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Structure of a Compiler
Program text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree → Intepretation Register allocation

↓ ↑
Typecheck Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code
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Lexical Analysis

Lexical: relates to the words of the vocabulary of a language,
(as opposed to grammar, i.e., correct construction of sentences).

“My mother coooookes dinner not.”

Lexical Analyzer, a.k.a. lexer, scanner or tokenizer, splits the
input program, seen as a stream of characters, into a sequence of
tokens.

Tokens are the words of the (programming) language, e.g.,
keywords, numbers, comments, parenthesis, semicolon.
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Compiler Phases

// My program

let result =

let x = 10 :: 20 :: 0x30 :: []

List.map (fun a -> 2 * 2 * a) x

Input file also contains

comments and meaningful
formatting, which helps user only.

Input file is read as a string, see
below:

// My program\n let result =\n let x = 10 :: 20 :: 0x30 :: []\n
List.map (fun a -> 2 * 2 * a) x

Lexical Analysis: transforms a character stream to a token sequence.

Keywd_Let, Id "result", Equal, Keywd_Let, Id "x", Equal, Int 10,

Op_Cons, Int 20, Op_Cons, Int 48, Op_Cons, LBracket, RBracket,

Id "List", Dot, Id "map", LParen, Keywd_fun Id "a", Arrow, Int 2, Multiply,

Int 2, Multiply, Id "a", RParen, Id "x"

Tokens can be: (fixed) vocabulary words, e.g., keywords (let),
built-in operators (*, ::), special symbols ({, }).

Identifiers and Number Literals are classes of tokens, which are
formed compositionally according tor certain rules.
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Formalism

Definition (Formal Languages)

Let
∑

be an alphabet, i.e., a finite set of allowed characters.

A word over
∑

is a string of chars w = a1a2 . . . an, ai ∈
∑

n = 0 is allowed and results in the empty string, denoted ε.∑∗ is the set of all words over
∑

.

A language L over
∑

is a set of words over
∑

, i.e., L ⊂
∑∗.

Examples over the alphabet of small latin letters:∑∗ and ∅
All C keywords: {if, else, return, do, while, for, . . .}
{anbn}, ∀n ≥ 0

All palindromes: {kayak, racecar, mellem, retter}
{anbncn}, ∀n ≥ 0
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Languages

Aim of compiler’s front end: decide whether a program respects the
language rules.

Lexical analysis: decides whether the individual tokens are well
formed, i.e., requires the implementation of a simple language.

Syntactical Analysis: decides whether the composition of tokens is
well formed, i.e., more complex language that checks compliance to
grammar rules.

Type Checker: verifies that the program complies with (some of) the
language semantics.
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Language Examples: Number Literals in C++

Integers in decimal format: 234, 0, 8 but not 08 or abc!
Integers in hexadecimal format: 0X123, 0xcafe but not 0X, OXG!
Floating point decimals: 0. or .345 or 123.45.
Scientific notation: 234E-45 or 0.E123 or .234e+45.

A decimal integer is either 0 or a sequence of digits (0-9) that
does not start with 0.

A hexadecimal integer starts with 0x or 0X and is followed by
one or more hexadecimal digits (0-9 or a-f or A-F).

Floating-point cts have a “mantissa,” [..][and] an “exponent,”
[..]. The mantissa is as a sequence of digits followed by a period,
followed by an optional sequence of digits[..]. The exponent, if
present, specifies the magnitude[..] using e or E[..] followed by
an optional sign (+ or -) and a sequence of digits. If an
exponent is present, the trailing decimal point is unnecessary in
whole numbers. http://msdn.microsoft.com/en-us/library/tfh6f0w2.aspx.

9 / 26



University of Copenhagen Department of Computer Science

Language Examples: Number Literals in C++

Integers in decimal format: 234, 0, 8 but not 08 or abc!
Integers in hexadecimal format: 0X123, 0xcafe but not 0X, OXG!
Floating point decimals: 0. or .345 or 123.45.
Scientific notation: 234E-45 or 0.E123 or .234e+45.

A decimal integer is either 0 or a sequence of digits (0-9) that
does not start with 0.

A hexadecimal integer starts with 0x or 0X and is followed by
one or more hexadecimal digits (0-9 or a-f or A-F).

Floating-point cts have a “mantissa,” [..][and] an “exponent,”
[..]. The mantissa is as a sequence of digits followed by a period,
followed by an optional sequence of digits[..]. The exponent, if
present, specifies the magnitude[..] using e or E[..] followed by
an optional sign (+ or -) and a sequence of digits. If an
exponent is present, the trailing decimal point is unnecessary in
whole numbers. http://msdn.microsoft.com/en-us/library/tfh6f0w2.aspx.

9 / 26



University of Copenhagen Department of Computer Science

Language Examples: Number Literals in C++

Integers in decimal format: 234, 0, 8 but not 08 or abc!
Integers in hexadecimal format: 0X123, 0xcafe but not 0X, OXG!
Floating point decimals: 0. or .345 or 123.45.
Scientific notation: 234E-45 or 0.E123 or .234e+45.

A decimal integer is either 0 or a sequence of digits (0-9) that
does not start with 0.

A hexadecimal integer starts with 0x or 0X and is followed by
one or more hexadecimal digits (0-9 or a-f or A-F).

Floating-point cts have a “mantissa,” [..][and] an “exponent,”
[..]. The mantissa is as a sequence of digits followed by a period,
followed by an optional sequence of digits[..]. The exponent, if
present, specifies the magnitude[..] using e or E[..] followed by
an optional sign (+ or -) and a sequence of digits. If an
exponent is present, the trailing decimal point is unnecessary in
whole numbers. http://msdn.microsoft.com/en-us/library/tfh6f0w2.aspx.9 / 26



University of Copenhagen Department of Computer Science

Regular Expressions

We need a formal, compositional (and intuitive) description of what
tokens are, and automatic implementation of the token language.

Definition (Regular Expressions)

The set RE (
∑

) of regular expressions over alphabet
∑

is defined:

Base Rules (Non Recursive):

ε ∈ RE (
∑

) describes the lang consisting of only the empty string.

a ∈ RE (
∑

) for a ∈
∑

describes the lang. of one-letter word a.

Recursive Rules: for every α, β ∈ RE (
∑

)

α · β ∈ RE (
∑

), two language sequence/concatenation in which
the first word is described by α, the second word by β.
α | β ∈ RE (

∑
), alternative/union: lang described by α OR β.

α∗ ∈ RE (
∑

), repetition: zero or more words described by α.

One may use parenthesis (. . .) for grouping regular expressions.

Sequence binds tighter than alternative: a|bc∗ = a|(b(c∗)).
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Demonstrating Regular-Expression Combinators

α · β Assume the language of regular expression α and β are
L(α)={"a","b"} and L(β)={"c","d"}, respectively.

Then L(α · β)=

{"ac", "ad", "bc", "bd"}.

When matching keywords, if is the concatenation of two regular
expressions: i and f.

α∗ Assume the language of regular expression α is
L(α)={"a","b"}.
Then
L(α∗)={"","a","b","aa","ab","ba","bb","aaa",. . .}.

11 / 26
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Examples: Integers and Variable Names in C++

Integers in decimal format: 234, 0, 8 but not 08 or abc!

Integers in hexadecimal format: 0X123, 0xcafe but not 0X, OXG!

A variable name consists of letters, digits and underscore, and it
must begin with a letter or underscore.

Integers in decimal format:
(1|2|. . .|9)(0|1|2|. . .|9)* | 0

Shorthand via character range ([-]): [1-9][0-9]* | 0

Integers in hexadecimal format:
0 (x|X) [0-9a-fA-F][0-9a-fA-F]*

Shorthand via at least one (+): 0 (x|X) [0-9a-fA-F]+.

Variable names: [a-zA-Z ][a-zA-Z 0-9]*
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Useful Abbreviations for Regular Expressions

Character Sets: [a1a2 . . .an] := (a1 | a2 | . . . | an),
i.e., one of a1, a2, . . ., an ∈

∑
.

Negation: [^ a1a2 . . .] describes any a ∈
∑
\{a1,a2,. . .,an}.

Character Ranges: [a1-an] := (a1 | a2 | an), where {ai} is
ordered, i.e., one character in the range between a1 and an.

Optional Parts: α? := (α|ε) for α ∈ RE (
∑

),
optionally a string described by α.

Repeated Parts: α+ := (αα∗) for α ∈ RE (
∑

),
at least ONE string describing α (but possibly more).
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Properties of Regular Expression Combinators

| is associative: (r|s)|t = r|(s|t) = r|s|t

| is commutative: s|t = t|s

| is idempotent: s|s = s

Also, by definition, s? = s|ε

· is associative: (rs)t = r(st) = rst

ε neutral element for ·: sε = εs = s

· distributes over |: r(s|t) = rs|rt and (r|s)t = rt|st.

∗ is idempotent: (s∗)∗ = s∗.

Also, s∗s∗ = s∗ and ss∗ = s+ = s∗s by definition!
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Syntax Analysis (Parsing)

Relates to the correct construction of sentences, i.e., grammar.

1 Checks that grammar is respected, otherwise syntax error, and

2 Arranges tokens into a syntax tree reflecting the text structure:
leaves are tokens, which if read from left to right results in the
original text!

mother

cokes

dinner

My.

syntax error

My dinner

cokes

mother.

semantic error

Essential tool and theory used are Context-Free Grammars:
a notation suitable for human understanding that can be transformed
into an efficient implementation.
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Context-Free Grammar (CFG) Definition

1 a set of terminals
∑

– the language alphabet, e.g., the set of
tokens produced by lexer. (Convention: use small letters.)

2 a set of non-terminals N, denoting sets of recursively defined
strings.

3 a start symbol S ∈ N, denoting the lang defined by the grammar.

4 a set P of productions of form Y → X1 . . .Xn, where Y ∈ N is a
(single) non-terminal, and Xi ∈ (

∑
∪N),∀i can be a terminal or

non-terminal. Each production describes some of the strings of
the corresponding non-terminal Y .

G: S → aS
S → ε

regular-expression
language a∗

G: S → aSb
S → ε

describes language
{anbn, ∀n ≥ 0}

G: S → aSa | bSb | . . .
S → a | b | . . . | ε

describes palyndromes,
e.g., abba, babab.

The latter two languages cannot be described with regular expressions.
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Example: Deriving Words

Nonteminals recursively refer to each other
(cannot do that with regular expressions):

G: S → aSB (1)
S → ε (2)
B → Bb (3)
B → b (4)

G: S → aSB | ε
B → Bb | b

S = {a ·x ·y | x ∈ S , y ∈ B} ∪{ε}
B = {x · b | x ∈ B} ∪ {b}

Words of the language can be constructed by

starting with the start symbol S , and

successively replacing nonterminals with right-hand sides.

S ⇒1 aSB ⇒1 aaSBB ⇒4 aaSbB ⇒1 aaaSBbB

⇒1 aaa BbB ⇒3 aaaBbbB ⇒4 aaaBbbb ⇒4 aaabbbb.

18 / 26
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Definition: Derivation Relation

Let G = (
∑
,N, S ,P) be a grammar.

The derivation relation ⇒ on (
∑
∪N)∗ is defined as:

for a nonterminal X ∈ N and a production (X → β) ∈ P,
α1Xα2 ⇒ α1βα2, for all α1, α2 ∈ (

∑
∪N)∗

describes one derivation step using one of the productions.

Production can be numbered with the grammar-rule number.

G: S → aSB (1)
S → ε (2)
B → Bb (3)
B → b (4)

S ⇒1 aSB ⇒1 aaSBB ⇒2 aa BB

⇒3 aaBbB ⇒4 aabbB ⇒4 aabbb.

Here we have used leftmost derivation, i.e., always expanded the
leftmost terminal first. Could also use right-most derivation.

aaabbbb and aabbb ∈ L(G ).

19 / 26
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Transitive Derivation Relation Definition

Let G = (
∑
,N, S ,P) be a grammar and ⇒ its derivation relation.

The transitive derivation relation is defined as:

α⇒∗ α, for α ∈ (
∑
∪N)∗, derived in 0 steps,

for α, β ∈ (
∑
∪N)∗, α⇒∗ β iff there exists γ ∈ (

∑
∪N)∗ such

that α⇒ γ, and γ ⇒∗ β, i.e., derived in at least one step.

The Language of a Grammar consists of all the words that can be
obtained via the transitive derivation relation:
L(G ) = {w ∈

∑∗ | S ⇒∗ w}.

For example aaabbbb and aabbb ∈ L(G ),
because S ⇒∗ aaabbbb and S ⇒∗ aabbb.
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Syntax Trees

G: S → aSB (1)
S → ε (2)
B → Bb (3)
B → b (4)

1
S

1
S

2
S

4
B

3
B

4
B

a

a

eps

b

b

b

Syntax trees describe the “structure” of the derivation (independent
of the order in which nonterminals have been chosen to be derived).

Leftmost derivation always derives the leftmost nonterminal first, and
corresponds to a depth-first, left-to-right tree traversal:

S ⇒1 aSB ⇒1 aaSBB ⇒2 aa BB ⇒3 aaBbB ⇒4 aabbB ⇒4 aabbb.
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Syntax Trees & Ambiguous Grammars

G: S → aSB (1)
S → ε (2)
B → Bb (3)
B → b (4)

1
S

1
S

2
S

4
B

3
B

4
B

a

a

eps

b

b

b

1
S

1
S

2
S 4

B

3
B

4
B b

b

a

a

eps b

Syntax trees describe the “structure” of the derivation (independent
of the order in which nonterminals have been chosen to be derived).

The grammar is said to be ambiguous if there exists a word that can
be derived in two ways corresponding to different syntax trees.

S ⇒1 aSB ⇒1 aaSBB ⇒2 aa BB ⇒3 aaBbB ⇒4 aabbB ⇒4 aabbb.

S ⇒1 aSB ⇒1 aaSBB ⇒2 aa BB ⇒4 aabB ⇒3 aabbB ⇒4 aabbb.

22 / 26



University of Copenhagen Department of Computer Science

Handling/Removing Grammar Ambiguity

E → E +E | E −E
E → E ∗E | E / E
E → a | (E )

Precedence and Associativity guide decision:

ambiguity resolved by parsing directives,

or by rewriting the grammar.

What are the problems:

Ambiguous derivation of a − a − a

can be resolved
by fixing a left-associative derivation: (a − a) − a.

Ambiguous derivation of a + a ∗ a can be resolved
by setting the precedence of ∗ higher than +: a + (a ∗ a).
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Defining/Resolving Operator Precedence

Introduce precedence levels to set operator priorities

for example precedence of ∗ and / over (higher than) + and −,

and more precedence levels can be added, e.g., exponentiation.

At grammar level: this can be accomplished by introducing one
nonterminal for each level of precedence:

E → E + E | E − E
E → E ∗ E | E / E
E → a | (E )

E → E + E | E − E | T
T → T ∗ T | T / T
T → a | (E )
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Defining/Resolving Operator Associativity

A binary operator is called:

left associative if expression x ⊕ y ⊕ z
should be evaluated from left to right: (x ⊕ y)⊕ z

right associative if expression x ⊕ y ⊕ z
should be evaluated from right to left: x ⊕ (y ⊕ z)

non-associative if expressions such as x ⊕ y ⊕ z are disallowed,

associative if both left-to-right and right-to-left evaluations lead
to the same result.

Examples:

left associative operators: − and /,

right associative operators

: exponentiation, assignment.
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Establishing Intended Associativity

Can be declared in the parser file via directives

when operators are associative use same associativity as
comparable operators,

cannot mix left- and right-associative operators at the same
precedence level.

At grammar level: this can be accomplished by introducing new
nonterminals that establish explicitly operator’s associativity :

E → E + E | E − E | T
T → T ∗ T | T / T
T → a | (E )

E → E + T | E − T | T
T → T ∗ F | T / F | F
F → a | (E )

Left associative ⇒ Left-recursive grammar production.

Right associative ⇒ Right-recursive grammar production.
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