192 Programming Language Processors in Java

6.2 Expression evaluation

Historically, one of the first distinguishing characteristics of high-level programming
languages was that they allowed the programmer to write algebraic expressions, such as
the following Triangle expressions:

2 * (h +w)
(0 < 1) /\ (i <= n)
a*b+ (1 - (c*2))
Such expressions are concise, and the notation is familiar from mathematics.

The implementation problem is the need to keep intermediate results somewhere,
during evaluation of the more complicated expressions. For example, during evaluation
of the expression ‘a * b + (1 - (c * 2))”, the subexpressions ‘a * b’, ‘c * 2, and ‘1
- (c * 2)° will give rise to intermediate results.

The problem can be seen in a more general setting if we consider the semantics of
such expressions (1.21d). To evaluate an expression of the form ‘E; O Ep’, we must
evaluate both the subexpressions E and E,, then apply the binary operator O to the two
intermediate results. If we evaluate E; first, then its result must be kept somewhere safe
during the evaluation of Ej.

Many machines provide registers that can be used to store intermediate results. Such
a machine typically provides registers named RO, R1, R2, and so on, and instructions
like those listed in Table 6.1. (Depending on the details of the instruction set, x could be
the address of a storage cell, a literal, another register, etc.)

Example 6.10 Expression evaluation in a register machine

To evaluate the expression ‘(a * b) + (1 - (c * 2))’ on our register machine, we
could use the following sequence of instructions:

LOAD Rl a — now R1 contains the value of a
MULT R1 b —now R1 contains the value of a*b
LOAD R2 #1 —now R2 contains the literal value 1
LOAD R3 ¢ — now R3 contains the value of ¢

MULT R3 #2 - now R3 contains the value of c*2
SUB R2 R3 - now R2 contains the value of 1- {c*2)
ADD R1 R2 —now R1 contains the value of a*b+ (1-(c*2))

Of course, if address[a] = 100 (say), the first instruction would really be ‘LOAD R1
100, and the other instructions likewise. In order to make our examples of object code
readable, we will adopt the convention that a stands for address]a], b for address{b],
and so on.

Ol

i
i
]

Run-Time Organization 193

Table 6.1 Typical instructions in a register machine

Instruction Meaning

STORE Ri a | Store the value in register i at address a.

LOAD Ri x | PFeich the value of x and place it in 1egister i.

ADD Ri x | Feich the value of x and add it to the value in register i.

SUB Ri x | Fetch the value of x and subtract it from the value in register i.

MULT Ri x | Fetch the value of x and multiply it into the value in register i.

The object code for expression evaluation in registers is efficient but rather compli-
cated. A compiler generating such code must assign a specific register to each
intermediate result. It is important to do this well, but gnite tricky. In particular, a
problem arises when there are not enough registers for all the intermediate results. (See
Exercise 6.11.)

‘ A very different kind of machine is one that provides a sfack for holding
intermediate results. This allows us to évaluate expressions in a very natural way. Such
a machine typically provides instructions like those listed in Table 6.2.

Example 6.11 Expression evaluation in a stack machine

To evaluate the expression ‘ (a * b) + (1 - (¢ * 2))’ on our stack machine, we could
use the sequence of instructions shown below left. Note the one-to-one correspondence
with the same expression’s postfix representation, shown below right.

LOAD a
LOAD b
LULT
LOADL 1
LOAD
LOADL
MULT
SUB
ADD

Q

)
*N0 R 00

4

Figure 6.7 shows the effect of each instruction on the stack, assuming that the stack
is initially empty.’
D

* In Figure 6.7 and throughout this book, the stack is shown growing downwards, with the stack
top nearest the bottom of the diagram. If this convention seems perverse, recall the convention
for drawing trees in computer sciehce textbooks! Shading indicates the unused space beyond
the stack top.

194 Programming Language Processors in Java

Table 6.2 Typical instructions in a stack machine

Instruction Meaning
STORE a | Pop the top value off the stack and store it at address a.

LOAD a | Fetcha value from address ¢ and push it on to the stack.

LOADL n Push the literal value » on to the stack.

ADD Replace the top two values on the stack by their sum.

SUB Replace the top two values on the stack by their
difference.

MULT Replace the top two values on the stack by their product.

(1) After LOAD a: (2) After LOAD b: (3) After MULT:
"""""""" value of a - value of a - ~ value of a*b
« value of b
.. unused :
space stack
: grov.th
(4) After LOADL 1: (5) After LOAD c: (6) After LOADL 2:
wefe yalueof a*b | e valueofa*b § e value of a*b
1 1 1
------------ value of ¢ g yalue of ¢
2

(8) After SUB: (9) After ADD:

(7 After MULT:

g valueofa*b | - valneofa*b | e value of
e - value of (a*b) +
-4 value of c*2 1-{(c*2) (1~ (c*2))

Figure 6.7 Evaluation of (a*b) +(1-(c*2)) onastack.

The stack machine requires more instructions than a register machine to evaluate an
expression, but the individual instructions are simpler. There is one instruction for each
operator, and one for each operand. In fact, as we noted in Example 6.11, the instruction
sequence is in one-to-one correspondence with the expression’s postfix representation.
Because the problem of register assignment is removed, code generation. for a stack
machine is much simpler than code generation for a register machine.

The net effect of evaluating a (sub)expression on the stack is to leave its result at the
stack top, on top of whatever was there already. For example, consider the evaluation of
the subexpression “c * 2 — steps (5) through (7) in Figure 6.7. The net effect is to push
the value of ‘c * 2' on to the stack top, and meanwhile the two values already on the
stack remain undisturbed.

Run-Time Organization 195

These desirable and simple properties of evaluation on the stack hold true regardless
of how complicated the expression is. An expression involving function calls can be
evaluated in just the same way. Likewise, an expression involving operands of different
types (and therefore different sizes) can be evaluated in just the same way.

(1) After LOADL 0: (2) After LOAD mm: (3) After LT:
0 g 1 L - value of O0<n
i I T value of n =
) =
(4} After LOAD n: (5) After CALL odd: (6) After AND:
oo valueof O<n | - - valueof Qe - - value of
- valueofn | - « value of 2 = (O<n) /\
odd (n) (fmze 11 odd(n)

Figure 6.8 Evaluationof ‘(0 < n) /\ odd(n)’ on a stack.

Example 6.12 Evaluation of function calls in a stack machine

To evaluate the expression ‘(0 <n) /\ odd(n)’ on our stack machine, we could use
the following sequence of instructions:

LOADL 0
LOAD n
LT

LOAD n
CALL odd
AND

Figure 6.8 shows the effect of each instruction on the stack, assuming that the stack
is initially empty. The instructions ‘LT’ and ‘AND’ are analogous to ‘ADD’, ‘SUB’, etc.,
in that each replaces two values at the stack top by a single value, but some of the values
involved are truth values rather than integers.

Note the analogy between ‘CALL odd’ and instructions like ‘ADD’, ‘LT’, etc. — each
takes its argument(s) from the stack top, and replaces them by its result.

O

196 Programming Language Processors in Java

6.3 Static storage allocation

We now study the allocation of storage to variables. In this section we consider only
global variables. In Section 6.4 we shall consider local variables, and in Section 6.6

heap variables.

Each variable in the source program requires enough storage to contain any value
that might be assigned to it. The compiler cannot know, in general, which particular
values will be assigned to the variable. But if the source language is statically typed, the
compiler will know the variable’s type, T. Thus, as a consequence of constant-size
representation, the compiler will know how much storage needs to be allocated to the

variable, namely size T.

The simplest case is storage allocation for global variables. These are variables that
exist (and therefore occupy storage) throughout the program’s run-time. The compiler
can simply locate these variables at some fixed positions in storage. In this way it can
decide each global variable’s exact address. (More precisely, the compiler decides each
global variable’s address relative to the base of the storage region in which global
variables are located.) This is called séatic storage allocation.

Example 6.13 Static storage allocation

Consider the following Triangle program outline:

let
type Date = record
y: Integer,
m: Integer,
d: Integer

end;
var a: array 3 of Integer;
var b: Boolean;
var c¢: Char;
var t: Date

in

Assuming that each primitive vatue occupies one word, the global variables a, b, ¢,
and t would be laid out as shown in Figure 6.9. Thus:

addressfa]l = 0
addressfb] = 3
address[c] = 4
address[t] = 5

Run-Time Organization 197

alo0]
a all]
al2]

d........unused
space

Figure 6.9 Layout of global variables for the program of Example 6.13.

6.4 Stack storage allocation

Pet us now take into account local variables. A local variable v is one that is declared
msi.de a procedure (or function). The variable v exists (i.e., occupies storage) only
during an activation of that procedure. 'This time interval is called a lifetime of v. If the
same Procedure is activated several times, then v will have several lifetimes. (Each
activation creates a distinct variable.)

Example 6.14 Stack storage allocation

Consider the following outline of a Triangle program, containing parameterless pro-
cedures Y and Z:

let
var a: array 3 of Integer;
var b: Boolean;
var c¢: Char;

proc Y () ~
let
var d: Integer;
var e: record c: Char, n: Integer end

in
proc Z () ~
let
var f: Integer
in
begin ...; ¥Y(); ... end

in
begin ...; Y(); ...; Z(); ... end

198 Programming Language Processors in Java

The variables a, b, and ¢ are global. The variables d and e are local to procedure Y.
The variable £ is local to procedure Z.

The main program calls Y directly. Later it calls 2, which itself calls Y.

The lifetimes of the global and local variables are summarized in Figure 6.10. The
lifetime of each local variable corresponds to an activation of the procedure in which it
is declared. Since there are two activations of ¥, its local variables have two lifetimes.

O
time
lifetime of global variables o
| H o

lifetime of ™ Tifetime of variables local to Z
variables i — »
localto Y hfet}me of

variables

localto ¥

Return Return Program

Return Proéram 7 calls
fromyY fromZ stops

Program Program
fromy callsz Y

starts calls ¥
Figure 6.10 Lifetimes of global and local variables in the program of Example 6.14.

There are two important observations that we can make about programs with global
and local variables:

o The global variables are the only ones that exist throughout the program’s run-time.

« The lifetimes of local variables are properly nested. That is to say, the later a local
variable is created, the sooner it must be deleted. The reason why variables’ lifetimes
are nested is simply that the procedure activations themselves are nested.

The first observation suggests that we should use static allocation for global
variables only. The second observation suggests that for local variables we should use a
stack. On entry to a procedure, we expand the stack to make space at the stack top for
that procedure’s local variables. On return, we release that space by contracting the
stack. This is stack storage allocation.

6.4.1 Accessing local and global variables

For the moment, we assume that a procedure may access global variables and its own
local variables only. (This is the case in languages such as Fortran and C.)

The stack allocation method, in detail, works as follows. The global variables are
always at the base of the stack (and therefore in fixed locations). At each point during

SR U e —

|
|
|

Run-Time Organization 199

run-time, the stack also contains a number of frames — one frame for each currently
active procedure. Each procedure’s frame contains space for its own local variables.
Whenever a procedure is called, a new frame is pushed on to the stack. Whenever a
procedure returns, its frame is popped off the stack.

Example 6.15 Stack frames

Consider again th.e Triangle program of Example 6.14. Successive snapshots of the
stacfk are shown in Figure 6.11. (SB, ST, and LB are registers. The roles of these
registers and of the dynamic links will be explained shortly.)

(1) After program (2) After program (3) After return (4) After program
starts: calls ¥: from Y: calls z:

SB— SB SB — SB

globals globals globals globals
ST —» LB i ST—»] LB—®{ o

frame frame
for Y for z
—
ST — ST
(5) After 7 calls (6) After return (7) After return
Y: from ¥: from z:

SB SB SB—

globals globals globals

dynamic
LB—»—® ST—»} links
frame frame |
for Z for z

LB ST—¢

frame

fory
ST—»]

Figure 6.11 Stack snapshots in the program of Example 6.14 (showing dynamic links).

200 Programming Language Processors in Java

Initially, when the main program is running, only the global varjables are occupying
storage — snapshot (1). When the program calls procedure ¥, a frame with space for Y’s
local variables is pushed on to the stack — snapshot (2). When Y returns, this frame is
popped, leaving only the global variables — snapshot (3). Later, when the program calls
procedure Z, a frame for Z is pushed on to the stack — snapshot (4). When Z in turn calls
v, a frame for Y is pushed on top of that one — snapshot (5). And so on.

Compare Figure 6.11 in detail with Figure 6.10. This shows that the period during
which the frame for Z is on the stack coincides with the lifetime of Z’s local variables,
ie., the activation of Z. Similarly, each period during which the frame for Y is on the
stack coincides with a lifetime of ¥’s local variables, i.e., an activation of Y.

g

The stack of course varies in size. Furthermore, the position of a particular frame
within the stack cannot always be predicted in advance. For example, during the two
activations of procedure ¥ in Example 6.15, the frames that provide space for Y’s local
variables are in two different positions. So that variables can be addressed within the
frames, registers must be dedicated to point to the frames. These dedicated registers,
named SB, ST, and LB, are shown in Figure 6.11.

Register SB (Stack Base) is fixed, pointing to the base of the stack. This is where the
global variables are located. So the global variables can be addressed relative to SB:

LOAD d[SBI — fetch the value of the global varjable at address 4.
STORE d[SB] — store a value in the global variable at address d.

Register LB (Local Base) points to the base of the topmost frame in the stack. This
frame always contains the local variables of the currently running procedure. So these
local variables can be addressed relative to LB.

LOAD d[LB] — fetch the value of the local variable at address d relative to
the frame base.

STORE d[LB] _ store a value in the local variable at address d relative to
the frame base.

Register ST (Stack Top) points to the very top of the stack, i.e., the top of the
topmost frame. If the currently running procedure evaluates an expression on the stack,
the topmost frame expands and contracts, and ST keeps track of the frame boundary.

What about the frames that lie below the topmost one? Each such frame contains the
local variables of a procedure that is active but not currently running. That frame is
temporarily fixed in size. In the absence of a register pointing to the frame, the variables
it contains cannot (currently) be accessed. Therefore only the global variables and the
currently running procedure’s local variables can be accessed.

As well as space for local variables, a frame contains certain housekeeping inform-
ation, known collectively as link data:

Run-Time Organization 201

* The return address is the code address to which control will be returned at the end of
tpe procedure activation. It is the address of the instruction following the call instruc-
tion that activated the procedure in the first place.

* The dynamic link is a pointer to the base of the underlying frame in the stack. It is the
old content of LB, which will be restored at the end of the procedure activation.

The dynamic links are shown in Figure 6.11. Notice that they link together all the
frames on the stack, in reverse order of creation.

A frame typically has the layout shown in Figure 6.12. The part shown as ‘local
data’ contains space for local variables. It may be expanded to make space for
anonymous data, such as the intermediate results of expression evalnation — but only
when the frame is topmost in the stack. Since there are two words of link data, the local
variables start at address displacement 2 within each frame.

t

. . dynamic link
link data return address

local data

Figure 6.12 Layout of a frame (with dynamic but not static link).

Example 6.16 Accessing global and local variables

Consider again the Triangle program of Example 6.14. The layout of the globals and of
the two procedures’ frames would be as shown in Figure 6.13.

Here are some examples of instructions to access global and local variables:

LOAD 0[SB] — for any part of the program to fetch the value of global
variable a [0]

LOAD 4[SB] — for any part of the program to fetch the value of global
variable ¢

LOAD 2[LB] — for procedure ¥ to fetch the value of its local variable d

LOAD 4[LB] ~ for procedure Y to fetch the value of its local variable e .n

LOAD 2[LB] — for procedure Z to fetch the value of its local variable £

It might appear that the local variables d and £ have the same address, 2[LB]. But
remelmber that d can be accessed only by procedure Y, and while that procedure is
running LB is pointing to the base of a frame containing ¥’s local variables. Similarly, £
can be accessed only by procedure Z, and while that procedure is running LB is pointing
to the base of a frame containing 2’s local variables.

a

202 Programming Language Processars in Java

afo] e dynamic link
alll c return address
af2] d

I e.c

- e.n frame for 2

globals frame for Y
Figure 6.13 Layout of globals and frames for the program of Example 6.14.

The compiler cannot determine the absolute address of a local variable; but it can
determine its address displacement relative to the base of the frame containing it. In
order that the local variable can be accessed at run-time, we need only arrange that a
particular register (such as LB) points to the base of the frame.

Stack allocation is economical of storage. If static allocation were used on the
program of Example 6.14, every variable would occupy storage space throughout the
program’s run-time. With stack allocation, however, only some of the local variables
occupy storage at any particular time. This is illustrated by Figure 6.11. (At snapshot
(5) , all the Jocal variables are occupying storage at the same time; but this rarely
happens in real programs with many procedures.}

Even more importantly, stack storage allocation works well in the presence of
recursive procedures, whereas static allocation would not work at all. The effect of

recursion will be discussed in Section 6.5.4.

6.4.2 Accessing nonlocal variables

So far we have assumed that a procedure can access only global variables and its own
local variables. Now we remove this restriction. Procedures are allowed to be nested.
Moreover, a procedure P may directly access any nonlocal variable, i.e., a variable that
is not local to P but is local to an enclosing procedure. (This is the case in languages

such as Pascal and Ada.)

As we have already observed, the compiler cannot determine the absolute address of
any variable (other than a global), but only its address displacement within a frame. To
access the variable at run-time, we must arrange for a particular register to point to the
base of that frame. We use SB to point to the global variables, and LB to point to the
frame containing variables local to the running procedure. Now we also need registers
pointing to any frames that contain accessible nonlocal variables. We introduce registers

L1, L2, etc., for this purpose.

Example 6.17 Accessing nonlocal variables

Figure 6.14 shows an outline of a Triangle program with nested procedures. The levels
of nesting are indicated by shades of gray. As a consequence of Triangle’s scope rules:

o

i e

Run-Time Organization 203

= Procedure P can access global variables and its own local variables.

» Procedure Q can access global variables, its own local vari i
: 1 variables, and
the enclosing procedure P. varisbles loal o

Procedure R can access global variables, its own loce i i
_) cal variables, and va
the enclosing procedures P and Q. enables fosal 1o

* Procedure S can access global variables, its own loc: i i
! al variabl
e onclosins moecdiee ables, and variables local to

Figure 6.15 shows a possible sequence of stack snapshots as this program runs.

let
var gl: Integer;
var g2: array 3 of Boolean;
proc P () ~
lat
var pl: Boolean;
var p2: Irnc=2ger, .
prac Q)} -~
et bk
VAr ¢ array 3 of Char;
in -
begin . end; 101
proc S i) .
lat j
. var s; array 1 of Char
begin .. end i ' Key:
i routine level 3
begin ... end 1P! routine level 2
in routine level 1
begin ... end routine level 0

Figure 6.14 A Triangle program with global and local variables.

.Consider snapshot (2), taken when procedure P has called procedure Q. At this time.
register LB points to the frame that contains Q’s local variables, and registe.r L1 points u;
the underlying frame that contains P’s local variables. This is necessary because Q can
access P’s local variables. Q might contain instructions like the following:

204 Programming Language Processors in Java l Run-Time Organization 205
1
]

(1) After program (2) After P calls O: (3) Afterreturn from (4) After P calls St LOAD d[SB] - for procedure Q to fetch the value of a global variable
calls p: Q: LOAD d{LB] — for procedure Q to fetch the value of a variable local to itself

SB —» SB SB] SB LOAD d[L1] — for procedure Q to fetch the value of a variable local to P

globals globals 4_‘ globals globals where in each case d is the appropriate address displacement.

LB L1 - LB—>| & L1 : Now consider snapshot (5), also taken when procedure P has called procedure Q, but
frame frame frame frame i this time indirectly through S. At this time also, LB points to the frame that contains Q’s
for P for P for P for P local variables, and L1 points to the underlying frame that contains P’s local variables.

; e e So the above instructions will still work correctly. No register points to the frame that

ST el LB—# & I contains S’s local variables. This is correct, because Q may not directly access these

e frame Frame, ; variables.
for YT for 8

] The following snapshot (6) illustrates a situvation where R, the most deeply-nested
procedure, has been activated by Q. Now register LB points to R's frame, register L1

ST ST—>} ; points to the frame belonging to Q (the procedure immediately enclosing R), and register
! L2 points to the frame belonging to P (the procedure immediately enclosing Q). This
allows R to access not only its own local variables, but also variables local to Q and P:
) [LOAD d{SB] — for procedure R to fetch the value of a global variable
(5) After S calls O: (6) After Q calls R: (7) After retan from (8) After return from | LOAD d[LB] — for procedure R to fetch a variable local to itself
R: & LOAD d[L1]}] — for procedure R to fetch a variable local to Q
SB] |- SB—» SR | = SB LOAD d[L2] — for procedure R to fetch a variable local to P
globals globals globals globals | But no register points to the frame containing S’s local variables, since R may not
il Lo Li—» L1 ! directly access these variables.
frame frame frame frame i 0
for P for P for for p !
— = LB—> | By arranging for registers L1, L2, etc., to point to the correct frames, we allow each
procedure to access nonlocal variables. To achieve this, we need to add a third item to
frame frame frame frame | the link data in each frame. Consider a routine (procedure or function) R that is enclosed
for S for S for S for 8 I by routine R in the source program. In a frame that contains variables local to routine R:
‘ * The static link is a pointer to the base of an underlying frame that contains variables
LB o— L1 - LB ST I local to R”. The static link is set up when R is called. (This will be demonstrated in
e T — : | Section 6.5.1.)
forQ forQ for 0 y ! The static links were shown in Figure 6.15. Notice that the static link in a frame for
: Q always points to a frame for P, since it is P that immediately encloses Q in the source
ST i LB ST ! program. Similarly, the static link in a frame for R always points to a frame for Q, and
[ffr::: : the static link in a frame for S always points to a frame for P. (The static link in a frame
o for P always points to the globals, but that static link is actually redundant.y
The layout of a stack frame is now as shown in Figure 6.16. Since there are now

three words of link data, the local variables now start at address displacement 3. Figure

Figure 6.15 Stack snapshots in Example 6.17 (showing static links).
6.17 shows the layout of frames for the procedures in Figure 6.14.

!
L3
H
¥

206 Programming Language Processors in Java

static link
link data —® dynamic link
return address

local data

Figure 6.16 Layout of a frame (with dynamic and static links).

gl t 4 4 t 4 t jstatic link

{ —e —e [—e e dynamic link
g2

return address

pl r
globals p2 ’ : a frame forR &
frame for P

frame for Q
frame for S

Figure 6.17 Layout of globals and frames for the program of Figure 6.14 (with static links).

The static links allow us to set up the registers L1, L2, etc. LB points to the first
word of the topmost frame, which is the static link and points to a frame for the
enclosing routine. Therefore:

L1 = content{(LB) (6.25)

where content(r) stands for the content of the word to which register 7 points. In turn, L1
points to the next static link. Therefore:

L2 = content(L1) = content(content(LB)) (6.26)
L3 = content(L2) = content(content(content(LB))) 6.27)

These equations are invariants: L1, L2, etc., automatically change whenever LB
changes, i.e., on a routine call or return.

At any moment during run-time:

Register SB points to the global variables.

Register LB points to the topmost frame, which always belongs to the routine R that is
currently running.

Register L1 points to a frame belonging to the routine R’ that encloses R in the source
program.

Register L2 points to a frame belonging to the routine R” that encloses R in the
source program.

Run-Time Organization 207

And so on.

The collection of registers LB, L1, L2, ..., and SB is often called the display. The
display allows access to local, nonlocal, and global variables. The display changes
whenever a rontine is called or returns.

The critical property of the display is that the compiler can always determine which
register to use to access any variable. A global variable is always addressed relative to
SB. A local variable is always addressed relative to LB. A nonlocal variable is addressed
relative to one of the registers L1, L2, ... The appropriate register is determined entirely
by the nesting levels of the routines in the source program.

We assign routine levels as follows: the main program is at routine level 0; the body
of each routine declared at level 0 is at routine level 1; the body of each routine declared
at level 1 is at routine level 2; and so on.

Let v be a variable declared at routine level [, and let v’s address displacement be d.
Then the current value of v is fetched by various parts of the code as follows:

If I =0 (i.e., v is a global variable):
LOAD d[SB] — for-any code to fetch the value of v

If I > 0 (i.e., v is a local variable):

LOAD d[LB] — for code at level [to fetch the value of v
LOAD d[L1] — for code at level I+1 to fetch the value of v
LOAD d[L2] — for code at level I+2 to fetch the value of v

Storing to variable v is analogous.

6.5 Routines

A routine (or subroutine) is the machine-code equivalent of a procedure or function in a
high-level language. Control is transferred to a routine by means of a call instruction (or
instruction sequence). Control is transferred back to the caller by means of a refurn
instruction in the routine.

When a routine is called, some arguments may be passed to it. An argument could
be, for example, a value or an address. There may be zero, one, or many arguments. A
routine may also return a resulf — that is if it corresponds to a function in the high-level
language.

We have already studied one aspect of routines, namely allocation of storage for
local variables. In this section we study other important aspects:

» protocols for passing arguments to routines and returning their results

o how static links are determined ~

206 Programming Language Processors in Java

static link
link data e dynamic link
return address

local data

Figure 6.16 Layout of a frame (with dynamic and static links).

gt T\ 4 4 t 4 t jstatic link

{ ——e —e e — dynamic link
g2

return address

pl r
globals p2 : d frame forR S
frame for P

frame for Q
frame for S

Figure 6.17 Layout of globals and frames for the program of Figure 6.14 (with static links).

The static links allow us to set up the registers L1, L2, etc. LB points to the first
word of the topmost frame, which is the static link and points to a frame for the
enclosing routine. Therefore:

L1 = content(LB) (6.25)

where content(r) stands for the content of the word to which register 7 points. In turn, L1
points to the next static link. Therefore:

L2 = content(Ll) = content{content(LB)) (6.26)
L3 = content(L2) = content(content(content(LB))) 6.27)

These equations are jnvarants: L1, L2, etc., automatically change whenever LB
changes, i.e., on a routine call or retum.

At any moment during run-time:
« Register SB points to the global variables.

Register LB points to the topmost frame, which always belongs to the routine R that is
currently running.

Register L1 points to a frame belonging to the routine R’ that encloses R in the source
program.

Register L2 points to a frame belonging to the routine R” that encloses R’ in the
source program.

i
|
|
1
:
:

Run-Time Organization 207

And so on.

The collection of registers LB, L1, L2, ..., and SB is often called the display. The
display allows access to local, nonlocal, and global variables. The display changes
whenever a routine is called or returns.

The critical property of the display is that the compiler can always determine which
register to use to access any variable. A global variable is always addressed relative to
SB. A local variable is always addressed relative to LB. A nonlocal variable is addressed
relative to one of the registers L1, L2, The appropriate register is determined entirely
by the nesting levals of the routines in the source program.

We assign routine levels as follows: the main program is at routine level 0; the body
of each routine declared at level 0 is at routine level 1; the body of each routine declared
at level 1 is at routine level 2; and so on.

Let v be a variable declared at routine level [, and let v’s address displacement be d.
Then the current value of v is fetched by various parts of the code as follows:

If1=0 (ie., vis a global variable):
LOAD d[SB] — for<any code to fetch the value of v

If I > 0 (i.e., v is a local variable):

LOAD d[LB] — for code at level [to fetch the value of v
LOAD d[L1] — for code at level I+1 to fetch the value of v
LOAD d[L2] — for code at level /+2 to fetch the value of v

Storing to variable v is analogous.

6.5 Routines

A routine (or subroutine) is the machine-code equivalent of a proczdure or function in a
high-level language. Control is transferred to a routine by means of a eall instruction (or
instruction sequence). Control is transfemred back to the caller by means of a return
instruction in the routine.

When a routine is called, some arguments may be passed to it. An argument could
be, for example, a value or an address. There may be zero, one, or many arguments. A
routine may also return a resulf — that is if it corresponds to a function in the high-level
language.

We have already studied one aspect of routines, namely allocation of storage for
local variables. In this section we study other important aspects:

+ protocols for passing arguments to routines and returning their results

« how static links are determined

208 Programming Language Processors in Java

« the arguments themselves

* the implementation of recursive routines.

6.5.1 Routine protocols

When a routine is called, the arguments are computed by the caller, and used by the
called routine. Thus we need a suitable routine protocol, a convention to ensure that the
caller deposits the arguments in the place where the called routine expects to find them.
Conversely, the routine’s result (if any) is computed by the routine, and used by the
caller. Thus the routine protocol must also ensure that, on return, the called routine
deposits its result in the place where the caller expects to find it.

There are numerous possible routine protocols. Sometimes the implementor has to
design a protocol from scratch. More often, the operating system dictates a standard
protocol to which all compilers must conform. In every case, the choice of protocol is
influenced by the target machine, such as whether the latter is a register machine or a

stack machine.

Example 6.18 Routine protocol for a register machine

In a register machine, the routine protocol might be:
« Pass the first argument in R1, the second argument in R2, efc.
« Return the result (if any) in RO.

Such a simple protocol works only if there are fewer arguments than registers, and if
every argument and result is small enough to fit into a register. In practice, a more
elaborate protocol is needed. (See Exercise 6.20.) '

O

Example 6.19 Routine protocol for a stack machine

In a stack machine, the routine protocol might be:
» Pass the arguments at the stack top.
« Return the result (if any) at the stack top, in place of the arguments.

This protocol places no limits on the number of arguments, nor on the sizes of the
arguments or result.

a-

The stack-based routine protocol of Example 6.19 is simple and general. For that
reason it is adopted by the abstract machine TAM. Variants of this protocol are also
adopted by machines equipped with both registers and stacks (such as the Pentium). Due
to the popularity of this protocol, we shall study the TAM routine protocol in detail.

Run-Time Organization 209

Some routines (functions) have results, whereas others (procedures) do not. For the
sake of simplicity, we shall discuss the protocol in terms of the more general case,
namely a routine with a result. We can treat a procedure as a routine with a 0-word
‘result’. (Compare the use of a void function in C or Java, or a unit function in ML,
to achieve the effect of a procedure.)

Before calling a routine, the caller is responsible for evaluating the arguments and
pushing them on to the stack top. (Since expression evaluation is done on the stack, as in
Section 6.2, the stack top is where the arguments will be evaluated anyway.) After
return, the caller can expect to find the resuit at the stack top, in the place formerly
occupied by the arguments. This is shown in Figure 6.18. The net effect of calling the
routine (ignoring any side effects) will be to replace the arguments by the result at the
stack top.

(1) Just before the call: (2) Just after return:

SB —¥ SB |
| e ;,/"
- —

LB~ LB

argu- result
ments ST —» §il
ST —T

Figure 6.18 The TAM routine protocol.

The called routine itself is responsible for evaluating its result and depositing it in
the correct place. Let us examine a call to some routine R, from the point of view of the
routine itself (see Figure 6.19):

(1) Immediately before the call, the arguments to be passed to R must be at the stack
top.

(2) The call instruction pushes a new frame, on top of the arguments. Initially, the new
frame contains only link data. Its return address is the address of the code
following the call instruction. Its dynamic link is the old content of LB. Its static
link is supplied by the call instruction. Now LB is made to point to the base of the
new frame, and control is transferred to the first instruction of R.

210 Programming Language Processors in Java

(3) The instructions within R may expand the new frame, to make space for local
variables and to perform expression evaluation. These instructions can access the
arguments relative to LB. Immediately before retarn, R evaluates its result and
leaves it at the stack top.

(4) The return instruction pops the frame and the arguments, and deposits the result in

the place formerly occupied by the arguments. LB is reset using the dynamic link,
and control is transferred to the instruction at the refurn address.

TAM has a single call instruction that does all the work described in step (2). Some
other machines have a less powerful call instruction, and we need a sequence of instruc-
tions to do the same work. TAM also has a single return instruction that does all the

work described in step (4).

(1) Just before call: ~ (2) Just after entry: (3) Just before return: (4) Just after return:

SB SB SB SB
P—
/1 7] /’T
LB LB
argu- argu- argu- result
ments ments ments ST —»
ST LB pin LB jink
data data
L local
data
result
ST —

Figure 6.19 TAM routinc call and return (in detail).

Example 6.20 Passing arguments

Consider the following Triangle program, containing a function F with two parameters,
and a procedure W with one parameter:

let var g: Integer;

func F (m: Integer, n: Integer) : Integer -~
m * n;

JETT N -

Run-Time Organization 211

proc W (i: Integer) -~
let const s ~ i * i

in
begin
putint(F(i, s));
putint(F(s, s))
end
in

begin

getint (var g);

W(g+l)

end

This (artificial) program reads an integer, and writes the cube and fourth power of its
SUCCesSoT.

(1) Just after reading (2) Just before callto (3) Just after (4) Just before call to
g: W: computing s: F: ‘
SB—¥»g 3 SB g 3 SB—»g 3 SB—¥»g 3
ST—»f . 1 arg. #] 4 arg. i 4 j arg. 1 4
ST — [—>
> LB link - link
data data
s 14 s 16
ST—»f #1 4
args) w36
ST —

(5) Just before return (6) Just after return (7) Just after return

from F: from F: from W:
SB—¥»g 3 SB—»g 3 SB—»g 3
arg. 1 4 arg. i 4 ST—w
12k LB—"1 1%
data data
s 16 s 16
m 4 61
args.{ n[14 ST —»
LB—®| ¢
) link
data
64|
ST —4

Figure 6.20 Arguments and results in Example 6.20.

212 Programming Language Processors in Java

Figure 6.20 shows a sequence of stack snapshots. The main program first reads an
integer, say 3, into the global variable g — snapshot (1). Then it evaluates ‘g+1’, which
yields 4, and leaves that value at the stack top as the argument to be passed to procedure
W.— snapshot (2).

On entry to procedure W, a new frame is pushed on to the stack top, and the
argument becomes known to the procedure as 1. The constant s is defined by evaluating
*i*i’, which yields 16 — snapshot (3). Next, the procedure prepares to evaluate ‘F (i,
5)’ by pushing the two arguments, 4 and 16, on to the stack top — snapshot (4).

On entry to function F, a new frame is pushed on to the stack, and the arguments
become known to the function as m and 1, respectively. F immediately evaluates ‘m*n’
to determine its result, 64, and leaves that value on the stack top — snapshot (5). On
return from F, the topmost frame and the arguments are popped, and the result is
deposited in place of the arguments — snapshot (6). This value is used immediately as an
argument to putint, which writes it out.

Similarly, W evaluates ‘F (s, s)’, yielding 256, and passes the result as an argument
to putint. Finally, on return from W, the topmost frame and the argument are popped;
this time there is no result to replace the arguments — snapshot (7).

It is instructive to study the corresponding object code. It would look something like
this (using symbolic names for routines, and omitting some minor details):

PUSH 1 — expand globals to make space for g
LOADA 0[sB] — push the address of g
CALL getint —read anintegerinto g
LOAD 0[SB] — push the value of g
CALL succ —add1
CALL(SB) W — call W (using SB as static link)
POP 1 — contract globals
HALT
W: LOAD -1[LB] - pushthe valueof i
LOAD ~-1[LB] - push the value of i
CALL mult — multiply; the result will be the value of s
LOAD -1[LB] —pushthevalueof i
LOAD 3[LB] - push the value of s
CALL(SB) F —call F (using SB as static link)
CALL putint —write the value of F (i, s)
LOAD 3[LB] — push the value of s
LOAD 3(LB] — push the value of s
CALL(SB) F — call F (using SB as static link)
CALL putint - write the value of F (s,)

— return, replacing the 1-word argument
by a O-word ‘result’

RETURN (0) 1

|

Run-Time Organization 213

F: LOAD -2[LB] - push the value of m
LOAD -1[LB] - push the value of n
CALL mult — multiply
RETURN (1) 2 — return, replacing the 2-word argument pair

by a 1-word result

Here the instruction ‘LOADA d[r]’ (load address) pushes the address d + register r on to
the stack, and ‘RETURN (n) 4’ returns from the current routine with an n-word result,
removing d words of argument data. (Note: In TAM, operations like addition, subtrac-
tion, logical negation, etc., are performed by calling primitive routines — add, sub,
not, etc. This avoids the need to provide many individual instructions — ADD, SUB,
NOT, etc.)

O

6.5.2 Static links

One loose end in our description of the routine protocol is how the static link is deter-
mined. Recall that the static link is needed only for a source language with nested block
structure (such as Pascal, Ada, or Triangle). The scope rules of such a language guaran-
tee that, at the time of call, the correct static link is in one or other of the display
registers. The caller need only copy it into the newly-created frame.

Example 6.21 Static links

Consider the outline Triangle program of Figure 6.14. Some stack snapshots were
shown in Figure 6.15.

‘When P calls Q, the required static link is a pointer to a frame for P itself, since P
encloses Q in the source program, and the caller can find that pointer in LB — snapshots
(1) and (2). Similarly, when P calls S, the required static link is a pointer to a frame for
P itself, since P encloses S, and the caller can find that pointer in LB — snapshots (3) and

).

When S calls Q, the required static link is a pointer to a frame for P, since P encloses
Q, and the caller can find that pointer in L1 - snapshots (4) and (5).

. If R were to call Q or S, the required static link would be a pointer to a frame for P,
since P encloses Q and S, and the caller could find that pointer in L2 — snapshot (6).

Here is a summary of all the possible calls in this program:

CALL(SB) P — for any call to P
CALL(LB) Q —for PtocallQ

CALL(L1) Q — for Q to call Q (recursively)
CALL(L2) @ —forRtocall Q

CALL(L1) ©Q —for StocallQ

214 Programming Language Processors in Java

CALL(LB) R —forQtocall R
CALL(L1) R — for R to call R (recursively)
CALL(LB) S —forPtocall S
CALL(LL) § —forQtocal s
CALL(L2) S ~forRtocal S
CALL(L1l) S — for S to call S (recursively)

(In the TAM call instruction, the field in parentheses nominates the register whose
content is to be used as the static link.) .

In general, the compiler can always determine which register to use as the static link
in any call instruction. A call to a global routine (i.e., one declared at the outermost level
of the source program) always uses SB. A call to a local routine (i.e., one declared
inside the currently running routine) always uses LB. A call to any other routine uses
one of the registers L1, L2, The appropriate register is determined entirely by the
nesting levels of the routines in the source program.

Let R be a routine declared at routine level / (thus the body of R is at level [+1). Then
R is called as follows:

If /= 0 (i.e., R is a global routine):
CALL(SB) R —for any call to R

1f 1> 0 (i.c., R is enclosed by another routine):
CALL(LB) R — for code at level [to call R
CALL(L1) R — for code at level [+1 to call R
CALL{L2) R — for code at level +2 to call R

(Compare this with the code used for addressing variables, at the end of Section 6.4.2.)

6.5.3 Argumenis

We have already seen some examples of argument passing. We now examine two other
aspects of arguments: how the called routine accesses its own arguments, and how
arguments are represented under different parameter mechanisms.

According to the routine protocol studied in the previous subsection, the arguments
to be passed to a routine are deposited at the top of the caller’s frame (or at the top of
the globals, if the caller is the main program). Since the latter frame is just under the
called routine’s frame, the called routine can find its arguments just under its own
frame. In other words, the arguments have small negative addresses relative to the base
of the called routine’s frame. In all other respects, they can be accessed just like
variables local to the called routine,

|
E

Run-Time Organization 215

Example 6.22 Accessing arguments

In the Triangle program of Example 6.17, the two routines accessed their arguments as
follows:

LOAD -1({LB] — for procedure W to fetch its argument i
LOAD -2[LB] — for function F to fetch its argument m
LOAD -1[LB] "~ for function F to fetch its argument n

a

We can easily implement a variety of parameter mechanisms:

Constant parameter (as in Triangle and ML) or value parameter (as in Pascal, C, and
Java): The argument is an ordinary value (such as an integer or record). The caller
evaluates an expression to compute the argument value, and leaves it on the stack.

Variable parameter (as in Triangle and Pascal) or reference parameter (as in C++):
The argument is the address of a variable. The caller simply pushes this address on to
the stack. .

* Procedural/functional parameter (as in Triangle, Pascal, and ML): The argument is a
(static link, code address) pair representing a routine, This pair, known as a closure,
contains just the information that will be needed to call the argument routine.

Constant parameters have already been illustrated, in Example 6.20. Value param-
eters differ in only one respect: the formal parameter is treated as a local variable, and
thus may be updated. If procedure W had a value parameter i, the procedure body could
contain assignments to i, implemented by ‘STORE -1 [LB]’. Note, however, that the
word corresponding to i will be popped on return from P, so any such updating would
have no effect outside the procedure. This conforms to the intended semantics of value
parameters.

Example 6.23 Variable parameter

Consider the following outline Triangle program, containing a procedure S with a
variable parameter nn as well as a constant parameter i:

let
proc S (var n: Integer, i: Integer) =~
n:=n + 1i;
var b: record y: Integer, m: Integer, d: Integer end
in
begin

b := {y ~ 1978, m ~ 5, d ~ 5};
S(var b.m, 6);
end

Figure 6.21 shows some snapshots of the stack as this program runs.

216 Programming Language Processors in Java
The procedure call ‘S(var b.m, 6)’ works by first pushing the address of the
variable b . m, along with the value 6, and then calling S.

The procedure S itself works as follows. Its first argument is the address of some
variable. S can access the variable by indirect addressing. It can fetch the variable’s
value by an indirect load instruction, and update it by an indirect store instruction.

We can see this by studying the TAM code corresponding to the above program:

LOADL 1978

LOADL 5
LOADL 5
STORE(3) O0[SB] — store a record value in b
LOADA 1[sB] — push the address of b.m
LOADL 6 — push the value 6
CALL{SB) S —call S
S: LOAD -2[LB] - push the argument address n
LOADI — push the value contained at that address
LOAD -1[LB] - push the argument value i
CALL add — add (giving the value of n+1)
LOAD -2[LB] - push the argument address n
STOREI — store the value of n+1 at that address
RETURN(0) 2 — return, replacing the 2-word argument

pair by a 0-word ‘result’

Here the instruction LOADI (load indirect) pops an address off the stack, and then
fetches a value from that address. STOREI (store indirect) pops an