
Liveness Analysis and Register Allocation

Cosmin E. Oancea
cosmin.oancea@diku.dk

Modified by Marco Valtorta (UofSC) for CSCE 531 Spring 2020

Department of Computer Science (DIKU)
University of Copenhagen

February 2018 IPS Lecture Slides



University of Copenhagen Department of Computer Science

Structure of a Compiler
Program text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree Register allocation

↓ ↑
Type Checking Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code

2 / 37



University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

3 / 37



University of Copenhagen Department of Computer Science

Problem Statement

Processors have a limited number of registers:

X86: 8 (integer) registers,

ARM: 16 (integer) registers,

MIPS: 31 (integer) registers.

In addition, 3− 4 special-purpose registers (can’t hold variables).

Solution:

Whenever possible, let several variables share the same register,

If there are still variables that cannot be mapped to a register,
store them in memory.

4 / 37



University of Copenhagen Department of Computer Science

Where to Implement Register Allocation?

Two possibilities: at il or at machine-language level. Pro/Cons?

il Level:

+ Can be shared between multiple architectures
(parameterized on the number of registers).

- Translation to machine code can introduce/remove
intermediate results.

Machine-Code Level:

+ Accurate, near-optimal mapping.
- Implemented for every architecture, no code reuse.

We show register allocation at il level. Similar for machine code.

5 / 37



University of Copenhagen Department of Computer Science

Where to Implement Register Allocation?

Two possibilities: at il or at machine-language level. Pro/Cons?

il Level:

+ Can be shared between multiple architectures
(parameterized on the number of registers).

- Translation to machine code can introduce/remove
intermediate results.

Machine-Code Level:

+ Accurate, near-optimal mapping.
- Implemented for every architecture, no code reuse.

We show register allocation at il level. Similar for machine code.

5 / 37



University of Copenhagen Department of Computer Science

Register-Allocation Scope

Code Sequence Without Jumps:

+ Simple.
- A variable is saved to memory when jumps occur.

Procedure/Function Level:

+ Variables can still be in registers even across jumps.
- A bit more complicated.
- Variables saved to memory before function calls.

Module/Program Level:

+ Sometimes variables can still be hold in registers
across function calls (but not always: recursion).

- More complicated alg of higher time complexity.

Most compilers implement register allocation at function level.
6 / 37



University of Copenhagen Department of Computer Science

When Can Two Variables Share a Register?

Intuition: Two vars can share a register if the two variables do not
have overlapping periods of use.

Period of Use: From var’s assignment to the last use of the assigned
value. A variable can have several periods of use (live
ranges).

Liveness: If a variable’s value may be used on the continuation of
an execution path passing through program point PP,
then the variable is live at PP. Otherwise: dead at PP.

7 / 37



University of Copenhagen Department of Computer Science

When Can Two Variables Share a Register?

With the code below, can variables a and c share the same register?

a := 1

c := a + 1

a := c + 3

a := a + 2

(a) TRUE (b) FALSE

8 / 37



University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

9 / 37



University of Copenhagen Department of Computer Science

Prioritized Rules for Liveness

1) If a variable, var, is used, i.e., its value, in an
instruction, I, then var is live at the entry of I.

2) If var is assigned a value in instruction I (and 1) does
not apply) then var is dead at the entry of I.

3) If var is live at the end of instruction I then it is live at
the entry of I (unless 2) applies).

4) A var is live at the end of instruction I ⇔ var is live at
the entry of any instructions that may be executed
immediately after I, i.e., immediate successors of I.

10 / 37



University of Copenhagen Department of Computer Science

Liveness-Analysis Concepts

We number program instructions from 1 to n.

For each instruction we define the following sets:

succ[i ]: The instructions (numbers) that can possibly be
executed immediately after instruction (numbered) i .

gen[i ]: The set of variables whose values are read by instruct i .

kill [i ]: The set of variables that are overwritten by instruction i .

in[i ]: The set of variables that are live at the entry of instrct i .

out[i ]: The set of variables that are live at the end of instruct i .

In the end, what we need is out[i ] for all instructions.

11 / 37



University of Copenhagen Department of Computer Science

Immediate Successors

succ[i ] = {i + 1} unless instruction i is a goto, an
if-then-else, or the last instruction of the program.

succ[i] = {j}, if instruction i is: GOTO l
and instruction j is: LABEL l .

succ[i] = {j, k}, if instruction i is IF c THEN l1 ELSE l2,
instruction j is LABEL l1 , and instruction k is LABEL l2.

If n denotes the last instruction of the program, and n is not a
goto or an if-then-else instruction, then succ[n] = ∅.

Note: Programs always exit by executing a return instruction.

12 / 37



University of Copenhagen Department of Computer Science

Rules for Constructing gen and kill Sets
Below k denotes a constant (value), M[...] denotes memory access.

Instruction i gen[i ] kill [i ]

LABEL l ∅ ∅
x := y {y} {x}
x := k ∅ {x}
x := unop y {y} {x}
x := unop k ∅ {x}
x := y binop z {y , z} {x}
x := y binop k {y} {x}
x := M[y ] {y} {x}
x := M[k] ∅ {x}
M[x ] := y {x , y} ∅
M[k] := y {y} ∅
GOTO l ∅ ∅
IF x relop y THEN lt ELSE lf {x , y} ∅
x := CALL f (args) args {x}

13 / 37



University of Copenhagen Department of Computer Science

Gen & Kill Sets Multiple-Choice

The kill and gen sets of instruction x := a + x are:

(A) kill = ∅, gen = {a}
(B) kill = {x}, gen = {a, x}
(C) kill = {a, x}, gen = {x}
(D) kill = {a}, gen = ∅
(E) kill = {x}, gen = {x}

14 / 37



University of Copenhagen Department of Computer Science

Gen & Kill Sets Multiple-Choice

The kill and gen sets of instruction M[i] := i + a are:

(A) kill = ∅, gen = {a}
(B) kill = {i}, gen = {a, i}
(C) kill = {a, i}, gen = {i}
(D) kill = {i}, gen = {a}
(E) kill = ∅, gen = {i , a}

15 / 37



University of Copenhagen Department of Computer Science

Successors Multiple-Choice Question

With the code below, which of the following statements is TRUE?

1. x := 0

2. IF x = 0 THEN lab1 ELSE lab2

3. Label lab1:

4. x := 3

5. GOTO lab3

6. Label lab2:

7. x := 4

8. Label lab3:

(A) succ[2] = {3,6,8} and succ[4] = {5}
(B) succ[2] = {3} and succ[5] = {6}
(C) succ[2] = {3} and succ[1] = {2}
(D) succ[2] = {3,6} and succ[5] = {8}
(E) succ[3] = {2} and succ[6] = {2}

16 / 37



University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

17 / 37



University of Copenhagen Department of Computer Science

Data-Flow Equation for Liveness Analysis

4) A var is live at the end of instruction I ⇔ var is live at
the entry of any instructions that may be executed
immediately after I, i.e., immediate successors of I.

The CORRECT Equation for out[i ] is:

(A) out[i ] = in[i ]

(B) out[i ] =
⋃

j∈succ[i ] in[j ]

(C) out[i ] = gen[i ] ∪ (
⋃

j∈succ[i ] in[j ])

(D) out[i ] = in[i ] \ (
⋃

j∈succ[i ] in[j ])

(E) out[i ] = (gen[i ] ∪ out[i ]) \ kill [i ]

Recall that \ indicates set difference, i.e. A \ B is the set of elements
of A that are not in B.

18 / 37



University of Copenhagen Department of Computer Science

Data-Flow Equation for Liveness Analysis

1) If a variable, var, is used, i.e., its value, in an
instruction, I, then var is live at the entry of I.

2) If var is assigned a value in instruction I (and 1) does
not apply) then var is dead at the entry of I.

3) If var is live at the end of instruction I then it is live at
the entry of I (unless 2) applies).

The CORRECT Equation for in[i ] is:

(A) in[i ] = gen[i ] ∪ out[i ]

(B) in[i ] = gen[i ] \ kill [i ]

(C) in[i ] = gen[i ] ∪ (out[i ] \ kill [i ])

(D) in[i ] = (gen[i ] \ kill [i ]) ∪ out[i ]

(E) in[i ] = (gen[i ] ∪ out[i ]) \ kill [i ]

19 / 37



University of Copenhagen Department of Computer Science

Data-Flow Equations for Liveness Analysis

in[i ] = gen[i ] ∪ (out[i ] \ kill [i ]) (1)

out[i ] =
⋃

j∈succ[i ]

in[j ] (2)

Exception: If succ[i ] = ∅, then out[i ] is the set of variables that
appear in the function’s result.

The (recursive) equations are solved by iterating to a fix point:
in[i ] and out[i ] are initialized to ∅, and iterate until no changes occur.

Why does it converge?

For fast(er) convergence: compute out[i ] before in[i ] and in[i + 1]
before out[i ], respectively (i.e., backward flow analysis).

20 / 37



University of Copenhagen Department of Computer Science

Imperative-Fibonacci Example

fibo(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n − 1
11: z := 0
12: GOTO loop
13: LABEL end

i succ[i ] gen[i ] kill [i ]

1 2 a
2 3 b
3 4 z
4 5
5 6, 13 n, z
6 7
7 8 a, b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

We omitted RETURN a. Means out[i ] = {a} result used after fct call.

21 / 37



University of Copenhagen Department of Computer Science

Imperative-Fibonacci Example

fibo(n)1: a := 0
2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body
7: t := a + b
8: a := b
9: b := t

10: n := n − 1
11: z := 0
12: GOTO loop
13: LABEL end

i succ[i ] gen[i ] kill [i ]

1 2 a
2 3 b
3 4 z
4 5
5 6, 13 n, z
6 7
7 8 a, b t
8 9 b a
9 10 t b

10 11 n n
11 12 z
12 4
13

We omitted RETURN a. Means out[i ] = {a} result used after fct call.

22 / 37



University of Copenhagen Department of Computer Science

Fix-Point Iteration for the Fibonacci Example
Use backwards evaluation order: out[14]. in[14], ..., out[1], in[1].

Initial Iteration 1 Iteration 2 Iteration 3
i out[i ] in[i ] out[i ] in[i ] out[i ] in[i ] out[i ] in[i ]

1 n, a n n, a n n, a n
2 n, a, b n, a n, a, b n, a n, a, b n, a
3 n, z , a, b n, a, b n, z , a, b n, a, b n, z , a, b n, a, b
4 n, z , a, b n, z , a, b n, z , a, b n, z , a, b n, z , a, b n, z , a, b
5 a, b, n n, z , a, b a, b, n n, z , a, b a, b, n n, z , a, b
6 a, b, n a, b, n a, b, n a, b, n a, b, n a, b, n
7 b, t, n a, b, n b, t, n a, b, n b, t, n a, b, n
8 t, n b, t, n t, n, a b, t, n t, n, a b, t, n
9 n t, n n, a, b t, n, a n, a, b t, n, a

10 n n, a, b n, a, b n, a, b n, a, b
11 n, z , a, b n, a, b n, z , a, b n, a, b
12 n, z , a, b n, z , a, b n, z , a, b n, z , a, b
13 a a a a a a

Usually less than 5 iterations.23 / 37



University of Copenhagen Department of Computer Science

More Multiple Choice Questions

If a formal parameter p is NOT LIVE at the entry point of a function,
then it means that:

(A) the original value of p is never used, e.g., p is redefined before
being used or is never used.

(B) parameter p may be used before being written/updated.

(C) parameter p is only written inside the function and never read

(D) parameter p is only read inside the function and never written

(E) parameter p is read-and-written in all instructions in which it
appears, i.e., p:=p+x

24 / 37



University of Copenhagen Department of Computer Science

More Multiple Choice Questions

If a variable a, which is NOT a formal argument, is LIVE at the entry
point of a function, then it means that:

(A) a is only read inside the function

(B) a may be used without being initialized

(C) a is only written inside the function

(D) a will certainly be used before being initialized

(E) a is read-and-written in all instructions in which it appears, i.e.,
a:=a+x

25 / 37



University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

26 / 37



University of Copenhagen Department of Computer Science

Interference

Definition: Variable x interferes with variable y , if there is an
instruction numbered i such that:

1 x ∈ kill [i ] and

2 y ∈ out[i ] and

3 x 6= y and

4 If instruction i is x := y then x does not interferes with y
(but it interferes with any other variable in out[i ])

Two variables can share the same register iff they do not interfere
with each other!

27 / 37



University of Copenhagen Department of Computer Science

Interference for the Fibonacci Example

Instruction Left-hand side Interferes with out(i)
1 : a := 0 a n n, a
2 : b := 1 b n, a n, a, b
3 : z := 0 z n, a, b n, z , a, b
7 : t := a + b t b, n a, b, n
8 : a := b a t, n t, b, n
9 : b := t b n, a t, n, a
10 : n := n − 1 n a, b n, a, b
11 : z := 0 z n, a, b n, z , a, b

Since interference is a symmetric and non-reflexive relation, we can
draw interference as a (undirected) graph:

a
HHHH

�
�
�
�
�
�

�
�
��

b
B
B
B
B
B
B

�
��
�

�
�
�
�
�
�

n
A
A
AA

Q
Q
Q

Q
Q
Q

z t

28 / 37



University of Copenhagen Department of Computer Science

Register Allocation By Graph Coloring

Two variables connected by an edge in the interference graph cannot
share a register!

Idea: Associate variables with register numbers such that:

1 Two variables connected by an edge receive different numbers.

2 Numbers represent the (limited number of) hardware registers.

Equivalent to graph-coloring problem: color each node with one of n
(available) colors, such that any two neighbors are colored differently.

Since graph coloring is NP complete, we use a heuristic method that
gives good results in most cases.

Idea: a node with less-than-n neighbors can always be colored.
Eliminate such nodes from the graph and solve recursively!

29 / 37



University of Copenhagen Department of Computer Science

Coloring The Graph With Four Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

z and t have only three neighbors so they can wait.

30 / 37



University of Copenhagen Department of Computer Science

Coloring The Graph With Four Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

The remaining three nodes can now be given different colors!

30 / 37



University of Copenhagen Department of Computer Science

Coloring The Graph With Four Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

z and t can now be given a different color!

30 / 37



University of Copenhagen Department of Computer Science

Coloring The Graph With Four Colors

a
HH

HHH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

��
��
�

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
z t

But what if we only have three colors (registers) available?

30 / 37



University of Copenhagen Department of Computer Science

1 Problem Statement and Intuition

2 Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets

3 Liveness Analysis: Equations, Fix-Point Iteration and Interference

4 Register-Allocation via Coloring: Interference Graph & Intuitive Alg

5 Register-Allocation via Coloring: Improved Algorithm with Spilling

31 / 37



University of Copenhagen Department of Computer Science

Improved Algorithm
Initialization: Start with an empty stack.

Simplify: 1) If there is a node with less than n edges (neighbors):
(i) place it on the stack together with the list of edges,
and (ii) remove it and its edges from the graph.

2. If there is no node with less than n neighbors, pick
any node and do as above.

3. Continue until the graph is empty. If so go to select.

Select: 1. Take a node and its neighbor list from the stack.

2. If possible, color it differently than its neighbor’s.

3. If not possible, select the node for spilling (fails).

4. Repeat until stack is empty.

The quality of the result depends on (i) how to chose a node in
simplify, and (ii) how to chose a color in select.

32 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

No node has < 3 neighbors, hence choose arbitrarily, say z .

Node Neighbours Color

z a, b, n
33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

There are still no nodes with < 3 neighbors, hence we chose a.

Node Neighbours Color

a b, n, t
z a, b, n

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

b has two neighbors, so we choose it.

Node Neighbours Color

b t, n
a b, n, t
z a, b, n

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

Finally, choose t and n.

Node Neighbours Color
n
t n
b t, n
a b, n, t
z a, b, n

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

n has no neighbors so we can choose 1.

Node Neighbours Color
n 1
t n
b t, n
a b, n, t
z a, b, n

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

t only has n as neighbor, so we can color it with 2.

Node Neighbours Color
n 1
t n 2
b t, n
a b, n, t
z a, b, n

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

b has t and n as neighbors, hence we can color it with 3.

Node Neighbours Color
n 1
t n 2
b t, n 3
a b, n, t
z a, b, n

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

a has three differently-colored neighbors, so it is marked as spill.

Node Neighbours Color
n 1
t n 2
b t, n 3
a b, n, t spill
z a, b, n

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

z has colors 1 and 3 as neighbors, hence we can color it with 2.

Node Neighbours Color
n 1
t n 2
b t, n 3
a b, n, t spill
z a, b, n 2

33 / 37



University of Copenhagen Department of Computer Science

Example: Coloring the Graph with Three Colors

a
HHH

HH

�
�
�
�
�
�
�
��

�
�
�
�
�

b

B
B
B
B
B
B
B
BB

�
��

��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q
Q

Q
Q
Q

Q
QQ

z t

We are now finished, but we need to spill a.

Node Neighbours Color
n 1
t n 2
b t, n 3
a b, n, t spill
z a, b, n 2

33 / 37



University of Copenhagen Department of Computer Science

Spilling

Spilling means that some variables will reside in memory (except for
brief periods). For each spilled variable:

1) Select a memory address addrx , where the value of x will reside.

2) If instruction i uses x , then rename it locally to xi .

3) Before an instruction i , which reads xi , insert xi := M[addrx ].

4) After an instruction i , which updates xi , insert M[addrx ] := xi .

5) If x is alive at the beginning of the function/program, insert
M[addrx ] := x before the first instruction of the function.

6) If x is live at the end of the program/function, insert
x := M[addrx ] after the last instruction of the function.

Finally, perform liveness analysis and register allocation again.

34 / 37



University of Copenhagen Department of Computer Science

Spilling Example

1: a1 := 0
M[addressa] := a1

2: b := 1
3: z := 0
4: LABEL loop
5: IF n = z THEN end ELSE body
6: LABEL body

a7 := M[addressa]
7: t := a7 + b
8: a8 := b

M[addressa] := a8
9: b := t

10: n := n − 1
11: z := 0
12: GOTO loop
13: LABEL end

a := M[addressa]

35 / 37



University of Copenhagen Department of Computer Science

After Spilling, Coloring Succeeds!

a8 XXXXXXXXXXXX

��
��

��
���

a1

a7
���

���
���

���

b

B
B
B
B
B
B
B
BB

��
�
��

�
�
�
�
�
�
�
��

n
A
A
A
A
A

Q
Q

Q
Q

Q
Q
Q

QQ
a z t

36 / 37



University of Copenhagen Department of Computer Science

Heuristics

For Simplify: when choosing a node with ≥ n neighbors:

Choose the node with fewest neighbors, which is
more likely to be colorable, or

Choose a node with many neighbors, each of them
having close to n neighbors, i.e., spilling this node
would allow the coloring of its neighbors.

For Select: when choosing a color:

Choose colors that have already been used.

If instructions such as x := y exist, color x and y
with the same color, i.e., eliminate this instruction.

37 / 37


	Problem Statement and Intuition
	Liveness-Analysis Preliminaries: Succ, Gen and Kill Sets
	Liveness Analysis: Equations, Fix-Point Iteration and Interference
	Register-Allocation via Coloring: Interference Graph & Intuitive Alg
	Register-Allocation via Coloring: Improved Algorithm with Spilling

