Algorithm: satisfiability of a Horn formula

1. Mark every occurrence of an atomic formula A in F if there is a subformula of the form $(1 \rightarrow A)$ in F.

2. While there is a subformula G in F of the form $(A_1 \land \ldots \land A_n \rightarrow B)$ or of the form $(A_1 \land \ldots \land A_n \rightarrow 0)$, $n \geq 1$,
 where A_1, \ldots, A_n are already marked (and B is not yet marked),
If \(G \) is of the first form, then mark every occurrence of \(B \) else output "unsatisfiable" and halt.

3. Output "satisfiable" and halt. (The satisfying assignment is given by: \(A_i \) is true \(\iff A_i \) had a mark.)

a. This procedure is sound & complete? (proof similar to that of the bottom-up procedure for definite clauses)

b. Since "unsatisfiable" is output only for integrity constraints, every definite clause \(KB \) is satisfiable.

c. Sat. for Horn clauses is linear in the # of clauses.
a. The model obtained by this procedure is the minimal one. (Follows from the detailed proof: completeness part.)

b. $\text{KB} \models \neg a$

This has minimal model: empty (not the empty set is a model, \emptyset is non-minimal)

Every Horn KB with no facts is satisfiable