SLR parsing (2.1 [Mj) Botttn- op porty

/ ; .y
.5';"‘/(1 \ Lﬁvﬁﬁfwﬂ‘ %&ﬂVw‘{XOn
[nru{mélésﬂ’*h-@rXA-(
£ aud %/k#hw‘vﬁ ()Wﬁﬂ’
Aawy@iqlab VN5 o OVZL"*LR?O FW% , wnl ic (T,
"Zﬂ&/wﬁ?ug MM/—&OWW’WZ‘/ oxed fm %’WW@VS-

L R Persers et d/l/o Co;)LQA "‘gh[f‘f,’—\fe/of/]/qk r&mrs_

shift: A symbol is read from the input and pushed on the stack.
reduce: The top N elements of the stack hold symbols identical to the N symbols on

ighi-hand side of a specified production. These N symbols are by the reduce b _
actionreplaced by the nonterminal at the lefi-hand side of the specified production. aabbbee (hif)s limes
aabbb ce @ with R —

Contrary to LL(1) parsers, the stack holds the right-hand-side symbols such that w ce reduce with R — bR

input action

the last symbol on the right-hand side 1s at the top of the stack. aabbR cc reduce with R — bR
aabR cc reduce with R — bR
aaR ce reduce withT — R
T — R
I — alc
R — alc c reducewithT — aTlc
R — DR @ SVecece |

T chotee 971 action /cé‘/éf o Vé»é.)ce> A,@fou{_r oL -—%
MX’\L (.V\.'DV* 571/"\9410/ Q/mA'ﬂ‘L ,C7M£,o/§0n m

S ﬁ dz(’ As with LL(1), our aim is to make the choice of action depend only on the next
input symbol and the symbol on top of the stack. To help make this choice, we use -
a DFA. Conceptually, this DFA reads-thecantents of the stack (which contains both
terminals and nonterminals), starting from the bottom up to the top. The state of the
DFA when the top of the stack is reached is, together with the next input symbol,
used to determine the next action, Like in LL(1) parsing, this is done using a table,

but we use a DFA state instead of a nonterminal To Seleci the row in the table, and

the table entries are not productions but actions.
— L — ﬂ

State

abc)

IR

0

Tl [od

-] O Lh =

s3sdr3nr3
a
rl rl
s3sd 313
s4 13 13

s/
r4 r4
22

gl g2

g g2
a6

shift n:

A

2o n:
Gy

reduce p:
-

ELcepI.

(lore

error.

ol

Push the current input symbol and then state n on the stack, and read the
next input symbol.. This corresponds to a transition on a terminal.
Push the nonterminal indicated by the column and then state n on the
stack. This corresponds to a transition on a nonterminal.

Reduce with the production numbered p: Pop symbols (interleaved with
state numbers) corresponding to the right-hand side of the production
off the stack. This is always followed by a go action on the lelt-hand
side nonterminal using the DFA state that is found affer popping the
right-hand side off the stack.

Parsing has completed successfully.

A syntax error has been detected. This happens when no shift, accept or
reduce action 1s defined for the input symbol.

&w‘t"'@ tw "/lu ﬂb‘c)

stack := empty ; push(0,stack) ; read(input)
loop
case table[top(stack),input] of
shift s: push(input,stack) ;
push (s, stack) ;

read (input)

reduce p: n :

the number of symbols
on the right-hand side of p
pop 2r elements from the stack ;
{ push(n, stack) ;
push (s, stack)

E

where table[top(stack),n] = go s
accept: terminate with success
error: reportError

endloop

State 'Y b ¢ § T R

O @v—i 3 r? gl g2
2 rl rI
3 s3s4r3r3 gdg2
4 s4 13 13 26
3 87
6 r4 r4
7 12 12

the left-hand side of production p ;

stack input action

@ (@abbbeccg
0a3 abbbcc$
0a3a3 bbbccs s4
Dalaibd bbccs §
0Da3adbdbd i
0a3a3bdbiba ccs BR g 7
0a3a3bdbabAR6 ccs ; a6
Dalaib4b4R ccs i (K=DRK):;gbh
0a3a3 ccS T = . £
0a3a3R2 ool ;g5 T
0a3a3T>s ces
Da3a3iTic? cs 12(T —alc):g5
0a3T5 cs s
0a3T5c7 § r2(T—aTc); gl
071 S accepl

2.14 Constructing SLR Parse Tables

An SLR parse table has a DFA as its core. Constructing this DFA from the grammar
1s similar to constructing a DFA from a regular expression, as shown in this chapler:

We first construct an NFA using techniques similar to those in Sect. 1.3 and then
convert this into a DFA using the construction shown in Sect. 1.5.

$<'f$'f,w4 vy "prodmc,’(.//om Oh;

N NN

IR

R
alc

bR

=

E]I:T"%T
. T — R
22T — aTe
3R —

4 R — bR

Production NFA Production Combined NFA

T'—T T"—=T
T—R TR
7 2
T —aTc —-@—aa-@—- —C-® T—aTe
3

R — bR _.®L®L© R — bR

DEA NFA Transitions
slale states abe TR

0 AGEL] 3s4 gl

I B

2 D

3 ECEIL] s3 s4 o5 g2
4 KILJ s4 o6
3 G s/

6 L

7 H

N3 Vu,e,él‘ﬁoﬂ_M \fequ e 4 &-Ca,(ﬁ(' Q—Cfb{QM(,

T”——r /
¥

To add reduce and accept actions, we first need to compute the FOLLOW sets for 0: T-’ —
each nonterminal, as described in Sect. 2.9. For purpose of calculating FOLLOW, we
add yet another extra start production: 7" — T’$, to handle end-of-text conditions T — R
as described in Sect. 2.9. This givesusThe lollowing result: » T — aTc
FOLLOW(T") = {$) ' PR —
FOLLOW(T) = {c, §} 4+ R — bR

FOLLOW(R) = |c, §}
State a2 b c $ T R

We now add reduce actions by the following rule: If a DFA state s contains the

accepting NFA state for a production p : N — a, we add reduce p as action to s on 0 384 13 13 g l gz
all symbols in FOLLOW(N). Reduction for production 0 (the extra start production | q
that was added before constructing the NFA) on the $ symbol is wrillen as accept. 7 cl rl
In Fig.2.33, state O contains NFA state I, which accepts production 3. Hence,
we add r3 as actions at the symbols ¢ and § (as these are in FOLLOW(R)). State | 2 s3 sd 13 13 Eﬁ gl

contains NFA state B, which accepts production 0. Since FOLLOW(T") = {$}. we 4 3 3 gf-_.
add a reduce action for production 0 at $. As noted above, this is written as accept

4

(abbreviated to “a”). In the same way, we add reduce actions to state 3, 4, 6 and 7. 5 s7

The result is shown in Fig. 2.26. 6 4 r4
7

2 12
l;}um 2. 76

1. Add the production §' — S, where S is the start symbol of the grammar.

2. Make an NFA for the right-hand side of each production.

3. If an NFA state s has an outgoing transition on a nonterminal N, add epsilon-transitions from
s 1o the starting states of the NFAs for the right-hand sides of the productions for N.

4. Make the start state of the NFA for the production §' — S the single start state of the combined
NFA.

5. Convert the combined NFA to a DFA.

6. Build a table cross-indexed by the DFA states and grammar symbols (terminals including $
and nonterminals). Add shift actions for transitions on terminals and go actions for transitions
on nonterminals.

1. Calculate FOLLOW for each nonterminal. For this purpose, we add one more start production:
5" — §'8.

8. When a DFA state contains an accepting NFA stale marked with production number p, where
the left-hand side nonterminal for p is N, find the symbols in FOLLOW(N) and add a reduce p
action in the DFA state at all these symbols. I p =0, add an accept action instead of a reduce p
action.

Fig. 2.34 Summary of SLR parse-table construction

2.14.1 Conflicts in SLR Parse-Tables
§l¢f¢ - reduc nd ~dya - vehiee Can][lzr;?z Nt melé

A—-aBp
A—=apyd

B — y

B — y,

and there is overlap between FIRST(8) and FOLLOW(B), then there will be a
shift-reduce conflict after reading & ¥, as both reduction with B — y; and shifting
on any symbol in FIRST(§) is possible, which gives a conflict for all symbols in
FIRST (6)N FOLLOW ((B). This conflict can be resolved by splitting the first produc-
tion above into all the possi‘bEcases for b:

A—>anyp

A—>ayp
A—>a}qc‘i

Exp — Exp+Exp
Exp — Exp- Exp
Exp — Exp= Exp Exp — Exp* Exp.

Exp — Exp + Exp.

Exp — Exp + Exp.

Exp — num
Exp — (Exp) Exp — Exp * Exp.

(1) This conflict arises from expressions]ikftcr having read a+b, the

next input symbol is +. We can now eit se to reduce a+b, grouping
around the first addition before the second, or shift on the plus, which will later
lead to b+c being reduced, and hence grouping around the second addition
before the first. Since the convention is that + is left-associative, we prefer the
first of these options and, hence, climinate the shift-action from the table and
keep only the reduce-action. B -

(2) The offending expressions here have the form a*b+c. Since convention make
multiplication bind stronger than addition, we, again, prefer reduction over shift-

ing.

2.15 Using Precedence Rules in LR Parse Tables

(1) A conflict between shifting on + and reducing by the production
(2) A conflict between shifting on + and reducing by the production
E p — Exp / Exp (3) A conflict between shifting on * and reducing by the production

(4) A conflict between shifting on * and reducing by the production

1

(3) Inexpressions of the fo e convention, again, makes multiplication
bind stronger, so we prefer TS0 avoid grouping around the + operator and,
hence, eliminate The reduce-action Trommthe table.

(4) This case is identical to case 1, where an operator that by convention is lefi-
associative conflicts with itself. We, as in case |, handle this by eliminating the
shift.

In general, elimination of conflicts by operator precedence declarations can be sum-
marised into the following rules:

(a) If the conflict is between two operators of different priority, eliminate the action
with the lowest priority operator in favour of the action with the highest priority.
In a reduce action, the operator associated with a reduce-action is an operator
used in the production that is reduced. If several operators are used in the same
production, the operator that is closest to the end of the production is used.*
(b) If the conflict is between operators of the same priority, the associativity (which
Wme as noted in Sect. 2.3.1) of the operators is used: f the operators
are left-associative, the shift-action 1s eliminated and the recluce action retained.
" ITthe operators ar re right-associative, the reduce-actionise An thE: shift-
action retained. If the operators are non-associative,(both action I / /

o~=bh.c = Q,..Q,) - ([17&{— 8Cz9 on tred

23 g2 @Q BN = 1 (2:00)s
f2.3)= 11,2, 3]) (”(y&’f/%f 0 cfotT Vo)

The dangling-else ambiguity (Sect.2.4) can also be eliminated using precedence
rules. I we have read i f Exp then Star and the next symbol is a else, we want
o shift on else, so the else will be associated with the then. Giving else a
higher precedence than then or giving them the same precedence and making them
right-associative will ensure that a shift is made on else when we need it.
~Not all conflicts should be eliminated by precedence rules. If you blindly add
precedence rules until no conflicts are reported, you risk eliminating actions that
are required Lo parse cerlain strings, so the parser will accept only a subset of the
intended language. Normally, you should only use precedence declarations to specify
operator hierarchies, unless you have analysed the parser actions carefully and found
that there is no undesirable consequences of adding the precedence rules. g

- f“‘\\
AN T £ '/eiww Stad
(Cwu(/ﬁﬂk\%\ @ /

W Cug e Sk U Cht Corvd, hae S

If <cond1> then if <cond2> then <stat1> else ;K M{ b Z

SLRvs, LALR()) (2. 4 Lay, lex)
&7

Textual representation of NFA states in | parser generators

Production NFA NFA-state | Textual representation
A T> > . T
0
T' =T —r@-—T*@ B T -> T .
| C T -> . R
()R
I=R —(c)+(0) D T ->R .
_ (B G)-C E T -> . aTc
T —al —{E) ==+ F =G }— ”
o C) C/ F T ->a . Tc
R — _..v G T ->aT . ¢
1 H T -> aTc .
ok (D0 RIS
J R -> . bR
0. T — T K R->b . R
T — R L R -> bR .
2T — alc
3R —
4 R — bR

DFA NFA
state states
0 A,CEIL]J
1 B
2 D
3 FCEIL]IJ
4 K, I1J
5 G
6 L
7 H

R -> b R
R —=
R —-> bR

Textual representation of
DFA state 4.

NFA-state

Textual representation

R =~ T QMmO w >

aTc .

-> . bR

p=v = = = B T e B B B
[
A\

-> bR .

——

&
<1\ 5+ 4

Declarations and actions /E 7 Wi
n Ut (¢£)

(
0 [$)9 9 $)
E — (E+num {PlusExp($1,NumExp($3)) }

E — num { NumExp ($1) }

A T8 Con be vicd v Svild ab drnck $ 4 nst2n {Tees, @) aboe
kekTons com be vond §7 e flope >yuse X treey Wty ohefrmd one

E — numCE’ .
E — +numkE’ &rm"‘r U%m Lp%’IL.. f(N\rS’blo'V\. %W\Wm
E — E : @&)g E
BN Vo Thdecind, dree 7 /wbsmoy \
W ﬁ'\\' F + MZZ‘L)
f5> 4 auwm £ /\/Um\spu}ﬂég) N‘M,

(L(B \i VLVVM /.5 j

e The second production for E’ returns just a hole.

e In the first production for E’, the + and num terminals are used to produce
a tree for a plus-expression (i.e., a PlusExp node) with a hole in place of
the first subtree. This tree is used to fill the hole in the tree returned by the
recursive use of E’, so the abstract syntax tree is essentially built outside-in.
The result is a new tree with a hole.

e In the production for E, the hole in the tree returned by the E’ nonterminal
is filled by a NumExp node with the number that is the value of the num
terminal.

F— E+4+num {350 = PlusExp (51, NumExp($3)) }
E — num [$0 NumExp ($1) }

In this setting, NumExp and PlusExp can be class constructors or functions that _ / Zo
allocate and build nodes and return pointers to these. In most imperative languages, JoVe uow a wy
_anonymous]'utlcliuns of the kind used in the ;%hfwc bm %wy oy
can _not be bmll.m:ﬂ be an exphicit part of the data-type that 1s used J’V"lm'm
lo represent abstract syntax. These holes will be overwnitien when the values arc = g

supphied. . will, hence, Tetatn a record holding both an abstract syntax tree (in a
field named tree) and a pointer to the hole that should be overwritten (in a field
named hole). As actions (using C-style notation), this becomes

E —-nmumkE, [52->hole = NumExp($1);
S0 = S2.tree)
E, — +numkE, { $0.hole = makeHole();
$3->hole = PlusExp($0.hole, NumExp($2));
S0.tree = §3.tree}
[$0.hole = makeHole();
S0.tree 50.hole}

=
#*
V

