Efficient memory-bounded search methods

Stuart Russell*

Computer Science Division

Unwversity of California, Berkeley, CA 94720, USA

Abstract. Memory-bounded algorithms such as
Korf’s IDA* and Chakrabarti et al’s MA* are designed
to overcome the impractical memory requirements of
heuristic search algorithms such as A* . It is shown
that IDA* is inefficient when the heuristic function can
take on a large number of values; this is a consequence
of using too little memory. Two new algorithms are
developed. The first, SMA*, simplifies and improves
upon MA* making the best use of all available mem-
ory. The second, Iterative Expansion (IE), is a simple
recursive algorithm that uses linear space and incurs
little overhead. Experiments indicate that both algo-
rithms perform well.

1 Introduction

This paper adopts the standard framework of heuristic
search, in which the object is to find a sequence of
operators leading from a given initial state to any goal
state. The search is guided by a heuristic function
h(n), which estimates the lowest cost of any path from
state n to a goal state. Although heuristic search is
a well-established area of research, new developments
have great practical significance, both because of the
large number of applications and because search often
underlies the operation of more complex Al systems.

We will be principally concerned with finding the
optimal solution sequence, using heuristics that are
admissible; that is, h(n) < h*(n) where h* represents
the exact distance to the nearest goal state.! With
admissible h, the A* algorithm [5] is known to re-
turn optimal solutions. Furthermore, A* examines the
minimum number of nodes necessary to do this, up to
tie-breaks [3] (see below for a simple proof).

Given these results, and the existence of more effi-
cient, e-admissible algorithms that relax the optimal-
ity requirement, one might imagine that this area of
research is more or less sewn up. Unfortunately, A*
retains in memory all the nodes it has generated, and
will run out of space long before it exhausts the pa-
tience of the user. (A good 15-puzzle implementation

*Work supported by an NSF PYI Award, an SERC Vis-
iting Fellowship, and the Turing Institute, Glasgow. Fig-
ures by Ashwin.

1We will also enforce monotonicity of h, which amounts
to satisfaction of the triangle inequality. Monotonicity can
be ensured for any admissible i by the application of path-
maz, which compares the value of a state with those of its
ancestors.

can exhaust main memory on a 64MB workstation
in under ten minutes.) Recognizing this, several re-
searchers have developed memory-bounded variants of
A*. The principal difficulties are 1) ensuring optimal
solutions, and 2) avoiding the continual re-expansion
of nodes that have been visited before but necessarily
forgotten because of memory restrictions.

The Graph Traverser [4], one of the earliest search
programs, commits to an operator after searching
best-first up to the memory limit. As with other
“staged search” algorithms, optimality cannot be en-
sured because until the best path has been found the
optimality of the first step remains in doubt. IDA* [6],
one of the earliest admissible, memory-bounded algo-
rithms, uses space linear in the length of the solution.
The MA* algorithm [2] can utilize whatever memory
is available, and thereby avoids some re-expansions.
The latter paper also describes several other memory-
bounded algorithms.

The next section discusses IDA* and MA* in detail.
Section 3 describes the SMA* algorithm, which im-
proves on MA*. Section 4 describes IE, a simple, low-
overhead recursive algorithm that uses linear space
and is more efficient than IDA*. Section 5 provides
performance data to support these claims.

2 IDA* and MA*¥*

IDA* was derived from the old idea of iterative deep-
ening. In ordinary depth-first iterative deepening,
search proceeds by gradually increasing the depth
limit until a goal is found. IDA* takes advantage of
the admissibility of the heuristic function by limiting
the f-cost of the nodes examined by the depth-first
search, rather than the depth. The f-cost of a node is
given by f(n) = g(n) + h(n) where g(n) is the cost of
the path from the start node. The IDA* algorithm is
defined as follows (S(n) denotes n’s successors):
Algorithm IDA*(n):
limit — f(n);
do until success or limit unchanged

limit «— DFS(n, limit);
Function DFS(n,limit):
if f(n) > limit return f(n);
if goal(n) then return with success
else return lowest value of DF'S(s, limit) for s € S(n).

IDA* has much lower overhead than A*; further-
more, in Korf’s experiments on the 15-puzzle, the

Figure 1: fcost diagram for A* and IDA*
number of nodes re-expanded was small enough to
make IDA* competitive with A* in terms of time. The
easiest way to understand the behaviour and complex-
ity of IDA* is to consider the state space statically,
with the nodes ordered by f-cost. Figure 1 shows some
idealized f-cost boundaries around the start node S.
In such f-cost diagrams, all nodes between bound-
aries f; and fi11 have f(n) = fit1. Nodes inside the
fo boundary have the same f-cost as the start node.?

A* operates by expanding all the nodes in each layer
before continuing to the next.®* On the other hand,
IDA* starts again from scratch with f-cost limits in
the increasing sequence fo, fi,.... Each iteration goes
over the layers examined by the previous one, plus one
new layer.

In the worst case, every node in the state space has a
different f-cost, so that each layer contains exactly one
node. If A* examines k nodes to solve a problem, then
IDA* will examine 1 +2 4+ ---+ k, ie., O(k2) nodes.
When k is large (for instance, large enough that k&
nodes cannot be stored in the memory available), the
slowdown compared to A* may be unacceptable. The
worst case does not arise in domains such as the 8-
puzzle because the manhattan-distance heuristic takes
on only a small number of integer values, and many
nodes have the same f-cost. Realistic optimization
problems such as Travelling Salesman or VLSI layout
would certainly cause worst-case behaviour because
of the continuous variables involved. In fact, applying
an infinitesimal random perturbation to the heuristic
values in the 8-puzzle is sufficient to degrade IDA*’s
performance drastically, as we show below, whereas
A*’s performance is unaffected.

State spaces in which nodes have a wide variety of

2That such a diagram can be consistently drawn fol-
lows from the monotonicity property of admissible heuris-
tics with pathmax, which means that f-costs are non-
decreasing along any path.

3Hence we can see that A* is optimally efficient among
all admissible algorithms with the same information; if an
algorithm skips any node in an interior layer, it will fail to
return the optimal solution if that node happens to be on
the best path.

f-costs are difficult to search because as the algorithm
extends the search frontier, it will frequently change
its mind about which path is most promising. A* can
handle this because all paths are available t

handle this because all paths are available to
tended if they become the most promising candidates;
bounded-memory algorithms will have difficulty be-
cause some previously-explored paths are necessarily
purged from memory and will have to be re-expanded.
IDA* is particularly vulnerable because it retains no
path information between iterations.

A simple meta-level argument suggests that a good
algorithm should retain as many nodes as possible,
and should prefer to retain the most promising ones.
This is because the purpose of retention is to increase
speed by avoiding re-expansion (in general, the pur-
pose of memory is to avoid recomputation as well as
to retain state). If nodes are selected for expansion by
lowest f-cost, then if f(n1) < f(n2), n1 must become
the most promising node before ny because until then
only nodes with f(n) < f(ni1) are expanded. Hence
nodes with highest f-cost should be pruned first. Fur-
thermore, when a node is pruned, as much cost infor-
mation should be retained in its ancestors as possible,
consistent with the constraint that each node takes
constant space.

The MA* algorithm [2] embodies these principles
reasonably well. (Unfortunately, the algorithm is
too complicated to reproduce here, so a sketch will
have to suffice.) Like A* it maintains two sets of
nodes: CLOSED contains nodes all of whose succes-
sors are present in memory, and OPEN contains all
other nodes in memory. Successors are generated from
the node in OPEN with lowest f-cost, and added to
OPEN. When the number of nodes in OPEN and
CLOSED reaches some preset limit, MA* begins to
prune the OPEN list by removing the leaf-node with
highest f-cost.* When a new successor is generated,
its f-cost is propagated back up the tree so that,
roughly speaking, the f-cost of each internal node is
always the most informed bound derived from all its
examined descendants. (Actually, this is how SMA*
works. MA* uses a different set of quantities for each
node, to the same effect.) Thus, for example, if a node
n whose original f-cost is 4 is found to have succes-
sors all of whose f-costs are 6, then the f-cost of n
is revised to 6, representing the new lower bound on
solution paths through n. Although pruning the de-
scendants of n then loses information about which way
to go from n, the retention of backed-up values means
that the algorithm still knows how worthwhile it is to
go anywhere from n.

MA* makes good use of available memory, and
is able to solve selected 15-puzzles expanding fewer
nodes than IDA*. As soon as the memory limit is
reached, MA* abandons the least promising part of
the space and reallocates memory to push forward

he ex_
De €X

4This means that MA*, and SMA*, need to deal with
partially-expanded nodes and to generate successors one at
a time.

towards the goal. As time progresses, the nodes in
memory will occupy a narrow band around the best
solution path.

3 SMA*

The MA* algorithm can be improved in several ways.
The resulting algorithm, called SMA*, incorporates
the following improvements:

1. Because the backing up of f-costs means that
many nodes have the same f-cost, and because
the algorithms need to select deepest and shal-
lowest leaves of lowest and highest f-cost, SMA*
uses a binary tree of binary trees to store OPEN,
sorted by f and depth respectively. MA*’s data
structures are less efficient.

2. SMA* is easier to implement and understand
than MA*, since it maintains just two f-cost
quantities for each node rather than four. Also,
SMA* backs up once per fully-expanded node,
rather than once per node generated.

3. When MA¥* begins pruning, it continues until
only the current ‘principal variations’ — nodes
with the best f-cost — remain. As argued above,
only the worst node should be pruned, and only
when space is needed for a better one. SMA*
adds and prunes only one node at a time.

4. MA* loses information by not using pathmax
with the backed-up f-costs. This is the most cru-
cial improvement in SMA*.

3.1 Algorithm description

Algorithm SMA*(start):
put start on OPEN; USED « 1;
loop
if empty(OPEN) return with failure;
best «— deepest least- f-cost leaf in OPEN;
if goal(best) then return with success;
succ «— next-successor (best);
f(succ) — maz(f(best),g(succ) + h(succ));
if completed(best), BACKU P(best);
if S(best) all in memory, remove best from OPEN.
USED « USED+1;
if USED > MAX then
delete shallowest, highest- f-cost node in OPEN;
remove it from its parent’s successor list;
insert its parent on OPEN if necessary;
USED « USED-1;
insert succ on OPEN.

Procedure BACKUP(n):
if n is completed and has a parent then

f(n) < least f-cost of all successors;

if f(n) changed, BACKU P(parent(n)).

SMA* is called with the start node. A global vari-
able MAX is set to the maximum number of nodes
that can be accommodated, and the variable USED

keeps track of how many nodes are currently in mem-
ory. Each node contains its g, h and f-costs, and the
minimum f-cost of its examined successors; it also re-
tains some information used by the successor function
to indicate the next successor to be generated. A suc-
cessor that has not been generated since its parent was
last generated is called unezxamined. A node with no
unexamined successors is called completed.

3.2 Properties

SMA* has the following properties:

Lemma 1 f-costs are maintained to give a correct
lower bound on the cost of solution paths through any
unexamined descendant of a node. The bounds are
stricter than those maintained by MA*.

Lemma 2 SMA* always expands the node that has
the best lower bound on its unerxamined descendants.

Theorem 3 SMA* is guaranteed to return an opti-
mal solution, provided MAX is at least as large as the
number of nodes on the optimal solution path.

Theorem 4 FExcept for its ability to generate sin-
gle successors, SMA* behaves identically to A* when
MAX is larger than the number of nodes generated by
A*

The complexity of SMA* is discussed briefly in sec-
tion 6.

3.3 Example

Figure 2 shows a typical tree; the left subtree has
been largely pruned away to make room for the more
promising right subtree, but its f-cost information has
been backed up to its frontier ancestor C. If C is later
re-expanded, pathmax will give F a value of 5, as we
would hope. Unfortunately, node I will get a value
of 5 although it was once known to have a value of 6.
This form of information loss seems unavoidable given
the requirement of constant space per node.

4 1IE

IE is a simple recursive algorithm developed from an
idea in DTA* [8]. There it was pointed out that
with an admissible heuristic, the backed-up f-cost of
a child of the root can only increase, and therefore
search should only be carried out under the current
best child, until its cost exceeds the current second-
best child. Thus IE is called on a node with a bound
equal to the backed-up f-cost of the second-best path
from any ancestor of that node. (The second-best-
value idea is also used in RBFS, a similar algorithm
developed independently by Korf [7], and in Bratko’s
implementation of A* [1].)

a 3(2)

c5B3) p4d) L3(3)

M4(3) B3

/N

N4 04

=)

Figure 2: Example search tree generated by SMA*
Backed-up f-costs shown with original f-costs in
parentheses. Shaded region indicates pruned nodes.
Nodes are generatedin alphabetical order, and pruned
in the order GKJIHF. Memory holds 10 nodes, and
becomes full when J is added.

4.1 Algorithm description

IE is called with the start node and a bound of oco.
f-costs are maintained in exactly the same way as in
SMA¥*, except that backing up occurs when the bound
is violated and the recursive path unwinds back to the
point at which the previous second-best path begins.

Algorithm IE(n,bound):

if f(n) > bound then return;

if goal(n) then return with success;

generate S(n), assign f-costs using pathmax;

if S(n) = {} return oo;

do until success or while f(n) < bound
best — node in S(n) with lowest f-cost;
newbound — min(bound, other f-costs in S(n));
call IE(best, newbound);
f(n) « lowest f-cost in S(n).

IE has the same formal properties as SMA*, but
since it prunes away all but the current best path and
its sibling nodes, one would expect a higher rate of
re-expansion.

4.2 Example

Figure 3 shows three snapshots of IE operating in the
same search space shown in the SMA* example. In
the first snapshot, IE has just been called on E; since
f(E) exceeds the bound of 3 (which derives from A’s
right child), IE will return and f(D) is set to 5. This
exceeds D’s bound, so IE returns from D and C then
calls TE on its right child, F. This basically suffers
the same fate as D (see second snapshot), and the
recursion unwinds back to A. Then A calls IE on its
right child H, with a bound of 4 from the left child.
The search proceeds, producing the third snapshot.

5 Performance

The experiments reported here have all been per-
formed on the perturbed 8-puzzle. Small perturba-
tions are made to the manhattan-distance heuristic

40 T T T T T T T

35

30 F

25

20

Nodes expanded / A*

10

o
.
®s. o

P,
@ %6 020 ®0 60060 apB 0 EW® QB wW 090 0 0 o

0 0.1 0.2 03 04 0.5 0.6 07
Memory size / A*

Figure 4: SMA*: Nodes expanded vs. memory size for
solution-length = 20

function, giving each node a different f-cost without
changing the structure of the puzzle.> The experi-
ments were run using Allegro Common Lisp on a Mac-
intosh Powerbook 140 laptop with 4MB memory.

The first set of experiments shows the effect of
memory size on the number of nodes expanded by
SMA* (Figure 4). The scatter plot was generated
by solving 10 puzzles with various memory alloca-
tions covering the full range from the minimum up
to the memory used by A*. The x-axis shows memory
size as a fraction of the memory needed by A*. The
y-axis shows the ratio of nodes expanded by SMA*
to nodes expanded by A*. The data show that for
these puzzles, good performance can be obtained us-
ing only a small fraction of the memory required by
A¥*; also, the algorithm always expanded the same
number of nodes as A* when the allocation was more
than 32% of the memory required by A*. The data
exhibit an intriguingly good fit to the relationship
nodes « memory~1"?

The second set of experiments compares the average
number of nodes expanded by IDA*, IE, SMA* and
A* as a function of solution length (Figure 5). 20 puz-
zles at each solution length were used, where possible.
SMA* was run with memory size equal to twice the
solution length. Even this small additional amount
of memory allows SMA* to dominate IE, which in
turn dominates IDA*. In terms of execution time, the
rank order remains the same, except on very small
problems, despite the additional overhead incurred by
SMA* (ranging from 1.5 to 3.5 times more expensive
per node). This should be less important on problems
where node expansion time is significant. No exhaus-
tive comparisons with MA* have yet been run, but the
overhead for SMA* is about five times less. In some

5For reproducibility, the details of the perturbation
method are as follows. The perturbed heuristic value h/ =
h+(1—e—h?)/h(h+1), where € < 1 is unique to the state in
question. For example, the state ((1 0 3) (4 5 6) (7 8 2)) is
represented as 0.103456782, base 9. The perturbed heuris-
tic is admissible and monotonic.

0.8

A 2/infinity A 2/infinity A 3finfinity
B 2/3 3 B 2/3/\3 4 H 3/4
e Y e N
D3/3 3 5 F 3/3 J 3/3 3
6 E5/3 G 6/3 7 K 43 4

Figure 3: Three stages in a search by IE.
Each tree is a snapshot of the recursion stack. Labels are f-cost/bound. Calls to IE occur in alphabetical order.

Log(nodes expanded)

L L
0 5 10 15
Solution length

Figure 5: Log(nodes expanded) vs.
IDA*, IE, SMA*, A*.

harder problems, MA* also expands up to 20 times
more nodes because of its less strict use of pathmax.

solution length for

6 Conclusions

Problem domains are difficult for memory-bounded
optimization algorithms if they contain a large num-
ber of distinct values for the heuristic function.® This
is because the algorithm will change its mind many
times about which solutions are most promising. T'wo
algorithms have been demonstrated that seem to have
reasonable performance, but it would be useful to
have a deeper analysis of the limits on achievable ef-
ficiency. Clearly, in the limit of large problems, the
best path will change with every expansion, since the
current best node’s successor will appear some finite
amount worse because of reduced error in h, whereas
the current second-best node will be only infinitesi-
mally worse than the current best node.

In practical terms, the impact of memory-bounded
search algorithms can be quite large; for example,
Soderland’s SNLP general-purpose planning system
has been modified to use IE instead of A* enabling
a previously infeasible tyre-changing problem to be

8Memory-bounded algorithms also suffer from transpo-
sitions in graph-structured spaces, but this issue is beyond
the scope of the paper.

solved quite easily. Conversely, IE and SMA* (and
IDA*, for that matter) enable a heuristic to be used
in systems, such as Stickel’s Prolog Technology The-
orem Prover, that currently use depth-first iterative
The choice of which of the three memors

cenening T_
1€ CinliCe O1 Wil O1 vif wvirlfl mMeiory

d
deepening.
bounded algorithms to use depends on several factors,
including the size of individual nodes; node expan-
sion time; available memory; the number of different
heuristic values; and the expected size of OPEN in
SMA¥*.

While we have focussed on a restricted class of
problems, the same issues arise in any form of search
guided by heuristics. Many kinds of systems—neural
nets and simulated annealing, for example—resort to
hill-climbing, but could benefit from a less blinkered
search.

References

[1] Bratko, I. (1986) The art of PROLOG program-
ming. London: Academic Press.

[2] Chakrabarti, P. P., Ghose, S., Acharya, A., and
de Sarkar, S. C. (1989) Heuristic search in restricted
memory. AlJ, 41, 197-221.

[3] Dechter, R., and Pearl, J. (1985) Generalized best-
first strategies and the optimality of A*. JACM 32,
505-536.

[4] Doran, J., and Michie, D. (1966) Experiments
with the graph traverser. Proc. R. Soc. (A) 294,
235-259.

[5] Hart, P. E., Nilsson, N. J., and Raphael, B. (1968)
A formal basis for the heuristic determination of
minimum-cost paths. IEFE Trans. Sys. Sci. and
Cybernetics SSC-4(2) 100-107.

[6] Korf, R. E. (1985) Depth-first iterative deepening:
An optimal admissible tree search. AlJ, 27(1), 97-
109.

[7] Korf, R. E. (1991) Best-first search with limited
memory. UCLA Comp. Sci.Ann.

[8] Wefald, E. H., and Russell, S. J. (1989) Estimat-
ing the value of computation: The case of real-time
search. In Proc. AAAI Spring Symp. Al and Limited
Rationality, Stanford, CA.

