynamic Programming in Java 419

static void test (String[] sent,

EarleyParser parser)

StringBuffer out = new StringBuffer ();
for (int i=0; i<sent.length-1;i++)

out.append (sent[i]+" ");
out.append (sent[sent.length-1]+".");
String sentence = out.toString ();
System.out.println (

"\nSentence: \""+sentence+"\"");
boolean successful =

parser.parseSentence (sent);
System.out.println (

"Parse Successful:" + successful);

Chart[] charts = parser.getCharts ();
System.out.println ("");
System.out.println (
"Charts produced by the sentence
\""+sentence+"\"");
for (int i=0; i<charts.length; i++)

{

System.out.println ("Chart "+ i + ":");
System.out.println (charts([i]);

}

Generating Parse Trees from Charts and Grammar Rules
(Advanced Section)

All the topics discussed, as well as all the data structures and algorithms we
have designed to this point in Chapter 30, have been used to build a chart
that indicates whether or not a set of grammar rules are sufficient for
parsing a string of words. In this final section we present some ideas for
extracting parse trees from the charts created and the grammar rules that
supported them. Thus, we have completed the forward component of the
Jforward/ backward algorithm (Luger 2009, Section 4.1 and Section 15.2.2)
used in dynamic programming. We now present some ideas for completing
the backward component of the dynamic programming algorithm: how we
can use the chart and set of grammar rules to extract parse trees. We
consider this an advanced topic, and so will present only the main
components of an algorithm and leave its design as an exercise. Included
with the software is our implementation of the stack-based approach to
this problem.

To begin, we must determine how each state in the chart is created. One
method for accomplishing this is to list all the ways that each state of the

420

Part IV: Programming in Java

chart can be produced. Another approach is to record this information
when each of the states of the chart is first produced. We will discuss and
implement this second method. To record the sources of a State we can
add to the State class a Vector of States. This Vector will
contain all States that produced this State. To maintain this, when a
State is added to a Chart, if the State is already within the Chart,
merge the sources of the State within the Chart and the one we
attempted to add. This approach offers a method to look back through the
charts quickly to find the possible parse trees.

It is important to remember that more then one parse tree can often be
produced from Chart. An example is that the sentence “John called Mary
from Denver” has two interpretations (parses): John called Mary, who is
from Denver; and John called Mary, and John is in Denver. So however we
produce the parse trees, we need to decide if we will attempt to produce all
trees, or select only one. With appropriate forethought, it is easy to
produce all parse trees.

To generate parse trees, the backward component of the dynamic
programming algorithm, we begin with the final state (“$ — S @,
0, sentenceLength+1l). For each source state for that final state,
we iterate through the following:

1. If the source state is the start state (“$ — @ S”, 0, 0),
return the tree created. Otherwise continue.

2. Look at the current state we are evaluating. If the dot is last,
then add LHS to the tree as the left-most child of the current
evaluating node. We add it as the left-most child because we are
building the tree right to left. This means that we will find the
state with the last word of the sentence before any other
preceding words. We will find the right-most child first, and
want the subsequent children to be added to the left.

3. If the state’s LHS is a part of speech, POS, then add the RHS’s
first term as the only child of the node we just added. We are
guaranteed that the LHS was just added as a child, because for
this type of state there is a single term in the RHS and a final
dot. For example: “Noun — John @”. We have finished
evaluating this state, so move to its source state and continue
evaluation. There are two cases for this:

a. There is only one source. Easy! Use that one source.

b. There are multiple sources. Now we need to find the
one that matches how we have been building the tree.
To demonstrate what we mean, consider the more
complex sentence “Old men and women like dogs.”
The ambiguity for this sentence is: only the men are
old, or if both the men and women are old. “and” is a
conjunction, which is a part of speech so it would
match this rule. Here is the problem:

With 3b. we have finished with the state: (“Conj — and @”, 2,
3). The sources of this state are both (“NP — NP @ Conj NP”,

Chapter 30 The Earley Parser: Dynamic Programming in Java 421

0, 2)and ("NP — NP @ Conj NP”, 1, 2).Which one should
we use? First, notice that the only difference between the two source states,
is the location of i. (The i describes where the start of each rule is.) In
(“NP — NP @ Conj NP”, 0, 2), the startis at the beginning of
the sentence. For (NP — NP @ Conj NP”, 1, 2), the startis
“men”. Thus the parse difference between “old (men) and women” and
“old (men and women)”. Furthermore, we need to consider where the
previous states we have used to make the parse tree are looking. If for this
particular tree, we had used (“NP — NP Conj @ NP”, 0, 3)
then we need to use (NP — NP @ Conj NP”, 0, 2).For (“NP
— NP Conj @ NP”, 1, 3) we would use (“NP — NP @
Conj NP”, 1, 2). Therefore we must find the source state that
matches the rule ignoring the position of the dot (this should be off by
one), and the i.

4. At this point the current state may have been added to the tree,
or it may not have. In either case we need to determine whether
there are multiple sources for this state, and if there are, we
need to iterate across each of them to determine which of the
sources are valid. Before we do this, we need to update the
current evaluating node. Above, we mentioned a current
evaluating node. This is the node we are adding children to.
Before we can continue, we need to determine if this node
needs to change for the next iteration. There are three cases:

a. 'The current state’s dot is first. This means there are no
more children that need to be added to this node. So
we move to the parent of the current evaluating node.

b. If the current state’s LHS was just added to the tree and
it was not a part of speech, then we will want to be
adding the next nodes to the node we just added. So

the current evaluating node moves to its left-most
child.

c. Otherwise, continue to use this node. This happens if
we have just added a part of speech, POS, node and its
child.

5. Next, we must iterate through all of these sources, and for each
source state that meets the criteria, we attempt to continue
building the tree from that state. One of the following must be
true for this continuation to be accomplished:

a. The source state’s LHS is equal to the current state’s
term prior to the dot. Remember, we are moving from
right to left, and the dot is moving from right to left. So
if this is true, then the current state was generated
because the source state completed a rule (the dot
moved all the way to the right) and the
completer(..) method was called.

b. The source state’s RHS, with dot moved to the right,
and LHS matches on a state we have already evaluated.

422

Part IV: Programming in Java

6. If the criteria fail for all source states, then this was a dead end,
and no tree is returned. If any of the source states are valid,
start at step 1 with that state as the current state, and update the
current evaluating node. The accepted trees (there may be no
tree possible) are bundled together and returned.

From this algorithm, we can produce the multiple parse trees implicit in the
Earley algorithm’s successful production of the Chart. Example code
implementing this algorithm is included with the Chapter 30 support
materials.

The Eatley parser code as well as the first draft of this chapter was written
by Ms Breanna Ammons, MS in Computer Science, University of New
Mexico.

Exercises

1. Describe the role of the dot within the right hand side of the grammar
rules processed by the Eartley parser. How is the location of the dot
changed as the parse proceeds? What does it mean that the same right
hand side of a grammar rule can have dots at different locations?

2. In the Earley parser the input word list and the states in the state lists
have indices that are related. Explain how the indices for the states of the
state list are created.

3. Describe in your own words the roles of the predictor,
completer, and scanner procedures in the algorithm for Earley
parsing. What order are these procedures called in when parsing a sentence,
and why is that ordering important? Explain your answers to the order of
procedure invocation in detail.

4. Use the Java parser to consider the sentence “John saw the burglar with
the telescope”. Parse also “Old men and women like dogs”. Comment on
the different parses possible from these sentences and how you might
retrieve them from the chart.

5. Create a Sentence class. Have one of the constructors take a
String, and have it then separate the String into words.

6. Code the algorithm for production of parse trees from the completed
Chart. One method of recording the sources is presented in Section 30.5.
You may find it useful to use a stack to keep track of the states you have
evaluated for the parse tree.

7. Extend EarleyParser to include support for context-sensitive
(Luger 2009, Section 15.9.5) grammar rules. What new structures are
necessary to guarantee constraints across subtrees of the parse?

31 Case Studies: Java Natural Language
Tools Available on the Web

Chapter This chapter provides a number of sources for open source and free atural
Objectives language understanding software on the web.

Chapter 31.1 Java NLP Software
Contents 31.2 LingPipe from the University of Pennsylvania
31.3 The Stanford Natural Language Processing Group Software
31.4 Sun’s Speech API

31.1 Java Natural Language Processing Software

There are several popular java-based open-source natural language
understanding software packages available on the internet. We describe
three of these in Chapter 31. It must be remembered both that these web
sites may change over time and that new sites will appear focusing on
problems in NLP.

31.2 LingPipe from the University of Pennsylvania

Background TingPipe is an available Java resource from Alias-1, http://www.alias-
i.com/lingpipe/. Alias-i began in 1995 as a collaboration of students at
University of Pennsylvania. After competing in different events (including
DARPA MUC-6), the group was awarded a research contract under the
TIDES (Trans-Lingual Information Detection Extraction and
Summarization) program. Starting as Baldwin Language Technologies, the
company’s name later changed to Alias-i. LingPipe was used in two of
Alias-1’s products, FactTracker and ThreatTracker. In 2003, LingPipe was
released as open source software with commercial licenses available as well.
LingPipe contains many tools for linguistic analysis of human language,
including tools for sentence-boundary detection; and a part-of-speech
tagger and phrase chunker.

LingPipe is easy to download from the website. The download contains
demos, documentation and there are models available to download as well.
On the website there are tutorials, documentation, and a FAQ. Also there
are links to the community of LingPipe consumers. This includes a listing
of some commercial customers, as well as research patrons. There is a
newsgroup for discussion as well as a blog for being kept up to date on the
suite.

We next take a look at some of the tools provided by LingPipe.

Sbente:ce- To start with, there are tutorials contained in the download for the
Dg::ct?c:x sentence-boundary detection classes. These tutorials contain example
programs that use and extend the com.aliasi.sentences classes. If you follow

423

424 Part IV: Programming in Java

Part-of-speech
Tagger

the tutorials, you will get suggestions for how some of the classes can be
extended to do sentence detection for other corpora.

The AbstractSentenceModel class contains the basic functionality needed to
detect sentences. When extending this class, definitions of possible stops,
impossible penultimates, and impossible starts are needed. Possible stops
are any token that can be placed at the end of a sentence. This includes *’
and . Impossible penultimates are tokents that cannot precede an end of
the sentence. An example would be ‘Mr’ or ‘Dr’. Impossible starts are
normally punctuation that should not start a sentence and should be
associated with the end of the last sentence. These can be things like end
quotes.

The AbstractSentenceModel is already extended to the HewuristicSentenceModel,
which is extended to the IndoEwuropeanSentenceModel, and the
MedlineSentenceModel. These last two provide good examples of definitions
for the possible stops, impossible penultimates and the impossible starts.
From these examples, HeuristicSentenceMode/ can be extended to suit a data
set. After creating an example set with known sentence boundaries,
running the evaluator contained in the tutorials for the sentences class
gives an idea of fallacies of the current model. From the evaluator’s output
files, cotrections can be made to the possible stops, impossible
penultimates and impossible starts. Be careful though; when attempting to
remove all false positives and all false negatives, the definitions can be
come too rigid and cause more errors when run with more then the
example set. So try to find a good balance.

Within the download, the AbstractSentenceModel is only extended to the
HeuristicSentenceModel. 'This does not mean that you must use the
HeuristicSentenceModel. The HeuristicSentenceModel can be used as an example
to create a new class that extends only AbstractSentenceModel. Therefore if
you have a different type of model that you would like to use, extend
AbstractSentenceModel and try it out.

The part-of-speech (POS) tagger is a little more complicated then the
sentences classes. To use it the POS tagger must be trained. After it is
trained, the tagger can be used to produce a couple of different statistics
about its confidence of the tags it applies to input. In the download there
are examples of code for the Brown, Genia and MedPost corpora. The
classes used in making a POS tagger come from the com.aliasi.hmm package.
The tagger is a HmmDecoder defined by a HiddenMarkovModel.

To train a tagger, you need first a corpus or test set that has been tagged.
Using this tagged set, the HmmCharlmEstimator (in the com.aliasi.hmm
package) can read the training set and create a HiddenMarkovModel. This
model can be used immediately, or it can be written out to file and used at
a later time. The file can be useful when evaluating different taggers. For
each test on different corpora, the exact tagger can be used without having
to recreate it each time.

Now that we have a tagger, we can use it to tag input. Within one
HmmDecoder there are a couple of different ways to tag; all are methods of
the decoder you create from the HiddenMarkovModel. Based on what kind
of information you need, the options are first-best, n-best and confidence-

31.3

The Stanford
Parser

Chapter 31 Web-based Java NLP software 425

based. First-best returns only the “best” tagging of the input. N-best
returns the first n “best” taggings. Confidence-based results are the entire
lattice of forward/backward scores.

Provided in the tutorials is an evaluator of taggers. This uses pre-tagged
corpora and trains a little, then evaluates a little. It parses reference
taggings, uses the model to tag, and evaluates how well the model did. The
reference tags are then added to the training data, and the parser moves on.
The arguments to the evaluator will determine how well the model learns
and how long it will take. Experiment with this package to see what is
appropriate for your own data set.

A tagger produced by this package could be used in other algorithms.
Whether as tags needed for the algorithm or as a source to produce a
grammar, this POS tagger is useful. A future project might be to create a
parse tree from the POS tagger, but that functionality is not within
LingPipe. An exercise might be to extend LingPipe to create parse trees.

The Stanford Natural Language Processing Group

The Stanford NLP group is a team of faculty, postdoctoral researchers,
graduate, and undergraduate students, members from both the Computer
Science and Linguistics departments. The site http://nlp.stanford.edu
describes the team members, their publications, and the libraries that can
be downloaded.

Exploring this Stanford website, the reader finds, as of January 2008, six
Java libraries available for work in natural language processing. These
include a parser as well as a part-of-speech tagger. Although the
information contained in the introduction for each package is extensive
and contains a set of “frequently asked questions”, the code
documentation is often sparse without sufficient design documentation.
The libraries atre licensed under the full GNU Public License, which means
that they are available for research or free software projects.

The parser makes up a major component of the Stanford NLP website.
There is background information for the parser, an on-line demo, and
answers for frequently asked questions. The Stanford group refers to their
parser as “a program that works out the grammatical structure of
sentences”. The software package includes an optimized probabilistic
context-free grammar (Luger 2009, Section 15.4).

Within the download of the Stanford parser is a package called
edu.stanford.nlp.parser. This parser interface contains two functions: One
function determines whether the input sentence can be parsed or not. The
other function determines whether the parse meets particular parsing goals,
for example, that it is a noun phrase followed by a verb phrase sentence.
There are also a number of sub-interfaces provided, including V7terbiParser ,
see Chapter 30, and KBest1/iterbiParser, the first supporting the most likely
probabilistic parse of the sentence and the second giving the K best parses,
where all parses are returned with their “scores”.

Within the interface edu.stanford.nlp.parser there is a further interface,
edu.stanford.nlp.parser.lexparser, which supports parsers for English,

426 Part IV: Programming in Java

Named-Entity
Recognition

31.4

German, Chinese, and Arabic expressions. There are also classes, that once
implemented, can be used to train the parser for use on other languages.
To train the parser, a training set needs to include systematically annotated
data, specifically in the form of a Treebank (a corpus of annotated data that
explicitly specifies parse trees). Once trained the patser contains three
components: grammars, a lexicon, and a set of option values. The grammar
itself consists of two parts, unary (NP = N) and binary (S = NP VP)
rewrite rules. The lexicon is a list of lexical (word) entries) preceeded by a
keyword followed by a raw count score. The options are persistent
variable-value pairs that remain constant across the training and parsing
stages.

The Stanford tools also include a GUI for easy visualization of the trees
produced through parsing the input streams. The training stages requite
much more time and memory than using the already trained parser. Thus,
for experimental purposes, it is convenient to use the already trained
parsers, although there is much that can be learned by stepping through the
creation of a parser.

A program that performs named—entity recognition (NER) locates and
classifies elements of input strings (text) into predefined categories. For the
Stanford NER the primary categories for classification are name,
organization, location, and miscellaneons. There are two recognizers, the first
classifying the first three of these categories and trained on a corpus
created from data from conference proceedings. The second is trained on
more specific data, the proceedings from one conference.

Using the text classifiers is straightforward. They can be run either as
embedded in a larger program or by command line. When run as part of a
program the classifier is read in using a function associated with
CRFClassifier. 'This function returns an AbstractSequenceClassifier that uses
methods to classify the contents of a S#ng. An example of one (of the
three possible) output formats, called /Cat is: My/O name/O is/O
Bill/PERSON Smith/PERSON ./O. /O indicates that the text string is
not recognized as a named-entity. There are a number of issues involved in
this type classification, for example that at this point Bill Smith is not
recognized as the name of a single person but rather as two consecutive
PERSON tokens. When working with this type pattern matching it is
important to monitor issues in over-learning and wunder-learning: when one
pattern matching component is created to fit a complex problem situation,
another set of patterns may not then be classified properly.

Unfortunately the documentation for the Named-Entity package is
minimal. Although it contains a set of JavaDocs they can be both wrong
(referring to classes that are not included) or simply unhelpful.

Sun’s Speech API

To this point we have focused on Java-based natural language processing
tools analyzing written language. Speech recognition and synthesis are also
important components of NLP. To assist developers in these areas Sun
Microsystems has created an API for speech. This Java API can be found
at http://tesearch.sun.com/speech. From this page there is also a link to a

Chapter 31 Web-based Java NLP software 427

free speech recognizer developed using this API at Carnegie Mellon
University, as well as a speech written by Sun that is based on Flie, a
speech synthesis engine also developed at Carnegie Mellon University. To
run programs written in the Java Speech API needs a compliant speech
recognizer and synthesizer, audio hardware for output and a microphone
for input.

The API contains three packages: speech, speech recognition, and speech
synthesis. The speech package contains several packages and interfaces
used by both the recognition and synthesis systems. The main interface is
an Engne that is the parent interface for all speech systems. The engine
contains the procedures for communicating with other classes as well as
allocation/deallocation methods for moving between states. These states
determine whether the engine has acquired resources sufficient for
executing a function. The engine also provides methods to pause and
resume play and to access all properties including, listeners, audio, and
vocabulary managers. The speech class also contains procedures for
listeners as well as a Word class that contains the written and spoken
pronunciation forms for words. The collection of words, the vocabulary, is
controlled by the Vocabulary manager.

The main class of the speech recognizer is Recognizer. An instance of
recognizer creates listener events and passes them to all registered event
listeners much the same way as action listeners work for GUI applications.
The events are cither accepted or rejected based on sets of grammar rules.
There are two forms of grammar rules: rule-based and dictation. Dictation
rules offer fewer constraints on what can be said with a resulting higher
cost in computational resources an often lesser quality results. Rule-based
grammars are constrained to the Java speech grammar format (JSGF) and
as a result impose a greater constraint on the recognizer. They also require
fewer resources with a reasonable freedom for expressions. A tutorial for
the JSGF is located at http://java.sun.com/products/java-media/
speech/forDevelopers/JSGF and can be used to create grammars.

Once a grammar is created it is passed to a recognizer and activated. Then
the recognizer begins processing and sending out events to all registered
listeners. Sample applications are linked to the previously mentioned web
site.

The Java speech API also contains a package for synthesis. Analogous to
the recognizer, the synthesizer package contains a Synthesis class. The
synthesizer is able to speak instances of the Speakable class in a voice
constructed by an instance of the vz class. This class contains both make
and female, as well as young, middle-aged, and older voices. It’s only task is
to output a “speakable” text, as defined by a Java speech markup language
(JSML) specification. These specifications can be found at
http://java.sun.com/products/java-media/speech/forDevelopers/JSML/.

Demonstrations of the Sun speech synthesizer are available at
http://fretts.sourceforge.net/docs/index.php. where the source code can
be downloaded. The Sun speech API comes with a wealth of
documentation and example source code. Which is fairly transparent and
easy to follow.

428 Part IV: Programming in Java

There are a number of other web-based sources that support tasks in
natural language text and speech understanding. These range from
phoneme capture, the development of word and language models using
probabilistic finite-state acceptors and various forms of Markov models.
There are also parsers and recognizers of sentence structures as well as
more examples of speech recognizers and synthesizers. There are also a
number of tools available for speech to text conversion. Besides tools in
Java, many also exist in other languages including C++ and Python.

PART V: Conclusion: Model Building and the
Master Programmer

The limits of my langnage mean the limits of my world. ..
— Ludwig Wittgenstein, “Tractatus Logico-Philosophicus”

Theories are lie nets: He who casts, captures. ..

”

— Ludwig Wittgenstein, “Tractatus Logico-Philosophicus

The best you can do by Friday is a form of the best you can do. ..
— Charles Eames, Noted Twentieth Century Designer

We have come to the end of our taskl In Part V we will give a brief
summary of our views of computer language use, especially in a
comparative setting where we have been able to compare and contrast the
idioms of three different language paradigms and their use in building
structures and strategies for complex problem solving. We begin Chapter
32 with a brief review of these paradigm differences, and then follow with
summary comments on paradigm based abstractions and idioms.

But first we briefly review the nature of the programming enterprise and
why we are part of it.

Well, first, we might say that programming offers monetary compensation
to ourselves and our dependents. But this isn’t really why most of us got
into our field. We authors got into this profession because computation
offered us a critical medium for exploring and understanding our world.
And, yes, we mean this in the large sense where computational tools atre
seen as epistemological artifacts for comprehending our world and
ourselves.

We see computation as Galileo might have seen his telescope, as a medium
for exploring entities, relationships, and invariance’s never before perceived
by the human agent. It took Newton and his “laws of motion” almost
another century fully to capture Galileo’s insights. We visualize
computation from exactly this viewpoint, where even as part of our own
and our colleagues’ small research footprint we have explored complex
human phenomena including:

* Human subjects’ neural state and connectivity, using human
testing, fMRI scanning, coupled with dynamic Bayesian
networks and MCMC sampling, none of which would be
possible without computation.

429

430

Part V: Model building and the Master Programmer

* DPatterns of expressed genes as components of the human
genome. These gene expression patterns are assumed to be at
the cotre of protein creation that enables and supports much of
the human animal’s metabolic system, including cortical activity
and communication.

* Real time diagnostics and prognostics on human and mechanical
systems. These complex tasks often require various forms of
hidden Markov models along with other stochastic tools and
languages.

* Understanding human language and voiced speech also requires
computational tools, including wvarious stochastic tools and
models. Better language tools will require conditioning such
systems with realistic models of human understanding and
intention.

Of course this list could go on to include many of the exciting tasks that
make up the daily challenges of our readers. What is important is that we
see computer programming less in terms of the act of building tools, than
as a medium for creating and debugging models of the wortld — as an
epistemological medium.

We feel that there are (at least) two consequences of our thinking of
computation as an epistemological medium: First, as programmers we are
model builders. We use our data structures and search strategies to capture
state, relations, and invariance’s in our application domains. We come to
understand this domain through progressive approximation. And our
domains are rarely static, but change and evolve across time. Thus we often
require stochastic engines and probabilistic relationships to capture these
complex evolving phenomena.

Second, we explore our world by iterative approximation. When we build a
model, we make an approximation of some aspect of reality. The quality of
our model building is often seen through the lens of failure. As the
philosophers of science continue to remind us, good models are falsifiable.
It is through their failure points that we begin to appreciate our own failure
to comprehend aspects of the phenomena we wish to understand. When
our models are carefully designed and crafted, we can then deconstruct
them to address these failure points and attempt to expand our
understanding. Our increased understanding is then reflected in the next
iteration of our model building. Thus the iterative design methodology,
whether used by the individual programmer, or as is more often the case,
within the collaborating communities of groups of programmers is a
critical methodology in coming to understand our application domains.

We urge the reader to keep these ideas in mind in reading the final chapter
and its reprise of the book’s main themes of language-paradigm-based
abstractions and idioms of the master programmer.

32 Conclusion: The Master Programmer

Chapter This chapter provides a summary and discussion of the primary idioms and design
Objectives patterns presented in our book.

Chapter 32.1 Paradigm-Based Abstractions and Idioms
Contents 32.2 Programming as a Tool for Exploring Problem Domains
32.3 Programming as a Social Activity
32.4 Final Thoughts

32.1 Language Paradigm-Based Abstractions and Idioms

In the Introduction to this book, we stated that we wanted to do more
than simply demonstrate the implementation of key Al algorithms in some
of the major languages used in the field. We also wanted to explore the
ways that the problems we try to solve, the programming languages we
create to help in their solution, and the patterns and idioms that arise in the
practice of Al programming have shaped each other. We will conclude
with a few observations on these themes.

More than anything else, the history of programming languages is a history
of increasingly powerful, ever more diverse abstraction mechanisms. Lisp,
the oldest of the languages we have explored, remains one of the most
dramatic examples of this progression. Although procedural in nature, Lisp
was arguably the first to abstract procedural programming from such
patterns as explicit branching, common memory blocks, parameter passing
by reference, pointer arithmetic, global scoping of functions and variables,
and other structures that more or less reflect the underlying machine
architecture. By adopting a model based on the theory of recursive
functions, Lisp provides programmers with a cleaner semantics, including
recursive control structures, principled variable scoping mechanisms, and a
variety of structures for implementing symbolic data structures.

Like Lisp, Prolog bases its abstraction on a mathematical theory: in this
case, formal logic and resolution theorem proving. This allows Prolog to
abstract out procedural semantics almost completely (the left to right
handling of goals and such pragmatic mechanisms as the cut are necessatry
exceptions). The result is a declarative semantics that allows programmers
to view programs as sets of constraints on problem solutions. Also,
because grammars naturally take the form of rules, Prolog has not only
proven its value in natural language processing applications, as well as a
tool for manipulating formal languages, such as compilers or interpreters.

Drawing in part on the lessons of these earlier languages, object-oriented
languages, such as Java, offer an extremely rich set of abstractions that
supportt the idea of organizing even the most ordinary program as a model

431

432

Part V: Model Building and the Master Programmer

of its application domain. These abstractions include class definitions,
inheritance, abstract classes, interfaces, packages, overriding of methods,
and generic collections. In particular, it is interesting to note the close
historical relationship between Lisp and the development of object
languages. Although Smalltalk was the first “pure” object-oriented
language, it was closely followed by many object-oriented Lisp dialects.
This relationship is natural, since Lisp laid a foundation for object-
orientation through such features as the ability to manipulate functions as
s-expressions, and the control over evaluation it gives the programmert.
Java has continued this development, and is particularly notable for
providing powerful software engineering support through development
environments such as Eclipse, and the large number of packages it
provides for user data structures, network programming, user interface
implementation, web-based implementation, Artificial Intelligence, and
other aspects of application development.

In addition to — or perhaps because of — their underlying semantic models,
all these languages support more general forms of abstraction. The
organization of programs around abstract data types, “bundles” of data
structures and operations on them, is a common device used by good
programmers — no matter what language they are using. Meta-linguistic
abstraction is another technique that is particulatly important to Artificial
Intelligence programming. The complexity of Al problems cleatly requires
powerful forms of problem decomposition, but the ill-formed nature of
many research problems defies such common techniques as top-down
decomposition. Meta-linguistic abstraction addresses this conundrum by
enabling programmers to design languages that are tailored to solving
specific problems. It tames hard problems by abstracting their key features
into a meta language, rather than decomposing them into parts. The
general search algorithms, expert system shells, learning frameworks,
semantic networks, and other techniques illustrated in this book are all
examples of meta-linguistic abstraction.

This diversity of abstraction mechanisms across languages underlies a
central theme of this book: the relationship between programming
languages and the idioms of their use. Each language suggests a set of
natural ways of achieving common programming tasks. These are refined
through practice and shared throughout the programmer community
through examples, mentoring, conferences, books, and all the mechanisms
through which any language idiom spreads. Lisp’s use of lists and
CAR/CDR recursion to construct complex data structures is one of that
language’s central idioms; indeed, it is almost emblematic of the language.
Similarly, the use of rule ordering in Prolog, with non-recursive terminating
statements preceding recursive rules appearing throughout Prolog
programs is on of that language’s key idioms. Object-oriented languages
rely upon a particularly rich set of idioms and underscore the importance
of understanding and using them propetly.

Java, for example, adopted the C programming language syntax to improve
its learnability and readability (whether or not this was good idea continues
to be passionately debated). It would be possible for a programmer to write
Java programs that consisted of a single class with a static main method

32.2

Chapter 32 The Master Programmer 433

that called additional main methods in the class. This program might
function correctly, but it would hardly be considered a good java program.
Instead, quality Java programs distribute their functionality over relatively
large numbers of class definitions, organized into hierarchies by
inheritance, interface definitions, method overloading, etc. The goal is to
reflect the structure of the problem in the implementation of its solution.
This not only brings into focus the use of programming languages to
sharpen our thinking by building epistemological models of a problem
domain, but also supports communication among developers and with
customers by letting people draw on their understanding of the domain.

There are many reasons for the importance of idioms to good
programming. Perhaps the most obvious is that the idiomatic patterns of
language use have evolved to help with the various activities in the
software lifecycle, from program design through maintenance. Adhering to
them is important to gaining the full benefits of the language. For example,
our hypothetical “Java written as C” program would lack the
maintainability of a well-written Java program.

A further reason for adhering to accepted language idioms is for
communication. As we will discuss below, software development (at least
once we move beyond toy programs) is a fundamentally social activity. It is
not enough for our programs to be correct. We also want other
programmers to be able to read them, understand the reasons we wrote the
program as we did, and ultimately modify our code without adding bugs
due to a misunderstanding of our original intent.

Throughout the book, we have tried to communicate these idioms, and
suggested that mastering them, along with the traditional algorithms, data
structures, and languages, is an essential component of programming skill.

Programming as a Tool for Exploring Problem Domains

Idioms are also bound up — along with the related concept of design
patterns, also discussed below — with an idea we introduced in the book’s
introduction: programming languages as tools for thinking. In the eatly
stages of learning to program, the greatest challenges facing the student are
in translating a software requirement, usually a homework assignment, into
a program that works correctly. As we move into professional-level
research or software development, this changes. We are seldom given clear,
stable problem statements; rather, our job is to interpret a vague customer
need or research goal and project it into a program that meets our needs.
The languages we have addressed in this book are the product of many
person-decades of theoretical development, experience, and insight. They
are not only tools for programming computers, but also for refining our
understanding of problems and their solution.

Ilustrating this idea of programming languages as tools for thinking has
been one of our primary goals in writing this book. Lisp is the oldest, and
still one of the best, examples of this. The s-expression syntax is ideally
suited for constructing symbolic data structures, and, along with the basic
cons/car/cdr operations, provides an elegant foundation for structures as

434

Part V: Model Building and the Master Programmer

diverse as lists, trees, frames, networks, and other types of knowledge
representation common to Artificial Intelligence. A search of early Al
literature shows the power of s-expressions as both a basis for symbolic
computing and for communication of theoretical ideas: numerous articles
on knowledge representation, learning, reasoning, and other topics use s-
expressions to state theoretical ideas as natural science uses algebra.

Prolog continues this tradition with its use of logical representation and
declarative semantics. Logic is the classic “tool for thinking,” giving a
mathematical foundation to the disciplines of clarity, validity, and proof.
Subtler is the idea of declarative semantics, of stating constraints on a
problem solution independently of the procedural steps used to realize
those constraints. This brings a number of benefits. Prolog programs atre
notoriously concise, since the mechanisms of procedural computing atre
abstracted out of the logical statement of problem constraints. This
concision helps give clear formulation to the complex problems faced in
Al programming. Natural language understanding programs are the most
obvious example of this, but we also call the readet’s attention to the
relative ease of writing meta-interpreters in Prolog. This discipline of meta-
linguistic abstraction is a quintessential way a language assists in our
thinking about hard problems.

Java’s core disciplines of encapsulation, inheritance, and method extension
also reflect a heritage of Al thinking. As a tool for thinking, Java brings
these powerful disciplines to problem decomposition and representation,
metalinguistic abstraction, incremental prototyping, and other forms of
problem solving. An interesting example of the subtle influence object-
oriented programming has on our thinking can be found in comparing the
declarative semantics of Prolog with the static structure of an object-
oriented program.

Although we have no “hard” data to prove this, our work as both
engineers and teachers has convinced us that the more experienced a Java
programmer becomes, the more classes and interfaces we find in their
programs. Novice programmers seem to favor fewer classes with longer
methods, most likely because they lack the rich language of idioms and
patterns used by skilled object-otriented designers. Breaking a program
down into a larger number of objects brings several obvious benefits,
including ease of debugging and validating code, and enhanced reuse.
Another benefit of this is a shift of program semantics from procedural
code to the static structure of objects and relations in the class structure.
For example, a well-designed class hierarchy with the use of overloaded
methods can eliminate many if-then tests in the program: the class
“knows” which method to use without an explicit test. For this reason,
Java programmers frown on the use of operators like instanceof to
test explicitly for class membership: the object should exploit inheritance to
call the proper method rather than use such tests.

The analogy of this to Prolog’s declarative semantics is useful: both
techniques move program semantics from dynamic execution to static
structure. The static structure of objects or assertions can be understood by
inspection of code, rather than by stepping through executions. It can be

32.3

Software
Engineering
and Al

Prototyping

Chapter 32 The Master Programmer 435

analyzed and verified in terms of things and relations, rather than the
complexities of analyzing the many paths a program can take through its
execution. And, it enhances the use of the programming language as a tool
for stating theoretical ideas: as a tool for thinking.

Programming as a Social Activity

As programming has matured as a discipline, we have also come to
recognize that teams usually write complex software, rather than a single
genius laboring in isolation. Both authors work in research institutions, and
are acutely aware that the complexity of the problems modern computer
science tackles makes the lone genius the exception, rather than the rule.
The most dramatic example of this is open-source software, which is built
by numerous programmers laboring around the world. To support this, we
must recognize that we are writing programs as much to be read by other
engineers as to be executed on a computer.

This social dimension of programming is most strongly evident in the
discipline of software engineering. We feel it unfortunate that many
textbooks on software engineering emphasize the formal aspects of
documentation, program design, source code control and versioning,
testing, prototyping, release management, and similar engineering practices,
and downplay the basic source of their value: to insure efficient, clear
communication across a software development team.

Both of this book’s authotrs work in research institutions, and have
encountered the mindset that research programming does not require the
same levels of engineering as applications development. Although research
programming may not involve the need for tutorials, user manuals and
other artifacts of importance to commercial software, we should not forget
that the goal of software engineering is to insure communication. Research
teams require this kind of coordination as much as commercial
development groups. In our own practice, we have found considerable
success with a communications-focused approach to software engineering,
treating documentation, tests, versioning, and other artifacts as tools to
communicate with our team and the larger community. Thinking of
software engineering in these terms allows us to take a “lightweight”
approach that emphasizes the use of software engineering techniques for
communication and coordination within the research team. We urge the
programmer to see their own software engineering skills in this light.

Prototyping is an example of a software engineering practice that has its
roots in the demands of research, and that has found its way into
commercial development. In the early days, software engineering seemed
to aim at “getting it right the first time” through careful specification and
validation of requitements. This is seldom possible in research
environments where the complexity and novelty of problems and the use
of programming as a tool for thinking precludes such perfection.
Interestingly, as applications development has moved into interactive
domains that must blend into the complex communication acts of human
communities, the goal of “getting it right the first time” has been rejected
in favor of a prototyping approach.

436

Part V: Model Building and the Master Programmer

Reuse

We urge the reader to look at the patterns and techniques presented in this
book as tools for building programs quickly and in ways that make their
semantics clear — as tools for prototyping. Metalinguistic abstraction is the
most obvious example of this. In building complex, knowledge-based
systems, the separation of inference engine and knowledge illustrated in
many examples of this book allows the programmer to focus on
representing problem-specific knowledge in the development process.

Similarly, in object-oriented programming, the mechanisms of interfaces,
class inheritance, method extension, encapsulation, and similar techniques
provide a powerful set of tools for prototyping. Although often thought of
as tools for writing reusable software, they give a guiding structure to
prototyping. “Thin-line” prototyping is a technique that draws on these
object-oriented mechanisms. A thin-line prototype is one that implements
all major components of a system, although initially with limited
complexity. For example, assume an implementation of an expert-system
in a complex network environment. A thin-line prototype would include all
parts of the system to test communication, interaction, etc., but with
limited functionality. The expert system may only have enough rules to
solve a few example problems; the network communications may only
implement enough messages to test the efficiency of communications; the
user interface may only consist of enough screens to solve an initial
problem set, and so on.

The power of thin-line prototypes is that they test the overall architecture
of the program without requiring a complete implementation. Once this is
done and evaluated for efficiency and robustness by engineers and for
usability and correctness by end users, we can continue development with a
focused, easily managed cycle of adding functionality, testing it, and
planning. In our experience, most Al programs are built this way.

It would be nearly impossible to write a book on programming without a
discussion of an idea that has become something of a holy grail to modern
software development: code reuse. Both in industry and academia,
programmers are under pressure, not only to build useful, reliable software,
but also to produce useful, reusable components as a by-product of that
effort. In aiming for this goal, we should be aware of two subtleties.

The first is that reusable software components rately appear as by-products
of a problem-specific programming effort. The reason is that reuse, by
definition, requires that components be designed, implemented, and tested
for the general case. Unless the programmer steps back from the problem
at hand to define general use cases for a component, and designs, builds,
tests, and documents to the general cases, it is unlikely the component will
be useful to other projects. We have built a number of reusable
components, and all of them have their roots in this effort to define and
build to the general case.

The second thing we should consider is that actual components should not
be the only focus of software reuse. Considerable value can be found in
reusing ideas: the idioms and patterns that we have demonstrated in this
book. These are almost the definition of skill and mastery in a programmer,
and can rightly be seen as the core of design and reuse.

32.4

Chapter 32 The Master Programmer 437

Final Thoughts

It has been our goal to give the reader an understanding of, not only the
power and beauty of the programming languages Prolog, Lisp, and Java,
but also of the intellectual depth involved in mastering them. This mastery
involves the languages syntax and semantics, the understanding of its
idioms of use, and the ability to project those idioms into the patterns of
design and implementation that define a well-written program.

In approaching this goal, we have focused on common problems in
Artificial Intelligence programming, and reasoned our way through their
solution, letting the idioms of language use and the patterns of program
organization emerge from that process. The power of idioms, patterns, and
other forms of engineering mastery is in their application, and they can
have as many realizations, as many implementations as there are problems
that they may fit. We hope our method and its execution in this book have
helped the student understand the deeper reasons, the more nuanced
habits of thinking and petrception, behind these patterns. This is, to
paraphrase Einstein, less a matter of knowledge than of imagination.

We hope this book has added some fuel to the fires of our readers’
imaginations.

438 Part V: Model Building and the Master Programmer

Bibliography

Abelson, H. and Sussman, G. J., 1985. Structure and Interpretation of Computer Programs. Cambridge, MA:
MIT Press.

Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I. and Angel, S., 1977. A4
Pattern Language. New York: Oxford University Press.

Bellman, R. E., 1956. Dynamic Programming. Princeton, NJ: Princeton University Press.

Brachman, R. J. and Levesque, H. J., 1985. Readings in Knowledge Representation, Los Altos CA: Morgan
Kaufmann.

Bundy, A., Byrd, L., Luger, G., Melish, C., Milne, R., and Stone, M. 1979. Solving Mechanics
Problems Using Meta-Inference. In Proceedings of I]CAI-1979, 1017-1027.

Chakrabarti, C., Rammohan, R., and Luger, G. F., 2005. A First-Order Stochastic Prognostic System
for the Diagnosis of Helicopter Rotor Systems for the US Navy. In Proceedings of the 2nd Indian
International Conference on Artificial Intelligence. Pune, India. Elsevier Publications.

Charniak, E., Riesbeck, C. K., McDermott, D.V., and Mechan, J.R., 1987. Artificial Intelligence
Programming, 2nd ed. Hillsdale, NJ: Erlbaum.

Church, A. (1941). The Calculi of Lambda-Conversion. Annals of Mathematical Studies 6. Princeton NJ:
Princeton University Press.

Clocksin, W. F. and Mellish, C. S., 1984. Programming in Prolog. New York, Springer-Verlag.

Clocksin, W. F. and Mellish, C. S., 2003. Programming in Prolog: Using the ISO Standard. New York,
Springer.

Collins, A. and Quillian, M. R., 1969. Retrieval Time for Semantic Memoty. Journal of V'erbal Iearning
& VVerbal Behavior, 8: 240-247.

Colmerauer, A. H., 1975. Les Grammaires de Metamorphose, Groupe Intelligence Artificielle, Universite
Aix-Marseille 11, France.

Colmerauer, A., H. Kanoui, H., 1973. Un Systeme de Communication Homme-machine en Francais. Groupe
Intelligence Artificiale, Université Aix-Marseille II, France.

Coplein, J. O. and Schmidt, D. C., 1995. Pattern Languages of Program Design. Reading, MA: Addison-
Wesley.

Dahl, V., 1977. Un Systéme Deductif d’Interrogation de Banques de Donnes en Espagnol, PhD thesis,
Université Aix-Marseille, France.

Dabhl, V. and McCord, M.C. 1983. Treating Coordination in Logic Grammars. American Journal of
Computational Linguistics, 9:69-91.

Datwin, C., 2007. The Voyage of the Beagle. Retrieved 3/23/07 from

http://www.literature.org/authors/darwin-charles/the-voyage-of-the-beagle.

DeJong, G. and Mooney, R., 1986. Explanation-Based Learning: An Alternative View. Machine
Learning, 1(2); 145-176.

Dybvig, R. K., 1996. The Scheme Programming Language. Upper Saddle River, NJ: Prentice Hall.
Eatley, J., 1970. An efficient context-free parsing algorithm. Communications of the ACM, 6(8): 451-455.
Eiben, A. E., Smith,]. E., 1998. Introduction to Evolutionary Computing. Berlin: Springer.

Evans, E., 1983. Domain Driven Design: Tackling Complexity in the Heart of Software. Upper Saddle River
NJ: Addison-Wesley.
Feigenbaum, E. A., and Feldman, J., eds., 1963. Computers and Thonght. New York: McGraw-Hill.

Fikes, R. E., Hart, P. E., and Nilsson, N. J., 1972. Learning and Executing General Robot Plans.
Artificial Intelligence, 3(4): 251-288.

439

440 Bibliography

Fikes, R. E. and Nilsson, N. J., 1971. STRIPS: A New Approach to the Application of Theorem
Proving to Artificial Intelligence. Artficial Intelligence, 1(2): 189-208.

Forbus, K. D. and deKleet, J. 1993. Building Problem Solvers. Cambridge, MA: MIT Press.

Gamma, E., Helm, R., Johnson, R, and Vlissides, J., 1995. Design Patterns: Elements of Reusable Object-
oriented Software. Reading, MA: Addison-Wesley.

Ganzerli, S., De Palma, P., Smith, J. D., and Burkhart, M. F., 2003. Efficiency of Genetic Algorithms
for Optimal Structural Design Considering Convex Models of Uncertainty. Proceedings of the
Ninth International Conference on Statistics and Probability in Civil Engineering, Berkeley: 1003-1010.
Rotterdam, NL: Millpress Science Publishers.

Gazdar, G. and Mellish, C., 1989. Natural anguage Processing in PROLOG: An Introduction to
Computational Linguistics. Reading, MA: Addison-Wesley.

GECCO, 2007. Genetic and Evolutionary Computing Conference, 2007. Rettieved 3/23/07 from
http:/ /www.sigevo.otrg/gecco-2007.

Goldberg, D. E., 1989. Genetic Algorithms in Search Optimization and Machine 1 earning. New York:
Addison-Wesley.

Graham, P. 1993. On LISP: Adpanced Technigues for Common LISP. Englewood Cliffs, NJ: Prentice Hall.
Graham, P. 1995. ANST Common Lisp. Englewood Clitfs, NJ: Prentice Hall.

Halcolm, J. R. and Shultz, R., 2005. Tau: A web-deployed hybrid prover for first-order logic with identity with
optional inductive proof. 12 April 2008, http:/ /www.hsinfosystems.com/Tau_JAR.pdf

Hasemer, T. and Domingue, J., 1989. Common LISP Programming for Artificial Intelligence. Reading, MA:
Addison-Wesley.

Haupt, L. and Haupt, S., 1998. Practical Genetic Algorithms. New York: John Wiley and Sons.
Hayes, P., 1977. In Defense of Logic. Proceedings of IJCAI-77, Cambridge, MA: MIT Press.

Hermenegildo, M. And the Ciao Development Team, 2007. An Ouverview of The Ciao Multiparadigm
Langnage and Program Development Environment and its Design Philosophy. ECOOP Workshop on
Multiparadigm Programming with Object-Oriented Languages MPOOL 2007, July 2007.

Hill, P. and Lloyd, J., 1995. The Gide! Programming Language. Cambridge, MA: MIT Press.

Holland, J. H., 1975. Adaptation in Natural and Artificial Systems. Ann Arbor MI: University of
Michigan Press.

Jurafsky, D., and Martin, J. H., 2008. Speech and Language Processing (2nd ed), Upper Saddle River, NJ:
Prentice Hall.

Kedar-Cabelli, S. T. and McCarty, L. T., 1987. Explanation-Based Generalization as Resolution
Theorem Proving. Proceedings of the Fourth International Workshop on Machine Learning.

King, S. H., 1991. Knowledge Systems Through Prolog. Oxford: Oxford University Press.
Kowalski, R., 1979. Algorithm = Logic + Control. Communications of the ACM 22: 424-436.
Kowalski, R., 1979. Logic for Problem Solving. Amsterdam: North Holland.

Krzysztof, R. A. and Wallace, M., 2007. Constraint Logic Programming Using Eclipse. Cambridge UK:
Cambridge University Press.

Lloyd, J. W., 1984. Foundations of Logic Programming. New York: Springer Verlag.
Lucas, R., 1996. Mastering Prolog. London UK: UCL Press.

Luger, G. F., 2009. Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Boston MA:
Addison-Wesley Pearson.

Maclean, N., 1989. .4 River Runs Through It, Chicago: University of Chicago Press.

Maier, D. and Warren, D. S., 1988. Computing with Logic: Logic Programming with Prolog. Boston MA:
Addison-Wesley.

Bibliography 441

Malpas, J., 1987. Prolog: A Relational Iangnage and its Applications. Englewood Cliffs NJ: Prentice Hall.

McCarthy, J., 1960. Recursive functions of symbolic expressions and their computation by machine.
Communications of the ACM 3(4).

McCord, M. C., 1982. Using slots and modifiers in logic grammars for natural language. Ar#sficial
Intelligence, 18:327-367.

McCord, M. C., 1986. Design of a Prolog based machine translation system. Proceedings of the Third
International 1ogic Programming Conference, London.

McCune, W. W. and Wos, L., 1997. Otter: The CADE-13 competition incarnations. Journal of
Auntomated Reasoning, 18(2): 211-220.

Milner, R., Tofte, M. , Harper , R., and MacQueen, D., 1997. The Definition of Standard ML (Revised).
Cambridge MA: MIT Press.

Minsky, M., 1975. A Framework for Representing Knowledge. In Brachman and Levesque (1985).
Minton, S., 1988. Learning Search Control Knowledge. Dordrecht: Kluwer Academic Publishers.

Mitchell, T. M., 1978. Version Spaces: An Approach to Concept Learning. Report No.STAN-CS-78-
711, Computer Science Dept., Stanford University.

Mitchell, T. M., 1979. An Analysis of Generalization as a Search Problem. Proceedings of IJCAI 6.

Mitchell, T. M., 1982. Generalization as Search, Artificial Intelligence, 18(2): 203-226.

Mitchell, T. M., Keller, R. M., and Kedar-Cabelli, S. T., 1986. Explanation-Based Generalization: A
Unifying View. Machine Learning, 1(1): 47-80.

Mycroft, A. and O’Keefe, R. A., 1984. A Polymorphic Type System for Prolog. Artificial Intelligence,
23:295-307.

Neves J. C. F. M., Luger, G. F., and Carvalho, J. M., 1986. A Formalism for Views in a Logic Data
Base. In Proceedings of the ACM Computer Science Conference, Cincinnati OH.

Newell, A., 1982. The Knowledge Level. Arsficial Intelligence, 18(1): 87-127.

Newell, A. and Simon, H. A. 1976. Computer Science as Empirical Inquiry: Symbols and Search.
Communications of the ACM, 19(3):113-126.

Nilsson, N. J., 1980. Principles of Artificial Intelligence. Palo Alto, CA: Tioga.

O’Keefe, R., 1990. The Craft of PROLOG. Cambridge, MA: MIT Press.

O’Sullivan, B., 2003. Recent advances in constraints, Joint ERCIM/CologNet International

Workshop on Constraint Solving and Constraint Logic Programming. Lecture Notes in Computer
Science 2627, Berlin: Springer.

Opverbay, S., Ganzerli, S., De Palma, P, Brown, A., Stackle, P., 2006. Trusses, NP-Completeness, and
Genetic Algorithms. Proceedings of the 17th Analysis and Computation Specialty Conference. St. Louis,
MO.

Paulson, L. C., 1989. Isabelle: The Next 700 Theorem Provers. Journal of Automated Reasoning 5: 383-
397.

Pereira, L. M. and Warren, D. H. D., 1980. Definite Clause Grammars for Language Analysis — A
Survey of the Formalism and a Comparison with Augmented Transition Networks. Arzficial
Intelligence, 13:231-278.

Pless, D. and Luger, G. F., 2003. EM learning of product distributions in a first-order stochastic logic
language. Artficial Intelligence and Soft Computing: Proceedings of the LASTED International Conference.
Anaheim: IASTED/ACTA Press. Also available as University of New Mexico Computer Science
Technical Report TR-CS-2003-01.

Quinlan, J. R., 1986. Induction of Decision Trees. Machine Learning, 1(1):81-100.
Quinlan, J, R., 1996. Bagging, Boosting and C4.5. Proceedings AAAI 96. Menlo Park CA: AAAI Press.

442 Bibliography

Rajeev, S. and Krishnamoorthy, C. S., 1997. Genetic Algorithms-Based Methodologies for Design
Optimization of Trusses. Journal of Structural Engineering, 123 (3): 350-358.

Robinson, J. A., 1965. A Machine-Oriented Logic Based on the Resolution Principle. Journal of the
ACM, 12: 23-41.

Robinson, J. A. and Voronkov, A., 2001. Handbook of Antomated Reasoning: V'olume 1. Cambridge MA:
MIT Press.

Ross, P., 1989. Adpanced Prolog. Reading, MA: Addison-Wesley.

Roussel, P., 1975. Prolog: Manuel de Reference et d'Utilisation. Luminy, France, Groupe d'Intelligence
Artificialle, Université d' Aix-Marseille.

Sakhanenko, N., Luger, G. F. and Stern, C. R., 2006. Managing Dynamic Contexts using Failure-
Driven Stochastic Models. Proceedings of FLLAIRS Conference. Menlo Park CA: AAAI Press.

Seibel, P., 2005. Practical Common Lisp. Berkeley CA: Apress, Inc.

Shannon, C., 1948. A Mathematical Theory of Communication. Murray Hill NJ: Be// System Technical
Journal.

Shapiro, S. C., ed., 1987. Encyclopedia of Artificial Intelligence. New York: Wiley-Interscience.
Smith, J. B., 2006. Practical OCaml. Berkeley CA: Apress, Inc.

Somogyi, Z., Henderson, F., and Conway, T., 1995. Logic Programming for the real world. In
Proceedings of the Eighteenth Australasian Computer Science Conference, R Kotagiri (Editor), 1995,
Australian Computer Science Communications: Glenelg, South Australia. pp. 499-512.

Sowa, J. V., 1984. Conceptual Structures: Information Processing in Mind and Machine. Reading MA: Addison-
Wesley.

Steele, G. L., 1990, Common LISP: The Langnage, 2nd ed. Bedford, MA: Digital Press.

Sterling, L. and Shapiro, E., 1986. The Art of Prolog. Advanced Programming Techniques.
Cambridge MA: MIT Press.

Sussman, G. and Steele, G., 1975. SCHEME: An Interpreter for Extended Lambda Calculns, A1 Memo
349, MIT Artificial Intelligence Laboratory, Cambridge, Mass.

Tanimoto, S. L., 1990. The Elements of Artificial Intelligence nsing Common LISP. New York: W.H. Freeman.

Touretzky, D. S., 1990. Common LISP: A Gentle Introduction to Symbolic Computation. Redwood City, CA:
Benjamin/Cummings.

Turing, A., 1948. Intelligent Machinery. A report to the National Physical Laboratory. London.

Van Le, T., 1993. Technigues of Prolog Programming with Implementation of Logical Negation and Quantified
Goals. New York: Wiley.

Walker, A., McCord, M., Sowa, J. F., and Wilson, W. G., 1987. Knowledge Systems and Prolog: A Logical
Approach to Expert Systems and Natural Langnage Processing. Reading, MA: Addison-Wesley.

Warren, D. H. D., Pereira, L. M. and Pereira, F., 1977. Prolog - the language and its implementation
compared with LISP. Proceedings, Symposinm on Al and Programming Languages, SIG-PLAN Notices,
12(8).

Warren, D. H. D., Pereira, F. and Pereira, L. M., 1979. Uset's Guide to DEC-System 10 PROLOG.
Occasional Paper 15, Department of Artificial Intelligence, University of Edinburgh, UK.

Wilensky, R., 1986. Common LISPCraft, New York: Norton Press.

Winston, P. H., Binford, T. O., Katz, B, and Lowry, M., 1983. Learning Physical Descriptions from
Functional Definitions, Examples, and Precedents. Proceedings of National Conference on Artificial
Intelligence, Washington D.C., San Francisco: Morgan Kaufman. 433-439.

Winston, P. H. and Horn, B. K. P., 1984. LISP. Reading, MA: Addison-Wesley.

Index

8-puzzle 289-292

ABLE 403

and/or graph search 324-329

automated reasoning 144-145

best-first search 56-57, 291

breadth-first search 54-56, 289-291

C# 15

C++ 15,270, 271, 273

candidate elimination algorithm 89-100

case frame 110

certainty factors 73-81, 351-357

chart parsing see Earley Parser

Chomsky Hierarchy 322

class 275-276

Common Lisp 14

Common Lisp Object System (CLOS) 8, 14,
15, 269, 287

conceptual graph 108-111

context-free parsers 111-119, 405-422

context-sensitive parsers 119-123

continuation 335

covers 88, 93

decision tree 367-388

declarative semantics 11-12, 17, 142-144,
287,431

depth-first search 34, 52-54, 289-291

design pattern 3-6, 16

dotted grammar rules 126

dynamic programming 125-140

Earley parser 126-140, 272, 405-422

Eclipse 432

encapsulation 275-276

epistemological artifacts 430

eval & assign pattern 5

evolutionary computing see genetic

algorithms

expert system shell 9, 73-81

explanation-based learning 100-106

factory pattern 348-349

feature vector 93

first-order predicate calculus see predicate

calculus

fitness function 390

Flavors 14, 269

FP 13

frames 8

framework 288
genetic algorithms 322, 389-402
goal regression 102
heuristics 6
ID3 271, 367-388
Idiom 1, 3-11, 16
immutable object 373-374
inductive bias 93
inductive learning 367-388
inference engine 9
information theory 385-387
inheritance 8, 277-280
interface 280-282
Java 269-428
abstract class 292-293
abstract method 292-293
AbstractDecisionTreeNode 371,
381-385
AbstractExample 371, 375-377
AbstractOperator 331-333, 338
AbstractProperty 371, 372-373
AbstractSolutionNode 340-341
AbstractSolver 296-297
And 333
AndSolutionNode 343-346
BestFirstSolver 299-300
Breadth-First Solver 298-299
Chart 414
class 275-276
clone 313
Comparator interface 400
Constant 310-314, 315, 338
copy constructor 313
DepthFirstSolver 298
EarleyParser 414-418
ESAnd 354
ESAndSolutionNode 357
ESAsk 359
ESRule 353, 358-359
ESRuleSet 360
ESSimpleSentence 353-354, 358
ESSimpleSentenceSolutionNode
355, 358
ExampleSet 371, 377-381
farmer, wolf, goat and cabbage 300-
303

443

444

Index

final 283

generics 293-294

Goal 331-333, 343

Grammar 406, 411-412

HashMap 320

HashSet 296

history 14-15

Illegal ArgumentException 373

InformationTheoreticDecisionTree-
Node 371, 386-387

inheritance 277-280

instanceof 349

interface 7

interface 280-282, 293-294, 310

Java Standard Library 283

LinkedList 298-299

Object 280

PCExpression 310-314, 317-318,
321, 329-331, 337-338

PriorityQueue 299

private 282, 284

public 284

RHS 408-410

Rule 333-334

RuleSet 337

Set 296

SimpleSentence 310-314, 316-317,
339

SimpleSentenceSolutionNode 341-
342

Solver interface 296

State (Earley Parser) 412-414

State (Search) 292-295

static 283

SubstitutionSet 314-321

this 283

Unifiable 310-314

unify 314-321

Variable 310-314, 316, 339

Vector 5

JESS 271, 363-364
JOONE 403
knowledge level 9-11,
LIBSVM 404
LingPipe 272, 423-424
Lisp 149-268

(see also CLOS, Lisp functions)
a-list (see association list)
accessor 239, 254

and functional programming 149

and global variables 189

and symbolic computing 149, 161—
163

applying functions 152

association list 201

atom 151

best-first search 192—-193

binding 153, 171-173

binding variables 171-173

bound variable 153, 172

breadth-first search 189-192

car/cdr recursion 163—-165

class precedence list 243-244

CLOS 237-249

Common Lisp Object System
(see CLOS)

conditionals 157-159

conditional evaluation 159

control of evaluation 220-221

data abstraction 161-163

data types 175-176, 803

defining classes 792794

defining functions 156-158

delayed evaluation 219-223

depth-first search 192

dotted pairs 201

evaluation 155-156

expert system shell 219-232

farmer, wolf, goat, and cabbage
problem 177-182

filters 185187

form 153

free variable 172-173, 186187

function closure 220

generic functions 241-242

higher-order functions 185-189

inheritance 233-236, 243-244

1D3 251-266

lambda expressions 188—189

learning 251-266

lexical closure 186, 220-221

list defined 151

local variables 173-175

logic programming 207-217

maps 187-189

meta-interpreters 156, 204—205,
219-231, 244-249

meta-linguistic abstraction
(see meta-interpreters)

methods 241-243

multiple inheritance 243-244
macro 221-222
nil 152-153
occurs check 200
pattern matching 195-197
predicates 158
procedural abstraction 185-189
program control 157-159
property lists 233—237
read-eval-print loop 152, 203-204
recursion 151-170
s-expression 151-154
semantic networks 233237
simulation 244-249
slot options 238-239
slot-specifiers 238—239
special declaration 216-217
state space search 177-182
streams 209-210
streams and delayed evaluation
209-217

thermostat simulation 244-249
tree-recursion 163—-168
unification 195-202

Lisp functions
* 152
+ 152
- 152
<158
=153, 158
> 153, 158
>=158
'153-156
#S 257
abs 157-158
acons 202
and 152, 159
append 166
apply 187
assoc 202
car 163-165
case 248
cdr 163-165
cond 158-160
cons 164-165
declare 216
defclass 238-240
defgeneric 241
defmacro 221-222
defmethod 241-242

Index 445

defstruct 251, 253-254
defun 156
do 262-263
eq 179
equal 179
eval 154-155, 203
funcall 186-187
gensym 216
get 234-235
if 158-159
length 154
let 173-175
list 151-154, 156, 164-165
listp 175
mapcar 187-188, 251, 260-261
member 158-159
minusp 158
nth 173-174
null 154
numberp 158
oddp 158
or 159
plusp 158
print 203-204
quote 154
read 203-205
remprop 234-235
set 171-173
setf 171-173, 234-235
setq 171-173
sqrt 157
symbol-plist 234-235
terpri 203
typep 204
zerop 158
/ 151-155
machine learning 87-106
map pattern 4-6,
maximally general concept 90-91
maximally specific generalization 90
memoize 125, 405
Meta-DENDRAL 100
meta-interpreters 60, 69
meta-linguistic abstraction 8-9, 285, 300,
322,325,432, 436
modus ponens 308, 326
MYCIN 73
object-oriented programming 14-15, 269-
428
Objective C 15, 273

446 Index

OCAML 13 implies 19, 20, 21-23
Occam's Razor 369 is 5, 65
occurs check 64, 310 Knight's Tour 33-38, 44-46
packages 270 listing 25
pattern language 3-6, lists 5, 25-28
pattern matching 7-8, member 26-27
Physical Symbol System Hypothesis 269 meta-predicate 18, 60
planner 82-85 model 21, 37
polymorphism 276 more_general 93
predicate calculus 7, 11, 17, 19-148, 271, move (Knight's tour) 34
306-323, 325 negation as failure 22
probabilistic parsers 114-119 nonvar 60
Prolog 17-148 nospy 25
I see cut not 19, 20, 49
=.. 60 or 19, 20
Abstract Data Type (ADT) 38-41 path 33-38, 50
add_to_chart 137 predicate 19
and 19, 20 priority queue 40
anonymous variables 27 process 94-95, 97-98
append 64 production system 43-58
askuser 70-71 prolog_ebg 103
assert 24, 60 read 24
asserta 24 recognize-act cycle 44
assertz 24 recursion 25-28
assignment 145 resolution refutation 21, 25
atom 18 retract 24
backtracking 23 retry 25
bagof 54, 95, 99 reverse_writelist 28
call 60 rule see implies
clause 60 scanner 136
closed wortld assumption 22 see 24-25
completer 136 semantic net 28-29
conflict resolution 44 set 40-41
consult 24 solve 69-73
covers 93 specialize_set 98-99
cut (1) 17, 36-38 spy 25
earley 134 tell 24-25
exit 25 trace 25
exshell 73-81 trace 25
extract_support 104 types 61-64
farmer, wolf, goat and cabbage 46- var 60
52 why queries 71-72
frame 29-32 working memory 43
function 19 write 24
functor 60 writelist 27
generalize 94
generalize_set 95 proof tree 72-73, 76-78, 103-1006, 321, 328-
history 11-12, 329, 335-346
horn clause 12, 25 prototyping 435-436

how query 72-73 quantification 23, 308

Index 447

queue 39-40, 291 Stanford NLP 425

recursive function theory 13 static structure 349-350

resolution theorem proving 12 STRIPS 100

reuse 436 Sun Speech API 426-428

Scheme 13 supervised learning 367

search 6-7, 288-304, 324-329 symbolic computing 6, 287

servlet 270 thin-ling prototype 436

SmallTalk 8, 14, 23, 33-42, 269, 270, 273, unification 7-8, 17, 23, 25, 64-67, 271, 309-
432 320

SML-NJ 13 version space search 87-100

Software Engineering 435 Weka 403

stack 38-39, 291 WordGuess 391-394

standardizing variables apart 337 XML 270

