Syntax andyst (Ch. 2[m]) Totes a list of tokons, gives a syntax tree <u>context</u>. free grommars $N \rightarrow X_1 \dots X_n$ production (rule, or production rule) one nonterminal symbol on the LHS Q + a Aternihol symbol $A
ightarrow extbf{a}$. a a + Or B. O. g a

	optionally
a*	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	s^* {""} \cup { $vw \mid v \in L(s), w \in L(s^*)$ }Each string in the language is a concatenation of any num- ber of strings in the language of s.
	Up to this postit, we have given examples of c. f. languages that are also regular languages, for exempte:
	$S \rightarrow \varepsilon \qquad \qquad$

(2) several nonterminals : Tond R R R 36+ disjunction o-shorthand for $egin{array}{cccc} T &
ightarrow & R \mid aTa \ R &
ightarrow & b \mid bR \end{array}$ contikte for grammer visky regerp ustatter You may ore t, *, ? In EBNF T->b+|aTa .

	Form o	of s_i Productions for N_i]
	3	$\frac{1}{N_i \rightarrow}$	
	a	$N_i ightarrow$ a	
	s _j s _k	$N_i \rightarrow N_j N_k$	
	$ s_j s_k$	$N_i \rightarrow N_j$	
		$N_i ightarrow N_k$	
	s _j *	$N_i ightarrow N_j N_i$	
		$N_i \rightarrow$	
	s_j+	$N_i \rightarrow N_j N_i$	
		$\underbrace{N_i \rightarrow N_j}_{N_i \rightarrow N_j}$	
	<i>s_j</i> ?	$N_i \rightarrow N_j$	
		$N_i \rightarrow$	
L'.	France Level	1. expre (10 m h	
		hop Clopie States I	
L	Lo ntex-	- free grotomment	

Syntactic cetagening: constructs of or (programming) language that differ in meaning. Three typical ones: Expressions : are evaluated to yield a volve expressions without Tond union and ; are executed to change memory porentlycs; can be described or perform I/O Dedorations: define properties of names used In other parts of the program by a regular expression $Exp \rightarrow Exp + Exp$ onby $Exp \rightarrow Exp - Exp$ 2, 5+2-3, 3-6*5 4/5*2 $Exp \rightarrow Exp * Exp$ V (3-6)**±5** ≻ $Exp \rightarrow Exp/Exp$ $Exp \rightarrow num$ $Exp \rightarrow (Exp)$ Each syntadde category is denoted by a monterminal, such as Enp in the grammer above. 11

Ex. 2,3[M] assignment Stat -> id := Exp sequence / list) of Antomate Stat -> Stat ; Stat Stat -> if Exp then Stat else Stat two-way conditional one way conditional Stat -> if Exp then Stat Agramman for (simple) statements ٤ ()(X

Derivotion or, sometimes :--4 may be rempitten as (rewrite) if there is a production $N \rightarrow \gamma$ if there is a β such that $\alpha \Rightarrow \beta$ and $\beta \Rightarrow \gamma$ (reflexivity) if there is a production $N \rightarrow \gamma$ ο[Ŋβ $\Rightarrow \alpha \gamma \beta$ 2. α 3. **Definition 3.1** Given a context-free grammar G with start symbol S, terminal symbols T and productions P, the language L(G) that G generates is defined to be the the productions P, i.e., the set $\{w \in T^* \mid S \Rightarrow w\}$. set of strings of terminal symbols that can be obtained by derivation from S using > for one styp in a deviation for what Mogensen alle a derivation. (P) ⇒ ((P)) ⇒ (()), sentence

<u>T</u> ۵ a<u>T</u>c \Rightarrow aa<u>T</u>cc \Rightarrow aa<u>R</u>cc 🧪 \Rightarrow 6 C aa<u>R</u>bRcc \Rightarrow aaRbRbRcc \Rightarrow aab<u>R</u>bRcc \Rightarrow aao<u>R</u>bRbRcc \Rightarrow aabb<u>R</u>bRcc \Rightarrow aabbb<u>R</u>cc \Rightarrow R \Rightarrow aabbbcc 8 leftmost devivation or E

Syntax tree T=) a T(=) a e T(c) a a R(c) This tree corresponds to two the two different derivet lons T n > aa R b R cc =) aa b R cc =) PaubRbRcc =) aubBRcc => A gronumer =) a bb R b R cc =) described Tsuch that Ċ a <u>ر</u> = abbbRcc => there is exists c T a string chits R langroge R b R that has two RR R ε distinct R Syntax thes R b is ambievous. 3 6 0 0 0 C

(equivalent granner This growings is a non-ombigvous version of T-» atc, which is ambdguous R » \rightarrow aTc $R \rightarrow bR$ R, RbR Dry gronmer with product on ; life these : $\begin{cases} N \rightarrow N\alpha N \\ N \rightarrow \beta \\$ as a central form p Nak

We need to get rid of production, flut ave beth left and right $Exp \rightarrow Exp + Exp$ $Exp \rightarrow num$ rear marke

Operator precedence & associationts 5+2)-3 E ⊕ E num
 Prod.is
 both left and
 right recur 5+2-3 (2-3) amplevou 5 # 2 /२ right recursive (2/3) =2-(-1)-3 (3 - 4)2 - 3(2-3)-4 -4=-5 Honver - and / ceve lon, association, Sp -ossociatle ᠻ 3-4= (2-3)-4 ١

() is a right associative operator $----- E \rightarrow E' \oplus E ----- - E \rightarrow E'$ Por example, the list constructor: in Hasbeell! 1:2:[]:1:(2:[])=1:[2]=[1,2] $E' \rightarrow$ num add :: lat \rightarrow (lat \rightarrow lbt) add x y = x + y x⁴ $E \rightarrow E' \oplus E'$ $E \ \
ightarrow E'$ $E' \rightarrow$ num Non- sesocio the operators e.g. < in Prescal is non. association Ln C, (324)25 = 125 frue is left associative

$E \rightarrow E + E'$ $E \rightarrow E - E'$ $E \rightarrow E'$ $E' \rightarrow num$			
$F \longrightarrow F + F'$			
 $ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
$E' \rightarrow E$			

 $Exp \rightarrow Exp + Exp2$ $Exp \rightarrow Exp - Exp2$ $Exp \rightarrow Exp2$ $Exp2 \rightarrow Exp2 * Exp3$ $Exp2 \rightarrow Exp2 / Exp3$ $Exp2 \rightarrow Exp3$ $Exp3 \rightarrow num$ $Exp3 \rightarrow (Exp)$

Stat	\rightarrow	Stat2; Stat	
Stat	\rightarrow	Stat2	
Stat2	\rightarrow	Matched	
Stat2	\rightarrow	Unmatched	
Matched	\rightarrow	if <i>Exp</i> then <i>Matched</i> else <i>Matched</i>	
Matched	\rightarrow	$\mathbf{id}:=Exp$	
Unmatched	\rightarrow	if <i>Exp</i> then <i>Matched</i> else <i>Unmatched</i>	
Unmatched	\rightarrow	if <i>Exp</i> then <i>Stat</i> 2	

The following grammer (for the language of parentheses) is ambiguous lenced Consider the string ٤ P) 1-Note that the last production is both left and right ve aursive.

We con remove left reavision: werenoved the left rearsion ٤ P .