
The Optimality of A*

Presented by
Jarrell Waggoner

&
Jimmy Cleveland

12/09/08

Overview

1 Introduction
Basics of A∗ and definitions that will be used throughout this
presentation

2 Dimensions of Analysis
The “contenders” with A∗, the scoring system, and the problems
that will be compared

3 Analysis
Exploration of two theorems that show the power, and
limitations of A∗

4 A∗∗
A reformulation that solves some of the shortcomings of A∗

5 Conclusion
Overview of some of the other finding of this paper, and
references

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Informed Search

Uninformed search: no information about the goal state,
other than if it has been reached yet

Informed search: some heuristic information about the goal
state is available at each node in the graph

Uninformed Search Informed Search
Depth-first Best-first

Breadth-first A∗

Dijkstra

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Introduction to A*

Historical Notes

A∗:
Created in 1968
“A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”
Authored by Peter Hart, Nils Nilsson, and Bertram
Raphael

In the original paper, the algorithm we now know as A∗ was
simply labeled “Algorithm A.” Since the star (∗) is used to
denote optimality, and Algorithm A was optimal when given an
admissible heuristic, it became known as A∗.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Introduction to A*

Introduction to A*

1: Put the start node, s, on a list called OPEN of unexpanded nodes
2: if |OPEN | = 0 then
3: Exit—no solution exists
4: Remove a node n from OPEN , at which f = g + h is minimum and place it

on a list called CLOSED
5: if n is a goal node then
6: Exit with solution
7: Expand node n, generating all its successors with pointers back to n
8: for all successor n′ of n do
9: Calculate f(n′)
10: if n′ /∈ OPEN AND n′ /∈ CLOSED then
11: Add n′ to OPEN
12: Assign the newly computed f(n′) to node n′

13: else
14: If new f(n′) value is smaller than the previous value, then update with

the new value (and predecessor)
15: If n′ was in CLOSED, move it back to OPEN
16: Go to (2)

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Map Example

Map Example

8-Puzzle Example

8-Puzzle Example

8-Puzzle Example

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Introduction to A*

Introduction to A* (cont.)

Some notes about A∗:
A∗ is a class of algorithms, not a single, set algorithm
Depth-first, breadth-first, uniform-cost, and Dijkstra’s
algorithm are specific instances of A∗ and vary only by the
choice of heuristic and tie-breaking rule
A∗ is a specific case of best-first search, where the heuristic
evaluation function f(x) is defined as f(n) = g(n) + h(n).

Best-first ⊇ A∗ ⊇

Depth-first
Breadth-first
Dijkstra

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Definitions

Optimality

Optimality (finding a shortest path): Provided A∗ is
given an admissible heuristic, it will always find a
shortest path because the “optimistic” heuristic
will never allow it to skip over a possible shorter
path option when expanding nodes

Optimality (number of node expansions): Specifically,
the number of node expansions verses other
algorithms with the same heuristic information (as
A∗ is clearly more optimal than algorithms that
lack heuristic information)

It is this second definition that we seek to prove.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Definitions

Notation

G directed locally finite graph G = (V, E)
C∗ the cost of the cheapest solution path
C(.) the cost function defined over all solution paths
Γ a set of goal nodes, Γ ⊆ V
Pni−nj a path in G between node ni and nj

P S a solution path, i.e., a path in G from s to some goal node γ ∈ Γ
c(n, n′) cost of an arc between n and n′, c(n, n′) ≥ δ > 0, where δ is a constant
f(.) evaluation function defined over partial paths, i.e., to each node n

along a given path P = s1, n1, n2, . . . , n we assign the value fP (n)
which is shorthand notation for f(s, n1, n2, . . . , n)

g(n) the sum of the branch costs along the current path of pointers from
n to s

g∗(n) the cost of the cheapest path going from s to n
gP (n) the sum of the branch costs along path P from s to n
h(n) a cost estimate of the cheapest path between n and Γ
h∗(n) the cost of the cheapest path going from n to Γ
k(n, n′) cost of the cheapest path between n and n′

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Definitions

Definitions

Admissible Heuristic: A heuristic function h(n) is said to be
admissible on (G, Γ) iff h(n) ≤ h∗(n) for every
n ∈ G

Consistent Heuristic: A heuristic function h(n) is said to
be consistent (or monotone) on G iff for any pair
of nodes, n′ and n, the triangle inequality holds:

h(n′) ≤ k(n′, n) + h(n)

Surely Expanded: Nodes that must be expanded to reach a
goal node (regardless of the tie-breaking rule or
algorithm used)

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Definitions

Definitions (cont.)

Admissible Algorithm: An algorithm that, given a problem
space where h(n) ≤ h∗(n) for every n ∈ G, will
return least-cost solutions

Dominance: Algorithm A dominates some other algorithm B
if the set of nodes that A expands is a subset of
the nodes expanded by B (not just fewer nodes)

Strictly Dominate: A strictly dominates B iff A dominates
B and B does not dominate A

Optimal (strong definition): Algorithm A is optimal over
a class A of algorithms iff A dominates every
member of A

Weakly Optimal: No member of A strictly dominates A

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Outline

1 Introduction

2 Dimensions of Analysis
Hierarchy of Optimality

3 Analysis

4 A∗∗

5 Conclusion

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Hierarchy of Optimality

Algorithm Classes

To determine the optimality of A∗ over other algorithms with
the same heuristic information, we group these algorithms into
classes (since A∗ is already a class of algorithms, each with a
different tie-breaking rule):

Aad: Algorithms that return least-cost solutions when
given an admissible problem space (though not necessarily
an admissible heuristic to run on that problem space)
Abf : Subclass of Aad that accepts any path-dependent
evaluation function, but operates in a best-first manner
Agc: Subclass of Aad that will return optimal solutions
whenever A∗ does, but may not obey h > h∗

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Hierarchy of Optimality

Algorithm Classes (cont.)

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Hierarchy of Optimality

Problem Instances

Problem Instance: A particular “setup” of a general
problem.

Defined by a quadruple: I = (G, s, Γ, h)
G is the graph representation of the problem
s is the start node in the graph
Γ is the set of goal nodes
h is a heuristic that any algorithm run on this instance will
use

I is a set of problem instances that share some common trait

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Hierarchy of Optimality

Problem Instances (cont.)

There are four important sets of problem instances:
IAD: The set I ∈ I that has an admissible heuristic:

IAD = {(G, s, Γ, h)|h ≤ h∗ on (G, Γ)}

ICON : The set I ∈ I that has a consistent heuristic:

IAD = {(G, s, Γ, h)|h is consistent on G}

IAD: The non-pathological case of IAD

ICON : The non-pathological case of ICON

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Hierarchy of Optimality

Problem Instances (cont.)

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Hierarchy of Optimality

Tie-Breaking Rules

A∗ can be considered a class of algorithms, defined by the
tie-breaking rule chosen

c

c

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Hierarchy of Optimality

0-3 Optimality

A∗ is optimal relative to A in the following senses:

0-Optimal: All A∗’s tie-breaking rules dominate all members
of A

1-Optimal: One of A∗’s tie-breaking rules expands a subset of
all A’s members

2-Optimal: No member of A expands a proper subset of any
of A∗’s members

3-Optimal: No tie-breaking rule in A∗ (or A∗∗) is strictly
dominated by some member of A

Strongest → Weakest
0-Optimal → 3-Optimal

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Outline

1 Introduction

2 Dimensions of Analysis

3 Analysis
Theorem 1
Theorem 2

4 A∗∗

5 Conclusion

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Theorem 1

Theorem 1

Theorem

Any algorithm that is admissible on IAD will expand, in every
instance I ∈ ICON , all nodes surely expanded by A∗.

Meaning

Problems with a consistent heuristics cannot be solved any
better than A∗ can solve them by algorithms with the same
information.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Theorem 1

Theorem 1 Proof

Proof :
Given I = (G, S,Γ, h) ∈ ICON , and assuming that n is surely
expanded by A∗, then there exists a path Ps−n s.t.

∀n′ ∈ Ps−n, g(n′) + h(n′) < C∗

Let B be an algorithm compatible with A∗ that halts with cost
C∗ in I. Assume that B does not expand n. We can then create
G′ as follows:

Translation

What we do here is setup a contradiction: For B to be better
than A∗, it must skip some node n that A∗ visits. We assume B
does this, and setup a new graph G′ that will introduce a
contradiction.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Constructing G and G′

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Theorem 1

Theorem 1 Proof

where we have added a goal node t to G. The costs of t is given
by h(t) = 0 and the edge from n to t is given as c = h(n) +4
where:

4 =
1
2
(C∗ −D) > 0

D = max
{

f(n′)|n′ ∈ NG∗
g+h

}
This creates a new path P ∗ whose cost is ≤ C∗ −4 yet is still
consistent (and admissible) on the new I ′.

Translation

Here, we setup a new node in G′ and make sure it has the
proper costs associated with it so that the new G′ obeys all the
rules that the old G did.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Theorem 1

Theorem 1 (cont.)

It remains to be proven that h is consistent on I ′ for the new
node t in G′ (this is trivially true for all the previous nodes
since the h values of all the nodes in G remain unchanged).
This is done by establishing h(n′) ≤ k(n′, t) ∀n′ ∈ G.
At any node n′ we should also have

h(n′) > k(n′, n) + c = k(n′, n) + h(n) +4

but this violates h’s consistency on I, so I ′ ∈ ICON .

Translation

We show that by using the above weight for the k(n′, t) edge,
the new graph G′ remains consistent.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Theorem 1

Theorem 1 (cont.)

Thus A∗ will find the new path P ∗ (which costs C∗ −4)
because

f(t) = g(n) + c = f(n) +4 ≤ D +4 = C∗ −4 < C∗

So t is reachable from s by a C∗−4 bounded path, so it will be
selected.
But algorithm B must behave the same as if it were running on
I, halting with cost C∗ > C∗ −4. This is a contradiction that
B is both admissible on I, and avoids the expansion of n.

Translation

We have a contradiction, because after creating G′, which has a shortest

path goal node attached to n (which A∗ finds properly), B is unable to find

a shortest path and therefore must not be admissible.

�
Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Theorem 2

Theorem 2

Theorem

If any admissible algorithm B does not expand a node which is
surely expanded by A∗ in some problem instance where h is
admissible and non-pathological, then in that very problem
instance B must expand a node which is avoided by every
tie-breaking-rule in A∗.

No algorithm (A∗ or otherwise) is 1-optimal over those
guaranteed to find an optimal solution when given h ≤ h∗.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Outline

1 Introduction

2 Dimensions of Analysis

3 Analysis

4 A∗∗

Properties of A∗∗

Admissibility of A∗∗

5 Conclusion

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Properties of A∗∗

A∗∗

A∗∗ differs from A∗ in that it relies not only on the g + h value
of node n, but also considers all the g + h values along the path
from s to n. The maximum is then used as a criterion for node
selection.

A∗∗ Evaluation Function

f ′Ps−n
= max{f(n′) = gPs−n(n′) + h(n′)|n′ ∈ Ps−n}

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Properties of A∗∗

A∗∗

optimality

A∗∗ is 3-optimal over all algorithms relative to IAD.

The type-3 optimality of A∗∗ over Aad demonstrates that those
“smart” algorithms that prevent A∗ from achieving optimality
are not smart after all, but simply lucky; each takes advantage
of the peculiarity of the graph for which it was contrived, and
none can maintain this superiority over all problem instances. If
it wins on one graph, there must be another where it is beaten,
and by the very same opponent, A∗∗. It is in this sense that A∗∗

is 3-optimal; it exhibits a universal robustness against all its
challengers.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Properties of A∗∗

A∗∗

A∗∗ strictly dominates A∗

Theorem

(a) For every tie-breaking rule of A∗ and for every problem
instance I ∈ IAD, there exists a tie-breaking rule for A∗∗ that
expands a subset of the nodes expanded by A∗.
(b) Moreover, there exists a problem instance and a tie-breaking
rule for A∗∗ that expands a proper subset of the nodes that are
expanded by any tie-breaking rule of A∗.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Admissibility of A∗∗

A∗∗

A∗∗ is admissible over IAD.

Theorem

Algorithm A∗∗ will terminate with an optimal solution in every
problem instance in which h ≤ h∗.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Admissibility of A∗∗

A∗∗

Note

Because of the pathological cases in IAD, A∗ cannot be
3-optimal. A∗∗ exists due to this fact, because it can dominate
all instances of A∗. A∗∗ is 3-optimal in the most general case.

A∗∗ is admissible and in non-pathological cases A∗∗ expands the
same set of nodes as does A∗, namely, the surely expanded
nodes in NC∗

g+h. In pathological cases, however, there exist
tie-breaking rules in A∗∗ that strictly dominate every
tie-breaking rule in A∗. This immediately precludes A∗ from
being 3-optimal relative to IAD and nominates A∗∗ for that
title.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Admissibility of A∗∗

A∗∗

A** is not a BF ∗ algorithm since it uses one function f ′ for
ordering nodes for expansion and a different function g for
redirecting pointers. Had we allowed A∗∗ to use f for both
purposes, it would not be admissible relative to IAD, since f ′ is
not order preserving.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Outline

1 Introduction

2 Dimensions of Analysis

3 Analysis

4 A∗∗

5 Conclusion
Results
References

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Conclusion

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

Results

Conclusion (cont).

In consistent cases, no A can beat A∗ (the node-by-node
superiority of type 0 and 1 optimality)
In the most general case, A∗ can be beaten outright by
other “smarter” algorithms
By reformulating A∗ as a non-best-first algorithm A∗∗, type
3 optimality can be achieved in even the most general case

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

References

References

Rina Dechter and Judea Pearl.
Generalized best-first search strategies and the optimality
of a*.
Journal of the ACM, 32:505–536, 1985.

Othar Hansson, Andrew Mayer, and Marco Valtorta.
A new result on the complexity of heuristic estimates for
the a* algorithm.
Artificial Intelligence, 55:129–143, 1992.

Laszlo Mero.
A heuristic search algorithm with modifiable estimate.
Artif. Intell., 23(1):13–27, 1984.

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

Introduction Dimensions of Analysis Analysis A∗∗ Conclusion

References

Web References

http://theory.stanford.edu/~amitp/GameProgramming/

http://www.policyalmanac.org/games/aStarTutorial.htm

http://idm-lab.org/applet.html

http://www.cs.umd.edu/class/fall2003/cmsc421-0101/heuristic-search.pdf

http://en.wikipedia.org/wiki/A*

[1], [2], [3]

Presented by Jarrell Waggoner & Jimmy Cleveland

The Optimality of A*

	Introduction
	Introduction to A*
	Definitions

	Dimensions of Analysis
	Hierarchy of Optimality

	Analysis
	Theorem 1
	Theorem 2

	A**
	Properties of A**
	Admissibility of A**

	Conclusion
	Results
	References

