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INTRODUCTION

The evolutionary development of the
computing discipline has created
methodologies and systems to solve prob-
lems effectively in many different special
areas. The value of such application-
specific methods has proved to be great-
est in areas that are mature enough for
being systematically engineered.

Often the methods designed for a cer-
tain application area are useful in other
areas (after some adaptation), or differ-
ent techniques can be combined within
the same area. To integrate different
techniques into a seamless whole, it is
necessary to foresee the effects of their
combination. Hence, full understanding
of the concepts and mechanisms of the
components is the prerequisite for a sen-
gible integration. One example of this
approach is the current interest in
multiparadigm programming languages.
The foundation for designing and imple-
menting such languages is provided by
well-established single programming
paradigms; for an overview, see ACM
Computing Surveys [1989], Sethi [1989],
and Watt [1990].

Compitler construction is often men-
tioned as one of the few really systemati-
cally managed disciplines, e.g.,, Shaw
[1990]. This stems from the relatively
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long tradition of producig compilers, from
practical underlying theories, and from a
large selection of textbooks on the topic,
such as Aho et al. [1986] and Fischer and
LeBlanc [1988]. Today, producing compil-
ers (or at least their analysis phase, the
“front-end”) is routine work with auto-
matic tools.

Context-free grammars are the stan-
dard tool used in reference manuals
for defining the syntax of programming
languages. The accompanying lexical def-
inition of the language is usually given
using regular expressions, another popu-
lar specification formalism. The practical
significance of these formalisms is greatly
enhanced by the fact that they can be
automatically implemented as efficient
language processors, context-free gram-
mars as parsers, and regular expressions
as lexical analyzers.

Attribute grammars were defined in
the late 1960’s by Knuth for specifying
and implementing the (static) semantic
aspects of programming languages
[Knuth 1968]. Since then, attribute
grammars have been a subject of inten-
sive research, both from a conceptual and
from a practical point of view. The con-
ceptual work has produced several sub-
classes of attribute grammars with
advanced implementation algorithms.
The closely coupled pragmatic efforts
have created a large number of auto-
mated systems based on attribute gram-
mars. These systems, usually -called
compiler-compilers, compiler writing sys-
tems, or translator writing systems, gen-
erate different kinds of language proces-
sors from their high-level specifications.
In their early years the systems were
used to generate compilers only, but later
generators of interpreters, debuggers, ed-
itors, etc. have shown that the attribute
grammar model provides a basis for a
number of alternative language process-
ing schemes as well.

Research on attribute grammars has
refined their somewhat primitive origi-
nal notion into a mature formalism. The
maturity can be seen from fairly efficient
implementation algorithms of attribute
grammars, and also from the large num-
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ber of systems produced. Each system
has its own specification language, in a
sense a special dialect of attribute gram-
mars. Like programming languages,
these dialects can be classified according
to their fundamental ideas and primi-
tives. In this survey we systematically
investigate conceptual attribute gram-
mar classes that can be characterized
with the term attribute grammar
paradigm, giving rise to a taxonomy of
language specification styles all based on
the attribute grammar model.

Extensive reviews of attribute gram-
mar theory, implementation, systems,
and applications are given in, e.g.,
Deransart et al. [1988], Deransart and
Jourdan [1990], and Alblas and
Melichar [1991]. This survey does not
thoroughly discuss such issues, nor the
methodology of applying attribute gram-
mars in the specification and implemen-
tation of programming languages.
Rather, we focus on the paradigms, mo-
tivating and presenting the main ideas
behind them. The conceptual presenta-
tion is complemented with examples of
the different paradigms in terms of some
specific systems that support these
paradigms in their specification lan-
guage. We hope that the examples also
demonstrate the attribute grammar
methodology for an uninitiated reader.

An attribute grammar-based specifica-
tion language is also a language itself, a
special-purpose programming language
in the application area of language pro-
cessing. Therefore, an attribute grammar
paradigm must involve issues both from
the attribute grammar model and from
the programming language discipline.
Thus, an attribute grammar paradigm
is a good example of integrating two dif-
ferent problem-solving methodologies,
specification and programming, into a
coherent combination. We believe that
this explicit case of integration also shows
the power of establishing new practical
and rigorous methods by assembling two
existing mature disciplines together.

We start in Section 1 by presenting
attribute grammars in their standard
form. The merits and drawbacks of the
bagic concept are discussed; the draw-
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backs motivate paradigmatic improve-
ments presented in the subsequent
sections.

In our taxonomy, attribute grammar
styles are classified into paradigms ac-
cording to the particular linguistic
framework they promote. These frame-
works either aid in structuring an at-
tribute grammar into integrated units or
improve the semantic expressiveness of
attribute grammars by employing some
powerful attribute evaluation machinery.
Respectively, the survey presents organi-
zational paradigms in Section 2 and
evaluation paradigms in Section 3. The
class of organizational paradigms is fur-
ther refined into attribution paradigms,
structured attribute grammars, modular
attribute grammars, and object-oriented
attribute grammars in Sections 2.1 to 2.4,
respectively. The evaluation paradigm is
elaborated by presenting logic attribute
grammars, functional attribute gram-
mars, and implicit evaluation paradigms
in Sections 3.1 to 3.3, respectively. We
conclude in Section 4 by summarizing
and relating the merits of the different
paradigms, and by envisaging future di-
rections.

The contributions of the different
paradigms vary according to their main
emphasis and characteristics. In essence,
the organizational paradigms raise the
software engineering level of the meta-
languages based on attribute grammars.
The evaluation paradigms, on the other
hand, stress the semantic expressiveness
of attribute grammars. Finally, efficiency
of the generated language processors is
the main concern of the special implicit
paradigms.

1. ATTRIBUTE GRAMMARS

Here we present the basic characteristics
of attribute grammars. Some historical
milestones and central application areas
are mentioned in Section 1.1. Section 1.2
gives the definition of attribute gram-
mars. Section 1.3 presents the fundamen-
tal concept of characteristic (dependency)
graphs that lay the foundation for both
analyzing and implementing attribute
grammars. An example grammar is given
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as well to illustrate the formalism and to
serve as a common basis for presenting
the paradigmatic variations of the stan-

dard model.

1.1 Historical Remarks

Designing a programming language is an
intellectual challenge of considerable
complexity (for an overview, see Wasser-
man [1980]). One of the most important
considerations is the description of the
language. The description must be illus-
trative enough for a language user, and
precise enough for a language implemen-
tor. Several language definition for-
malisms have been developed. The most
successful has been the Backus-Naur
Form, sometimes also referred to as the
Backus-Normal Form (BNF).

BNF was originally presented for
defining the programming language
Algol 60 [Naur 1960] and is based on the
notion of context-free grammars, which
have been generally accepted as the
standard formalism for defining the syn-
tax of programming languages. Regular
expressions are another standard formal-
ism, used for specifying the lexical struc-
ture of programming languages.
Context-free grammars and regular ex-
pressions were presented already in the
1950’s in connection with the seminal
linguistic work of Chomsky [1959].

The scope of regular expressions and
context-free grammars soon extended
from theoretical language definition into
practical compiler generation. Subclasses
of context-free grammars were defined
for automatic generation of efficient syn-
tax analyzers from syntax definitions, the
most notable examples being LR gram-
mars [Knuth 1965] and LL grammars
[Lewis and Stearns 1968]. Additionally,
mapping regular expressions into finite
automata made it feasible to generate
lexical analyzers automatically.

While a consensus on the definition
and generation formalisms has been
reached with respect to the first two
phases of a typical language implementa-
tion (lexical analysis, syntactic analysis),
the subject is more controversial when
considering the remaining phases
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(semantic analysis, code generation, in-
terpretation). Hence, a variety of differ-
ent formalisms has been proposed for the
definition of the semantics of program-
ming languages and for the automatic
generation of complete language imple-
mentations from such definitions.

The most formal methods have a math-
ematical foundation providing concepts
for writing unambiguous and consistent
definitions. Denotational semantics and
axiomatic semantics are two well-known
examples of this kind. The former is based
on the use of functions mapping the con-
structs of a language directly to their
mathematical meanings, while the latter
employs logical axioms and deduction
rules for specifying the language. Tech-
niques labeled commonly as operational
semantics define a language by mapping
its constructs into instructions of a sim-
ple abstract interpreter whose semantics
is well defined. An introductory survey of
language definition formalisms is given
in, e.g., Watt [1991].

Attribute grammars are probably the
most widely applied semantic formalism.
This method is founded upon the idea of
a “syntax-directed translation scheme”
where a context-free grammar is aug-
mented with atiributes and semantic
rules. Because attribute grammars are a
proper extension of context-free gram-
mars, an efficient implementation is eas-
ier to obtain from a language definition
given as an attribute grammar than one
from one of the more mathematically bi-
ased formalisms mentioned above. On the
other hand, attribute grammars are less
formal and less expressive than the
mathematical models because the func-
tions applied in the semantic rules are
not precisely defined.

Attribute grammars have gradually
developed from a theoretical concept into
an advanced computational paradigm.
The definition of the formalism was given
in Knuth [1968]; the evolution of ideas
behind the formalism is summarized
in Knuth [1990]. The first decade of
research focused on analyzing the char-
acter of attribute grammars and on
establishing basic implementation algo-
rithms. The first full implementation was
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produced by Fang [1972] under the su-
pervision of Knuth. Attribute grammars
were soon found to be an attractive tool
for modeling passwise compilation
strategies. Seminal results in this direc-
tion include four attribute grammar sub-
classes: S-attributed grammars and
L-attributed grammars for one-pass com-
pilation [Lewis et al. 1974], and abso-
lutely noncircular attribute grammars
[Kennedy and Warren 1976] and ordered
attribute grammars [Kastens 1980] for
multipass compilation.

Several systems were developed with
high-level input languages, resulting in
powerful language processing tools. Ex-
ample pioneer systems in this direction
are GAG [Kastens et al. 1982],
LINGUIST-86 [Farrow 1982], and HLP84
[Koskimies et al. 1988]. In recent years
research has shifted from theoretical in-
vestigations into improving attribute
grammars as a methodology, and into
designing systems with major emphasis
on pragmatic issues. This tendency is also
reflected in this survey, which aims at
presenting the main directions of devel-
oping attribute grammars into a true en-
gineering discipline.

While implementation of (textual) pro-
gramming languages is the original and
most widely studied area of attribute
grammars, they can also be used in many
other fields where relations among struec-
tured information play a central role. This
versatility is demonstrated by an in-
creasing number of new application ar-
eas where attribute grammars have been
promoted to having significant value. Re-
cent notable examples include general
software engineering [Shinoda and
Katayama 1988; Frost 1992; Lewi et al.
1992], reactive systems [Ding and
Katayama 1993], distributed program-
ming [Kaiser and Kaplan 1993], logic
programming [Deransart and Maluszyn-
ski 1985; 1993], static analysis of pro-
grams |[Horwitz and Reps 1992],
databases [Ridjanovic and Brodie 1982],
natural language interfaces [Alexin et al.
1990], graphical user interfaces and vi-
sual programming [Hudson and King
1987; Crimi et al. 1990], pattern recogni-
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tion [Tsai and Fu 1980; Trahanias and
Skordalakis 1990], hardware design
[Jones and Simon 1986], computer com-
munication protocols [van de Burgt and
Tilanus 1989; Chapman 1990], and com-
binatorics [Delest and Fedou 1992].

1.2 Definition and Basic Notations
[Knuth 1968]

An attribute grammar (AG) consists of
three components, a context-free gram-
mar G, a finite set of atiributes A, and a
finite set of semantic rules R: AG =
(@G, A, R). Informally, G specifies the
syntax of the target language, and A and
R specify the (static) semantics of the
language.

A context-free grammar G is a quadru-
ple: G =N, T, P, D), where N is a fi-
nite set of nonterminal symbols; T is a
finite set of terminal symbols; P is a
finite set of productions; and D € N is
the designated start symbol of G. An
element in V=N U T is called a gram-
mar symbol. The productions in P are
pairs of the form X — «, where X € N
and « € V* le., the left-hand side X is
a nonterminal, and the right-hand side «
is a string of grammar symbols. An empty
right-hand side (empty string) is repre-
sented by the symbol &.

A finite set of attributes A(X) is asso-
ciated with each symbol X € V. The set
A(X) is partitioned into two disjoint sub-
sets, the inherited attributes I{X) and
the synthesized atiributes S(X ). The start
symbol and the terminal symbols do not
have inherited attributes.! Now A =
VA(X).

The original definition in Knuth [1968] accaeptg
terminal symbols to have inherited attributes but
no synthesized attributes. While this is in line with
the general disciphne of associating attributes with
grammar symbols, the rule has been reversed in
most implementations. The reason for accepting
just synthesized attributes for terminal symbols is
modularization of language processors: now the ter-
minal symbols become context-independent, and the
lexical analyzers can be generated independently of
the other components. As this survey uses existing
systems to demonstrate the different paradigms,
we also have adopted the nonstandard convention
in our definition.
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A production p € P, p: X, » X, - X,
(n > 0), has an attrzbute occurrence X a,
if a €A(X), 0<i<n. A finite set of
semantic rules R is associated with the
production p with exactly one rule for
each synthesized attribute occurrence
X,.a and exactly one rule for each inher-
ited attribute occurrence X;.a, 1 <i < n.
Thus R, is a collection of rules of the

form X,. fa = Y1, ., ¥), B = 0, where

(1) either i =0 and a € S(X;), or 1 < i
<nand a € I(X));
each y, 1 <j<k,
occurrence in p; and
(3) f is a function, called a semantic
function, that maps the values of
Yi,---, Y, to the value of X,.a. In a
rule X,.a =f(y,...,y,), the occur-
rence X,.a depends on each occur-
rence y;, 1 <j < k. Now R = UR,.

©))

is an attribute

By the definition, synthesized attributes
are output to the left-hand-side symbols
of productions, and inherited attributes
are output to the right-hand-side sym-
bols. (The synthesized attributes of
terminal symbols are assumed to be ex-
ternally defined.)

A derivation tree ( parse tree) for a pro-
gram &, generated by G = (N, T, P, D),
is a tree, where

(1) each node is labeled by a symbol X €
V or by &;
(2) the label of the root is D;

(3) if a node labeled by X has the sons
labeled by X;,...,X,, then X -
X, ... X, is a production in P; and

(4) the labels of the leaves of the
tree, concatenated from left to right,

form &.

An attributed tree for a program & is a
derivation tree for € where each node n,
labeled by X, is attached with attridbute
instances that correspond to the at-
tributes of X. For each attribute a
A(X) the corresponding instance is de-
noted with n.a.

Aftribute evaluation is a process that
computes values of attribute instances
within an attributed tree 7' according to
the semantic rules R. That is, the value
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of an attribute instance n.a., correspond-
ing to attribute e of symbol Y, is com-
puted by executing the semantic rule
Ya=Ffy,..., ¥) € R, where either (1)
a €I(Y) and p is the productlon X -

.Y ... applied when generatmg n into
T or (2) a € S(Y) and p is the produc-
t1on Y — ... applied when generating n
into 7. The semantic rule is executed by
calling the function f with the values of
those attribute instances as arguments
that correspond to y4,...,y,, and by as-
signing the returned value to n.a. As for
attribute occurrences, the instance n.a.
is defined to depend on all the instances
for y{,..., ¥,. The meaning of a program
@ consists of the values of the (synthe-
sized) attribute instances associated with
the root node of the attributed tree for .

Prior to the definition of attribute
grammars, synthesized information and
purely syntax-directed language process-
ing were considered as the “proper” form
of programming language semantics
[Irons 1961; Steel 1966]. From a purely
theoretical point of view, inherited at-
tributes are unnecessary [Knuth 1968].
They are, however, useful in many prac-
tical situations, e.g., in representing sym-
bol tables whose value is typically
applied outside of the creating context.
Inherited attributes also introduce an at-
tractive conceptual balance into the com-
pilation process, and that is why they are
widely employed in systems that gener-
ate multipass evaluators over the at-
tributed tree.

An attribute grammar AG = (G, A, R)
is well defined if the semantic rules R
are such that for each attributed tree T
for a program & (generated by G), the
values of the attribute instances within
T can be unambiguously computed by an
attribute evaluation process. In Knuth
[1968] this criterion is stated such that
the attribute dependency graph for T,
induced by R, is acyclic.? In other words,

2An attribute dependency graph for an attributed
tree T' has the attribute instances within T as its
vertices. The graph contains a directed arc from n.b
to n.a if and only if the attribute instance n.a
depends on the attribute instance 7.b.
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attribute instances must have a partial
evaluation ordering, and no attribute in-
stance may (transitively) depend on it-
self.

This requirement guarantees that it is
always possible to find an execution or-
der for semantic functions such that the
value of each attribute instance is com-
puted exactly once, and each function ap-
plies previously evaluated arguments
only. In other words, the standard at-
tribute evaluation model is strict. While
this strategy based on noncircular at-
tribute dependencies is the traditional
method, it is not the only possible one. In
Section 3 we will discuss mechanisms
that are based on the intuition that the
main objective of an attribute evaluation
process 1s not to compute the value of all
the attribute instances within 7', but in-
stead just the meaning of the corre-
sponding program ¢&. This requirement
is weaker than that given above and
makes it possible to have a broader inter-
pretation of well-defined attribute gram-
mars. Another relaxation of the original
meaning of being well defined, also ad-
dressed in Section 3, is based on the use
of nonstrict functions and incomplete val-
ues in attribute evaluation.

1.3 Characteristic Graphs

The general noncircular property of at-
tibute grammars requires an exponential
testing algorithm [Jazayeri et al. 1975].
Also, implementing attribute grammars
in their most general form is very hard.
These aspects call immediately for relax-
ing the ultimate goal of applying at-
tribute grammars in their full power and
thus make it necessary to discover re-
stricted yet powerful subclasses of the
formalism.

In this section we introduce the con-
cept of characteristic (dependency)
graphs that make it possible both to de-
fine more practical attribute grammar
classes and to design effective implemen-
tation strategies for them. The basic idea
behind characteristic graphs is to assem-
ble the attribute dependency information
statically into a single representation
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that holds for all the possible attributed
trees for the grammar. A universal de-
pendency description makes it possible to
analyze the characteristic properties of
an attribute grammar and the corre-
sponding language processor without
considering the concrete source pro-
grams. We will only give an introduction
to the topic; for a more detailed presenta-
tion, refer to Deransart et al. [1988] and
Alblas [1991].

To simplify the discussion, we adopt
the conventional restriction that the ap-
plied attribute occurrences y,,...,y, for
a semantic rule X,.a = f(yy,...,y,) in
R, must be defined outside of the pro-
duction p: X, —» X, --- X,. That is, for
each Y, of the form X, b,j=1,...,k,
either /=0 and b €I(X)),orl<l<n
and b € S(X;). If this holds for all the
semantic rules of the attribute grammar,
it is in normal form [Bochmann 19761
Unless otherwise stated, the attribute
grammars in this survey are assumed to
be in normal form.?

The main building blocks of character-
istic graphs are the local dependency
graphs DG,. A graph DG, summarizes
the attribute dependencies associated
with the production p: X, - X; - X :
e the vertices of DGp are the attribute

occurrences of p;

e for each pair of attribute occurrences
X,.a and X,.b of p, there is a directed
arc from X .b to X.a in DG, if and
only if X,.a depends on X,.b.

The local dependency graphs already lay
the foundation of two important sub-
classes of attribute grammars:

(1) An attribute grammar is S-attributed
if it has only synthesized attributes
(hence for each arc from X .b to X,.a
in any DG, the following conditions
hold: i = 5 and 1 <j <n) [Lewis
et al. 1974].

37This is not a severe restriction since every (well-
defined) attribute grammar can be put in normal
form by a simple transformation
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(2) An attribute grammar is L-attri-
buted if for each arc from X .b to
X,.a in any DG,, where 1<z<n
(and thus a € I(DX ), the following
condition holds: j <i [Lewis et al.
1974; Bochmann 1976].

While these classes seem very primitive,
they have turned out to be surprisingly
practical in a large number of language
processor generators. For instance YACC
[Johnson 1975], probably the most well-
known language implementation tool, can
be regarded as an implementation of
simple S-attributed grammars. A more
profound motivation for S-attributed and
L-attributed grammars is that they can
be considered as models of one-pass lan-
guage processing, e.g. one-pass compil-
ation, where semantic information 1is
produced in one traversal over an attri-
buted tree and in most cases even inter-
leaved with syntax analysis.

More complex language processing
tasks must be solved with attribute
grammar classes more general than S-
attributed and L-attributed grammars.
In essence, in such cases there must be
some means to analyze global attribute
dependencies instead of just the local
ones, as above.

Consider the inherited attributes of a
symbol as its input and the synthesized
attributes as its output. Then the input-
output behavior of a (nonterminal) sym-
bol X can be modeled by the graph IS(X)
with a directed arc from an inherited
attribute b € I(X) to a synthesized at-
tribute a € S(X) if the instance for a
depends transitively on the instance for
b in some attributed subtree with a node
labeled by X as the root.

Let us consider a production p: X, —
X, - (Recall that there is a local
dependency graph DG, for p.) Suppose
that for each i =1,2,...,n we have a
directed input- output graph IS(X)).
Then we denote by DG = DG,[IS(X)),
IS(X,), ..., IS(X))] the dlrected graph
that is obtamed from DG, by adding an
arc from attribute occurrence X, bto X, .a

whenever there is an arc from 6 to a in
IS(X),i=1,2,...,n
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The input-output graphs IS(X) can be
recursively defined in terms of the graphs

DG;;< :

* the vertices of IS(X) are the attributes
A(X);

e there is an arc in IS(X) from an inher-
ited attribute & € I(X) to a synthe-
sized attribute a € S(X) if and only if
there is a path from X.b to X.a in the
graph DG¥ for some production p:
X — ... whose left-hand side is X.

An attribute grammar is absolutely non-
circular if no augmented dependency
graph DGy contains a directed cycle
[Kennedy and Warren 1976]. The graphs
DGy and IS(X) can be computed itera-
tlvely by starting from the local depen-
dency graphs DG, and the graphs IS(X)
without arcs, an(f by adding a nonexist-
ing arc to an IS(X) if there is a produc-
tion p with left-hand side X such that
the current DG contains a path from
bel(X) to a e S(X) (simultaneously
extending the graph DG] for each pro-
duction ¢ having X on' its right-hand
side), until no more arcs can be added to
any IS(X).

The ares in IS(X) reflect all the
input-output dependencies that could ex-
ist in an attributed subtree with X as its
root. The approximation is, however,
overpessimistic and may reject an at-
tribute grammar which is actually well
defined. Still, absolutely noncircular at-
tribute grammars have been accepted as
the largest tractable class of attribute
grammars because the decision algo-
rithm for the class is polynomial instead
of the intrinsically exponential test for
general well-defined grammars.

Another powerful and widely applied
multipass grammar class of polynomial
complexity is ordered attribute gram-
mars [Kastens 1980]. While being a
proper subclass of absolutely noncircular
attribute grammars, ordered attribute
grammars are attractive because they
can be implemented in a simpler and
more efficient way. Another aspect is that
even the ordered attribute grammars
seem to include all the practical cases
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when considering the processing of pro-
gramming languages. This class is only
sketched below; for technical details, see
Kastens [1980] or Alblas [1991].

In addition to the input-output depen-
dencies IS(X), the output-input depen-
dencies SI(X) are approximated in
ordered attribute grammars. That is,
the graph SI(X) includes an arc from a
synthesized attribute & € S(X) to an in-
herited attribute a € I(X) if a may
(transitively) depend on 6 in some at-
tributed derivation tree. Notice that such
information is necessarily computed in
terms of the upper contexts of X-nodes in
the attributed derivation trees.

From the compound graph ISSI(X) =
IS(X) U SI(X), a linear partial order
TO(X) for the attributes of each symbol
X 1is computed. TO(X) comprises all the
direct and indirect attribute dependen-
cies which may be derived from any
context of X. An attribute grammar is
ordered if and only if for each produc-
tion p: X, » X, ... X, the graph
DG,[TO(X,), TO(X,), ..., TO(X,)] is
acyclic. A central property of ordered at-
tribute grammars is that [SSI(X) c
TO(X) for each symbol X. For tech-
nigques of computing the applicable linear
orders TO(X ) as extensions of ISSI(X)
and forcing a circular dependency pat-
tern into an orderly arranged form with
augmented attribute dependencies, see
Kastens [1980].

A context-independent evaluation pro-
cedure for a symbol X arranges the at-
tributes A(X) into a linear sequence
I(X), S{(X), (X)), Sy(X),..., I(X),
S, (X). The disjoint subsets of A(X),
I(X) and S(X), form a partition of
A(X ). For ordered attribute grammars,
TO(X) defines a linear total order over
the subsets [(X) and S(X), j =
1,2,...,m, even though the evaluation
order within each subset is irrelevant
and thus undefined.

The evaluation algorithm for an or-
dered attribute grammar exhibits a
strategy of evaluating the attributes of X
in m visits, such that each set I(X)
includes the inherited attribute in-
stances to be evaluated when entering a
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node labeled by X for the jth time, and
each set S (X) includes the synthesized
attribute instances to be evaluated when
exiting a node labeled by X for the jth
time. Between these evaluation actions,
the algorithm visits other nodes in the
context and evaluates some of the at-
tribute instances therein in the same
manner.

Example 1.3.1

For demonstrating attribute grammars,
let us study a simple desk calculation
language, DESK. In DESK, one can write
programs of the form

PRINT (expression) WHERE {definitions)

where (expression) is an arithmetic expres-
sion over numbers and defined constants, and
{definitions) is a sequence of constant defini-
tions of the form

{constant name) = {number)

Each named constant applied in {expres-
sion; must be defined in {definitions),
and (definitions) may not give multiple
values for a constant. For instance, the
following is a DESK program:

PRINTx+y+1WHEREx=1,y=2 (1.1)

We specify the DESK language with an
attribute grammar. To illustrate the var-
ious paradigms presented, the DESK
language (with minor variations) will be
used as a case example throughout this
survey. Because of repeated elaboration,
the example is concise. For instance, only
additions are allowed in expressions; a
richer selection would just make the
grammar longer without bringing in any
new aspects. However, DESK still has
many central characteristics of a real
programming language:

e declaration of named entities (here:

constants)
¢ use of declared entities

e conditions on the declaration and use
of an entity:

—no constant can be multiply declared
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—only declared constants can be refer-
enced by name

» executable entities (here: expressions).

Without loss of focus of the presentation,
DESK may also be considered as one
part of a complete, more advanced pro-
gramming language.

On the implementation side DESK in-
troduces the following typical tasks:

¢ lexical and syntactic analysis

¢ name analysis (i.e., symbol table man-
agement)

¢ checking of static conditions

+ multipass, or more precisely, right-to-
left processing (because named entities
can be used before declaration) and

¢ interpretation, or code generation for
the executable entities.

Let us start by specifying the DESK lan-
guage in the original “standard” form of
an attribute grammar. Since attribute
grammars are more suitable for describ-
ing compilation than interpretation, the
(dynamic) meaning of a DESK program
is defined implicitly as a mapping into a
lower-level target code. For simplicity, we
make use of an assembly code for a sim-
ple one-register machine as the target.
The relevant assembly instructions are
the following:

LOAD n, loads the value n into the register;
ADD n, increments the contents of the
register with value n;

PRINT 0, prints the contents of the register;

HALT 0, halts the machine.

The execution of a legal DESK program
evaluates the expression and prints its
value, whereas an illegal program halts
the machine without printing. For in-
stance, the code generated for the DESK
program (1.1) is

LOAD 1 (x)
ADD 2(y)
ADD 1
PRINT O
HALT 0

The context-free grammar G for DESK
consists of the following elements:

205

N = {Program, Expression, Factor,
ConstName, ConstPart,
ConstDefList, ConstDef},

T = {'PRINT’, ‘WHERE’, ‘", ‘=",
‘+’, 1d, Number},

P = {Program —
‘PRINT’ Expression ConstPart,
Expression —
Expression ‘+’ Factor,
Expression —
Factor,
Factor —
ConstName,
Factor —
Number,
ConstName —
Id,
ConstPart —
£,
ConstPart —
‘WHERE' ConstDeflList,
ConstDeflist —
ConstDefList ‘,’ ConstDef,
ConstDeflist —
ConstDef,
ConstDef —
ConstName ‘="' Number},

D = Program.

We make use of the following attributes
A:

code, synthesized target code;
name, synthesized name of a constant;
value, synthesized value of a constant
or a number;
envs, synthesized environment
(symbol table),
envi, inherited environment
(symbol table);
ok, synthesized indicator of correctness.

The target code is a list of instructions of
the form (operation code, argument). An
environment is a list of bindings of the
form (name, value).

The semantic rules R are associated
with the productions as follows, using
the notation “production {semantic
rules}”. Within a production, different oc-
currences of the same grammar symbol
are denoted by distinct subscripts.

ACM Computing Surveys, Vol 27, No 2, June 1995
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{(p1) Program - ‘PRINT’ Expression ConstPart
{Program.code = if ConstPart.ok
then Expression.code + (PRINT, 0) + (HALT, 0)

else (HALT, 0),

Expression.envi = ConstPart envs}

(p2) Expression, — Expression, ‘+’ Factor
{Expression,.code = if Factor.ok
then Expression,.code + (ADD, Factor.value)

else (HALT, 0),

Expression,.envi = Expression,.envi,
Factor.envi = Expression,.envi}

(p3) Expression — Factor

{Expression.code = if Factor.ok then (LOAD, Factor.value)

else (HALT, 0),

Factor.envi = Expression.envi}

(p4) Factor — ConstName

{Factor.ok = isin (ConstName.name, Factor.envi),
Factor.value = getvalue (ConstName.name, Factor.envi)}

(p5) Factor — Number

{Factor.ok = true, Factor value = Number value}

(p6) ConstName — Id

{ConstName.name = Id.name}

{(p7) ConstPart — &

{ConstPart.ok = frue, ConstPart.envs = ()}

(p8) ConstPart - ‘WHERE’ ConstDefList
{ConstPart.ok = ConstDefList.ok,
ConstPart envs = ConstDefList.envs}

(p9) ConstDeflList, — ConstDeflist, ‘,” ConstDef

{ConstDefList,.ok = ConstDefList,.ok and not

isin{ConstDef name, ConstDefList,.envs),
ConstDefList,.envs = ConstDefList,.envs +
(ConstDef.name, ConstDef.value)}

(p10) ConstDeflList — ConstDetf
{ConstDefList.ok = true,

ConstDefList.envs = (ConstDef.name, ConstDef.value)}

(p11) ConstDef — ConstName ‘=’ Number
{ConstDef.name = ConstName.name,
ConstDef.value = Number.value}

As usual in attribute grammars, we as-
sume that the values of the intrinsic at-
tributes Id.name and Number.value of the
terminal symbols are externally pro-
vided, e.g., by a lexical analyzer.

We have applied the following seman-
tic functions (some of them written in a
more convenient infix notation):

if(c,v1,v2), if ¢ yields true, returns vi1 else
returns vZ;

ACM Computing Surveys, Vol 27, No 2, June 1995

+(1,2),
and (c1, c2),
not (c),

isin (n, e),

getvalue (n, e),

returns the catenation of lists
1 and 2;

returns the conjunction of ci
and c2;

returns the negation of c;

if the environment e contains
a binding (n,x), returns true
else returns false;

if the environment e contains
a binding (n, x), returns x else
returns 0.
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(DG

]

PRINT

Figure 1.

We have also applied some conventional
constant functions, such as the integer 0,
the Boolean true, and the empty list ().

For clarity, all the applications of the
identity function I (I(x) =x for all x)
have been directly replaced by the result
value. (Recall that the attribute gram-
mar definition only permits semantic
rules of the form X.a = f(...) where [ is
a function.)

The meaning of a DESK program is
the value of Program.code, i.e., the target
code associated with the root of the corre-
sponding attributed derivation tree. Note
that in this case a semantically incorrect
DESK program also has a meaning; for
instance the meaning of

PRINTzWHERE x=1,y=2
is the target code

HALT O
PRINT ©
HALT O

(End of Example 1.3.1)

Let us analyze the DESK attribute
grammar (1.2). The grammar is not L-
attributed (nor S-attributed), due to a
right-to-left arc in the local dependency
graph DG, for production pl, as shown
in Figure 1. The inherited attributes are
associated to the left and the synthesized
attributes to the right of a grammar sym-
bol.

The grammar is, however, absolutely
noncircular. This is shown in Figure 2 by
the acyclic augmented dependency graph
DGJ; for each production p that has a
symbol in its right-hand side with both
inherited and synthesized attributes. The
transitive input-output dependencies in
IS(X) are denoted by dashed arrows.

) Program: code

envi: Expression: code
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envs
ok

ConstPart:

Local dependency graph for p1.

The inclusion of the input-output de-
pendency arcs envi— — ok and envi— -
value in IS(Factor) (as well as in DG},
and DGy;) is revealed by the local depen-
dency graph for production p4, shown in
Figure 3. Notice that IS(Factor) implic-
itly introduces the arc envi— — code into
IS(Expression) (and into DG}, and
DGg,) via the graph DG;, in Figure 2.

S[{nce the attribute grammar is abso-
lutely noncircular, it is also well defined.*
Hence, the attribute dependency graph is
acyclic for each attributed tree spanned
by the grammar. To illustrate the rela-
tion between the characteristic graphs
and the attributed trees for concrete
source programs, Figure 4 sketches the
attributed tree for the DESK program
(1.1). For clarity, only the upper level of
the tree is completely given. Semantic
functions are denoted by circles.

This attribute dependency graph shows
explicitly the data flow within the deriva-
tion tree. The graph shows, most notably,
that in order to evaluate Program.
code, the synthesized instance of Const-
Part.envs, the inherited instance of
Expression.envi, and the synthegized
instance of Expresson.code must first be
evaluated, in that order. (Recall the same
information in the augmented character-
istic graph DGy, of Figure 2.) In other
words, for generating the target code for
the program, the symbol table must be
constructed in the subtree for ConstPart
and consulted in the subtree for Expres-
sion (since the values of named constants

“The grammar also belongs to a number of other
well-defined supersets of L-attributed grammars,
such as the class of ordered attribute grammars. A
further elaboration is omitted.

ACM Computing Surveys, Vol 27, No 2, June 1995
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(DG p1*) Program: code
PRINT enlw: Expression’ code ConstPart envs
L — ——
M
enw Expression: code enw Facto
- valu

Lﬁ___

|___

envi: Expression code

envi: Factor: ok
jlb—— Jvalue
L__.A

Figure 2. Augmented dependency graphs.

(DG envi: Fact
o) ﬁi,vf)

ConstName: name

Figure 3. Local dependency graph for p4.

are needed for generating the code). This
also applies to name analysis for the ex-
pression part of the program.

When considering the attribute gram-
mar (1.2) as specification of a DESK
compiler, we immediately notice that
compilation cannot be totally done dur-
ing parsing (and embedded lexical analy-
sis). This is due to the fact that when
parsing the expression part of a program
(e.g., x +y+ 1in program (1.1)), the val-
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ues of the named constants applied in it
(e.g., x and y) are not yet available.
Therefore, name analysis and code gen-
eration for the expression part have to be
postponed until the constant definition
part of the program has been processed,
leading necessarily to a multipass compi-
lation scheme.

The ability to describe multipass pro-
cessing is an inherent and powerful char-
acteristic of attribute grammars. This
computational expressiveness is provided
by inherited attributes that can model
data flow into a construct from its con-
text. This aspect is demonstrated in our
DESK grammar by the dependency from
the synthesized attribute occurrence
ConstPart.envs to the inherited occur-
rence Expression.envi in production pl.

The notation used in the attribute
grammar (1.2) is quite common in exist-
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Program code
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envi Expressmn code
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ConstPart: &™®
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——————— WHERE  ConstDefList:°
\ A
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Figure 4. Attribute dependency graph over an attributed tree.

ing language processor generators. A
specification of the DESK language and
its compiler, written in the input lan-
guage (the metalanguage) of such a
system, contains typically the following
components:

(1) a list of grammar symbol declara-
tions (N, T) with associated at-
tributes (4),

(2) a sequence of productions (P) with
associated semantic rules (R), and

(3) the semantic functions (f) in an ex-
ternal file, usually written in some
conventional programming language.

This simplistic style reflects the defini-
tion of attribute grammars in a straight-
forward way and is used in all the older
systems. Multipass systems based on this
“pure” attribute grammar paradigm are
for instance GAG [Kastens et al. 1982],
LINGUIST-86 [Farrow 1982], and HLP78
[Raiha et al. 1983]. From the grammar
(1.2) such a system would generate a
multipass DESK compiler that (1) scans
and parses the source program, (2) con-
structs an explicit attributed derivation
tree as the intermediate representation
for the program, and (3) evaluates the
attribute instances in the tree during a
traversal over it. Phase (3) would involve
both (static) semantic analysis and tar-
get code generation. Examples of one-pass
systems whose metalanguage follows the

standard paradigm are MIRA [Expert
Software Systems 1984] (originally de-
veloped as LILA [Lewi et al. 1979]), and
YACC [Johnson 1975; Mason and Brown
1990].

The standard attribute grammar nota-
tion has, however, severe practical short-
comings. This stems from the fact that
attribute grammars, as a concept, are
just a theoretical model of language pro-
cessing without any advanced engineer-
ing facilities. The grammars written in
this manner tend to become most un-
structured and lengthy. As an example,
an attribute grammar for the program-
ming language Ada written in GAG’s
specification language comprises an en-
tire book with over 500 pages and 20,000
lines, more than 260 homogeneous pro-
ductions, and about 600 global semantic
functions [Uhl et al. 1982]. The problems
with such specifications are parallel with
the known problems encountered when
programming in a low-level unstructured
programming language: the specifica-
tions are hard to understand, modify, and
maintain. Some attribute grammars are
even larger than their procedural coun-
terparts (e.g., compilers), an aspect that
makes it rather questionable to consider
such grammars as specifications.

Another problem with standard at-
tribute grammars is their unduly strict
notion of dependencies and well-defined-
ness. Recall that, by definition, an
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attribute instance cannot be evaluated
until all the instances on which it de-
pends have been evaluated, and that the
semantic rules shall not introduce any
potential circularities into the attribute
dependency graphs. In some cases these
restrictions force an attribute grammar
to be written in a form which is not the
most natural or intuitive one. Note that
to an extent these restrictions are merely
technical and due to the assumption of
applying a strict computational mecha-
nism in attribute evaluation.

In the following chapters we will pre-
sent techniques that have been devel-
oped for removing the above-mentioned
drawbacks of standard attribute gram-
mars. The approaches can be roughly
classified into two categories: organiza-
tional paradigms and evaluation
paradigms. The organizational para-
digms provide facilities to compose an
attribute grammar of autonomous, yet
integrated units. By this, the grammars
become more manageable and easier to
understand. The evaluation paradigms,
on the other hand, employ powerful com-
putational mechanisms in attribute eval-
uation, thus raising the expressive power
beyond standard attribute grammars.

The organizational paradigms will be
discussed in Section 2. We start in Sec-
tion 2.1 by presenting attribution
paradigms where abstract notations are
provided for commonly applied patterns
of semantic rules. More general solutions
adopt their model from established pro-
gramming paradigms that are founded
on some central structural concept. These
are presented under the notions of struc-
tured attribute grammars (based on the
concept of a block), modular attribute
grammars (based on the concept of a
module), and object-oriented attribute
grammars (based on the concept of a
class) in Sections 2.2, 2.3, and 2.4, respec-
tively.

In Section 3 we will present evaluation
paradigms. Section 3.1 discusses logic at-
tribute grammars where the special fea-
tures of logic programming are utilized
for increasing the semantic power of at-
tribute grammars. A similar effect, using
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functional programming, is demon-
strated in Section 3.2 under the notion of
functional attribute grammars. In order
to give a complete picture of the state of
the art, we briefly discuss in Section 3.3
two special techniques, parallel and in-
cremental evaluation, that are currently
subjects of intensive research.

The main principles of the different
paradigms are illustrated by examples
showing how some representative sys-
tems tackle the problems discussed
above. For a quick overview, example
systems promoting the paradigms are
given in Table 1. Some of the systems in
the table are given merely for reference
and will not be further discussed in Sec-
tions 2 and 3.

2. ORGANIZATIONAL PARADIGMS

In this section we present techniques for
managing the complexity of an attribute
grammar by organizing some of its parts
as linguistic units. The methods are simi-
lar to those developed for structuring or-
dinary programs in terms of concepts like
compound statements, blocks, proce-
dures, modules, packages, and classes.
Accordingly, the presented paradigms
affect the structure of the attribute
grammar rather than its semantics. As a
consequence, a specification written in
any of these styles could be translated
into a semantically equivalent standard
attribute grammar by reducing its ab-
straction level (as a program written in a
high-level programming language can be
compiled into machine code). In fact, this
is the implementation method applied in
some systems, although the normal prac-
tice is to translate an organized attribute
grammar directly into a programming
language with similar structuring facili-
ties.

2.1 Attribution Paradigms

Often a significant number of semantic
rules in a typical attribute grammar are
much alike. Since these attribute defini-
tion patterns occur very frequently, us-
ing short and comprehensible special
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Classification of Attribute Grammar-Based Systems

STANDARD PARADIGM

[ Pure attribute grammars |

YACC [Johnson 1975}

[ LILA [Lewiet al. 1979] |

ORGANIZATIONAL PARADIGMS

Attribution GAG HLP78
paradigms [Kastens et al. 1982] [Raihi et al. 1983]
Structured HLP84 FNC-2
attribute grammars [Koskimies et al. 1988] [Jourdan et al. 1990}
Modular MAGGIE [Dueck and Linguist [Declarative
attribute grammars Cormack 1990] Systems 1992]
Object-oriented Mjglner/Orm TOOLS [Koskimies and
attribute grammars [Hedin 1989} Paakki 1990]
EVALUATION PARADIGMS
Logic Pan PROFIT
attribute grammars [Ballance et al. 1990] [Paakki 1991]
Functional FNC/ERN YACC/CAML[Cousineau
attribute grammars [Jourdan 1984] and Huet 1990]
Parallel FOLDS [Boehm and
attribute evaluation [Fang 1972] Zwaenepoel 1987]
Incremental OPTRAN The Synthesizer
attribute evaluation [Lipps et al. 1988] Generator [Reps and
Teitelbaum 1989]

notations for them may drastically re-
duce the size of a language (processor)
specification. These compact abstractions
can be systematically transformed into
the basic notations without changing any
properties of the attribute grammar. A
number of systems provide such attribu-
tion paradigms in their specification lan-
guages; examples include HLP78 [Raiha
et al. 1983], GAG [Kastens et al. 1982;
1987], HLP84 [Koskimies et al. 1988],
LINGUIST-86 [Farrow 1982], Metauncle
[Tarhio 1989], and FNC-2 [Jourdan et al.
1990]. An introduction to the attribution
paradigms is included in Kastens [1991].

Analyses of attribute grammars have
shown that many of their semantic rules
are simply copy rules (or “transfer rules”)
of the form

X.a=Y.a.

Copy rules are frequently needed espe-
cially in describing the propagation of
context information, such as a compiler’s
symbol table. Some systems either pro-
vide a special notation for such attribu-
tion schemes, or simply include them as
implicit default rules.

For instance, GAG provides the at-
tribute transfer rule TRANSFER which,
when associated with a production X, —
X, -+ X,, denotes (1) a copy rule X,.a =
X,.a for each attribute a € S(X,) that is
associated with exactly one symbol X, in
X, - X,, and (2) a copy rule X .b = X,.b
for each attribute b € I(X,) and for each
symbol X, in X, --- X, that owns the
attribute . This mechanism is based on
the natural convention that attributes
describing the same property of different
symbols should have the same name.
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Using this facility, the first production
for Expression and the production for
ConstDef in the grammar (1.2) can be
written as follows:

(p2) Expression, — Expression, '+’ Factor
{Expression,.code = if Factor ok
then Expression,.code + (ADD,
Factor.value)
else (HALT, 0),

TRANSFER}

ConstDef — ConstName ‘="' Number
{TRANSFER}

(pys)

Another commonly applied attribution
pattern is to use an attribute whose in-
stance is located in a context other than
the current local one. In terms of the
dynamic attributed tree, the value of an
attribute instance for a node n depends
in such a case on an attribute instance a
that is associated with an ancestor or a
descendant node of n. In the standard
framework the value of a would have to
be propagated to n with a chain of copy
rules. There exist, however, more conve-
nient techniques to handle such a situa-
tion.

HLP78 provides a form of global at-
tributes that were originally proposed in
Knuth [1971]. A global attribute instance
can be directly accessed and updated
within the subtree with whose root it is
associated, without passing it explicitly
through the nodes in the subtree. The
drawback of the approach is that it is not
always easy to foresee the exact execu-
tion order of the semantic rules on a

global attribute. This problem is re-
moved, e.g., in HLP84 where global at-
tributes are tuned solely for one-pass
language processing (with an unambigu-
ous execution order).

GAG provides the remote access in-
structions INCLUDING (for accessing
global attribute instances within a sub-
tree) and CONSTITUENTS (for composing
the value of a global attribute instance of

distinct attribute values within the sub-
tree). The expression

INCLUDING (Y,.a4,...,Y,.a,,)

associated with the production X, — X,
-+ X yields the value of either Y,.a,, or
..., or Y,.a,, depending on which of the
symbols Y,,...,Y,, is the label of the
nearest ancestor of the node for X, in
the attributed tree. The expression

CONSTITUENTS Y.a

associated with the production X, — X,
-+ X, yields a list of attribute values Y.a
from left to right in the subtree whose
root is the curret node for X,. In both
cases the attribute grammar must guar-
antee that the expression always pro-
duces a proper value.

As an example, the attribute grammar
(1.2) can be revised such that the symbol
table is expressed as a global attribute
for the DESK expression, and the target
code is a list of individual instructions.
Then a DESK expression can be specified
as follows:

(p1)

Program — ‘PRINT’ MainExpression ConstPart

{Program.code = if ConstPart.ok
then MainExpression.code + (PRINT, 0) + (HALT, 0)

else (HALT,0),

MainExpression.envi = ConstPart.envs}

MainExpression — Expression

{MainExpression.code = CONSTITUENTS Expression.code}

Expression,; — Expression, ‘+’ Factor

{Expression,.code = if Factor.ok
then (ADD, Factor.value)

else (HALT,0)}

Expression — Factor

{Expression.code = if Factor.ok
then (LOAD, Factor.value)

else (HALT, 0)}
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Figure 5. Globalized attributed tree.

(p4) Factor — ConstName

{Factor.ok = isin (ConstName.name,
INCLUDING (MainExpression.envi)),

Factor.value = getvalue (ConstName.name,
INCLUDING (MainExpression.envi)) }

(p5) Factor - Number

{Factor.ok = true, Factor.value = Number.value}

ConstName — Id
{ConstName.name = id.name}

(p6)

The productions are shorter and simpler
than in the original grammar (1.2},
thanks to replacing the local attribute
occurrences envi with the global attribute
occurrence MainExpression.envi. Also the
definition of Expression.code is simpler
because it now represents one target in-
struction only instead of the complete
code sequence synthesized from a sub-

tree. Note that in the case of an invalid
expression the final target code might
now be different from that specified in
grammar (1.2). The dynamic semantics of
DESK, however, is the same: computa-
tion of an invalid expression will always
be aborted by a HALT instruction.

We clarify the globalizing method by
sketching in Figure 5 the attributed tree
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for the DESK program (1.1). The at-
tribute evaluation pattern in each Factor
context is the same as shown for the
leftmost one.

Note that now the Expression and Fac-
tor nodes do not have an instance of the
envi attribute at all, whereas conceptu-
ally the instances remain both in the
grammar and in the tree when using the
copy rule elimination technique dis-
cussed above (although a space-optimiz-
ing system, such as HLP78 or GAG,
would even then probably remove them
automatically from the tree).

Semantic error handling is cumber-
some in standard attribute grammars.
For instance, the grammar (1.2) makes
use of the ok attribute for expressing
static semantic restrictions. GAG and
HLP84, among others, extend attribute
grammars with consistency conditions
that are boolean-valued expressions over
attribute occurrences. The conditions can
be associated with nonterminals (HLP84)
or productions (GAG). As an example,
the following production in GAG’s con-
vention expresses the constraint that
each named constant applied in a DESK
expression must be defined. The consis-
tency condition invelves an error mes-
sage to be emitted if the condition is
violated.

(p4) Factor — ConstName
{Factor.value = getvalue
(ConstName name,
INCLUDING
(MainExpression envi));
CONDITION 1sin (ConstName name,
INCLUDING (MainExpression.envi))

MESSAGE “ Constant not defined”’}

Notice that by this feature the ok at-
tribute and its semantic rules (some of
which are redundant in grammar (1.2))
become useless. The incorrectness of a
DESK program is now manifested by er-
ror messages that are given by the gener-
ated compiler at run-time.

2.2 Structured Attribute Grammars

The key issue in managing large systems
is decomposition, or structuring. A sys-
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tem with small integrated components is
easier to build and maintain than a
monolithic system. The fundamental con-
cepts for structuring software have been
developed in parallel with the evolution
of programming languages. The first
structuring primitives introduced into
programming languages were subpro-
grams in Fortran, compound statements
in Algol 58, and blocks in Algol 60. These
have been the basic models for a number
of later improvements.

In this section we address the question
of how to apply conventional structuring
mechanisms of programming languages
to attribute grammars. The term “struc-
tured programming” has in this context a
specific meaning. Two traditional narrow
interpretations might consider the term
as a synonym to “programming without
goto statements” or “programming with
structured data types.” However, since
statements or data types conceptually
(albeit in practice, of course) are not cen-
tral issues in attribute grammars, strue-
tured programming is here considered as
a programming style based on blocks and
procedures.

Blocks

A block is a language structure with an
arbitrary number of local entities that
may be blocks themselves. Hence, blocks
can be characterized with the following
general propeties:

e gtatic partition of programs into hierar-
chical elements and

¢ Jocal name environments.

A dominant characteristic of program-
ming languages 1s visibility (scope) rules
that specify how a name applied in a
program is associated with its declara-
tion. This principle, which strongly af-
fects both language design, definition,
and implementation, originates in Algol
60’s notion of nested blocks. In Algol 60
an applied ocecurrence of a name is asso-
ciated with its defining occurrence such
that if the program contains several
defining occurrences for the name, then
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the one belonging to the innermost block
enclosing the applied occurrence is se-
lected. This principle of statically deter-
mining the name association has been
adopted in most structured programming
languages.

Attribute grammars in their standard
form, as defined in Section 1.2, provide
only limited structuring facilities. They
can be characterized with the correspon-
dence

Production = Block

since a standard attribute grammar is
composed of a list of productions with
their local semantic rules. This approach
was demonstrated in Example 1.3.1. The
local declaration property of blocks is
provided in some metalanguages as at-
tributes that are local to a production
(e.g., CWS2 [Bochmann and Ward 1978]
and FNC-2 [Jourdan et al. 1990]). This
conceptual coupling of productions and
blocks is, however, rather primitive be-
cause typically only a few productions
can sensibly make use of local attributes
and because the nesting obtained this
way is merely flat (productions cannot be
given within productions). Hence, more
natural and general means have to be
established in order to introduce useful
structuring facilities into attribute gram-
mars.

In a declarative attribute grammar, the
semantic emphasis should be laid on de-
scribing the nonterminals in terms of at-
tributes. Thus, a natural design decision
is to choose a nonterminal as the struc-
turing primitive of attribute grammars,
and to reflect conventional structuring
methodologies on nonterminals. This
view gives rise immediately to the fol-
lowing characterization of structured
attribute grammars and, from an oper-
ational point of view, for a structured
language processing methodology:

Nonterminal = Block

In other words, nonterminals of attribute
grammars correspond to blocks of pro-
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gramming languages, in that

(1) nonterminal definitions can be arbi-
trarily nested,

(2) nonterminals can have local entities,
and

(3) visibility of entities is controlled by
conventional block-structured scope
rules.

Nonterminal-based structuring makes
a language specification more compre-
hensible by dividing it into logical
components: each nonterminal definition
specifies a sublanguage, and the nesting
describes the hierarchy of those sublan-
guages. As is normal in block-oriented
structuring, a sublanguage that is in-
cluded in several contexts of the whole
language must be expressed by a nonter-
minal which is defined on a global level.

It must be emphasized that this “Non-
terminal = Block” correspondence is only
employed for structuring language speci-
fications, not for mapping nonterminals
into blocks in the implementation of at-
tribute grammars. In general, the struc-
ture of a specification and the structure
of the corresponding program are com-
pletely different topics. For instance,
HLP84 whose metalanguage is block
structured generates language proces-
sors where this structuring is totally ef-
faced [Koskimies et al. 1988].

Procedures

In addition to blocks, nonterminals can
be mapped to other structuring units as
well, giving rise to alternative forms of
structured language processing. The con-
ventional style of programming language
processors is to apply the recursive-
descent method where the nonterminals
of the underlying grammar are repre-
sented by recursive procedures.®> When
considering parameters of these proce-

5In this case nonterminals are mapped into the
implementation. However, recursive-descent com-
pilers are factually equivalent with LL-attributed
grammars [Wilhelm 1982], and thus represent a
special case where implementation follows specifi-
cation closely.
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dures as “semantic attributes,” we can
characterize the recursive-descent
method as being based on the following
correspondence:

Nonterminal = Procedure

Most implementations of L-attributed
grammars generate (one-pass) recursive-
descent compilers that apply this corre-
spondence operationally. Nonterminals
are considered as procedures even con-
ceptually in some language processor
generators. For instance, the metalan-
guage of DEPOT2a, ML2a, is stuctured
according to the correspondence given
above [Grossmann et al. 1984]. A lan-
guage (processor) specification written in
ML2a is composed of procedures such
that each procedure expresses the pro-
cessing of a sublanguage in terms of other
procedures. Inherited attributes are
represented as input parameters, and
synthesized attributes as output pa-
rameters. The block structure in ML2a
is flat: all the nonterminal procedures
must be defined at the same level of the
specification. In DEPOT2a the “Non-
terminal = Procedure” correspondence is
carried over from the metalanguage into
the implementation, and the generated
language processors are backtracking re-
cursive descent.

2.2.1 TOOLS

TOOLS is a language processor genera-
tor whose metalanguage is structured
following the style outlined above: non-
terminals are expressed as blocks
[Koskimies and Paakki 1990; 1991]. The
system is a descendant of HLPS84
[Koskimies et al. 1988] that was designed
to support one-pass language implemen-
tation with a high-level extended at-
tribute grammar as the metalanguage.
The extensions, available both in HLP84
and TOOLS, include (besides the struc-
turing facilities) a restricted form of
global attributes, semantic consistency
conditions, and an abstraction of
“ordinary” symbol table operations.
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TOOLS is much more powerful than
HLP84, being able to generate multipass
implementations as well. This is achieved
by specifying in the attribute grammar
both a mapping of the source program
into its intermediate abstract syntax tree
and a traversal scheme over the tree. The
traversal may correspond to the code
generation phase of a compiler, or to im-
mediate interpretation.

TOOLS is a versatile system with an
expressive specification language. The
custom of describing the abstract syntax
tree is to map instances of central non-
terminals with nodes of the tree. Those
nonterminals that correspond to syntax
tree nodes are specified as classes in the
attribute grammar. This principle brings
an object-oriented flavor into TOOLS. We
do not address this aspect here but refer
to Section 2.4 where object-oriented at-
tribute grammars are discussed.

Let the attribute grammar for a lan-
guage include the following two produc-
tions for the nonterminal N, where A and
B denote other nonterminals:

N> «-A--
N> ---B--

{{semantic rules (1))}
{{semantic rules (2))}

In TOOLS metalanguage, the gram-
mar fragment is written in the following
block-structured form:

structure N: {attributes of N);
structure A: {attributes of A); ... e
structure B: (attributes of B), ... e
form ... A...do {semantic rules (1
form ...B...do {(semantic rules (2

end N;

>
be

~——

Hence, the nonterminal N is a block
(expressed by “structure N...end N”)
with local declarations. The nontermi-
nals used in the productions of N (here A
and B) are declared as local nonterminals
of N. As usual in block-structuring, A (or
B) has to be declared on a global level if
it 1s also referenced outside of the block
for N. A form clause stands for a produc-
tion (its right-hand side) and its associ-
ated semantic rules for the enclosing
nonterminal. Note the centralizing effect
of block-structuring: all the aspects of a
nonterminal can be specified as one unit,
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without spreading them over individual
productions throughout the specification,
as is the case with standard attribute
grammars.

As an example of a block-structured
attribute grammar, we describe our
DESK language (see Example 1.3.1) us-
ing the metalanguage of TOOLS. Since
the preferable application area of TOOLS
is interpretation, the grammar specifies
now an interpreter rather than a com-
piler. Notice that this solution is actually
quite natural in this case since the primi-
tive DESK language does not have any
recursive or iterative control structures.

The structure of the specification can
be systematically extracted from the con-
text-free grammar of DESK. When fol-
lowing the guidelines given above, the
following nesting of grammar symbols is
obtained:

Program
Id
Number
Expression
Factor
ConstName
ConstPart
ConstDefList
ConstDef
ConstName

Notice that Id and Number must be
declared at the same level as Expression
and ConstPart to make them globally vis-
ible for the local nonterminals Factor,
ConstName, and ConstDef. Notice also
that the hierarchy above introduces two
different nonterminals of the same name
ConstName. This reflects the fact that
even though the occurrences have the
same name, they have different seman-
tics: the ConstName occurrence for Factor
stands for an application of a defined
constant, whereas the ConstName occur-
rence for ConstDef represents the defini-
tion of a constant. This distinction
matches with the TOOLS methodology
better than the unified solution used in
the attribute grammar (1.2), and it also
demonstrates the central principle of lo-
cal naming in block-structured attribute
grammars. The specification of the DESK
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interpreter is given below.

external
procedure Print (i:Integer);
end;

structure Program;

type Constant = class
key name: String;
value: Integer,;

end;

—Intermediate tree and its interpretation

—symbol table

{(dynamic semantics):

type Expr = class
value: Integer;
sort Literal: ( );
sort ConstRef; (name: String);
begin
value: = [Constant]lname.value;
end;
sort Add: (left: Ref (Expr); right: Ref (Expr));
begin
execute left;
execute nght;
value: = left.value + right.value;
end;
end;

—attribute grammar (static semantics):

token Id. String = Letter + ;
token Number: Integer = Digit + ;

structure Expression: Ref (Expr);
structure Factor: Ref (Expr);
object ConstName: Ref {ConstRef);
form Id do name: = Id end;
end ConstName;
object LiteralConstant: Ref (Literal);
form Number do value:= Number;
end LiteralConstant;
form ConstName do
Factor:= ConstName;
form LiteralConstant do
Factor = LiteralConstant;
end Factor;
object Addition: Ref {Add);
form Expression ‘+’ Factor do begin
left: = Expression;
right: = Factor;
end;
end Addition;
form Addition do Expression: = Addrtion;
form Factor do Expression: = Factor;
end Expression;

structure ConstPart;
structure ConstDefList;
object ConstDef: Ref (Constant);
structure ConstName: String;
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form id do ConstName: = Id,
end ConstName,
form ConstName ‘=" Number
do begin
name: = ConstName;
value: = Number;
end,
end ConstDef;
form ConstDeflList ;" ConstDef,
form ConstDef,
end ConstDefList;
form Empty;
form ‘WHERE’ Const'Deflst,
end ConstPart,

form ‘PRINT’ Expression ConstPart
do begin
execute Expression;
Print (Expression.value);
end;
end Program

TOOLS provides high-level abstrac-
tions for managing hierarchical and
linked data structures. In this applica-
tion we have used these abstractions for
the definition of the symbol table and the
intermediate syntax tree. They are repre-
sented in the specification as the class
types Constant and Expr, respectively,
with associated attributes.

The symbol table collects all the con-
stants defined in a DESK program. Each
of them has name and value as its at-
tributes. The name attribute is used for
identifying the constant (key indication).
A symbol table lookup is expressed by
the notation [Constant]X where X is the
key value used for identification. A sym-
bol table insertion is specified by denot-
ing a nonterminal as being an object (of
type Ref (Constant)) instead of being an
ordinary structure. The created symbol
table entry receives its attribute values
from the associated nonterminal, in this
case from an instance of ConstDef. Both
operations, lookup and insertion, auto-
matically yield an error message if a con-
stant with the same name is already in
the symbol table, or if the referenced
constant is not found there, respectively.

The intermediate tree has several
kinds of nodes, one for each different
executable DESK entity. In this example
an expression may consist of literal con-
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stants (sort Literal), named constants
(sort ConstRef), and additions (sort Add).
The creation of a node is specified in the
same manner as for symbol table en-
tries, with object nonterminals in the
attribute grammar. The dynamic seman-
tics (that is, interpretation) of the inter-
mediate tree is described by associating
sort-specific operations with the class
Expr. The execute clause denotes execu-
tion of the code associated with the indi-
cated node. Note that dynamic semantics
is specified operationally rather than
declaratively.

The actual attribute grammar is orga-
nized following the block-structured prin-
ciples discussed above. The attributes of
a symbol are defined by a semantic type
that follows the symbol’s name. Ref (C) is
a predefined type for (symbol table and
intermediate tree) references of class C.
If the semantic type is simple (e.g., Ref
(Expr)), the associated symbol has only
one attribute of the same name as the
symbol itself. The attributes of terminal
symbol instances (Id and Number) are
automatically evaluated from the lexical
representation of the instance in the
source program. We have included some
technical object nonterminals in the
grammar for specifying the creation of
the symbol table and the intermediate
tree. Notice how the decision to use con-
ventional blocks as the model of structur-
ing the attribute grammar separates the
productions of a nonterminal from its at-
tributes, a feature which may make it
hard for a novice to read the grammar.

From this specification, TOOLS gener-
ates a “partially two-pass” interpreter for
DESK. The first pass does lexical, syn-
tactic, and static semantic analysis of the
constant definitions, as well asg creates
an intermediate tree for the expression.
For example, after executing the first
pass over the program

PRINT x+y+1WHERE x=1,y=2

the symbol table (Constant) and the
intermediate tree (Expr) have the con-
tents shown in Figure 6. Dotted lines
denote symbol table bindings to be real-
ized in the second pass of interpretation.
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Constant

name: X
value: 1

name:y
value 2

]

Expr

value
?

Add

Add
left right

Literal

value left nght [value

ConstRef /

XI ConstRef

| value name
? X

value name -
? Y

|
|
|
|
|
|
|
|
|
|
|

Figure 6. Symbol table and intermediate tree.

In the second phase the tree is tra-
versed, and the intermediate code associ-
ated with its nodes is executed. Due to
the use-before-declaration feature of
DESK, this phase also involves resolving
and checking referenced constants. Inter-
pretation is finished by printing the value
of the expression using the external (Pas-
cal) procedure Print. In the situation de-
picted in Figure 6, the value 4 will be
produced as a result.

Note that TOOLS makes it necessary
to specify the structure of the intermedi-
ate syntax tree explicitly, whereas the
tree would be implicit in more declara-
tive multipass systems, such as GAG
[Kastens et al. 1982]. On the other hand,
the TOOLS approach allows for quite
general and complex language processing
strategies (as interpretation in this ex-
ample) instead of supporting a fixed com-
pilation scheme only.

2.3 Modular Attribute Grammars

Blocks and procedures are sufficient for
organizing programs on a small scale.
These concepts of structured program-

ming, however, fall short in sizable appli-
cations. That is why more advanced
facilities have been developed for pro-
gramming-in-the-large. Such concepts,
generally called modules, support in par-
ticular the construction of programs from
independent units that provide services
to each other through an explicit narrow
interface. Modules are superior to blocks
and procedures in their reuse and mod-
ification capabilities: a well-designed
module can be incorporated in many
programs, and it may be revised with-
out forcing major (if any) changes to other
modules.

Therefore, even though modules are in
many respects similar to blocks and pro-
cedures, this particular programming
style is usually characterized by the spe-
cial term modular programming. The
paradigm involves, besides the general
properties of structured programming
outlined in Section 2.2, also the following
fundamental characteristies:

e data abstraction
¢ information hiding
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e geparate compilation.

These modular programming features
make it possible to design abstract data
types. In an abstract data type specifica-
tion the values of the type are not given
explicitly but are instead defined indi-
rectly by the operations. An abstract data
type specification (as well as a module in
general) is usually divided into two parts:
an interface part introduces the public
components that are available to other
modules, and a separate implementation
part gives the exact realization of the
components. The data type is “abstract”
in the sense that a user of the type has
only access to the interface of the public
components, not to their implementa-
tions nor to the private components of
the module. Thus the implementation
part can freely be modified without in-
ducing any changes into other parts of
the program, as long as the interface
remains the same.

Another pragmatic merit of modules is
that they are autonomous to the extent
that they can be compiled separately from
other modules. This facilitates incremen-
tal software development, makes it feasi-
ble to assemble program libraries, and
reduces recompilation efforts on software
updates.

In the spirit of the structured attribute
grammar paradigm, one form of a modu-
lar attribute grammar methodology is
founded on the following correspondence:

Nonterminal = Module

Now the nonterminals of an attribute
grammar are represented as modules
that make it possible to specify and store
linguistic elements completely that are
common in several programming lan-
guages. Such sublanguage specifications
can then be used in a new language spec-
ification by importing the nonterminal
modules into the new specification. The
interface of a nonterminal module con-
sists of the attributes of the nonterminal,
whereas the semantic rules are hidden
within the implementation part. This
makes it possible to change the seman-
tics of a nonterminal without modifying
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its clients. The same also holds for the
syntax: the productions for the nontermi-
nal and for the grammar symbols ap-
pearing in them are given only in the
implementation part.

Modular attribute grammars introduce
an interesting implementation problem:
how can a lexical and syntactic analyzer
be produced for a nonterminal without
any global syntactic information (such as
the First and Follow sets; e.g. Aho et al.
[1986])? One approach recently sug-
gested is to employ a lazy/incremental
method where the analyzers are con-
structed dynamically at parse-time, si-
multaneously with parsing the input (see
Heering et al. [1990] or [Koskimies
1990).

Attribute grammars based on modular-
izing the nonterminals have been dis-
cussed, e.g., in Koskimies [1989] and in
Toczki et al. [1989]. Other, principally
different methods of modularizing at-
tribute grammars have also been devel-
oped. The correspondence

Attribute = Module

is the basis in MAGGIE [Dueck and
Cormack 1990]. This approach suggests
that attributes, rather than nontermi-
nals, are the central semantic elements
of an attribute grammar. In this case a
module contains all the semantic rules
for the corresponding attribute, which
implies that the module also must list all
the productions that define an occur-
rence of the attribute. The modular prop-
erties of MAGGIE are rather primitive
gince they do not support true informa-
tion hiding nor separate implementation.
(Before compiler generation, the modular
structure of the attribute grammar is ef-
faced by a transformation into a stan-
dard monolithic grammar.)

A more general and flexible form of
modularity is suggested in, e.g., Watt
[1985], Reps and Teitelbaum [1989],
Jourdan et al. [1990], and Farrow et al.
[1992], that pursue modularization in
terms of different semantic subproblems.
The following characterization summa-
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rizes this direction for modular attribute
grammars:

Semantic aspect = Module

Now a module contains all those parts of
an attribute grammar that assist with
the specification of a semantic aspect,
typical examples being the scope and type
rules of the language, data-flow analysis,
and code generation. Typically the
method assigns several nonterminals, at-
tributes, and productions to the same
module. This general form of modulariza-
tion can also be applied in a more opera-
tional style by mapping the modules with
the different phases of a compilation pro-
cess, as suggested in Ganzinger and
Giegerich [1984] and Ganzinger et al.
[1982].

One way of introducing data abstrac-
tion into attribute grammars is to con-
sider the semantic functions as abstract
operations on attribute domains. Then
the operations applied on the same do-
main constitute an abstact data type that
can be externally implemented. The at-
tribute grammar can be pasted together
with the abstract data types in the usual
manner, through the interfaces of the
types. This method has been suggested,
e.g., in Waite [1986], as an enhancement
of the GAG system [Kastens et al. 1982].

An application-oriented utilization of
data abstraction is to focus on the central
data structure in language implementa-
tion: the symbol table. Considering the
symbol table as an abstract data type
makes it possible both to specify symbol
processing on an abstract level in the
attribute grammar and let the underly-
ing system generate a suitable imple-
mentation.

The obvious problem with this idealis-
tic view is that the visibility and type
rules of two languages can be totally dif-
ferent, and that even related languages
may have subtle variations in their sym-
bol processing policy. That is why it is
quite hard to design high-level abstrac-
tions that universally apply to a large
class of programming languages. One
general model of visibility control is given
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in Garrison [1987], including an exten-
sive study of the variations in different
languages. However, the model has not
been implemented. Another approach is
to concentrate on features that are com-
mon in a family of related languages and
to design high-level abstactions for those
languages only. Such a resticted symbol
table abstraction for one-pass languages
has been presented in Koskimies [1984]
and implemented in HLP84 [Koskimies
et al. 1988] and TOOLS [Koskimies and
Paakki 1990]. Reiss [1983] presents a
more general model that is influenced
most notably by the features of Ada. The
model has been integrated as part of the
ACORN compiler writing system [Reiss
1987]. Other approaches to high-level de-
scription of common symbol table mecha-
nisms include those of Vorthmann and
LeBlanc [1988] and Kastens and Waite
[1991].

2.3.1 Linguist

Modular attribute grammars are dis-
cussed in Farrow et al. [1992] under the
notion of composable attribute gram-
mars. The module concept of this formal-
ism has been designed to support reuse
and separate implementation of attribute
grammar units. Composable attribute
grammars are directed at separate speci-
fication of different subproblems in lan-
guage processing and thus belong to the
category “Semantic aspect = Module” of
the modular attribute grammar method-
ology. A restricted class, separable com-
posable attribute grammars, has been
implemented in the Linguist translator
writing system [Declarative Systems
1992].

A composable attribute grammar con-
sists of a set of component (module) at-
tribute grammars and one glue gram-
mar. Each component specifies the phrase
structure of a particular subproblem.
Since the components should be highly
reusable, they are expressed in terms of
abstract, language-independent context-
free grammars. The syntactic structure
of the language under implementation is
specified as the glue grammar, where the
syntax of the language is given as a con-
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crete context-free grammar, and the se-
mantics is defined in terms of relevant
component grammars. The ideal princi-
ple is to pick the components from a
specification library fit for the particular
language and for the specific implemen-
tation strategy.

The interface of a component consists
of its (abstract) context-free grammar and
its association of data flow with the (ab-
stract) terminal symbols. The novel
design decision has been to base the
semantic interfacing on the input and
output attributes of the terminals of a
component attribute grammar. The input
attributes represent contextual data to
the component, while the output at-
tributes represent resulting semantic in-
formation. This principle is quite simple
and makes it easy to verify the correct-
ness of the final interfaces. On the other
hand, the method may in some cases force
the introduction of unintuitive and artifi-
cial semantic handles into the compo-
nents.

The explicit interactions between com-
ponent attribute grammars are not fixed
until the glue grammar is constructed.
Hence, modularity is preserved, and a
component can be freely modified with-
out affecting the other components. A
modification of a component even leaves
the glue grammar unchanged, as long as
the interface remains unaffected. This
property makes it possible to design in-
terchangeable components having the
same phrase structure and interface (i.e.,
they address the same problem) but ex-
pressing different solutions for different
classes of languages.

As an example of the approach, we
specify the DESK compiler as a compos-
able attribute grammar. Our implemen-
tation must take care of two semantic
subproblems: name analysis and code
generation. Accordingly, it is reasonable
to base the modular specification on two
component attribute grammars, one for
name analysis and the other for code
generation.

Since the notation for composable at-
tribute grammars has not been abso-
lutely fixed in Farrow et al. [1992], we
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use the same basic notations as earlier.
An abstract terminal symbol t with input
attributes iy, ..., i, and output attributes
04,...,0p, is defined as follows:

terminal t: {in 1,,...,i,; outo,,..., 0.}

The productions are preceded by their
symbolic name, to be used in the glue
grammar. A grammar module M is ex-
pressed in the form

module M
end M.

The component grammar Env for name
analysis is given below. For emphasizing
the reuse property of grammar modules,
the component specifies symbol table
management in a slightly more general
manner than is actually needed for im-
plementing the DESK language. The
component specifies the pattern of the
name analysis phase for a typical un-
structured programming language with
declared symbols. The grammar could
thus be adopted as a fragment in the
specification and implementation of an-
other language in the unstructured fam-
ily. We make use of the same attributes
as in the attribute grammar (1.2) of Ex-
ample 1.3.1.

Module Env
terminal symbolDEF {in name, value, out ok}
terminal symboIlREF: {in name, out value, ok}
it symbols; — symbols,
—creation of an empty symbol table
{symbols,.envi={ ),
symbols; envs = symbols,.envs}
empty. symbols — &
—empty structure
{symbois envs = symbols.envi}
chain' symbols; — symbols,
—symbol table propagation
{symbols,.envi = symbols,.envi,
symbols,.envs = symbols,.envs}
list: symbols, — symbols, symbols,
—recursive structure
{symbols,.envi = symbols,.envi,
symbols,.envi = symbols,.envs,
symbols,.envs = symbols, envs}
def- symbols — symbolDEF
—symbol declaration
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{symbols.envs = symbois.envi +
(symbolDEF.name, symbolDEF.value),
symbolDEF.ok = not
isin {symbolDEF.name, symbols.envi)}
ref: symbols — symbolREF
—symbol reference
{symbols.envs = symbols.envi,
symbolREF.value
= getvalue {(symbolREF.name, symbois.
envi),
symbolREF.ok
=1sin (symbolREF.name, symbols.envi)}
end Env.

The component grammar Code for as-
sembly code generation is given below.
The module is constructed with the ob-
servation that in an assembly problem of
this kind we must be able to handle (1)
generation of single instructions, (2) gen-
eration of instruction sequences, and (3)
provision of final code.

module Code
terminal loadable’
terminal operand: {in: insir, ok}
terminal end: {in. ok, out: code}
single: assembly — loadable
—single load instruction
{assembly.code = if loadable.ok
then (LOAD, loadable.value)
else (HALT,0)}
seq: assembly, — assembly, operand
—sequence
{assembly,.code = if operand.ok
then assembly,.code
+operand.instr
else (HALT,0)}
final: assembly, — assembly, end
—total code
{assembly,.code = assembly,.code,
end.code = if end.ok
then assembly,.code + (PRINT, 0)
+{HALT, 0)
else (HALT,0)}
end Code.

{in: value, ok}

Finally, the glue attribute grammar for
the DESK language is constructed. The
complete specification imports the com-
ponent grammars Env and Code. The
method of integrating component gram-
mars into a total attribute grammar is to
use syntactic altributes and production
constructors in the glue grammar. A non-
terminal N of the glue grammar may
have a syntactic attribute with the same
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name & as a nonterminal defined in one
of the component grammars. Suppose
that a component grammar includes the
following definition for a:

ra-b,...o,{...}

Then the semantic rule for N.a must be
of the following form:

N.a=r(by,...,b!)

where r is a production constructor (i.e.,
the name of a production in the com-
ponent grammar), and each b’ is an
occurrence of a syntactic attribute or an
application of another production con-
structor. Hence, the rule for N.a inte-
grates the glue grammar structurally
with the component grammar, and the
actual semantic rules applied on N.a are
those defined in production r of the com-
ponent grammar. If some element b, in
production r is a terminal symbol, then
the corresponding element b| in the glue
production must be a local terminal con-
stant (see below). The glue production
must in that case define the input at-
tributes of the terminal constant, serving
as the input interface to the correspond-
ing terminal symbol in the component
production r. Accordingly, the output at-
tributes of the terminal symbol, repre-
senting its output interface, can be
accessed in the glue grammar via the
corresponding terminal constant.

Recall that the only form of propaga-
tion of data between the modules is ex-
pressed using the terminal symbols of
the components and the corresponding
terminal constants of the glue. (Syn-
tactic) nonterminals cannot be used for
this purpose, but they instead serve for
defining the phrase structure of attribute
evaluation in the component grammars.
We use the following notation for defin-
ing a terminal constant ¢ that is mapped
with a terminal symbol t:

c: t = {{definition of input attributes)}

The concrete glue grammar for DESK
is given in Algorithm 1. The concrete
attribute evaluation scheme for the
source program “PRINTxWHERE x = 27,
as defined by the glue grammar DESK, is

ACM Computing Surveys, Vol. 27, No. 2, June 1995



224 . Jukka Paakki

Algorithm 1.

module DESK (Env, Code) ——glue grammar, given In terms of
— —the components Env and Code
Program — ‘PRINT’ Expression ConstPart

{Program.symbois =

- —syntactic attribute

init (ist(ConstPart symbols, — —production constructor
Expression.symbols)),
Program.assembly = final{(Expression assembly, STOP),

Program.code = STOP.code,

- —ordinary attribute

STOP. end = {ok = ConstPart.ok}} — —terminal constant

Expression; — Expression, ‘+’ Factor
{Expression, symbols = hist(Expression ,.symbols, Factor.symbaols),
Expression, assembly = seq(Expression, assembly, OF),
OP: operand = {instr = (ADD, Factor.value), ok = Factor.ok}}

Expression — Factor

{Expression.symbols = chain(Factor.symbols),
Expression.assembly = single(OP),
OP: loadable = {value = Factor value, ok = Factor ok}}

Factor — ConstName
{Factor.symbols = ref(CREF),
Factor value = CREF value,
Factor ok = CREF ok,

CREF: symbolREF = {name = ConstName.name}}

Factor - Number
{Factor.symbols = empty,

Factor value = Number value,

Factor.ok = true}

ConstName — Id {ConstName name = Id name}

ConstPart — ¢ {ConstPart.symbols = empty, ConstPart.ok = true}

ConstPart — ‘WHERE’ ConstDeflLust
{ConstPart.symbols = cham(ConstDefList symbols),
ConstPart.ok = ConstDefList.ok}

ConstDefList, — ConstDefList, ‘,” ConstDef
{ConstDefList,.symbols = list (ConstDeflList, .symbols, def(CDEF)),
ConstDefList,.ok = ConstDeflist, ok and CDEF.ok,
CDEF: symboIDEF = {name = ConstDef name,
value = ConstDef.value}}

ConstDeflist — ConstDef

{ConstDefList.symbols = def(CDEF),

ConstDeflist.ok = true,

CDEF. symbolDEF = {name = ConstDef name,
value = ConstDef value}}

ConstDef — GonsiName "= Number
{ConstDef.name = ConstName name,
ConstDef value = Number value}

end DESK.

illustrated in Figure 7. The figure shows
how the glue grammar gives rise concep-
tually to two abstract attributed syntax
trees, one for name analysis and the other
for code generation. The nodes in these
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trees stand for grammar symbols of the
corresponding component grammars Env
and Code. The association of a node to
the symbol in the glue grammar is indi-
cated by giving in parenthesis the name
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Figure 7. Tree association by modular attribution.

of the glue symbol. The tree rooted by the
node with label symbols (Program) repre-
sents name analysis, and the tree rooted
by the node with label assembly (Pro-
gram) is for code generation. Note that a
node is associated with attribute in-
stances for both its component symbol
(e.g., symbols) and its glue symbol (e.g.,
Program).

For simplicity, Figure 7 includes only
the environment attribute instances of
the nodes for symbols (envi to the left
and envs to the right of a node), except
for one node that illustrates the seman-
tic coupling between the attributed trees
via the instances of value and ok. The
attribution of symbolDEF has been sim-
plified. Moreover, the attributed tree for
code generation is given in a reduced
form that includes only the interface be-
tween the two trees. Notice that the
order of the subtrees for the constant
definition part and for the expression part
of the source program (nodes for Const-
Part and Expression, respectively) is dif-
ferent from the order in the glue gram-
mar and in the source program. This fa-

cility, provided by the conceptual separa-
tion of the (abstract) component gram-
mars and the (concrete) glue grammar,
makes it possible to elegantly coerce the
concrete right-to-left flow of symbol table
information (see Figure 4) into the ab-
stract left-to-right form as implemented
in the component grammar Env.

2.4 Object-Oriented Attribute Grammars

In the previous section we characterized
modular programming as a paradigm
based on static decomposition of pro-
grams, data abstraction, information
hiding, and separate compilation. Object-
oriented programming is a refined form
of the structured and modular styles and
combines the concepts of a module (a
purely syntactic unit) and a type (a con-
struct that can give rise to an arbitrary
number of dynamic instances) into a sin-
gle concept, a class. Thus, a class can be
employed on one hand as a program
structuring tool and on the other hand as
an abstract data type. The entities that
are created at run-time as instances of a
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class are called objects. The third funda-
mental concept is inheritance: a class can
be defined as a generalization (super-
class) or a specialization (subclass) of an-
other class. Accordingly, the objects can
be grouped into hierarchies that are in-
duced by their superclass and subclass
relations. Objects of a subclass inherit
implicitly all the properties defined for
objects of the superclass. Additionally,
objects may have specific properties de-
fined in the subclass. The reference
mechanism is polymorphic: a reference
of class C can denote, besides an object of
class C, also an object of a subclass of C.
This feature implies that in general the
actual object referenced must be resolved
at run-time by dynamic binding.

The basic concepts of object-oriented
programming, in addition to those of
modular programming, are thus

e classes
¢ inheritance

¢ objects, having an inner state and a set
of applicable operations (“methods™)

¢ polymorphism and dynamic binding.

These special properties support system
reusability and extendibility in a more
flexible way than the non-object-oriented
structuring facilities discussed in Sec-
tions 2.2 and 2.3: a new system can be
built from an existing one by specializing
the existing classes and objects through
inheritance to fit the problem domain
better.

When introducing object-oriented con-
cepts into attribute grammars, the fol-
lowing correspondence is one relevant
framework for object-oriented attribute
grammars:

Nonterminal = Class

With respect to static interpretation of
classes, this amounts to the structured
and modular language processing
paradigms discussed in Sections 2.2 and
2.3: nonterminals serve as structuring
tools of the attribute grammar. The es-
sential feature, however, that makes the
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object-oriented style most powerful in
language processing is the dynamic
nature of nonterminals it promotes: a
nonterminal can be considered as an
abstract type (class) that specifies the
properties of the dynamically created ob-
jects of that type. This view is consistent
with the principle used in syntax-di-
rected language processing where non-
terminals, terminals, and productions
represent a static language specification
from which an underlying parser creates
the corresponding dynamic objects as
nodes of the parse tree.

Object-oriented language processing is
appropriate for both compilation and in-
terpretation, the two main implementa-
tion schemes of programming languages.
The operations of an object can specify
either compilation of the corresponding
language structure into some target code
or dynamic execution of the object in
terms of its state. Hence, objects can be
regarded as abstract operations of an un-
derlying intermediate language that is
executed by an abstract interpreter.

In the object-oriented language pro-
cessing paradigm a source program is
viewed as a set of interrelated and hier-
archical objects that behave according to
the semantics of the source language. The
objects are created as instances of the
nonterminal classes that specify both the
syntax and the semantics of the objects.
Hence, for each object there is (1) a non-
terminal (class) that defines the syntac-
tic structure of the object in terms of
productions and (2) a class (nonterminal)
that specifies the static and dynamic se-
mantics of the object in terms of its at-
tributes (“state”) and operations. This
pertains to an application-oriented view
that is often mentioned as a profound
factor in the object-oriented approach to-
ward software engineering.

The correspondence “Nonterminal =
Class” suggests that the syntactic specifi-
cation of the source language derives
implicitly the superclass/subclass hier-
archy in the attribute grammar and, from
a dynamic point of view, the relations
between the objects generated by a source
program (i.e., the “attributed derivation
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tree”). In order to gurantee that the class
and object hierarchies are regular enough
both from a general object-oriented and
from a language processing point of view,
the syntactic specification should be given
in a disciplined form. The idea of map-
ping a context-free grammar into a class
hierarchy has implicitly been applied in
language definitions as a rather natural
tool. For instance, the production

compound__statement ::= If_statement |
case_statement |

loop _statement | block__statement |
accept_ statement | select__statement

in the Ada reference manual specifies
that: “if_statement is-a compound_
statement”, ‘“case_ statement is-a com-
pound_statement”, ..., “select_statement
is-a compound_ statement” [Department
of Defense 1983]. Different forms of ob-
ject-oriented context-free grammars are
defined in Koskimies and Paakki [1990]
and Koskimies [1991].

A conceptual correspondence between
nonterminals and classes is the basis in
TOOLS [Koskimies and Paakki 1990] and
in AG [Grosch 1990]. The TOOLS system
has been presented in Section 2.2, where
structured attribute grammars were dis-
cussed. Besides a block-structured basis,
the specification language of TOOLS has
a number of primitives that support the
object-oriented language processing
methodology. For instance, nonterminals
can be organized as classes into (re-
stricted) inheritance hierarchies over at-
tributes. The classes may also specify
operations for their objects that are poly-
morphic within their own class hierar-
chy. Some of these features were applied
in the example of Section 2.2.1.

A slightly broader perspective is fol-
lowed in Mjélner /Orm [Hedin 1989] and
in OOAG [Shinoda and Katayama 1990]
that suggest the correspondence

Production = Class

A completely different view is taken in
SmallYACC where a context-free gram-
mar as a whole is subject to inheritance
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of productions from “superclass” gram-
mars [Aksit et al. 1990].

2.4.1 Mjdiner | Orm

Mjélner/Orm is a metaprogramming
system based on a general object-ori-
ented view of programs. The system
maintains programs consistently as at-
tributed abstract syntax trees, and sup-
ports the development of integrated
programming environments including
such program processing tools as
syntax-directed editors and interpreters.
An overview of the system is included in
Knudsen et al. [1993].

Mjélner/Orm includes as a central
subcomponent an object-oriented at-
tribute grammar-based metalanguage for
specifying and developing different kinds
of language processors of a programming
environment. Besides treating nontermi-
nals as (abstract) classes, the metalan-
guage of Mjdlner/Orm also considers
each production as a class that specifies
the syntactic structure of the production,
the attributes of its left-hand-side non-
terminal, and the associated (default) se-
mantic rules. All these elements can be
inherited, specialized, and overridden in
subclasses, thus introducing virtual
properties and dynamic binding into the
metalanguage. The original object-ori-
ented notation of Mjdlner /Orm is pre-
sented in Hedin [1989] and its further
elaboration in Hedin [1992].

Because Mjdlner/Orm is designed to
produce integrated environments, the
context-free grammar for a language is
given in terms of its abstract syntax. In
order to process concrete programs, a
special interface must be separately built
between the concrete and the abstract
representation. Each production is ex-
pressed as a class that can be one of the
following kinds:

(1) An abstract class models an entity
whose syntactic structure is not fixed
and that usually represents general
semantic properties.

(2) A structured class represents an en-
tity with a particular syntactic out-
look.
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(3) A case class represents an entity
whose syntactic structure is inherited

as 1s but whose semantics can be re-
fined.

A structured class specifies a production’s
right-hand side either as a sequence of
named symbols, as a symbol list, or as a
lexical element (“lexeme”). In addition to
the conventional inherited (ancestral in
the Mjélner /Orm terminology) and syn-
thesized attributes local attributes can
be associated with a production. They
cannot be accessed from outside of the
production class.

The production classes are defined us-
ing the following notation. P denotes the
name of the class, and S its optional
superclass. A sequence of attribute decla-
rations and semantic rules is denoted
briefly by Sem.

abstract, and therefore the delimiters and
operators of DESK are not specified.

The abstract classes in Algorithm 2,
Node, Root, Descendant, Expression, and
ConstPart, are semantic superclasses that
do not give rise to explicit objects in the
syntax tree. They are instead used for
specifying general properties of tree
nodes, most notably the common at-
tributes and their default semantic rules.
These general properties are refined,
when needed, in the structured and case
subclasses Program, IdUse, Number,
BinOp, Addition, EmptyConstPart, Const-
DefList, and ConstDef specifying the ac-
tual objects as tree nodes.

The class hierarchy of nonterminals as
specified by the grammar is depicted in
Figure 8 with subclasses drawn below
their superclass. The classes are associ-

(P> (S) .= Abstract Sem
(P):(S)..={C)* Sem
Py (S :={Ut1-C1) &...&{n:Cn)} Sem

(P):(S)::= Lexeme Sem
{P):{8) = Case Sem

(abstract class)
(structured list of symbols C)

(structured sequence of symbols

t1 (of class C1), ..., tn (of class Cn))
(structured lexeme class)

(case class)

In the conventional notation of contex-
free grammars, these correspond to the
following productions, respectively:

P—PP,l...

P - C*

P—-C1...Cn

P — some lexical definition

P — same syntax as defined for S

Hence, an abstract class models a group
of related language entities P,,P,,...
(such as a compound_statement of Ada;
see above), and lexeme classes stand for
terminal symbols. Case classes are not
given any syntactic structure because
they are implicitly defined by the super-
class S.

As an example of the approach,
we give an object-oriented attribute
grammar for DESK in the Mjdlner /Orm
metalanguage in Algorithm 2. Inherited
attributes are denoted with Anc and syn-
thesized attributes with Syn. Note that
the underlying context-free grammar is

ACM Computing Surveys, Vol 27, No. 2, June 1995

ated with their final set of attributes,
obtained after applying the inheritance
mechanism. The figure also shows the
border between the abstract classes and
their structured and case subclasses. No-
tice that an abstract class must have at
least one structured subclass in order to
be useful for the implementation. The
flexibility granted by inheritance is the
introduction of attributes and semantic
rules at any level of the class hierarchy.
Default behavior is typically specified in
the abstract classes and redefined in their
subclasses, if necessary. For instance, the
multiple semantic rule “for all sons (X)
in Descendant son (X).envi:= ( )” for the
class Root states that all the Descendant
sons of a Root object node in an abstract
syntax tree will get an empty tables as
the default value of their envi attribute.
This default rule is partially overridden
in the class Program that specifies that
the envi attribute of an Expression object
node (with Descendant as superclass)
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Algorithm 2.
(Node) : := Abstract,
{Root) . (Node) : : = Abstract
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- —general node of an abstract syntax tree

— —abstract root node

for all sons(X) in Descendant son(X).envi:= { ),

{Descendant) : (Node) : : = Abstract

— —abstract interior node

Anc envi: SymboiTable; Syn ok Boolean;
for all sons(X) in Descendant son(X).envi .= envi;

ok : = true,

{Program) (Root)::= {(e. Expression) & {cp ConstPart)}
- —structured class for production
—~-Program — Expression ConstPart

Syn targetCode" InstrList,
e.envi' = cp.envs;

targetCode : = if cp.ok then e.code + (PRINT, 0) + (HALT, 0)

else (HALT,0);

{Expression) : {Descendant) : : = Abstract
Syn code: InstrList; Syn value: Integer;

code := {(HALT, 0);
value := 0;

(ldUse) : {Expression) : : = Lexeme

ok = isin{string, envi),
value : = getvalue(string, envi),

code : = if ok then (LOAD, value) else (HALT, 0);
{Number) : (Expression) : : = Lexeme

value : = StrTolnt(string);
code : = (LOAD, value),

(BINOp) : (Expression) : :=

{(left: Expression) & {right: Expression)};

{Addition) : (BInOp) : : = Case

code : = if right.ok then left.code + (ADD, night.value)

else (HALT,0);

(ConstPart) : {Descendant) : : = Abstract

Syn envs: SymbolTable,
envs:= (),

{EmptyConstPart) : (ConstPart) ::= { };

{ConstDeflist) : {ConstPart) . .= {{cp ConstPart) & {cd: ConstDef)}
ok := cp.ok and not isin{cd.name, cp.envs);
envs : = ¢p.envs + {cd.name, cd.value);

{ConstDef) : {Node) : := {{1: Id) & {n: Number)}
Syn name: String; Syn value: Integer;

name : = i.string,
value := n.value;

{Id).:= Lexeme,

shall not have the empty table as its
value but instead a copy of the synthe-
sized envs instance of the sibling Const-
Part node.

In the object-oriented attribute gram-
mar above we have used the intrinsic

attribute string that gives the lexical con-
tents of a terminal symbol, that is, of an
object of a lexeme class. StrToint is a
predefined function that returns the inte-
ger value of a character string consisting
of numerals. Note that since productions

ACM Computing Surveys, Vol 27, No 2, June 1995
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Node

Program
(targetCode)

Expression
(envi,0k
code,value)

IdUse Number
(envi,ok, {envi,0K,
code value) code,value)

Descendant
(envi,0k)

ConstDef
{(name,value)

ConstPart
(envi,ok,envs)

ConstDeflist
(envl,ok,envs)

EmptyConstPart
(envi,ok,envs)

BinOp
(envi,oK,

code,value)

Addition
(envi,ok,
code,value)

Figure 8. Class hierarchy of productions.

are represented as (named) classes in
Mjdlner /Orm, the alternative produc-
tions must be uniquely named (e.g.,
(EmptyConstPart)). This is a central prin-
ciple of object-oriented context-free gram-
mars in general.

The example illustrates some impor-
tant aspects of object-oriented attribute
grammars. Inheritance of attributes and
semantic rules makes object-oriented at-
tribute grammars shorter than their
standard counterparts. Having general
semantic properties centralized in one
place (in an abstract class) makes it eas-
ier to understand and maintain the spec-
ifications. Polymorphism complements
the classification and inheritance frame-
work by making it possible for an object
of class C to apply properties imple-
mented in the subclasses of C. This is
shown in our example, e.g., by the se-
mantic rule

code .= if right.ok then left.code
+(ADD, right.value) else (HALT, 0)

ACM Computing Surveys, Vol. 27, No 2, June 1995

specified for the class Addition. Since left
is of class Expression, left.code is allowed
to stand for a code attribute defined in
any of the subclasses of Expression:
IdUse, Number, BinOp (applies the de-
fault of class Expression), or Addition. The
selection of the applied rule for /eft.code
is made by dynamic binding, on the basis
of the actual class of the object that /eft
represents at run-time of the DESK com-
piler. Thus, the dynamic binding prop-
erty introduces special semantic power
into the attribute evaluation process sim-
ilar to the primitives to be discussed in
Section 3. We have, however, classified
the formalism as an organizational
paradigm rather than an eval-
uation paradigm because most of the
central features of object-oriented attri-
bute grammars have their merits on the
organizational side.

The fusion of attribute inheritance and
class inheritance in Mjdlner /Orm causes
some unexpected problems. Since a
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structured class C with structure {{a; A)
& (b: B)} only knows the attributes of
the (static) classes A and B and not the
attributes of their (dynamic) subclasses
(since these depend on the shape of the
syntax tree), one cannot ensure that all
the inherited attributes of the dynamic
subclasses have a defining rule in the
class C. To prevent such problems with
well-definedness, dynamic subclasses are
not allowed to have inherited attributes
at all. The same reason rules out multi-
ple inheritance as well: a class (produc-
tion) may have only one immediate
superclass (production) [Hedin 1989].

Another object-oriented enhancement
in Mjdlner /Orm is to allow references to
mutable objects as a domain of at-
tributes. This mechanism has been devel-
oped especially for flexible attribute
reevaluation in incremental semantic
analysis. An account of the developed
class of door attribute grammars is given
in Hedin [1992; 1994].

3. EVALUATION PARADIGMS

In Section 2 we have presented tech-
niques for organizing attribute gram-
mars into independent and coherent
units. The organizational paradigms con-
tribute mostly to managing the complex-
ity of large specifications, whereas the
objective of this section is to concentrate
on the attribute evaluation process and
discuss how its power can be raised with
special mechanisms. The presented for-
malisms are more expressive than the
standard notion of attribute grammars.
Unlike with the organizational para-
digms, a specification written in any of
these styles cannot be trivially trans-
formed into an equivalent standard at-
tribute grammar.

The semantic power of the paradigms
is due to the use of special computational
primitives of logic and functional pro-
gramming in attribute evaluation. These
mechanisms make it possible to accept a
restricted form of temporarily undefined
attribute values, a feature which is con-
sidered formidable in standard attribute
grammars based on strict semantic func-
tions.
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The evaluation paradigms can be re-
lated to standard attribute grammars by
using characteristic dependency graphs
as the common denominator. Most
notably, extensions of (one-pass) L-
attributed grammars and well-defined
attribute grammars are addressed in
Section 3.1 on logic attribute grammars
and in Section 3.2 on functional attribute
grammars, respectively.

3.1 Logic Attribute Grammars

In declarative programming, the empha-
sis is laid on expressing the problem ab-
stractly rather than on expressing an
explicit solution to that problem, as is
the case with imperative languages.
Logic programming is a declarative
paradigm founded on the mathematical
system of predicate calculus. A logic pro-
gram is given as a set of clauses (also
called rules) over relations between ob-
jects of the problem domain. The clauses
correspond to formulas of first-order logic
with implication as the major logical con-
nective and with at most one atom as the
conclusion. Hence, logic programming is
not based on full mathematical logic but
instead on the computable Horn subset
of first-order logic.

Some features making logic program-
ming an established paradigm are

¢ relations

* nondeterminism
e logical variables
s unification.

Relations (in logic programming usually
called predicates) treat arguments and
results uniformly; that is, there is no
explicit division of arguments into input
and output ones. Unification is an equa-
tion-solving algorithm which aims at
making its two arguments syntactically
equivalent by generating suitable bind-
ings on variables in them. Bindings can
be made both on the arguments of f and
on the arguments of g when resolving an
equation f(...) = g(...). Hence, unifica-
tion is more general that its directed
counterpart in the functional program-

ACM Computing Surveys, Vol. 27, No 2, June 1995



232 . Jukka Paakki
ming side: pattern matching (see Sec-
tion 3.2).

Closely coupled with unification is the
concept of a logical variable, which makes
it possible to process provisionally incom-
plete values that will be completed later
during program execution, and to build
equivalence classes over uninstantiated
variables. When one variable in the
equivalence class becomes instantiated,
all the other variables in the class will be
simultaneously instantiated with the
same value.

During the execution of a logic pro-
gram the choices of the next goal to be
solved and the next clause to be applied
are made nondeterministically among the
potential alternatives. Ths mechanism is
usually simulated in the implementa-
tions by backtracking.

While the logic programming paradigm
and the attribute grammar formalism
may at first glance seem to be quite dif-
ferent, they both share a common struc-
tural representation: the proof tree in-
logic programming and the attributed
tree in attribute grammars, which pro-
vides for a rigorous framework for relat-
ing these two. Indeed, the relationship
between logic programs and attribute
grammars has been analyzed to an ex-
tent which makes it possible to trans-
form logic programs into semantically
equivalent attribute grammars, and vice
versa [Maluszynski 1991; Deransart and
Maluszynski 1985; 1993]. Building such
a close relationship is based on the corre-
spondence

Nonterminal = Predicate

which is the obvious result from unifying
proof trees and attributed derivation
trees. This characterization also directly
promotes the correspondences “Produc-
tion = Clause”, “Attribute value =
Term”, and “Semantic function =
Predicate”, which together provide the
methodological basis for logic attribute
grammars.

In addition to attribute grammars, the
logic programming paradigm has been
related with other semantic formalisms,
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such as two-level grammars [Maluszyn-
ski 1982] and denotational and axiomatic
semantics [Bryant and Pan 1989]. This
flexibility is based on the “two-level” fa-
cilities of logic programming: resolution
over predicates can be applied in specify-
ing a language’s syntax and unification
over terms in specifying its semantics.

The integration of attribute grammars
and logic programming can also be
founded on some principle other than the
“Nonterminal = Predicate” correspon-
dence. In Sataluri [1988] a concept of
“relational attribute grammars” is pre-
sented that is based on the guideline
implicit already in the preceding discus-
sion:

Semantic rule = Horn clause

In this approach an attribute can flexibly
be considered as inherited or synthesized
depending on the shape of the derivation
tree. Another generalization is that cir-
cular attribute grammars can be evalu-
ated to some extent since the semantic
rules written as Horn clauses accept non-
strict arguments. As a third enhance-
ment, relational attribute grammars may
in principle express, besides compilation
from language A into language B, also
the reversed compilation from B into A,
thanks to the flexibility of relations and
their arguments [Arbab 1986]. This prin-
cipal possibility of implicitly inverting at-
tribute grammars is, however, limited in
practice because of the impure features
that are usually included in logic pro-
grams. Hence, an explicit attribute gram-
mar inversion may still be necessary
[Yellin 1988].

Pan is an incremental editing system
where logic attribute grammars (“logical
constraint grammars”) can be applied for
specifying the static semantics of a pro-
gramming language [Ballance et al. 1990;
Ballance and Graham 1991]. While the
relational attribute grammar style makes

®Note, however, that such generality 18 1n contrast
with the consistent inherited /synthesized principle
of attributes and makes 1t hard to verify statically
the validity of the grammar.
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full use of the special features of logic
programming, it is interesting to note
that the pragmatic development of Pan
has made it necessary both to restrict the
usage of the features and to modify their
operational model. For instance, “code”
and “data” are separated, and only
ground (completely instantiated) at-
tribute values are accepted.

3.1.1 Definite Clause Grammars

The “Nonterminal = Predicate” corre-
spondence has been adopted in a number
of syntactic tools built on top of logic
programming. The most well-known logic
grammar formalism is the definite clause
grammars (DCGs) that were originally
introduced for specifying and parsing
natural languages [Pereira and Warren
1980]. Other formalisms of similar kind
are, for example, metamorphosis gram-
mars [Colmerauer 1978], gapping gram-
mars [Dahl and Abramson 1984], and
definite clause translation grammars
[Abramson 1984]. A survey of logic gram-
mars is given in Dahl and Abramson
[1989].

DCGs are a logic counterpart to con-
text-free grammars such that nontermi-
nals can be augmented with arguments,
and productions can be augmented with
arbitrary code in Prolog. When consider-
ing the arguments as “attribute values”
and the embedded Prolog code as
“semantic rules,” DCGs match closely
with attribute grammars. DCGs are use-
ful because they are provided in many
Prolog implementations. These systems
include as a requisite a DCG preproces-
sor that translates the grammar part of
the program into ordinary Prolog. The
generated program acts as a parser-
driven processor for the language speci-
fied in the DCG and can be directly
executed by the Prolog system. Note that
the underlying linear execution model of
Prolog makes DCGs operationally close
to L-attributed grammars (see Section
1.3).

The DCG productions (rules) are writ-
ten in the form

n@y,...,a) = nyby,...,b),...,np{cy, ..., c)
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where n,n,,...,n, are predicates, and
a,,...,a,by,...,b,cy,...,c (i20,]=
0,k > 0) are terms. This corresponds to
the attribute grammar production

n—-n;...n{...}

such that the argument terms represent
attribute values of the associated nonter-
minals. A terminal symbol t with at-
tribute value a is represented by the
unary list [t(a}], and the empty string is
represented by an empty list. Arbitrary
Prolog code can be included in the rule’s
right-hand side by enclosing it in curly
braces {...}.

We give an example of the DCG style
in the next section where the PROFIT
system is presented.

3.1.2 PROFIT

PROFIT is a language and system de-
signed for compiler writing in a logical
style. PROFIT integrates logic program-
ming and attribute grammars in a sim-
ple manner, by extending Prolog with
some facilities that are necessary in the
application area. The most notable facili-
ties are deterministic error-recovering
DCGs and functions [Paakki and Toppola
1990; Paakki 1991].

Conceptually, PROFIT is based on log-
ical one-pass atiribute grammars, a
proper superset of L-attributed gram-
mars [Paakki 1990]. The semantic power
of logical one-pass attribute grammars is
granted by the correspondence

Attribute = Logical variable

that makes it possible to delay certain
attribute evaluations. The idea is to al-
low the value of an attribute instance to
be undefined as long as it is not needed
in making control decisions in the at-
tribute evaluation process. The formal-
ism restricts the binding of undefined
values to nonstrict argument positions
only and guarantees that the conven-
tional L-attributed evaluation strategy
[Lewis et al. 1974; Bochmann 1976] is

ACM Computing Surveys, Vol 27, No. 2, June 1995



234 . Jukka Paakki
always able to compute the meaning of a
source program.’

PROFIT is implemented by translation
into ordinary Prolog. The DCG facility is
based on a conventional error-recovering
recursive-descent execution of LI(1) con-
text-free grammars, and the functions are
transformed into predicates. The func-
tions of PROFIT are written as condi-
tional equations of the form

flf,...,f) =t =gy, Om-

where f is the function’s name; the f, are
its formal parameters;tis the result value
(Prolog term), and the g, are guards (Pro-
log predicates). When executed, this
function will return the value t, provided
that the formal parameter list unifies
with the actual parameter list and that
all the guards succeed. Several declara-
tions can be given for f in which case that
succeeding declaration which is given
first defines the result. A function must
never fail to produce a value; in such a
case execution is aborted.

Function applications are expressed as
functional terms of the form
@f(a,,...,a,) where f is the function’s
name, and the a, are its actual parame-
ters. Functional terms given in the
right-hand side of a rule (DCG produc-
tion) model inherited attributes and are
called inherited functional terms,
whereas those given in the left-hand side
model synthesized attributes and are ac-
cordingly called synthesized functional
terms.

The operational behavior of inherited
and synthesized attributes with an L-
attributed evaluation scheme is reflected
in the functional terms as follows:

(1) Let a predicate (i.e., a nonterminal) p
be associated with an inherited func-
tional term:

‘Note that the logical variable mechamism may
leave some attribute values temporarily undefined
during evaluation. The formalism, however, guar-
antees that when finishing the one-pass evaluation
process, all the synthesized attribute instances as-
sociated with the root of the parse tree have a
defined (completely ground) value
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ri...) -

apl, @fay, . ..a), )

When execution reaches p, the term
@fla,,...,a,) is first evaluated by
calling the function f with arguments
ay,-..,a,. Then p is entered with the
value returned by f replacing the
functional term.

(2) Let a predicate g be associated with a
synthesized functional term:

q(..., @glb,,....b.),...

When entering g (and unifying its
head with the current goal), the term
@g(b,,...,b,) is replaced by an aug-
mented variable V. The evaluation of
@g(b,,...,b,) is suspended until
the body of g has been successfully
executed. Then g 1is called with
arguments b,,...,b, (having their
current values), and the returned
value is unified with V.

)y —> ...

Successive and nested functional terms
are allowed and evaluated in a left-to
right depth-first manner.

As an example of the semantic power
of logical one-pass attribute grammars,
we give the DESK attribute grammar in
PROFIT. To simplify the discussion, the
ok attribute is omitted. Now the context-
free grammar that corresponds to the
DCG is right-recursive and not left-
recursive because PROFIT accepts only
attribute grammars whose underlying
context-free grammar is LI(1) (see Aho
et al. [1986]). The constructor op / 2 repre-
sents the assembly operations, and the
constructor sym/2 represents symbol
table entries. Notice that the attributes
are not explicitly named.

program ([Code, op(print, 0), op(halt, 0)] —
[‘PRINT’], expression(Env, Code), constpart
(Env, Env).

expression (Env, [op(load, Value) | Codel) —
factor (Env, Value), expressionrest
(Env, Code).

expressionrest (Env, [op(add, Value) |Code]) —
['+’], factor (Env, Value), expressionrest
(Env, Code).

expressionrest (Env,[ ]) - [ ].

factor (Env, @getvalue (Name, Env)) —

constname(Name).
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factor (Env, Value) — [number (Value)].
constname (Name) — [Id(Name)].

constpart (Envi, Envs) — ["WHERE’],
constdeflist (Envi, Envs).

constpart (Env, Env) — [ 1.

constdeflist (Envi, Envs) —
constdef (Name, Value),
constdefrest
(@define(Name, Value, Envi), Envs).
constdefrest (Envi, Envs) —
[, "1, constdef (Name, Value),
constdefrest(@define(Name, Vaiue, Envi),
Envs).

constdefrest (Env, Env) — [ 1.

constdef (Name, Value) —
constname(Name), [‘= ], [number(Value)].

—semantic functions and predicates:

getvalue(Name, Env) =
Value :-lookup(Name, Env, Value).

define(Name, Value, Env) =
Env :-lookup(Name, Env, Value).

lookup(Key, [sym(Key, Value) |Envl, Value).

lookup(Key, [sym(Key1, Valuet}|Env], Value) :-
Key + Key1, lookup(Key, Env, Value).

The attributes are associated with the
nonterminals of this PROFIT-DCG as
follows, where i denotes an inherited at-
tribute and s a synthesized attribute:

program(s)
expression(i, s)
expressionrest(i, s)
factor(i, s)
constname(s)
constpart(i, s)
constdeflist(i, s)
constdefrest(i, s)
constdef(s, s)

The semantic functions getvalue and
define are strict in their first argument
that gives the name of the referenced
constant. The functions are nonstrict in
all the other arguments; that is, those
arguments can be uninstantiated (unde-
fined) when calling the function. In addi-
tion to these explicitly defined functions,
we have made use of the implicit identity
function whose argument is nonstrict,
the list construction function [ ]
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whose arguments are nonstrict, a few
strict constant functions, the lookup
predicate, and the built-in predicate = .

As already concluded in Example 1.3.1,
the DESK attribute grammar is not L-
attributed, due to right-to-left dependen-
cies for attribute occurrences Env in the
first production. This implies that no
strict one-pass left-to-right evaluation
method is capable of generating the tar-
get code for a DESK program. The gram-
mar is, however, logically one-pass since
the non-L-attributed attributes (the first
argument of expression and constpart) are
always applied nonstrictly in the seman-
tic functions. The logic-based strategy of
PROFIT succeeds therefore in evaluating
all the attributes in a top-down left-to-
right manner over the (implicit) at-
tributed tree for a DESK program. In
conclusion, the attribute grammar can be
evaluated using a much simpler one-pass
strategy than when employing a multi-
pass system, such as those presented in
Sections 1 and 2.

One central solution is to present
the symbol table (the attribute values
Env, Envi, Envs) as an incomplete data
structure. Now it is possible to insert
constants with a defined name and an
undefined value into the symbol table
while processing the expression part of
the source program, and to complete the
entries with value information in the
subsequent constant definition part. Note
that such a facility, based on the delayed
binding property of logical variables,
introduces a synthesized flavor to the
formally inherited first attribute of the
expression part. Both symbol table
insertions and lookups can be imple-
mented using the same lookup predicate
over the incomplete data structure. This
elegant solution has originally been sug-
gested in Warren [1980].

The target code for a DESK expression
may also be incomplete during attribute
evaluation. The PROFIT evaluator, how-
ever, binds the undefined operands with
the (incomplete) entries in the symbol
table. These operands will be implicitly
instantiated while completing the symbol
table during the processing of the con-
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stant definition part of the source pro-
gram. Thus, the final target code will be
completely defined.® A similar delayed
one-pass evaluation effect as provided
here implicitly by the logical variables
has been proposed in Noll and Vogler
[1994] where unevaluated attributes are
maintained and resolved in an explicit
graph.

As an example of the logical one-pass
attribute evaluation process, consider the
following DESK program:

PRINTx+y+xWHEREx=1,y=2

When the compiler has reached the end
of the expression x +y + X, the symbol
table is in the form

[sym(x, V1), sym{y, V2) |Env]

Here V1, V2, and Env are uninstantiated
variables (that is, undefined attribute
values). The target code has the value

lop(load, V1), opladd, V2), op(add, V1)]

Here the second operands of the instruc-
tions are bound with the corresponding
uninstantiated variables in the symbol
table. After processing the whole pro-
gram, the symbol table has obtained its
final value:

[sym(x, 1), symly, 2) |Env]

Thanks to the logical variable facility,
the target code will be simultaneously
completed into the following form, with-
out having to employ any explicit back-
patching operations:

[{op(load, 1), op(add, 2), op(add, 1)},
op{print, 0), op(halt, 0)]

3.2 Functional Attribute Grammars

In the previous section we discussed the
integration of logic programming and at-
tribute grammars. Besides logic pro-

®Note that this holds for valid source programs
only since undefined constants leave their corre-
sponding operands in the target code umnstanti-
ated This aspect could be improved simply by rein-
troducing the ok attribute
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gramming, functional programming is a
paradigm dominating the declarative
scene. Functional programming is based
on the mathematical model of expressing
computation with functions. A function
/. D — R expresses a rule that maps the
elements of the domain D to the ele-
ments of the range R. The evolution of
the functional programming paradigm
has produced a variety of concepts and
languages for expressing such functions.
The functional style of programming can
be summarized with the folloing charac-
teristics:

» referential transparency
e higher-order functions

e lazy evaluation

e pattern matching

Referential transparency is the term used
traditionally to express that the value of
an expression depends only on the values
of its subexpressions, and that the value
of each occurrence of an object is the
same, irrespective of the context. In other
words, side effects are ruled out. Func-
tions being higher-order means that they
are first-class values and can, for in-
stance, be stored in data structures and
returned as result of function calls. Lazy
evaluation is tantamount to “nonstrict-
ness,” meaning that the value of an ob-
ject is not computed until it is actually
needed, and thus the value of an argu-
ment may be undefined when calling and
executing the function. Paétern matching
is a general term used to express the
mechanism applied when trying to make
X and Y identical in an equation X =Y
where X and Y are expressions. Pattern
matching is restricted in functional pro-
gramming to introduce bindings only to
the left-hand side X when solving such
an equation. (Recall from Section 3.1 that
the more general unification primitive of
logic programming may instantiate Y as
well.

The referential-transparency property
is characteristic of a number of metalan-
guages based on attribute grammars. For
instance the metalanguage of GAG is, in
its original form, free of side effects and
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in that respect of a functional nature
[Kastens et al. 1982]. Usually the refer-
entially transparent metalanguages,
however, do not provide the other central
features of functional programming.

Actually the special mechanisms of
functional programming have not been
exploited very extensively in attribute
grammars (which is a bit surprising since
declarative functions are a main concept
in attribute grammars), but rather in de-
notational semantics. Since denotational
semantics-directed formal language defi-
nition and implementation is an ap-
proach based on valuation functions
(mapping the syntactic constructs of a
language to their semantic meanings),
the central concepts of the functional
programming paradigm fit well with the
approach. A more detailed discussion of
functional programming exclusively
within denotational semantics is beyond
the scope of this survey. Such analysis is
included in, e.g.,, Watt [1984] and Lee
[1989].

Defining the semantics of a source lan-
guage using functions makes it possible
to relate attribute grammars with deno-
tational semantics. Chirica and Martin
[1979], Ganzinger [1980], Mayoh [1981],
and Courcelle and Franchi-Zannettacci
[1982], among others, discuss methods
for relating an attribute grammar with
an equivalent denotational system of re-
cursive functional equations. These for-
mulations are based on the principle of
modeling each synthesized attribute of
an attribute grammar by a function
which maps the underlying derivation
tree and the values of the inherited at-
tributes of the associated nonterminal
onto the semantic value of the tree.
Hence, the correspondence

Synthesized attribute = Function

is followed in these mathematical ap-
proaches. The equation system may re-
quire a least-fixpoint computation to be
applied in attribute evaluation and may
thus be rather laborious. On the other
hand, this general method makes it pos-
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sible to evaluate even circular attribute
grammars in case the derived recursive
formulas have a computable least-fix-
point solution.

Because relating attribute grammars
and denotational semantics is based on
functional attributes, the theoretical
guidelines mentioned above can be
applied in practice by including high-
er-order functions into an attribute
grammar-based metalanguage. Then the
semantic functions of an attribute gram-
mar can be written in a denotational
style, mapping functional attribute val-
ues into functional attribute values. Such
an amalgamation of these two language
definition formalisms provides means to
express the “total” semantics of a pro-
gramming language in a unified manner.
The attribute grammar concepts of the
metalanguage can be exploited in defin-
ing the static semantics of the language,
while the denotational concepts are bet-
ter suited for defining the dynamic se-
mantics. Such mixed formalisms with an
automatic implementation are proposed
in, e.g., Paulson [1982], Ganzinger et al.
[1982], and Johnsson [1987] that also
discuss in more detail the merits of
higher-order functions in attribute gram-
mars. The concept of higher-order funec-
tions is loosely applied in higher-order
attribute grammars where parts of the
attributed tree can be defined in terms of
attributes and vice versa [Vogt et al
1989].

When sticking solely to the attribute
grammar formalism, the most obvicus
way to make use of the functional pro-
gramming paradigm is to express func-
tionally the semantic functions of an
attribute grammar. Hence the proposi-
tion of

writing the semantic functions
in a functional language

results in a formalism that can be char-
acterized as functional attribute gram-
mars. As a concrete example of the
advantages of such grammars, we will
show in Section 3.2.1 how lazy evaluation
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can be exploited to extend the concept of
well-defined attribute grammars from
their original meaning to accept a re-
stricted form of circular attribute depen-
dencies. This enhancement will be fur-
ther elaborated in Section 3.2.2 where a
more powerful fixpoint evaluation tech-
nique is presented.

While the power of functional attribute
grammars has not been widely applied in
general systems, several functional ver-
sions of the one-pass system YACC have
been developed. In these tools the under-
lying implementation and programming
language C of standard YACC has been
replaced by a functional language. Such
functional parser generators are pre-
sented in, e.g., Peyton Jones [1985] (with
Sasl as the base language), in Jones
[1986] and Longley {1987] (Miranda), in
Cousineau and Huet [1990] (a dialect of
ML), and in Appel and MacQueen [1991]
(standard ML). A more general view is to
consider attribute grammars as a special
class of functional programming lan-
guages, as proposed in Frost [1992; 1993].

3.2.1 Lazy Evaluation (FNC [ ERN)

The standard definition considers circu-
lar attribute grammars to be ill defined
[Knuth 1968], and therefore such gram-
mars are rejected by a vast majority of
language processor generators. Recall
that an attribute grammar is circular, if
it generates an attributed tree where an
attribute instance depends transitively
on itself.

Forbidding circular attribute depen-
dencies exclusively is inconvenient be-
cause many common language processing
tasks could quite naturally be expressed
as a simple circular attribute grammar.
As a demonstrating example, let us re-
vise the DESK language such that the
value of a constant can be defined sym-
bolically as well. Moreover, the constant
definitions can be given in any order.
Thus, the following is a program in the
extended language, in the sequel referred
to as DESK + :

PRINTx+y+ 1 WHEREx=y,y =2z, z=2(3.1)
The symbolic value of a constant may
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be defined in terms of a single constant
only. This restriction is made for simpli-
fying the discussion. Of course, a realistic
language would accept general expres-
sions, but such an extension would not
bring any additional nuances into our
discussion of circularity. Recursively or
mutually defined constants are not ac-
cepted in DESK + . For instance, the fol-
lowing program is illegal:

PRINTx+y+1WHEREx=y,y=x

An attribute grammar for DESK + is
given in Algorithm 3. Since a particular
metalanguage is not essential for our
theme, we use the same pure notation as
in Example 1.3.1. Much of the original
DESK grammar remains unaffected by
the generalization of allowing symboli-
cally defined constants. The only notable
reformulation is that the symbol table is
also needed for processing the constant
definition part of a DESK + program,
since now the constant values have to be
available even there. This feature is ex-
pressed using the inherited attribute envi
that is propagated to the constant defini-
tion part. To select a literal value or a
symbolically defined value for a constant,
we make use of an additional synthe-
sized attribute isliteral to denote whether
or not a value is literal. The semantic
function undefined represents an unde-
fined (and useless) attribute value. For
simplicity of discussion, the ok attribute
is omitted for the constant definition part.
Consequently, invalidity of the program
is manifested by abortion of the executed
code with a premature HALT instruction.
The crucial semantic rules of the gram-
mar are emphasized.

By constructing the characteristic de-
pendency graphs, the attribute grammar
can be shown to be circular and thus ill
defined in the original sense; for in-
stance, the grammar is not absolutely
noncircular.’ To verify this, Figure 9

"The grammar could be transformed into a noncir-
cular form (e.g., by introducing additional symbol
table attributes), but then the specification would
become far less declarative.
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Algorithm 3.
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Program — 'PRINT’ Expression ConstPart
{Program.code = Expression.code + (PRINT, 0) + (HALT, 0),
Expression.envi = ConstPart.envs,
ConstPart.envi = ConstPart.envs}

Expression; — Expression, ‘+’ Factor

Expression — Factor
Factor — ConstName
Factor — Number
ConstName — Id

ConstPart — ¢ {ConstPart.envs

ConstPart — ‘'WHERE’ ConstDefList

{--as in Example 1.3.1--}
{-—as in Example 1.3.1--}
{--as in Example 1.3.1 - -}
{--as in Exampte 1.3.1 -~}
{--as in Example 1 3.1--}
=()}

{ConstPart.envs = ConstDefList.envs,
ConstDefList.envi = ConstPart.envi}

ConstDefList; — ConstDefList, ‘,” ConstDef
{ConstDefList,.envs = ConstDefList,.envs +

(ConstDef

name, ConstDef.value),

ConstDefList,.envi = ConstDefList,.envi,
ConstDef.envi = ConstDefList, .envi}

ConstDeflList — ConstDef

{ConstDeflist.envs = {ConstDef.name, ConstDef.value),
ConstDef.envi = ConstDefList.envi)

ConstDef — ConstName ‘=" Value

{ConstDef.name = ConstName.name,
ConstDef.value = if Value.isliteral then Value.value
else getvalue(Value.name, ConstDef.envy)}

Value — Number

{Value.isliteral = true, Value.value = Number.vaiue,

Value.name = undefined}

Value —» ConstName

{Value.isliteral = false, Value.value = undefined,
Value name = ConstName.name}

sketches the attribute dependency graph
for the following DESK + program:

PRINTx+y+1WHEREx=y,y=2

The cyclic dependency paths are indi-
cated by arrows with a solid head.

Let us consider the DESK + grammar
as a functional attribute grammar; that
is, the semantic functions (including the
identity function) are assumed to be im-
plemented in a functional language with
a lazy “call-by-need” evaluation strategy.
As a consequence, only those attribute
instances will be evaluated that are actu-
ally needed by the compiler to generate
the target code for the source program.
Now the termination problem with recur-

sive evaluation of circular attribute
grammars becomes less severe.

Assume that the DESK + program
does not contain any symbolically de-
fined constants. In that case all the islit-
eral attribute instances associated with
the Value nodes will have the value true,
and the compiler does not execute any
getvalue function call associated with the
production “ConstDef — ConstName ‘="
Value” in Algorithm 3. Therefore, none of
the useless envi attribute instances for
the ConstPart subtree have to be evalu-
ated. Hence, the spurious static cycle in
the attribute dependency graph will be
dynamically removed by the lazy evalua-
tion mechanism (cf., Figure 9).
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Figure 9. Circular attribute dependency graph

The solution is only partial, though.
While the lazy strategy is able to compile
the following DESK + program correctly

PRINTx+y+1WHEREx=1,y=2 (3.2)

it does not terminate, e.g., with the pro-
gram (3.1), because symbolically defined
constants induce a true cycle on the at-
tributed tree (cf., Figure 9). Notice, how-
ever, that a conventional strict attribute
evaluation strategy would loop even for
the DESK + program (3.2) since in that
case all the attribute instances (includ-
ing the circularly defined envi instances)
would have to be evaluated, whether ac-
tually needed or not.

Functional attribute grammars are im-
plemented in some systems. The lazy at-
tribute evaluation method described
above is provided, for example, in
FNC/ERN where the language for the
semantic functions is Lisp [Jourdan
1984]. The system implements a func-
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tional attribute grammar by translating
each synthesized attribute into a func-
tion that takes a syntactic subtree and
the values of some inherited attributes
as arguments and that returns the value
of the synthesized attribute as result.
Hence, the implementation follows the
“Synthesized attribute = Function” prin-
ciple as well. The FNC component of the
system implements the class of abso-
lutely noncircular attribute grammars
that excludes statically circular attri-
bute grammars, such as the DESK +
grammar above. However, the ERN
component provides for a dynamically
noncircular evaluation scheme that be-
haves in the manner discussed above for
DESK + programs with literal constants
only.

A different method of lazy attribute
evaluation is implemented in Elegant
[Augusteijn 1990]. The system accepts
“pseudocircular” attribute grammars
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where the circular dependency chains
must be explicitly broken by the user
with an additional semantic rule for one
of the attributes within each cycle. This
mechanism, however, has not been for-
malized nor completely automated.

3.2.2 Fixed-Point Evaluation {Linguist)

In the previous section we discussed the
problem of circular attribute grammars
and presented a partial solution based on
a lazy attribute evaluation method. In
this section we continue with a special
technique that is more powerful than the
lazy strategy, in that a larger class of
cyclic dependencies can be solved. Note,
however, that even this method based on
an iterative computation scheme is able
to evaluate only a subclass of circular
attribute grammars. In order to evaluate
grammars falling beyond this technique,
it would be necessary to transform the
grammar into a tractable form, e.g., by
introducing more powerful semantic
functions, which usuallly would make the
attribute grammar more complex than
the original circular one.

Formally, a circular attribute gram-
mar induces a recursive definition x =
f(x) on all the attribute instances x
within a cycle in the attribute depen-
dency graph. Extensive investigations,
based on mathematical fixed-point the-
ory [Kleene 1952], have been made on
establishing computational means to
solve equations of such form. The general
1dea is to compute the least fixed point of
x by starting from an initial special bot-
tom value L, and by successively ap-
proximating the value of x until it is not
changed anymore; that is, the least fixed
point has been reached:

x=_1;x=/f(x);x:=/7F(x);...

To guarantee termination of the fixed-
point computation, the domain of x must
be a complete partial order in which
equality can be tested (having 1 as the
smallest value), and the function f must
be (Scott-)continuous [Chirica and
Martin 1979]. If that is the case then
some computation of f(x) in the se-
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quence above will finally return the cur-
rent value of its parameter x, and itera-
tion can be finished with x having its
final value f(fC... f(L)...)).

We can apply an iterative fixed-point
attribute evaluation method on the circu-
lar DESK + attribute grammar of the
previous section. Intuitively, the method
first assigns L to each circularly de-
fined attribute instance in the subtree
for the constant definition part
(ConstPart) of the source program; see
Figure 9. In the first iteration, the value
attribute instances of all the constants
(ConstDef) with a literal value can be
evaluated because they are not actually
circularly defined. Also, the environment
attribute instances envi and envs can be
updated to include the literal constants.
In the next iteration, those constants can
be processed and inserted in the symbol
table that are symbolically defined in
terms of the constants evaluated in the
previous iteration. This gradual evalua-
tion scheme is repeated until no more
constants become defined during some
iteration.

For instance, let us apply the iterative
strategy for evaluating the constant defi-
nition part of the DESK + program (3.1):

...WHEREx=y,y=2z,z2=2

Initially, all the defined constants have
bottom as their value, resulting in the
following symbol table:

[(x, L), {y, 1), (z, 1)]

In the first iteration, the actual value
of z is computed since it is literal:

[(x, 1), ly, 1), (z,2)]

In the second iteration, the constant y
defined in terms of z can be evaluated:

{x, 1),(y,2),(z,2)]

In the third iteration, the constant x
can be evaluated, resulting in the follow-
ing final symbol table as the fixed point:

[(x,2), (y,2), (z,2)]

Notice that there are two reasons why
a constant ¢ might still have botrom as
its value in the final symbol table:
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(1) c is defined in terms of an undefined
constant d: e.g.,

PRINT.. WHERE c=d; or
(2) ¢ is recursively defined: e.g.,

PRINT...WHEREc=d, d=¢

In both cases the DESK + program is
illegal. To be able to detect such situa-
tions, the final value of the symbol table
could be checked. Another, more liberal
solution is to forbid only the use of such
invalid constants in the expression part
of the program. Then a symbolic operand
of an expression could be specified, e.g.,
with the following production which, for
brevity, is in this case not in normal
form:

Factor — ConstName
{Factor.value = getvalue
(ConstName.name, Factor.enw),
Factor ok = isin
(ConstName.name, Factor envi)
and Factor.value = 1}

To be safe with the iterative evaluation
sketched above, the domain of both the
constant values and the symbol table
must be a complete partial order, and the
involved semantic functions must be con-
tinuous with a stationary upper bound.
Such a rigorous interpretation of do-
mains and semantic functions within a
circular attribute grammar similar to our
DESK + grammar is given in Farrow
[1986], where also the fixed-point method
is precisely described in connection of the
Linguist system [Declarative Systems
1992]. Other strategies of effectively
evaluating circular attribute grammars
are presented in, e.g., Jones and Simon
[1986] and Jones [1990]. All these ap-
proaches define general attribute gram-
mar classes that are circular in their
characteristic graphs but still well de-
fined with respect to a fixed-point compu-
tation.

3.3 Implicit Paradigms

In the previous sections we have
discussed different ways to raise the ex-
pressiveness of attribute grammars by
applying logic or functional programming
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in the attribute evaluation process. The
semantic power of these attribute gram-
mar paradigms is provided by the se-
mantic functions that are written in a
logic or a functional language. Hence, the
evaluation paradigm is explicitly in-
cluded in the attribute grammar itself.

In addition to such explicit mecha-
nisms, some specialized techniques have
been developed where an unconventional
attribute evaluation behavior 1s auto-
matically generated from an attribute
grammar, thus being implicit in nature.
Ideally, exploiting such an evaluation
paradigm should in no way affect the
form of the attribute grammar. In prac-
tice, however, it may be necessary to
include some instructing commands or
semantic rules in the specification, typi-
cally for optimizing the performance of
the generated language processor. In this
section we give a brief account of two
popular implicit and specialized attribute
evaluation techniques, parallel evalua-
tion (Section 3.3.1) and incremental eval-
uation (Section 3.3.2).

3.3.1 Parallel Attribute Evaluation

A programming language whose opera-
tions have a total order at execution time
can be referred to as a sequential one. In
contrast, concurrent programming is a
paradigm where operations can be exe-
cuted in parallel, that is, simultaneously
under a special multiprocessor hardware.

With the advent of commercial parallel
architectures, concurrent programming
has in recent years gained considerable
theoretical and practical importance. A
process is the basic self-standing element
within a concurrent program, having lo-
cal data which is manipulated by local
code. The exchange of data between pro-
cesses makes them communicate, either
using explicitly sent data structures
(messages), or through a shared memory
that can be accessed by several pro-
cesses. Synchronization is the mecha-
nism making the execution of the entire
program proceed in a controlled fashion
by imposing that a set of processes must
be in a certain inner state before they
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can continue their execution (e.g., be-
cause one process needs data from
another process). If processes can be
executed independent of each other, they
are called asynchronous.

Although concurrent concepts are most
natural ones for modeling some inher-
ently parallel systems (such as operating
systems), the primary merit of concur-
rent programming is the exploitation of
parallel hardware for achieving maximal
performance. Thus the benefits of the ap-
proach should be the largest when ap-
plied on frequently used software, such
as compilers. Parallel compilation tech-
niques are, however, still a rather unex-
plored area, and experimental results
have not been available until recently
(e.g., Katseff [1988], Gross et al. [1989],
and Seshadri and Wortman [1991]). Typ-
ical results from these parallelizing ex-
periments indicate a compilation speedup
of 3 using 5 processors and a speedup of
5 using 9 processors.

Because concurrent and parallel com-
pilation techniques are still immature,
the design of methods and tools for speci-
fying and automatically implementing
such compilers is a relatively young re-
search topic. It is surprising, though, that
the first historical implementation of at-
tribute grammars, FOLDS [Fang 1972],
was already based on considering pro-
ductions as processes:

Production = Process

In FOLDS, processes could also be de-
fined attributewise, giving rise to the fol-
lowing correspondence:

Attribute = Process

In the current approaches, the most pop-
ular principle can be expressed with the
correspondence

Subtree = Process

emphasizing that the parallelization is
especially directed to the dynamic in-
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stance (attributed tree) of an attribute
grammar. Two subtrees should be evalu-
ated in parallel only if the semantic cou-
pling between them is loose enough. The
ideal case is that the subtrees are totally
independent such that no attribute in-
stance in one subtree depends on an at-
tribute instance in the other subtree.
While total independence is rare in prac-
tical attribute grammars, an analysis of
some frequently occurring attribution
patterns has shown that often the sym-
bols within one production can be ar-
ranged into digjoint sets such that there
is only one attribute dependency between
the sets [Klein and Koskimies 1989]. If
each set is realized as a process, the
communication between the processes is
quite inexpensive. Within each process,
the nodes for the symbols of the corre-
sponding set are evaluated sequentially
in the order determined by the attribute
dependencies in the grammar.

While the tendency in the parallel at-
tribute evaluation paradigm lies on the
dynamic side, it is desirable to partition
the attributed tree into processes by a
static analysis of the attribute grammar.
General static multipass strategies for
parallel evaluation are proposed in, e.g.,
Kuiper and Zwierstra [1990], Zaring
[1990], and Klein [1992]. One-pass paral-
lel evaluation is discussed in, e.g., Klein
and Koskimies [1989; 1990]. A less auto-
mated method, based on explicit user-
given parallelization instructions in the
attribute grammar, is presented in
Boehm and Zwaenepoel [1987]. An exten-
sive survey of parallel attribute evalua-
tion methods is given in Jourdan [1991].

One attribute evaluation approach
reaching for a maximal amount of paral-
lelism would be to consider an attribute
grammar as a data-flow program, as sug-
gested in Farrow [1983]. Then attribute
instances would map into data-flow nodes
that would fire when all their input in-
stance nodes have been evaluated. Rather
surprisingly, though, no practical experi-
ments on this natural and appealing idea
have been reported.

We could apply a parallel evaluation
strategy on the DESK(+) attribute
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grammar for raising the speed of the
generated DESK(+) compiler. Without
going into details, the most effective way
would be to parallelize the code genera-
tion phase of the compiler by allocating
expression subtrees into processors, thus
employing the “Subtree = Process” prin-
ciple. A static analysis of the attribute
grammar (see Example 1.3.4) shows that
the different operands of a DESK(+) ex-
pression, represented by the nonterminal
Factor, are loosely coupled in the sense
that their attribute instances do not de-
pend on each other. Thus, the Factor sub-
trees could be effectively evaluated in
parallel, as soon as the symbol table has
been constructed and propagated to
the Factor.envi attribute instances. The
analysis also shows that the constant
definitions (instances of ConstDef) are
similarly independent and could be eval-
uated in parallel as well.

3.3.2 Incremental Attribute Evaluation

The development of high-performance
workstations has given rise to advanced
interactive applications. The fundamen-
tal principle behind such systems is in-
cremental computation, where existing
information is constantly updated in
response to the user’s actions. To be ef-
fective, the update should exclude the
execution of those parts of the applica-
tion that are not affected by the particu-
lar interaction.

The key element in interactive pro-
gram development is a language-based
programming environment that provides
integrated tools for the whole software
engineering process. In such a frame-
work the tools must be based on incre-
mental techniques so as to reduce the
workload caused by program modifica-
tions. Usually the main component of an
integrated programming environment
is a syntax-directed editor that main-
tains an internal representation of the
program and keeps track of the modi-
fications induced on it by the program-
editing process. The other components
of the environment (such as an inter-
preter, a compiler, and a debugger)
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effectively share the same internal
representation. Smalltalk [Goldberg and
Robson 1983] and Mjélner /Orm [Knud-
sen et al. 1993] are two representative
examples of an integrated programming
environment.

An attractive characteristic of inte-
grated language-based programming
environments is that they can be auto-
matically generated from a high-level
description. The generation of syntax-di-
rected editors has been an especially pop-
ular topic of research, usually based on
attribute grammars as the specification
formalism. The Synthesizer Generator is
the most well-known editor generator
based on attribute grammars [Reps and
Teitelbaum 1989]. GANDALF is a more
general system that supports the genera-
tion of complete environments, also with
attribute grammars as one of the specifi-
cation formalisms [Notkin 1985].

The central problem in incremental
language processing based on attribute
grammars is the efficient evaluation of
attributes. For source programs of realis-
tic size, an attributed tree may be quite
large for an internal representation. Also,
the attribute dependency graph that
models the information needed for imple-
menting an editing update of the source
program covers typically the whole tree.
For these reasons, it is not reasonable to
reevaluate the whole attributed tree
completely in reaction to a small syntac-
tic modification.

The need for efficient and immediate
updates has resulted in the development
of incremental attribute evaluation tech-
niques. Intuitively, these methods try to
minimize the semantic cost of a syntactic
program modification by reevaluating
only those attribute instances whose
values are affected by the modification.
Usually the methods rely on the charac-
teristic dependency graphs for the un-
derlying attribute grammar to compute
incrementally the affected region of the
attributed tree. Recall from Section 1.3
that the characteristic graphs approxi-
mate the functional dependencies stati-
cally between the attribute instances in
any derivation tree for the grammar, thus
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providing for an effective basis to deduce
immediately which attribute instances
depend (indirectly) on the modified nodes
in the tree and shall therefore be reeval-
uated.

Example systems with an optimized
incremental attribute evaluation support
include, e.g., OPTRAN [Lipps et al. 1988],
the Synthesizer Generator [Reps and
Teitelbaum 1989], Pan [Ballance and
Graham 1991], and Mjélner /Orm [Hedin
1992]. Combining the specialized tech-
niques of parallel and incremental evalu-
ation is discussed in Alblas [1990].

The attribute grammar for DESK(+)
could be used as such for generating a
syntax-directed DESK(+) editor with an
implicit incremental attribute evaluator
embeded. In order to make the editor
pleasant to use, the attribute grammar
should, however, be extended with rules
pertaining solely to the interactive edit-
ing process without touching the actual
semantics of DESK(+) and its compiler.
Such customizing instructions should de-
fine how the program is displayed on the
screen, which error messages the editor
shall give, and what kind of source-level
transformations are allowed during edit-
ing. For instance, the grammar could
enforce restrictions that the main ex-
pression and the constant definitions of
the edited DESK(+) program are each
displayed on their own line, and that the
editor shall, in response to a request,
replace the main expression with its lit-
eral value.

Regarding the compilation process, an
incremental attribute evaluator for
DESK(+) would reevaluate only those
attribute instances that are affected by
an editing action. For instance, changing
the main expression of the program would
not induce any reevaluation on the con-
stant definition part because there is no
flow of attribute values from the expres-
sion subtree into the constant definition
subtree in the characteristic graphs (see
Figure 1) nor in the underlying at-
tributed tree (see Figure 4). The target
code, however, depends on the contents
of the main expression, and that is why
code attribute instances would have to be
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reevaluated after such a modification, re-
sulting in an updated sequence of gener-
ated assembly instructions.

4. CONCLUSIONS

In this survey we have presented alter-
native methods of expressing attribute
grammars by integrating into them vari-
ous concepts of well-founded program-
ming paradigms. Starting from the
standard notion of attribute grammars,
different styles of expressing the form-
alism have been created. The analogy
between attribute grammar styles and
programming paradigms is reflected in
this survey by the characterization of the
formalisms as structured, modular, ob-
Ject-oriented, logic, and functional at-
tribute grammars. To complement these
self-standing paradigms, we have also
presented two implicit paradigms whose
nature is manifested by a special paral-
lel or incremental attribute evaluation
strategy which is automatically gener-
ated, rather than being explicit in the
attribute grammar.

The motivation to develop these at-
tribute grammar paradigms has been the
same as the trend in the evolution of
programming languages: to provide more
high-level, flexible, expressive, or effi-
cient concepts for specifying and imple-
menting a particular application. The
following list summarizes the aspects
that are often emphasized when analyz-
ing the merits of programming languages
(e.g., Wasserman [1980]). The same crite-
ria can also be used for evaluating and
relating the different attribute grammar
paradigms against each other:

e simplicity

e readability

e expressiveness

e regularity (orthogonality)
e security

* reuse

e application support

» formal definition

e efficiency

Structured, modular, and object-oriented
attribute grammars most notably sup-
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port the organizational aspect of at-
tribute grammars. We can illustrate the
differences between these approaches by
sketching in Figure 10 the structure of
attribute grammars obtained when ap-
plying these paradigms. The views corre-
spond to the following standard attribute
grammar with the nonterminal symbols
S (the start symbol), X, Y, and Z, the
terminal symbols y and z, and the at-
tributes a and b:

S - XY {Sa=Xal}

X—>27 {Xa=Zb,Xb=2a}
Y-y {1}
Z -z {Za=0,Zb=1}

Treating productions as blocks (Figure
10a) results in an attribute grammar
whose structure resembles the flat block
structure of the programming language
C, for example. Having nonterminals as
blocks or procedures (Figure 10b) results
in a more general form that corresponds
to the nested block structure of Pascal,
for example. Modeling either nontermi-
nals, attributes, or productions as mod-
ules or classes (Figures 10c and d) has its
counterpart, e.g., in Ada packages or Eif-
fel classes. (The interface part of a mod-
ule /class is expressed using “windows”
on the left border of the module/class.
An arrow from a module/class A to a
module /class B indicates that the public
components of B are used by A.)

The merits of conventional structuring
methods have been thoroughly analyzed
in the literature of programming lan-
guages. A special account of blocks, pro-
cedures, and modules is given in Hanson
[1981]. The general discussion is relevant
in this application area as well. Blocks
and procedures are valuable in structur-
ing programs (here: attribute grammars)
of modest size, whereas modules and
classes are superior when building larger
systems with a necessity for maintaining
and reusing components (here: attri-
bute grammar fragments). The two forms
of modular attribute grammars differ
in that having attributes as modules
(Figure 10d) typically produces less
modules, whereas the modules for non-
terminals (Figure 10c) tend to be smaller
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and thus easier to maintain. The small-
est number of modules would result when
composing them as different aspects of
an attribute grammar (not shown in the
figure). Object-oriented attribute gram-
mars provide additionally the inheri-
tance concept which makes the paradigm
superior to both structured and modular
attribute grammars in abstraction capa-
bilities.

Functional and logic attribute gram-
mars provide for powerful semantic facil-
ities. On the functional side, we have
discussed especially the use of lazy and
iterative evaluation, and on the logic side
the use of predicates and logical vari-
ables. These mechanisms have their mer-
its in evaluating attribute grammars that
are problematic under strict evaluation
methods. Two concrete examples pre-
sented in this survey are statically circu-
lar attribute grammars that dynamically
turn out to be noncircular when evalu-
ated in a lazy or fixed-point-finding
fashion, and strictly counter-one-pass
grammars [Giegerich and Wilhelm 1978]
that can be evaluated during parsing
when employing logical variables as at-
tribute instances.

The special attribute evaluation tools
of functional and logic attribute gram-
mars can be demonstrated by showing
(Figure 11) what kind of attribute depen-
dencies they accept. In the attributed
subtree, X, Y, and Z denote nonterminal
nodes, and inherited attribute instances
are attached to the left and synthesized
attribute instances to the right of the
nodes. A strict dependency chain (ie., a
chain of attribute instances that are
evaluated using strict semantic func-
tions) is represented by the attributes ai,
a lazy functional dependency chain by
the attributes bi, and a logical one-pass
dependency chain by the attributes ci.

Let us assume that the underlying im-
plementation applies a one-pass left-to-
right attribute evaluation strategy. The
grammar fragment is in each case well
defined with respect to the attribute in-
stances ai since they can always be eval-
uated using the standard L-attributed
strategy. The functional and logical
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Figure 10. Organizational attribute grammars.
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Figure 11.

chains are less restricting in their at-
tribute dependencies, but on the other
hand they induce some conditions on the
semantic functions. The grammar frag-
ment is well defined with respect to the
attribute instances bi only if the value
of b3 is not needed in computing the
meaning of the program (or if the static
dependency chain between b1 and 52
disappears dynamically when executing
their semantic rules). Finally, the frag-
ment is well defined with respect to the
instances ci if the values of ¢2, ¢3, c4,
and ¢5 (and all the instances depending
on them) are not used as a strict argu-
ment of a semantic function, since then
they can be evaluated using the logical
one-pass strategy. A strict one-pass
method can under no circumstances eval-
uate the bi and ¢i attribute instances.

In contrast to the paradigms discussed
above, the facilities of concurrent and
incremental programming do not primar-
ily raise the conceptual level of attribute
grammars. Instead, they focus on the
performance of the generated language
processors. Therefore, as a notation these
implicit paradigms do not differ from or-
dinary attribute grammars, except that
they in practice may contain some ex-
plicit user-specified instructions to the
system. The significance of concurrency
and incrementality should by no means
be underestimated when selecting the
applied attribute grammar paradigm
because efficiency is a major concern
in frequently used software, such as com-
pilers.
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Strict, lazy, and logical dependencies.

To summarize the discussion, the pre-
sented approaches can be roughly di-
vided into three categories. The main
contribution of the organizational
(structured, modular, object-oriented)
paradigms is raising the software engi-
neering support of the metalanguages.
Hence, these paradigms emphasize in
particular such aspects as readability,
security, and reuse of specifications. The
evaluation (logic, functional) paradigms
provide for powerful semantic facilities,
thus facilitating simplicity, expressive-
ness, and regularity. Finally, the effi-
ciency of language processors is stressed
by the implicit (parallel, incremental)
paradigms. Note that since the paradigms
are based on the same model of standard
attribute grammars, they all have a for-
mal foundation, although the notion of
well-definedness may slightly vary.

Choosing a particular attribute gram-
mar paradigm for specifying or imple-
menting a language depends on how the
various aspects are emphasized. With a
small and simple language that presum-
ably 1s not going to change, even the
standard pure style is sufficient. How-
ever, a larger or more complex language
that may exist in many generations in-
volves a significant degree of software
engineering. In that case a modular or
object-oriented paradigm is certainly a
better choice. The powerful logic and
functional facilities are valuable when
one wants to focus on the specification of
the language and on keeping the at-
tribute grammar as declarative as possi-
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ble, without forcing any explicit attribute
evaluation decisions. Finally, parallelism
should be considered when both perfor-
mance of the language processor is the
primary goal and an appropriate archi-
tecture is available.

The application area (when some other
than mere language processing) may also
affect the decision. Interactive applica-
tions require obviously the use of incre-
mental evaluation techniques. Modeling
of general sequential software with at-
tribute grammars [Shinoda ad Katayama
1988; Frost 1992] is an area where an
organizational paradigm with an under-
lying one-pass implementation is most
feasible. The object-oriented paradigm is
the most appropriate one when modeling
communication protocols [Chapman
1990], with interfaces, abstract data, and
state machines as a major concern. Dis-
tributed applications [Kaiser and Kaplan
1993} require a parallel evaluation strat-
egy in order to be effective. As the last
example, VLSI design [Jones and Simon
1986] and data-flow analysis [Babich and
Jazayeri 1978] are two areas whose nat-
ural description leads to a circular at-
tribute grammar, thus making it feasible
to apply the functional fixed-point evalu-
ation paradigm.

The choices by the designers of a lan-
guage processor generator may also be
strongly influenced by the intended ap-
plication area of the tool. For instance,
both the Synthesizer Generator [Reps
and Teitelbaum 1989] and Pan [Ballance
et al. 1990] generate incremental at-
tribute evaluators. Since the main objec-
tive of the Synthesizer Generator is just
syntax-directed editing, the metalan-
guage of the system is a rather direct
adaptation of the standard form of at-
tribute grammars. In contrast, the Pan
system has a broader scope of supporting
the development and maintenance of
general (un)structured documents, not jut
programs. Such a versatile environment
is usable only if it maintains a sharable
database of documents. To map a specifi-
cation more directly into the database
with a set of integrated access opera-
tions, the metalanguage of the system
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has been based on the logic attribute
grammar paradigm.

In this survey we have demonstrated
how attribute grammars have been inte-
grated with different programming
paradigms. Most existing systems sup-
port a single paradigm. The next natural
phase in the evolution of attribute gram-
mars may well be the development of
language processor generators whose
metalanguage integrates several par-
adigms. Using the taxonomy of this
survey, such a multiparadigm system
should (1) have advanced software engi-
neering capabilities, (2) provide for pow-
erful semantic abstractions, and (3)
generate efficient language processors.
One recent example of such a versatile
system is FNC-2 whose metalanguage is
based on blocks and modules (category
1), pattern matching and polymorphism
(category 2), and an underlying parallel
and incremental attribute evaluation
strategy (category 3) [Jourdan et al. 1990;
Jourdan and Parigot 1991].

While the original and most widely
recognized application area of attribute
grammars is compiler generation, only a
few commercial compilers have actually
been developed using attribute gram-
mars as a design or implementation tool.
Indeed, it has been argued that attribute
grammars fall short in the production of
high-speed compilers for conventional
general-purpose programming languages
[Waite 1990]. Two common explanations
for such a conjecture are that attribute
grammars are just a model of compila-
tion and thus too primitive for a real
engineering discipline, and that they do
not directly support the generation and
optimization of low-level machine code.
On the other hand, the success of YACC
shows the practical usability of attribute
grammars at least in simple front-end
applications [Johnson 1975].

In this survey we have shown that at-
tribute grammars have developed into an
advanced language processing methodol-
ogy by a paradigmatic evolution, and that
the software engineering requirements
are taken into account in modern meta-
languages and systems. The second main
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problem, lack of proper support for code
generatlon and opt1m1zat10n originates
in the model itself and is harder to at-
tack.

From this viewpoint, we can argue that
attribute grammar paradigms should ac-
tually not be applied in the development
of conventional optimizing compilers. In-
stead, a much more suitable area is the
design and implementation of special-
purpose application languages, typical
examples being database query lan-
guages (e.g., SQL), robot control lan-
guages, hardware design languages (e.g.,
VHDL), protocol specification languages
(e.g., ASN.1, SDL), and narrow “little
languages” [Bentley 1986]. Such a lan-
guage 1s usually developed with empha-
gis on high-level application abstractions
rather than on optimal performance.
Other typical aspects are rapid imple-
mentation, exploratory and flexible
design, modifiability, reuse of existing
language concepts, and mapplng into a
general-purpose programming language
(“source-to-source translation”). These
characteristics conform to the methodol-
ogy of language processor generators
which indeed have widely and success-
fully been used in the implementation of
a variety of application languages.

Due to the rapid growth of software
intensive applications, it is most likely
that the main trend of language design
will more and more focus on application
languages. To be productive, the develop-
ment of these languages must be based
on high-level automated tools with sup-
port for both design and implementation.
A realistic methodological foundation for
application-oriented language processing
in the future are attribute grammar
paradigms, such as promoted in this sur-
vey.
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