
Propositions

An interpretation is an assignment of values to all variables.

A model is an interpretation that satisfies the constraints.

Often we don’t want to just find a model, but want to know
what is true in all models.

A proposition is statement that is true or false in each
interpretation.
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Why Propositions?

Specifying logical formulae is often more natural than filling in
tables

It is easier to check correctness and debug formulae than
tables

We can exploit the Boolean nature for efficient reasoning

We need a language for asking queries (of what follows in all
models) that may be more complicated than asking for the
value of a variable

It is easy to incrementally add formulae

It can be extended to infinitely many variables with infinite
domains (using logical quantification)
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Representation and Reasoning System

A Representation and Reasoning System (RRS) is made up of:

formal language: specifies the legal sentences

semantics: specifies the meaning of the symbols

reasoning theory or proof procedure: nondeterministic
specification of how an answer can be produced.
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Using an RRS

1. Begin with a task domain.

2. Distinguish those things you want to talk about (the
ontology).

3. Choose symbols in the computer to denote propositions

4. Tell the system knowledge about the domain.

5. Ask the system questions.

6. — the system can tell you whether your question is true
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Role of semantics

In Computer:

l1 broken← sw up

∧power ∧ unlit l1.

sw up.

power ← lit l2.

unlit l1.

lit l2.

In user’s mind:

l1 broken: light l1 is
broken

sw up: switch is up

power : there is power in
the building

unlit l1: light l1 isn’t lit

lit l2: light l2 is lit

Conclusion: l1 broken

The computer doesn’t know the meaning of the symbols

The user can interpret the symbol using their meaning
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Simple language: propositional definite clauses

An atom is a symbol starting with a lower case letter

A body is an atom or is of the form b1 ∧ b2 where b1 and b2

are bodies.

A definite clause is an atom or is a rule of the form h← b
where h is an atom and b is a body.

A knowledge base is a set of definite clauses
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Semantics

An interpretation I assigns a truth value to each atom.

A body b1 ∧ b2 is true in I if b1 is true in I and b2 is true in I .

A rule h← b is false in I if b is true in I and h is false in I .
The rule is true otherwise.

A knowledge base KB is true in I if and only if every clause in
KB is true in I .
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Models and Logical Consequence

A model of a set of clauses is an interpretation in which all
the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is
a logical consequence of KB, written KB |= g , if g is true
in every model of KB.

That is, KB |= g if there is no interpretation in which KB is
true and g is false.
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Simple Example

KB =


p ← q.
q.
r ← s.

p q r s
I1 true true true true is a model of KB
I2 false false false false not a model of KB
I3 true true false false is a model of KB
I4 true true true false is a model of KB
I5 true true false true not a model of KB

KB |= p, KB |= q, KB 6|= r , KB 6|= s
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User’s view of Semantics

1. Choose a task domain: intended interpretation.

2. Associate an atom with each proposition you want to
represent.

3. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

4. Ask questions about the intended interpretation.

5. If KB |= g , then g must be true in the intended interpretation.

6. The use can interpret the answer using their intended
interpretation of the symbols.
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Computer’s view of semantics

The computer doesn’t have access to the intended
interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical
consequence of KB.

If KB |= g then g must be true in the intended interpretation.

If KB 6|= g then there is a model of KB in which g is false.
This could be the intended interpretation.
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Representing the Electrical Environment

light l1.

light l2.

down s1.

up s2.

up s3.

ok l1.

ok l2.

ok cb1.

ok cb2.

live outside.

lit l1 ← live w0 ∧ ok l1

live w0 ← live w1 ∧ up s2.

live w0 ← live w2 ∧ down s2.

live w1 ← live w3 ∧ up s1.

live w2 ← live w3 ∧ down s1.

lit l2 ← live w4 ∧ ok l2.

live w4 ← live w3 ∧ up s3.

live p1 ← live w3.

live w3 ← live w5 ∧ ok cb1.

live p2 ← live w6.

live w6 ← live w5 ∧ ok cb2.

live w5 ← live outside.
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Proofs

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure, KB ` g means g can be derived
from knowledge base KB.

Recall KB |= g means g is true in all models of KB.

A proof procedure is sound if KB ` g implies KB |= g .

A proof procedure is complete if KB |= g implies KB ` g .
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Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of modus ponens:

If “h← b1 ∧ . . . ∧ bm” is a clause in the knowledge base,
and each bi has been derived, then h can be derived.

This is forward chaining on this clause.
(This rule also covers the case when m = 0.)
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Bottom-up proof procedure

KB ` g if g ∈ C at the end of this procedure:

C := {};
repeat

select clause “h← b1 ∧ . . . ∧ bm” in KB such that
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
until no more clauses can be selected.
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Example

a← b ∧ c .

a← e ∧ f .

b ← f ∧ k.

c ← e.

d ← k .

e.

f ← j ∧ e.

f ← c.

j ← c .
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Soundness of bottom-up proof procedure

If KB ` g then KB |= g .

Suppose there is a g such that KB ` g and KB 6|= g .

Then there must be a first atom added to C that isn’t true in
every model of KB. Call it h. Suppose h isn’t true in model I
of KB.

There must be a clause in KB of form

h← b1 ∧ . . . ∧ bm

Each bi is true in I . h is false in I . So this clause is false in I .
Therefore I isn’t a model of KB.

Contradiction.
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Fixed Point

The C generated at the end of the bottom-up algorithm is
called a fixed point.

Let I be the interpretation in which every element of the fixed
point is true and every other atom is false.

I is a model of KB.
Proof: suppose h← b1 ∧ . . . ∧ bm in KB is false in I . Then h
is false and each bi is true in I . Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.
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Completeness

If KB |= g then KB ` g .

Suppose KB |= g . Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus KB ` g .
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Top-down Ground Proof Procedure

Idea: search backward from a query to determine if it is a logical
consequence of KB.
An answer clause is of the form:

yes ← a1 ∧ a2 ∧ . . . ∧ am

The SLD Resolution of this answer clause on atom ai with the
clause:

ai ← b1 ∧ . . . ∧ bp

is the answer clause

yes ← a1∧· · ·∧ai−1 ∧ b1∧ · · · ∧bp ∧ ai+1∧ · · · ∧am.
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Derivations

An answer is an answer clause with m = 0. That is, it is the
answer clause yes ← .

A derivation of query “?q1 ∧ . . . ∧ qk” from KB is a
sequence of answer clauses γ0, γ1, . . . , γn such that

I γ0 is the answer clause yes ← q1 ∧ . . . ∧ qk ,
I γi is obtained by resolving γi−1 with a clause in KB, and
I γn is an answer.
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Top-down definite clause interpreter

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom ai from the body of ac;
choose clause C from KB with ai as head;
replace ai in the body of ac by the body of C

until ac is an answer.
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Nondeterministic Choice

Don’t-care nondeterminism If one selection doesn’t lead to a

solution, there is no point trying other alternatives. select

Don’t-know nondeterminism If one choice doesn’t lead to a

solution, other choices may. choose
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Example: successful derivation

a← b ∧ c . a← e ∧ f . b ← f ∧ k .
c ← e. d ← k . e.
f ← j ∧ e. f ← c . j ← c.

Query: ?a

γ0 : yes ← a γ4 : yes ← e
γ1 : yes ← e ∧ f γ5 : yes ←
γ2 : yes ← f
γ3 : yes ← c
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Example: failing derivation

a← b ∧ c . a← e ∧ f . b ← f ∧ k .
c ← e. d ← k . e.
f ← j ∧ e. f ← c . j ← c.

Query: ?a

γ0 : yes ← a γ4 : yes ← e ∧ k ∧ c
γ1 : yes ← b ∧ c γ5 : yes ← k ∧ c
γ2 : yes ← f ∧ k ∧ c
γ3 : yes ← c ∧ k ∧ c
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Search Graph for SLD Resolution

a← b ∧ c . a← g .
a← h. b ← j .
b ← k . d ← m.
d ← p. f ← m.
f ← p. g ← m.
g ← f . k ← m.
h← m. p.
?a ∧ d

yes←a^d

yes←j^c^d
yes←k^c^d

yes←m^c^d

yes←g^dyes←b^c^d

yes←m^d

yes←m^d

yes←f^d

yes←p^d

yes←d

yes←m yes←p

yes←h^d

yes←m^d

yes←
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Agents acting in an environment

Environment

Observations
Actions

Past Experiences

Goals/Preferences

Prior Knowledge Agent

Abilities
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Users

In the electrical domain, what should the house builder
know?

What should an occupant know?

Users can’t be expected to volunteer knowledge:
I They don’t know what information is needed.
I They don’t know what vocabulary to use.
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Ask-the-user

Users can provide observations to the system. They can
answer specific queries.

Askable atoms are those that a user should be able to
observe.

There are 3 sorts of goals in the top-down proof
procedure:

I Goals for which the user isn’t expected to know the
answer.

I Askable atoms that may be useful in the proof.
I Askable atoms that the user has already provided

information about.

The top-down proof procedure can be modified to ask
users about askable atoms they have not already provided
answers for.
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Knowledge-Level Explanation

HOW questions can be used to ask how an atom was
proved.
It gives the rule used to prove the atom.
You can the ask HOW an element of the body of that
rules was proved.
This lets the user explore the proof.

WHY questions can be used to ask why a question was
asked.
It provides the rule with the asked atom in the body.
You can ask WHY the rule in the head was asked.
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Knowledge-Level Debugging

There are four types of non-syntactic errors that can arise in
rule-based systems:

An incorrect answer is produced: an atom that is false in
the intended interpretation was derived.

Some answer wasn’t produced: the proof failed when it
should have succeeded. Some particular true atom wasn’t
derived.

The program gets into an infinite loop.

The system asks irrelevant questions.

c©D. Poole and A. Mackworth 2008 Artificial Intelligence, Lecture 5.4, Page 7



Debugging incorrect answers

Suppose atom g was proved but is false in the intended
interpretation.

There must be a rule g ← a1 ∧ . . . ∧ ak in the knowledge
base that was used to prove g .

Either:
I one of the ai is false in the intended interpretation or
I all of the ai are true in the intended interpretation.

Incorrect answers can be debugged by only answering
yes/no questions.
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Electrical Environment

light

two-way
switch

switch
off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3
s3

w4

l2
p1

w5

cb2

w6

p2
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Missing Answers

If atom g is true in the intended interpretation, but could not
be proved, either:

There is no appropriate rule for g .

There is a rule g ← a1 ∧ . . . ∧ ak that should have
succeeded.
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Integrity Constraints

In the electrical domain, what if we predict that a light
should be on, but observe that it isn’t?
What can we conclude?

We will expand the definite clause language to include
integrity constraints which are rules that imply false,

where false is an atom that is false in all interpretations.

This will allow us to make conclusions from a
contradiction.

A definite clause knowledge base is always consistent.
This won’t be true with the rules that imply false.
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Horn clauses

An integrity constraint is a clause of the form

false ← a1 ∧ . . . ∧ ak

where the ai are atoms and false is a special atom that is
false in all interpretations.

A Horn clause is either a definite clause or an integrity
constraint.
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Negative Conclusions

Negations can follow from a Horn clause KB.

The negation of α, written ¬α is a formula that
I is true in interpretation I if α is false in I , and
I is false in interpretation I if α is true in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← c .

 KB |= ¬c .
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Disjunctive Conclusions

Disjunctions can follow from a Horn clause KB.

The disjunction of α and β, written α ∨ β, is
I true in interpretation I if α is true in I or β is true in I

(or both are true in I ).
I false in interpretation I if α and β are both false in I .

Example:

KB =


false ← a ∧ b.
a← c .
b ← d .

 KB |= ¬c ∨ ¬d .
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Questions and Answers in Horn KBs

An assumable is an atom whose negation you are
prepared to accept as part of a (disjunctive) answer.

A conflict of KB is a set of assumables that, given KB
imply false.

A minimal conflict is a conflict such that no strict subset
is also a conflict.
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Conflict Example

Example: If {c , d , e, f , g , h} are the assumables

KB =


false ← a ∧ b.
a← c .
b ← d .
b ← e.


{c , d} is a conflict

{c , e} is a conflict

{c , d , e, h} is a conflict
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Using Conflicts for Diagnosis

Assume that the user is able to observe whether a light is
lit or dark and whether a power outlet is dead or live.

A light can’t be both lit and dark. An outlet can’t be
both live and dead:

false ← dark l1 & lit l1.

false ← dark l2 & lit l2.

false ← dead p1 & live p2.

Assume the individual components are working correctly:

assumable ok l1.

assumable ok s2.

. . .

Suppose switches s1, s2, and s3 are all up:
up s1. up s2. up s3.
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Representing the Electrical Environment

light l1.

light l2.

up s1.

up s2.

up s3.

live outside.

lit l1 ← live w0 ∧ ok l1.

live w0 ← live w1 ∧ up s2 ∧ ok s2.

live w0 ← live w2 ∧ down s2 ∧ ok s2.

live w1 ← live w3 ∧ up s1 ∧ ok s1.

live w2 ← live w3 ∧ down s1 ∧ ok s1.

lit l2 ← live w4 ∧ ok l2.

live w4 ← live w3 ∧ up s3 ∧ ok s3.

live p1 ← live w3.

live w3 ← live w5 ∧ ok cb1.

live p2 ← live w6.

live w6 ← live w5 ∧ ok cb2.

live w5 ← live outside.
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If the user has observed l1 and l2 are both dark:

dark l1. dark l2.

There are two minimal conflicts:

{ok cb1, ok s1, ok s2, ok l1} and

{ok cb1, ok s3, ok l2}.
You can derive:

¬ok cb1 ∨ ¬ok s1 ∨ ¬ok s2 ∨ ¬ok l1

¬ok cb1 ∨ ¬ok s3 ∨ ¬ok l2.

Either cb1 is broken or there is one of six double faults.
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Diagnoses

A consistency-based diagnosis is a set of assumables
that has at least one element in each conflict.

A minimal diagnosis is a diagnosis such that no subset is
also a diagnosis.

Intuitively, one of the minimal diagnoses must hold. A
diagnosis holds if all of its elements are false.

Example: For the proceeding example there are seven
minimal diagnoses: {ok cb1}, {ok s1, ok s3},
{ok s1, ok l2}, {ok s2, ok s3},. . .
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Recall: top-down consequence finding

To solve the query ?q1 ∧ . . . ∧ qk :

ac := “yes ← q1 ∧ . . . ∧ qk”
repeat

select atom ai from the body of ac ;
choose clause C from KB with ai as head;
replace ai in the body of ac by the body of C

until ac is an answer.
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Implementing conflict finding: top down

Query is false.

Don’t select an atom that is assumable.

Stop when all of the atoms in the body of the generalised
query are assumable:

I this is a conflict
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Example

false ← a.

a← b & c .

b ← d .

b ← e.

c ← f .

c ← g .

e ← h & w .

e ← g .

w ← f .

assumable d , f , g , h.
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Bottom-up Conflict Finding

Conclusions are pairs 〈a,A〉, where a is an atom and A is
a set of assumables that imply a.

Initially, conclusion set C = {〈a, {a}〉 : a is assumable}.
If there is a rule h← b1 ∧ . . . ∧ bm such that
for each bi there is some Ai such that 〈bi ,Ai〉 ∈ C , then
〈h,A1 ∪ . . . ∪ Am〉 can be added to C .

If 〈a,A1〉 and 〈a,A2〉 are in C , where A1 ⊂ A2, then
〈a,A2〉 can be removed from C .

If 〈false,A1〉 and 〈a,A2〉 are in C , where A1 ⊆ A2, then
〈a,A2〉 can be removed from C .
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Bottom-up Conflict Finding Code

C := {〈a, {a}〉 : a is assumable };
repeat

select clause “h← b1 ∧ . . . ∧ bm” in T such that
〈bi ,Ai〉 ∈ C for all i and
there is no 〈h,A′〉 ∈ C or 〈false,A′〉 ∈ C

such that A′ ⊆ A where A = A1 ∪ . . . ∪ Am;
C := C ∪ {〈h,A〉}
Remove any elements of C that can now be pruned;

until no more selections are possible
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Complete Knowledge Assumption

Often you want to assume that your knowledge is complete.

Example: you can state what switches are up and the agent
can assume that the other switches are down.

Example: assume that a database of what students are
enrolled in a course is complete.

The definite clause language is monotonic: adding clauses
can’t invalidate a previous conclusion.

Under the complete knowledge assumption, the system is
non-monotonic: adding clauses can invalidate a previous

conclusion.
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Completion of a knowledge base

Suppose the rules for atom a are

a← b1.
...

a← bn.

equivalently a← b1 ∨ . . . ∨ bn.

Under the Complete Knowledge Assumption, if a is true, one
of the bi must be true:

a→ b1 ∨ . . . ∨ bn.

Under the CKA, the clauses for a mean Clark’s completion:

a↔ b1 ∨ . . . ∨ bn
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Clark’s Completion of a KB

Clark’s completion of a knowledge base consists of the
completion of every atom.

If you have an atom a with no clauses, the completion is
a↔ false.

You can interpret negations in the body of clauses.
∼a means that a is false under the complete knowledge
assumption
This is negation as failure .
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Bottom-up negation as failure interpreter

C := {};
repeat

either
select r ∈ KB such that

r is “h← b1 ∧ . . . ∧ bm”
bi ∈ C for all i , and
h /∈ C ;

C := C ∪ {h}
or

select h such that for every rule “h← b1 ∧ . . . ∧ bm” ∈ KB
either for some bi ,∼bi ∈ C
or some bi = ∼g and g ∈ C

C := C ∪ {∼h}
until no more selections are possible
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Negation as failure example

p ← q ∧ ∼r .

p ← s.

q ← ∼s.

r ← ∼t.

t.

s ← w .
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Top-Down negation as failure proof procedure

If the proof for a fails, you can conclude ∼a.

Failure can be defined recursively:
Suppose you have rules for atom a:

a← b1

...

a← bn

If each body bi fails, a fails.
A body fails if one of the conjuncts in the body fails.
Note that you need finite failure. Example p ← p.
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Assumption-based Reasoning

Often we want our agents to make assumptions rather than
doing deduction from their knowledge. For example:

In abduction an agent makes assumptions to explain
observations. For example, it hypothesizes what could be
wrong with a system to produce the observed symptoms.

In default reasoning an agent makes assumptions of
normality to make predictions. For example, the delivery
robot may want to assume Mary is in her office, even if it
isn’t always true.
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Design and Recognition

Two different tasks use assumption-based reasoning:

Design The aim is to design an artifact or plan. The
designer can select whichever design they like that
satisfies the design criteria.

Recognition The aim is to find out what is true based on
observations. If there are a number of possibilities, the
recognizer can’t select the one they like best. The
underlying reality is fixed; the aim is to find out what it is.

Compare: Recognizing a disease with designing a treatment.
Designing a meeting time with determining when it is.
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The Assumption-based Framework

The assumption-based framework is defined in terms of two
sets of formulae:

F is a set of closed formula called the facts .
These are formulae that are given as true in the world.
We assume F are Horn clauses.

H is a set of formulae called the possible hypotheses or

assumables. Ground instance of the possible hypotheses
can be assumed if consistent.
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Making Assumptions

A scenario of 〈F , H〉 is a set D of ground instances of
elements of H such that F ∪ D is satisfiable.

An explanation of g from 〈F , H〉 is a scenario that,
together with F , implies g .
D is an explanation of g if F ∪D |= g and F ∪D 6|= false.
A minimal explanation is an explanation such that no
strict subset is also an explanation.

An extension of 〈F , H〉 is the set of logical consequences
of F and a maximal scenario of 〈F , H〉.
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Example

a← b ∧ c .
b ← e.
b ← h.
c ← g .
c ← f .
d ← g .
false ← e ∧ d .
f ← h ∧m.
assumable e, h, g , m, n.

{e, m, n} is a scenario.

{e, g , m} is not a scenario.

{h, m} is an explanation for a.

{e, h, m} is an explanation for a.

{e, g , h, m} isn’t an explanation.

{e, h, m, n} is a maximal scenario.

{h, g , m, n} is a maximal scenario.
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Default Reasoning and Abduction

There are two strategies for using the assumption-based
framework:

Default reasoning Where the truth of g is unknown and
is to be determined.
An explanation for g corresponds to an argument for g .

Abduction Where g is given, and we are interested in
explaining it. g could be an observation in a recognition
task or a design goal in a design task.
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Default Reasoning

When giving information, you don’t want to enumerate all
of the exceptions, even if you could think of them all.

In default reasoning, you specify general knowledge and
modularly add exceptions. The general knowledge is used
for cases you don’t know are exceptional.

Classical logic is monotonic: If g logically follows from
A, it also follows from any superset of A.

Default reasoning is nonmonotonic: When you add that
something is exceptional, you can’t conclude what you
could before.
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Defaults as Assumptions

Default reasoning can be modeled using

H is normality assumptions

F states what follows from the assumptions

An explanation of g gives an argument for g .
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Default Example

A reader of newsgroups may have a default:
“Articles about AI are generally interesting”.

H = {int ai(X )},

where int ai(X ) means X is interesting if it is about AI.
With facts:

interesting(X )← about ai(X ) ∧ int ai(X ).

about ai(art 23).

{int ai(art 23)} is an explanation for interesting(art 23).
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Default Example, Continued

We can have exceptions to defaults:

false ← interesting(X ) ∧ uninteresting(X ).

Suppose article 53 is about AI but is uninteresting:

about ai(art 53).

uninteresting(art 53).

We cannot explain interesting(art 53) even though everything
we know about art 23 you also know about art 53.

c©D. Poole and A. Mackworth 2007 Artificial Intelligence, Lecture 9.4, Page 4



Exceptions to defaults

int_ai

interesting

article_53

about_ai

implication

default

class 
membership

article_23

uninteresting
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Exceptions to Defaults

“Articles about formal logic are about AI.”
“Articles about formal logic are uninteresting.”
“Articles about machine learning are about AI.”

about ai(X )← about fl(X ).

uninteresting(X )← about fl(X ).

about ai(X )← about ml(X ).

about fl(art 77).

about ml(art 34).

You can’t explain interesting(art 77).
You can explain interesting(art 34).
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Exceptions to Defaults

int_ai

interesting

article_23

intro_question

article_99
article_34article_77

about_fl
about_ml

about_ai

implication

default

class �
membership
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Formal logic is uninteresting by default

int_ai

interesting

article_23

intro_question

article_99
article_34article_77

about_fl
about_ml

about_ai

implication

default

class 
membership

unint_fl
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Contradictory Explanations

Suppose formal logic articles aren’t interesting by default:

H = {unint fl(X ), int ai(X )}.

The corresponding facts are:

interesting(X )← about ai(X ) ∧ int ai(X ).

about ai(X )← about fl(X ).

uninteresting(X )← about fl(X ) ∧ unint fl(X ).

about fl(art 77).

uninteresting(art 77) has explanation {unint fl(art 77)}.
interesting(art 77) has explanation {int ai(art 77)}.
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Overriding Assumptions

Because art 77 is about formal logic, the argument
“art 77 is interesting because it is about AI” shouldn’t be
applicable.

This is an instance of preference for more specific
defaults.

Arguments that articles about formal logic are interesting
because they are about AI can be defeated by adding:

false ← about fl(X ) ∧ int ai(X ).

This is known as a cancellation rule.

You can no longer explain interesting(art 77).
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Diagram of the Default Example

int_ai

interesting

article_23

intro_question

article_99
article_34article_77

about_fl
about_ml

about_ai

implication

default

class 
membership

unint_fl
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Multiple Extension Problem

What if incompatible goals can be explained and there are
no cancellation rules applicable?
What should we predict?

For example: what if introductory questions are
uninteresting, by default?

This is the multiple extension problem .

Recall: an extension of 〈F , H〉 is the set of logical
consequences of F and a maximal scenario of 〈F , H〉.
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Competing Arguments

ai_im

interesting_to_mary

about_skiing

non_academic_recreation

ski_Whistler_pagelearning_to_skiinduction_page

interesting_to_fred

about_learning

about_ai

nar_im nar_if

l_ai s_nar
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Skeptical Default Prediction

We predict g if g is in all extensions of 〈F , H〉.
Suppose g isn’t in extension E . As far as we are
concerned E could be the correct view of the world.
So we shouldn’t predict g .

If g is in all extensions, then no matter which extension
turns out to be true, we still have g true.

Thus g is predicted even if an adversary gets to select
assumptions, as long as the adversary is forced to select
something. You do not predict g if the adversary can pick
assumptions from which g can’t be explained.
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Minimal Models Semantics for Prediction

Recall: logical consequence is defined as truth in all models.
We can define default prediction as truth in all
minimal models .

Suppose M1 and M2 are models of the facts.
M1 <H M2 if the hypotheses violated by M1 are a strict

subset of the hypotheses violated by M2. That is:

{h ∈ H ′ : h is false in M1} ⊂ {h ∈ H ′ : h is false in M2}

where H ′ is the set of ground instances of elements of H .
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Minimal Models and Minimal Entailment

M is a minimal model of F with respect to H if M is a
model of F and there is no model M1 of F such that
M1 <H M .

g is minimally entailed from 〈F , H〉 if g is true in all
minimal models of F with respect to H .

Theorem: g is minimally entailed from 〈F , H〉 if and only
if g is in all extensions of 〈F , H〉.
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Evidential and Causal Reasoning

Much reasoning in AI can be seen as evidential reasoning ,

(observations to a theory) followed by causal reasoning
(theory to predictions).

Diagnosis Given symptoms, evidential reasoning leads to
hypotheses about diseases or faults, these lead via causal
reasoning to predictions that can be tested.

Robotics Given perception, evidential reasoning can lead
us to hypothesize what is in the world, that leads via
causal reasoning to actions that can be executed.
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Combining Evidential & Causal Reasoning

To combine evidential and causal reasoning, you can either

Axiomatize from causes to their effects and
I use abduction for evidential reasoning
I use default reasoning for causal reasoning

Axiomatize both
I effects → possible causes (for evidential reasoning)
I causes → effects (for causal reasoning)

use a single reasoning mechanism, such as default
reasoning.
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Combining abduction and default reasoning

Representation:
I Axiomatize causally using rules.
I Have normality assumptions (defaults) for prediction
I other assumptions to explain observations

Reasoning:
I given an observation, use all assumptions to explain

observation (find base causes)
I use normality assumptions to predict from base causes

explanations.
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Causal Network

file_removed

link_down

data_absent

error_message

another_source_tried

data_inadequate

fr_da

ld_da

da_em

da_ast

di_ast

Why is the infobot trying another information source?
(Arrows are implications or defaults. Sources are assumable.)
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Code for causal network

error message ← data absent ∧ da em.

another source tried ← data absent ∧ da ast

another source tried ← data inadequate ∧ di ast.

data absent ← file removed ∧ fr da.

data absent ← link down ∧ ld da.

default da em, da ast, di ast, fr da, ld da.

assumable file removed .

assumable link down.

assumable data inadequate.
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Example: fire alarm

tampering

alarm

fire

leaving

report

smoke
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Fire Alarm Code

assumable tampering .

assumable fire.

alarm← tampering ∧ tampering caused alarm.

alarm← fire ∧ fire caused alarm.

default tampering caused alarm.

default fire caused alarm.

smoke ← fire ∧ fire caused smoke.

default fire caused smoke.

leaving ← alarm ∧ alarm caused leaving .

default alarm caused leaving .

report ← leaving ∧ leaving caused report.

default leaving caused report.
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Explaining Away

If we observe report there are two minimal explanations:
I one with tampering
I one with fire

If we observed just smoke there is one explanation
(containing fire). This explanation makes no predictions
about tampering.

If we had observed report ∧ smoke, there is one minimal
explanation, (containing fire).

I The smoke explains away the tampering. There is no
need to hypothesise tampering to explain report.
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