Faculty of Science

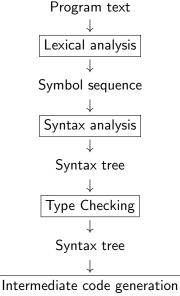
Liveness Analysis and Register Allocation

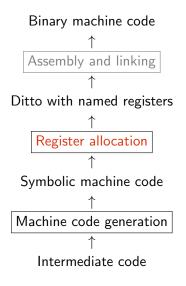
Cosmin E. Oancea cosmin.oancea@diku.dk Modified by Marco Valtorta (UofSC) for CSCE 531 Spring 2020/

Department of Computer Science (DIKU) University of Copenhagen

February 2018 IPS Lecture Slides

Structure of a Compiler





- Problem Statement and Intuition
- 2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets
- 3 Liveness Analysis: Equations, Fix-Point Iteration and Interference
- Register-Allocation via Coloring: Interference Graph & Intuitive Alg

Register-Allocation via Coloring: Improved Algorithm with Spilling

Problem Statement

Processors have a limited number of registers:

X86: 8 (integer) registers,

ARM: 16 (integer) registers,

MIPS: 31 (integer) registers.

In addition, 3 - 4 special-purpose registers (can't hold variables).

Solution:

- Whenever possible, let several variables share the same register,
- If there are still variables that cannot be mapped to a register, store them in memory.

Where to Implement Register Allocation?

Two possibilities: at IL or at machine-language level. Pro/Cons?

Where to Implement Register Allocation?

Two possibilities: at IL or at machine-language level. Pro/Cons?

- IL Level:
- + Can be shared between multiple architectures (parameterized on the number of registers).
 - Translation to machine code can introduce/remove intermediate results.
- Machine-Code Level:
 - + Accurate, near-optimal mapping.
 - Implemented for every architecture, no code reuse.

We show register allocation at ${\scriptstyle\rm IL}$ level. Similar for machine code.

Register-Allocation Scope

- Code Sequence Without Jumps:
 - + Simple.
 - A variable is saved to memory when jumps occur.
- Procedure/Function Level:
 - + Variables can still be in registers even across jumps.
 - A bit more complicated.
 - Variables saved to memory before function calls.
- Module/Program Level:
 - + Sometimes variables can still be hold in registers across function calls (but not always: recursion).
 - More complicated alg of higher time complexity.

Most compilers implement register allocation at function level.

When Can Two Variables Share a Register?

Intuition: Two vars can share a register if the two variables do not have overlapping periods of use.

Period of Use: From var's assignment to the last use of the assigned value. A variable can have several periods of use (*live ranges*).

Liveness: If a variable's value may be used on the continuation of an execution path passing through program point PP, then the variable is *live* at PP. Otherwise: *dead* at PP.

When Can Two Variables Share a Register?

With the code below, can variables a and c share the same register?

a := 1 c := a + 1 a := c + 3 a := a + 2

(a) TRUE

(b) FALSE

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

Register-Allocation via Coloring: Interference Graph & Intuitive Alg

6 Register-Allocation via Coloring: Improved Algorithm with Spilling

Prioritized Rules for Liveness

- If a variable, VAR, is used, i.e., its value, in an instruction, I, then VAR is *live* at the entry of I.
- 2) If VAR is assigned a value in instruction I (and 1) does not apply) then VAR is *dead* at the entry of I.
- 3) If VAR is *live* at the end of instruction I then it is live at the entry of I (unless 2) applies).
- 4) A VAR is *live* at the end of instruction I ⇔ VAR is *live* at the entry of any instructions that may be executed immediately after I, i.e., immediate successors of I.

Liveness-Analysis Concepts

We number program instructions from 1 to n.

For each instruction we define the following sets:

- succ[i]: The instructions (numbers) that can possibly be executed immediately after instruction (numbered) i.
 - gen[i]: The set of variables whose values are read by instruct i.
 - kill[i]: The set of variables that are overwritten by instruction i.
 - in[i]: The set of variables that are live at the entry of instrct i.
 - out[i]: The set of variables that are live at the end of instruct *i*.

In the end, what we need is out[i] for all instructions.

Immediate Successors

- $succ[i] = \{i + 1\}$ unless instruction *i* is a GOTO, an IF-THEN-ELSE, or the last instruction of the program.
- succ[i] = {j}, if instruction *i* is: GOTO *l* and instruction *j* is: LABEL *l*.
- succ[i] = {j, k}, if instruction i is IF c THEN l₁ ELSE l₂, instruction j is LABEL l₁, and instruction k is LABEL l₂.
- If *n* denotes the last instruction of the program, and *n* is not a GOTO or an IF-THEN-ELSE instruction, then $succ[n] = \emptyset$.

Note: Programs always exit by executing a RETURN instruction.

Rules for Constructing gen and kill Sets

Below k denotes a constant (value), M[...] denotes memory access.

Instruction <i>i</i>	gen[i]	kill[i]
LABEL /	Ø	Ø
x := y	$\{y\}$	$\{x\}$
x := k	Ø	$\{x\}$
x := unop y	$\{y\}$	$\{x\}$
x := unop k	Ø	$\{x\}$
x := y binop z	$\{y,z\}$	$\{x\}$
x := y binop k	$\{y\}$	$\{x\}$
x := M[y]	$\{y\}$	$\{x\}$
x := M[k]	Ø	$\{x\}$
M[x] := y	$\{x, y\}$	Ø
M[k] := y	$\{y\}$	Ø
GOTO /	Ø	Ø
IF x relop y THEN l_t ELSE l_f	$\{x, y\}$	Ø
x := CALL f(args)	args	$\{x\}$

Gen & Kill Sets Multiple-Choice

The *kill* and *gen* sets of instruction x := a + x are:

(A)
$$kill = \emptyset$$
, $gen = \{a\}$
(B) $kill = \{x\}$, $gen = \{a, x\}$
(C) $kill = \{a, x\}$, $gen = \{x\}$
(D) $kill = \{a\}$, $gen = \emptyset$
(E) $kill = \{x\}$, $gen = \{x\}$

Gen & Kill Sets Multiple-Choice

The *kill* and *gen* sets of instruction M[i] := i + a are:

(A)
$$kill = \emptyset$$
, $gen = \{a\}$
(B) $kill = \{i\}$, $gen = \{a, i\}$
(C) $kill = \{a, i\}$, $gen = \{i\}$
(D) $kill = \{i\}$, $gen = \{a\}$
(E) $kill = \emptyset$, $gen = \{i, a\}$

Successors Multiple-Choice Question

With the code below, which of the following statements is TRUE?

1. x := 0 2. IF x = 0 THEN lab1 ELSE lab2 3. Label lab1: 4. x := 3 5. GOTO lab3 6. Label lab2: 7. x := 4 Label lab3: 8.

2 Liveness-Analysis Preliminaries: *Succ, Gen* and *Kill* Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

Data-Flow Equation for Liveness Analysis

4) A VAR is *live* at the end of instruction I ⇔ VAR is *live* at the entry of any instructions that may be executed immediately after I, i.e., immediate successors of I.

The CORRECT Equation for out[i] is:

(A)
$$out[i] = in[i]$$

(B) $out[i] = \bigcup_{j \in succ[i]} in[j]$
(C) $out[i] = gen[i] \cup (\bigcup_{j \in succ[i]} in[j])$
(D) $out[i] = in[i] \setminus (\bigcup_{j \in succ[i]} in[j])$
(E) $out[i] = (gen[i] \cup out[i]) \setminus kill[i]$
Recall that \setminus indicates set difference, i.e. $A \setminus B$ is the set of elements of A that are not in B.

Data-Flow Equation for Liveness Analysis

- 1) If a variable, VAR, is used, i.e., its value, in an instruction, I, then VAR is *live* at the entry of I.
- 2) If VAR is assigned a value in instruction I (and 1) does not apply) then VAR is *dead* at the entry of I.
- 3) If VAR is *live* at the end of instruction I then it is live at the entry of I (unless 2) applies).

The CORRECT Equation for *in*[*i*] is:

$$(A) in[i] = gen[i] \cup out[i]$$

(B)
$$in[i] = gen[i] \setminus kill[i]$$

(C)
$$in[i] = gen[i] \cup (out[i] \setminus kill[i])$$

$$(D) in[i] = (gen[i] \setminus kill[i]) \cup out[i]$$

$$(\mathsf{E}) \ in[i] = (gen[i] \cup out[i]) \setminus kill[i]$$

Data-Flow Equations for Liveness Analysis

$$in[i] = gen[i] \cup (out[i] \setminus kill[i])$$
(1)
$$out[i] = \bigcup_{j \in succ[i]} in[j]$$
(2)

Exception: If $succ[i] = \emptyset$, then out[i] is the set of variables that appear in the function's result.

The (recursive) equations are solved by iterating to a fix point: in[i] and out[i] are initialized to \emptyset , and iterate until no changes occur.

Why does it converge?

For fast(er) convergence: compute out[i] before in[i] and in[i + 1] before out[i], respectively (i.e., backward flow analysis).

Imperative-Fibonacci Example

		i	succ[i]	gen[i]	kill[i]
fibo(n)1:	a:=0	1	2		а
	b:=1	2	3		b
3:	z := 0	3	4		Z
4:	LABEL loop	4	5		
5:	IF $n = z$ THEN end ELSE body	5	6,13	<i>n</i> , <i>z</i>	
6:	LABEL body	6	7		
	t := a + b	7	8	a, b	t
	a := b	8	9	Ь	а
•	b := t	9	10	t	b
	n := n - 1	10	11	n	n
	z := 0	11	12		z
	GOTO loop	12	4		
13:	LABEL end	13			

We omitted RETURN a. Means $out[i] = \{a\}$ result used after fct call.

Imperative-Fibonacci Example

		i	succ[i]	gen[i]	kill[i]
fibo(n)1:	<i>a</i> := 0	1	2		а
	b := 1	2	3		b
3:	z := 0	3	4		Z
4:	LABEL loop	4	5		
5:	IF $n = z$ THEN end ELSE body	5	6,13	<i>n</i> , <i>z</i>	
6:	LABEL body	6	7		
7:	t := a + b	7	8	a, b	t
	a := b	8	9	Ь	а
• •	b := t	9	10	t	b
	n := n - 1	10	11	n	n
	z := 0	11	12		z
	GOTO loop	12	4		
13:	LABEL end	13			
		<u> </u>			

We omitted RETURN a. Means $out[i] = \{a\}$ result used after fct call.

University of Copenhagen

Fix-Point Iteration for the Fibonacci Example

Use backwards evaluation order: out[14]. in[14], ..., out[1], in[1].

	Initi	ial	lterat	Iteration 1		Iteration 2		ion 3
i	out[i]	in[i]	out[i]	in[i]	out[i]	in[i]	out[i]	in[i]
1			n, a	п	n, a	n	n, a	п
2			n, a, b	n, a	n, a, b	n, a	n, a, b	n, a
3			n, z, a, b	n, a, b	n, z, a, b	n, a, b	n, z, a, b	n, a, b
4			n, z, a, b	n, z, a, b	n, z, a, b	n, z, a, b	n, z, a, b	n, z, a, b
5			a, b, n	n, z, a, b	a, b, n	n, z, a, b	a, b, n	n, z, a, b
6			a, b, n	a, b, n	a, b, n	a, b, n	a, b, n	a, b, n
7			<i>b</i> , <i>t</i> , <i>n</i>	a, b, n	b, t, n	a, b, n	b, t, n	a, b, n
8			<i>t</i> , <i>n</i>	b, t, n	t, n, a	b, t, n	t, n, a	b, t, n
9			п	<i>t</i> , <i>n</i>	n, a, b	t, n, a	n, a, b	t, n, a
10				п	n, a, b	n, a, b	n, a, b	n, a, b
11					n, z, a, b	n, a, b	n, z, a, b	n, a, b
12					n, z, a, b	n, z, a, b	n, z, a, b	n, z, a, b
13			а	а	а	а	а	а

²³/³⁷Usually less than 5 iterations.

More Multiple Choice Questions

If a formal parameter ${\bf p}$ is NOT LIVE at the entry point of a function, then it means that:

- (A) the original value of p is never used, e.g., p is redefined before being used or is never used.
- (B) parameter p may be used before being written/updated.
- (C) parameter p is only written inside the function and never read
- $(\mathsf{D})\,$ parameter p is only read inside the function and never written
- (E) parameter p is read-and-written in all instructions in which it appears, i.e., p:=p+x

More Multiple Choice Questions

If a variable a, which is NOT a formal argument, is LIVE at the entry point of a function, then it means that:

- (A) a is only read inside the function
- (B) a may be used without being initialized
- $\left(C\right)$ a is only written inside the function
- (D) a will certainly be used before being initialized
- (E) a is read-and-written in all instructions in which it appears, i.e., a:=a+x

- 2 Liveness-Analysis Preliminaries: *Succ, Gen* and *Kill* Sets
- 3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

Interference

Definition: Variable x interferes with variable y, if there is an instruction numbered i such that:

- $x \in kill[i]$ and
- **2** $y \in out[i]$ and
- $x \neq y \text{ and }$
- If instruction i is x := y then x does not interferes with y (but it interferes with any other variable in out[i])

Two variables can share the same register iff they do not interfere with each other!

Interference for the Fibonacci Example

Instruction	Left-hand side	Interferes with	out(i)
1: a := 0	а	п	n, a
2: b := 1	b	n, a	n, a, b
3: z := 0	Ζ	n, a, b	n, z, a, b
7: t := a + b	t	b, n	a, b, n
8 : a := b	а	<i>t</i> , <i>n</i>	t, b, n
9 : $b := t$	b	n, a	t, n, a
10: n := n - 1	n	a, b	n, a, b
11: z := 0	Ζ	n, a, b	n, z, a, b

Since interference is a symmetric and non-reflexive relation, we can draw interference as a (undirected) graph:



28 / 37

Register Allocation By Graph Coloring

Two variables connected by an edge in the interference graph cannot share a register!

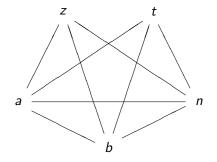
Idea: Associate variables with register numbers such that:

- Two variables connected by an edge receive different numbers.
- Q Numbers represent the (limited number of) hardware registers.

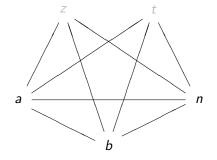
Equivalent to graph-coloring problem: color each node with one of n (available) colors, such that any two neighbors are colored differently.

Since graph coloring is NP complete, we use a heuristic method that gives good results in most cases.

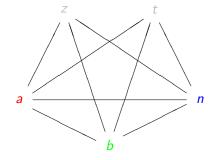
Idea: a node with less-than-*n* neighbors can always be colored. Eliminate such nodes from the graph and solve recursively!



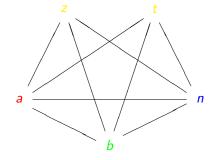
z and t have only three neighbors so they can wait.



The remaining three nodes can now be given different colors!



z and t can now be given a different color!



But what if we only have three colors (registers) available?

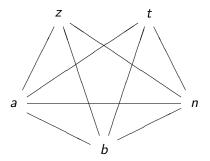
6 Register-Allocation via Coloring: Improved Algorithm with Spilling

Improved Algorithm

Initialization: Start with an empty stack.

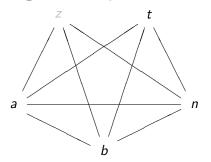
- Simplify: 1) If there is a node with less than n edges (neighbors):(i) place it on the stack together with the list of edges, and (ii) remove it and its edges from the graph.
 - 2. If there is no node with less than *n* neighbors, pick any node and do as above.
 - 3. Continue until the graph is empty. If so go to *select*.
 - Select: 1. Take a node and its neighbor list from the stack.
 - 2. If possible, color it differently than its neighbor's.
 - 3. If not possible, select the node for *spilling* (fails).
 - 4. Repeat until stack is empty.

The quality of the result depends on (i) how to chose a node in *simplify*, and (ii) how to chose a color in *select*.



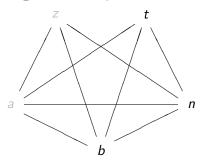
No node has < 3 neighbors, hence choose arbitrarily, say z.

Node	Neighbours	Color
Z	a, b, n	



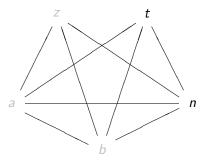
There are still no nodes with < 3 neighbors, hence we chose *a*.

Node	Neighbours	Color
а	b, n, t	
а	D, n, c	
Ζ	a, b, n	



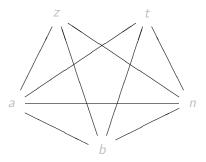
b has two neighbors, so we choose it.

Node	Neighbours	Color
,	,	
b	t, n	
а	b, n, t	
Z	a, b, n	



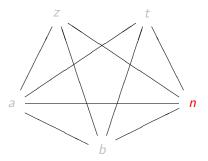
Finally, choose t and n.

Node	Neighbours	Color
n		
t	п	
Ь	t, n	
а	b, n, t	
z	a, b, n	



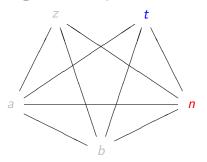
n has no neighbors so we can choose **1**.

Node	Neighbours	Color
n		1
t	п	
b	t, n	
а	b, n, t	
z	a, b, n	



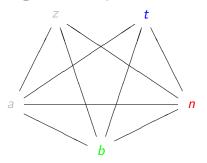
t only has n as neighbor, so we can color it with 2.

Node	Neighbours	Color
n		1
t	п	2
b	t, n	
а	b, n, t	
z	a, b, n	



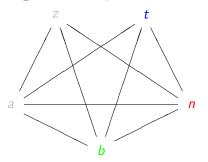
b has t and n as neighbors, hence we can color it with 3.

Node	Neighbours	Color
n		1
t	п	2
b	t, n	3
а	b, n, t	
Ζ	a, b, n	



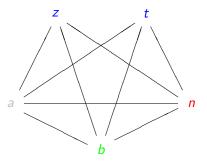
a has three differently-colored neighbors, so it is marked as spill.

Node	Neighbours	Color
n		1
t	п	2
Ь	t, n	3
а	b, n, t	spill
Ζ	a, b, n	



z has colors 1 and 3 as neighbors, hence we can color it with 2.

Node	Neighbours	Color
n		1
t	п	2
Ь	t, n	3
а	b, n, t	spill
z	a, b, n	2



We are now finished, but we need to spill a.

Node	Neighbours	Color
n		1
t	п	2
b	t, n	3
а	b, n, t	spill
z	a, b, n	2

Spilling

Spilling means that some variables will reside in memory (except for brief periods). For each spilled variable:

- 1) Select a memory address $addr_x$, where the value of x will reside.
- 2) If instruction *i* uses *x*, then rename it locally to x_i .
- 3) Before an instruction *i*, which reads x_i , insert $x_i := M[addr_x]$.
- 4) After an instruction *i*, which updates x_i , insert $M[addr_x] := x_i$.
- 5) If x is alive at the beginning of the function/program, insert $M[addr_x] := x$ before the first instruction of the function.
- 6) If x is live at the end of the program/function, insert x := M[addr_x] after the last instruction of the function.

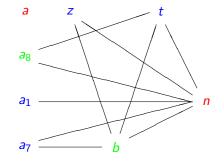
Finally, perform liveness analysis and register allocation again.

Spilling Example

1:
$$a_1 := 0$$

 $M[address_a] := a_1$
2: $b := 1$
3: $z := 0$
4: LABEL loop
5: IF $n = z$ THEN end ELSE body
6: LABEL body
 $a_7 := M[address_a]$
7: $t := a_7 + b$
8: $a_8 := b$
 $M[address_a] := a_8$
9: $b := t$
10: $n := n - 1$
11: $z := 0$
12: GOTO loop
13: LABEL end
 $a := M[address_a]$

After Spilling, Coloring Succeeds!



Heuristics

For **Simplify**: when choosing a node with $\geq n$ neighbors:

- Choose the node with fewest neighbors, which is more likely to be colorable, or
- Choose a node with many neighbors, each of them having close to *n* neighbors, i.e., spilling this node would allow the coloring of its neighbors.

For **Select**: when choosing a color:

- Choose colors that have already been used.
- If instructions such as x := y exist, color x and y with the same color, i.e., eliminate this instruction.