
Intermediate Code Generation

Cosmin E. Oancea
cosmin.oancea@diku.dk

Modified by Marco Valtorta for CSCE 531 at UofSC
Based on Jost Berthold’s slides and Torben Mogensen’s book
Department of Computer Science
University of Copenhagen

February 2018 IPS Lecture Slides

University of Copenhagen Department of Computer Science

Structure of a Compiler
Program text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree Register allocation

↓ ↑
Typecheck Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code

2 / 38

University of Copenhagen Department of Computer Science

1 Why Intermediate Code?
Intermediate Language
To-Be-Translated Language

2 Syntax-Directed Translation
Arithmetic Expressions
Statements
Boolean Expressions, Sequential Evaluation

3 Translating More Complex Structures
More Control Structures
Arrays and Other Structured Data
Role of Declarations in the Translation

3 / 38

University of Copenhagen Department of Computer Science

Why Intermediate Language (IL)?
Compilers for different platforms and languages can share parts.

C++

Pascal

Fortran

�
��
��*
-

HH
HHHj Intermed.Lang �

��
��*

-HH
HHHj X86

X86 64

ARM

�

Without IL: how many translators do I need to write to map n

languages to m different hardware?

Answer: n*m instead of n+m!

Machine-independent optimizations are possible.

Also enables interpretation ...

4 / 38

University of Copenhagen Department of Computer Science

Why Intermediate Language (IL)?
Compilers for different platforms and languages can share parts.

C++

Pascal

Fortran

�
��
��*
-

HH
HHHj Intermed.Lang �

��
��*

-HH
HHHj X86

X86 64

ARM

�

Without IL: how many translators do I need to write to map n

languages to m different hardware?
Answer: n*m instead of n+m!

Machine-independent optimizations are possible.

Also enables interpretation ...

4 / 38

University of Copenhagen Department of Computer Science

Intermediate Language (IL)
Machine Independent: unlimited number of registers and
memory space, no machine-specific instructions.

Mid-level(s) between source and machine languages (tradeoff):
simpler constructs, easier to generate machine code.

What features/constructs should IL support?

every translation loses information ⇒
use the information before losing it!

typically a chain of ILs moving from higher towards lower level.

How complex should IL’s instruction be?

complex: good for interpretation (amortizes instruction-decoding
overhead),

simple: can more easily generate optimal machine code.

5 / 38

University of Copenhagen Department of Computer Science

Intermediate Language (IL)

Here: Low-level language,
but keeping functions
(procedures).
Small instructions:

3-address code: one
operation per expression

Memory read/write (M)
(address is atom).

Jump labels, GOTO and
conditional jump (IF).

Function calls and
returns

Prg → Fcts
Fcts → Fct Fcts | Fct
Fct → Hdr Bd
Hdr → functionid(Args)
Bd → [Instrs]

Instrs → Instr , Instrs | Instr
Instr → id := Atom | id := unop Atom

| id := id binop Atom
| id := M[Atom] | M[Atom] := id
| LABEL label | GOTO label
| IF id relop Atom

THEN label ELSE label
| id := CALL functionid(Args)
| RETURN id

Atom → id | num

Args → id , Args | id

6 / 38

University of Copenhagen Department of Computer Science

Intermediate Language (IL)

Here: Low-level language,
but keeping functions
(procedures).
Small instructions:

3-address code: one
operation per expression

Memory read/write (M)
(address is atom).

Jump labels, GOTO and
conditional jump (IF).

Function calls and
returns

Prg → Fcts
Fcts → Fct Fcts | Fct
Fct → Hdr Bd
Hdr → functionid(Args)
Bd → [Instrs]

Instrs → Instr , Instrs | Instr
Instr → id := Atom | id := unop Atom

| id := id binop Atom

| id := M[Atom] | M[Atom] := id
| LABEL label | GOTO label
| IF id relop Atom

THEN label ELSE label
| id := CALL functionid(Args)
| RETURN id

Atom → id | num

Args → id , Args | id

6 / 38

University of Copenhagen Department of Computer Science

Intermediate Language (IL)

Here: Low-level language,
but keeping functions
(procedures).
Small instructions:

3-address code: one
operation per expression

Memory read/write (M)
(address is atom).

Jump labels, GOTO and
conditional jump (IF).

Function calls and
returns

Prg → Fcts
Fcts → Fct Fcts | Fct
Fct → Hdr Bd
Hdr → functionid(Args)
Bd → [Instrs]

Instrs → Instr , Instrs | Instr
Instr → id := Atom | id := unop Atom

| id := id binop Atom
| id := M[Atom] | M[Atom] := id

| LABEL label | GOTO label
| IF id relop Atom

THEN label ELSE label
| id := CALL functionid(Args)
| RETURN id

Atom → id | num

Args → id , Args | id

6 / 38

University of Copenhagen Department of Computer Science

Intermediate Language (IL)

Here: Low-level language,
but keeping functions
(procedures).
Small instructions:

3-address code: one
operation per expression

Memory read/write (M)
(address is atom).

Jump labels, GOTO and
conditional jump (IF).

Function calls and
returns

Prg → Fcts
Fcts → Fct Fcts | Fct
Fct → Hdr Bd
Hdr → functionid(Args)
Bd → [Instrs]

Instrs → Instr , Instrs | Instr
Instr → id := Atom | id := unop Atom

| id := id binop Atom
| id := M[Atom] | M[Atom] := id
| LABEL label | GOTO label
| IF id relop Atom

THEN label ELSE label

| id := CALL functionid(Args)
| RETURN id

Atom → id | num

Args → id , Args | id

6 / 38

University of Copenhagen Department of Computer Science

Intermediate Language (IL)

Here: Low-level language,
but keeping functions
(procedures).
Small instructions:

3-address code: one
operation per expression

Memory read/write (M)
(address is atom).

Jump labels, GOTO and
conditional jump (IF).

Function calls and
returns

Prg → Fcts
Fcts → Fct Fcts | Fct
Fct → Hdr Bd
Hdr → functionid(Args)
Bd → [Instrs]

Instrs → Instr , Instrs | Instr
Instr → id := Atom | id := unop Atom

| id := id binop Atom
| id := M[Atom] | M[Atom] := id
| LABEL label | GOTO label
| IF id relop Atom

THEN label ELSE label
| id := CALL functionid(Args)
| RETURN id

Atom → id | num
Args → id , Args | id

6 / 38

University of Copenhagen Department of Computer Science

The To-Be-Translated Language

We shall translate a simple procedural language:

Arithmetic expressions and function calls, boolean expressions,

conditional branching (if),

two loops constructs (while and repeat until).

Syntax-directed translation:

In practice we work on the abstract syntax tree AbSyn
(but here we use a generic grammar notation),

Implement each syntactic category via a translation function:
Arithmetic expressions, Boolean expressions, Statements.

Code for subtrees is generated independent of context,
(i.e., context is a parameter to the translation function)

7 / 38

University of Copenhagen Department of Computer Science

1 Why Intermediate Code?
Intermediate Language
To-Be-Translated Language

2 Syntax-Directed Translation
Arithmetic Expressions
Statements
Boolean Expressions, Sequential Evaluation

3 Translating More Complex Structures
More Control Structures
Arrays and Other Structured Data
Role of Declarations in the Translation

8 / 38

University of Copenhagen Department of Computer Science

Translating Arithmetic Expressions

Expressions in Source Language

Variables and number literals,

unary and binary operations,

function calls (with argument list).

Exp → num | id
| unop Exp
| Exp binop Exp
| id(Exps)

Exps → Exp | Exp , Exps

Translation function:

TransExp :: (Exp, VTable, FTable, Location) -> [ICode]

Returns a list of intermediate code instructions [ICode] that . . .

. . . upon execution, computes Exp’s result in variable Location.

Case analysis on Exp’s abstract syntax tree AbSyn.

9 / 38

University of Copenhagen Department of Computer Science

Translating Arithmetic Expressions

Expressions in Source Language

Variables and number literals,

unary and binary operations,

function calls (with argument list).

Exp → num | id
| unop Exp
| Exp binop Exp
| id(Exps)

Exps → Exp | Exp , Exps

Translation function:

TransExp :: (Exp, VTable, FTable, Location) -> [ICode]

Returns a list of intermediate code instructions [ICode] that . . .

. . . upon execution, computes Exp’s result in variable Location.

Case analysis on Exp’s abstract syntax tree AbSyn.

9 / 38

University of Copenhagen Department of Computer Science

Symbol Tables and Helper Functions

Translation function:
TransExp :: (Exp, VTable, FTable, Location) -> [ICode]

Symbol Tables

vtable : maps a variable name in source lang to its
corresponding (translation) IL variable name.

ftable : function names to function labels (for call)

Helper Functions

lookup: retrieve entry from a symbol table

getvalue: retrieve value of source language literal

getname: retrieve name of source language variable/operation

newvar: make new intermediate code variable

newlabel: make new label (for jumps in intermediate code)

trans op: translates an operator name to the name in IL.

10 / 38

University of Copenhagen Department of Computer Science

Generating Code for an Expression
TransExp : (Exp, VTable, FTable, Location) -> [ICode]

TransExp (exp, vtable, ftable, place) = case exp of

num v = getvalue(num)
[place := v]

id x = lookup(vtable, getname(id))
[place := x]

unop Exp1 place1 = newvar()
code1 = TransExp(Exp1, vtable, ftable, place1)
op = trans op(getname(unop))
code1 @ [place := op place1]

Exp1 binop Exp2 place1 = newvar()
place2 = newvar()
code1 = TransExp(Exp1, vtable, ftable, place1)
code2 = TransExp(Exp2, vtable, ftable, place2)
op = trans op(getname(binop))
code1 @ code2 @ [place := place1 op place2]

In this slide presentation, @ (as in SML) is used instead of ++ (as in
Haskell and in the Mogensen’s book) for list concatenation.

11 / 38

University of Copenhagen Department of Computer Science

Generating Code for a Function Call
TransExp (exp, vtable, ftable, place) = case exp of

id(Exps) (code1, [a1, . . . , an]) = TransExps(Exps, vtable, ftable)
fname = lookup(ftable, getname(id))
code1 @ [place := CALL fname(a1, . . . , an)]

TransExps returns the code that evaluates the function’s parameters,
and the list of new-intermediate variables (that store the result).

TransExps : (Exps, VTable, FTable) -> ([ICode], [Location])

TransExps(exps, vtable, ftable) = case exps of

Exp place = newvar()
code1 = TransExp(Exp, vtable, ftable, place)
(code1, [place])

Exp , Exps place = newvar()
code1 = TransExp(Exp, vtable, ftable, place)
(code2, args) = TransExps(Exps, vtable, ftable)
code3 = code1 @ code2
args1 = place :: args
(code3, args1)

12 / 38

University of Copenhagen Department of Computer Science

Translation Example

Assume the following symbol tables:

vtable = [x 7→ v0, y 7→ v1, z 7→ v2]

ftable = [f 7→ F 1, + 7→ +, - 7→ -]

Translation of Exp with place = t0:

Exp=x-3

t1 := v0
t2 := 3
t0 := t1− t2

Exp=3+f(x-y,z)

t1 := 3
t4 := v0
t5 := v1

t3 := t4− t5
t6 := v2

t2 := CALL F 1(t3, t6)
t0 := t1 + t2

13 / 38

University of Copenhagen Department of Computer Science

Translation Example

Assume the following symbol tables:

vtable = [x 7→ v0, y 7→ v1, z 7→ v2]

ftable = [f 7→ F 1, + 7→ +, - 7→ -]

Translation of Exp with place = t0:

Exp=x-3
t1 := v0
t2 := 3
t0 := t1− t2

Exp=3+f(x-y,z)

t1 := 3
t4 := v0
t5 := v1

t3 := t4− t5
t6 := v2

t2 := CALL F 1(t3, t6)
t0 := t1 + t2

13 / 38

University of Copenhagen Department of Computer Science

Translation Example

Assume the following symbol tables:

vtable = [x 7→ v0, y 7→ v1, z 7→ v2]

ftable = [f 7→ F 1, + 7→ +, - 7→ -]

Translation of Exp with place = t0:

Exp=x-3
t1 := v0
t2 := 3
t0 := t1− t2

Exp=3+f(x-y,z)

t1 := 3
t4 := v0
t5 := v1

t3 := t4− t5
t6 := v2

t2 := CALL F 1(t3, t6)
t0 := t1 + t2

13 / 38

University of Copenhagen Department of Computer Science

Translation Example

Assume the following symbol tables:

vtable = [x 7→ v0, y 7→ v1, z 7→ v2]

ftable = [f 7→ F 1, + 7→ +, - 7→ -]

Translation of Exp with place = t0:

Exp=x-3
t1 := v0
t2 := 3
t0 := t1− t2

Exp=3+f(x-y,z)

t1 := 3
t4 := v0
t5 := v1

t3 := t4− t5
t6 := v2

t2 := CALL F 1(t3, t6)
t0 := t1 + t2

13 / 38

University of Copenhagen Department of Computer Science

1 Why Intermediate Code?
Intermediate Language
To-Be-Translated Language

2 Syntax-Directed Translation
Arithmetic Expressions
Statements
Boolean Expressions, Sequential Evaluation

3 Translating More Complex Structures
More Control Structures
Arrays and Other Structured Data
Role of Declarations in the Translation

14 / 38

University of Copenhagen Department of Computer Science

Translating Statements

Statements in Source
Language

Sequence of statements

Assignment

Conditional Branching

Loops: while and repeat

(simple conditions for
now)

Stat → Stat ; Stat
| id := Exp
| if Cond then { Stat }
| if Cond then { Stat } else { Stat }
| while Cond do { Stat }
| repeat { Stat } until Cond

Cond → Exp relop Exp

We assume relational operators translate directly (using trans op).

Translation function:

TransStat :: (Stat, VTable, FTable) -> [ICode]

As before: syntax-directed, case analysis on Stat

Intermediate code instructions for statements

15 / 38

University of Copenhagen Department of Computer Science

Translating Statements

Statements in Source
Language

Sequence of statements

Assignment

Conditional Branching

Loops: while and repeat

(simple conditions for
now)

Stat → Stat ; Stat
| id := Exp
| if Cond then { Stat }
| if Cond then { Stat } else { Stat }
| while Cond do { Stat }
| repeat { Stat } until Cond

Cond → Exp relop Exp

We assume relational operators translate directly (using trans op).

Translation function:

TransStat :: (Stat, VTable, FTable) -> [ICode]

As before: syntax-directed, case analysis on Stat

Intermediate code instructions for statements

15 / 38

University of Copenhagen Department of Computer Science

Generating Code for Sequences, Assignments,. . .

TransStat : (Stat, Vtable, Ftable) -> [ICode]

TransStat(stat, vtable, ftable) = case stat of

Stat1 ; Stat2 code1 = TransStat(Stat1, vtable, ftable)
code2 = TransStat(Stat2, vtable, ftable)
code1 @ code2

id := Exp place = lookup(vtable, getname(id))
TransExp(Exp, vtable, ftable, place)

. . . (rest coming soon)

Sequence of statements, sequence of code.

Symbol tables are inherited attributes.

16 / 38

University of Copenhagen Department of Computer Science

Generating Code for Conditional Jumps: Helper

Helper function for loops and branches

Evaluates Cond, i.e., a boolean expression,
then jumps to one of two labels, depending on result

TransCond : (Cond, Label, Label, Vtable, Ftable) -> [ICode]
TransCond(cond , labelt , labelf , vtable, ftable) = case cond of

Exp1 relop Exp2 t1 = newvar()
t2 = newvar()
code1 = TransExp(Exp1, vtable, ftable, t1)
code2 = TransExp(Exp2, vtable, ftable, t2)
op = trans op(getname(relop))
code1 @ code2 @ [IF t1 op t2 THEN labelt ELSE labelf]

Uses the IF of the intermediate language

Expressions need to be evaluated before
(restricted IF: only variables and atoms can be used)

17 / 38

University of Copenhagen Department of Computer Science

Generating Code for If-Statements

Generate new labels for branches and following code

Translate If statement to a conditional jump

TransStat(stat, vtable, ftable) = case stat of
if Cond labelt = newlabel()
then Stat1 labelf = newlabel()

codec = TransCond(Cond , labelt , labelf , vtable, ftable)
codes = TransStat(Stat1, vtable, ftable)
codec @ [LABEL labelt] @ codes @ [LABEL labelf]

if Cond labelt = newlabel()
then Stat1 labelf = newlabel()
else Stat2 labele = newlabel()

codec = TransCond(Cond , labelt , labelf , vtable, ftable)
code1 = TransStat(Stat1, vtable, ftable)
code2 = TransStat(Stat2, vtable, ftable)
codec @ [LABEL labelt] @ code1 @ [GOTO labele]

@ [LABEL labelf] @ code2 @ [LABEL labele]

18 / 38

University of Copenhagen Department of Computer Science

Generating Code for If-Statements

Generate new labels for branches and following code

Translate If statement to a conditional jump

TransStat(stat, vtable, ftable) = case stat of
if Cond labelt = newlabel()
then Stat1 labelf = newlabel()

codec = TransCond(Cond , labelt , labelf , vtable, ftable)
codes = TransStat(Stat1, vtable, ftable)
codec @ [LABEL labelt] @ codes @ [LABEL labelf]

if Cond labelt = newlabel()
then Stat1 labelf = newlabel()
else Stat2 labele = newlabel()

codec = TransCond(Cond , labelt , labelf , vtable, ftable)
code1 = TransStat(Stat1, vtable, ftable)
code2 = TransStat(Stat2, vtable, ftable)
codec @ [LABEL labelt] @ code1 @ [GOTO labele]

@ [LABEL labelf] @ code2 @ [LABEL labele]

18 / 38

University of Copenhagen Department of Computer Science

Generating Code for Loops

repeat-until loop is the easy case:
Execute body, check condition, jump back if false.

while loop needs check before body, one extra label needed.

TransStat(stat, vtable, ftable) = case stat of
repeat Stat labelf = newlabel()
until Cond labelt = newlabel()

code1 = TransStat(Stat, vtable, ftable)
code2 = TransCond(Cond , labelt , labelf , vtable, ftable)
[LABEL labelf] @ code1 @ code2 @ [LABEL labelt]

while Cond labels = newlabel()
do Stat labelt = newlabel()

labelf = newlabel()
code1 = TransCond(Cond , labelt , labelf , vtable, ftable)
code2 = TransStat(Stat, vtable, ftable)
[LABEL labels] @ code1
@ [LABEL labelt] @ code2 @ [GOTO labels]

@ [LABEL labelf]

19 / 38

University of Copenhagen Department of Computer Science

Generating Code for Loops

repeat-until loop is the easy case:
Execute body, check condition, jump back if false.

while loop needs check before body, one extra label needed.
TransStat(stat, vtable, ftable) = case stat of

repeat Stat labelf = newlabel()
until Cond labelt = newlabel()

code1 = TransStat(Stat, vtable, ftable)
code2 = TransCond(Cond , labelt , labelf , vtable, ftable)
[LABEL labelf] @ code1 @ code2 @ [LABEL labelt]

while Cond labels = newlabel()
do Stat labelt = newlabel()

labelf = newlabel()
code1 = TransCond(Cond , labelt , labelf , vtable, ftable)
code2 = TransStat(Stat, vtable, ftable)
[LABEL labels] @ code1
@ [LABEL labelt] @ code2 @ [GOTO labels]

@ [LABEL labelf]

19 / 38

University of Copenhagen Department of Computer Science

Translation Example

Symbol table vtable: [x 7→ v0, y 7→ v1, z 7→ v2]

Symbol table ftable: [getInt 7→ libIO getInt]

x := 3;

y := getInt();

z := 1;

while y > 0

y := y - 1;

z := z * x

v 0 := 3

v 1 := CALL libIO getInt()

v 2 := 1

LABEL l s

t 1 := v 1

t 2 := 0

IF t 1 > t 2 THEN l t else l f

LABEL l t

t 3 := v 1

t 4 := 1

v 1 := t 3 - t 4

t 5 := v 2

t 6 := v 0

v 2 := t 5 * t 6

GOTO l s

LABEL l f

20 / 38

University of Copenhagen Department of Computer Science

Translation Example

Symbol table vtable: [x 7→ v0, y 7→ v1, z 7→ v2]

Symbol table ftable: [getInt 7→ libIO getInt]

x := 3;

y := getInt();

z := 1;

while y > 0

y := y - 1;

z := z * x

v 0 := 3

v 1 := CALL libIO getInt()

v 2 := 1

LABEL l s

t 1 := v 1

t 2 := 0

IF t 1 > t 2 THEN l t else l f

LABEL l t

t 3 := v 1

t 4 := 1

v 1 := t 3 - t 4

t 5 := v 2

t 6 := v 0

v 2 := t 5 * t 6

GOTO l s

LABEL l f

20 / 38

University of Copenhagen Department of Computer Science

Translation Example

Symbol table vtable: [x 7→ v0, y 7→ v1, z 7→ v2]

Symbol table ftable: [getInt 7→ libIO getInt]

x := 3;

y := getInt();

z := 1;

while y > 0

y := y - 1;

z := z * x

v 0 := 3

v 1 := CALL libIO getInt()

v 2 := 1

LABEL l s

t 1 := v 1

t 2 := 0

IF t 1 > t 2 THEN l t else l f

LABEL l t

t 3 := v 1

t 4 := 1

v 1 := t 3 - t 4

t 5 := v 2

t 6 := v 0

v 2 := t 5 * t 6

GOTO l s

LABEL l f

20 / 38

University of Copenhagen Department of Computer Science

Translation Example

Symbol table vtable: [x 7→ v0, y 7→ v1, z 7→ v2]

Symbol table ftable: [getInt 7→ libIO getInt]

x := 3;

y := getInt();

z := 1;

while y > 0

y := y - 1;

z := z * x

v 0 := 3

v 1 := CALL libIO getInt()

v 2 := 1

LABEL l s

t 1 := v 1

t 2 := 0

IF t 1 > t 2 THEN l t else l f

LABEL l t

t 3 := v 1

t 4 := 1

v 1 := t 3 - t 4

t 5 := v 2

t 6 := v 0

v 2 := t 5 * t 6

GOTO l s

LABEL l f

20 / 38

University of Copenhagen Department of Computer Science

Translation Example

Symbol table vtable: [x 7→ v0, y 7→ v1, z 7→ v2]

Symbol table ftable: [getInt 7→ libIO getInt]

x := 3;

y := getInt();

z := 1;

while y > 0

y := y - 1;

z := z * x

v 0 := 3

v 1 := CALL libIO getInt()

v 2 := 1

LABEL l s

t 1 := v 1

t 2 := 0

IF t 1 > t 2 THEN l t else l f

LABEL l t

t 3 := v 1

t 4 := 1

v 1 := t 3 - t 4

t 5 := v 2

t 6 := v 0

v 2 := t 5 * t 6

GOTO l s

LABEL l f

20 / 38

University of Copenhagen Department of Computer Science

1 Why Intermediate Code?
Intermediate Language
To-Be-Translated Language

2 Syntax-Directed Translation
Arithmetic Expressions
Statements
Boolean Expressions, Sequential Evaluation

3 Translating More Complex Structures
More Control Structures
Arrays and Other Structured Data
Role of Declarations in the Translation

21 / 38

University of Copenhagen Department of Computer Science

More Complex Conditions, Boolean Expressions

Boolean Expressions as Conditions

Arithmetic expressions used as
Boolean

Logical operators (not, and, or)

Boolean expressions used in
arithmetics

Cond → Exp relop Exp
| Exp
| not Cond
| Cond and Cond
| Cond or Cond

Exp → . . . | Cond

We extend the translation functions TransExp and TransCond :

Interpret numeric values as Boolean expressions:
0 is false, all other values true.

Likewise: truth values as arithmetic expressions

22 / 38

University of Copenhagen Department of Computer Science

More Complex Conditions, Boolean Expressions

Boolean Expressions as Conditions

Arithmetic expressions used as
Boolean

Logical operators (not, and, or)

Boolean expressions used in
arithmetics

Cond → Exp relop Exp
| Exp
| not Cond
| Cond and Cond
| Cond or Cond

Exp → . . . | Cond

We extend the translation functions TransExp and TransCond :

Interpret numeric values as Boolean expressions:
0 is false, all other values true.

Likewise: truth values as arithmetic expressions

22 / 38

University of Copenhagen Department of Computer Science

Numbers and Boolean Values, Negation
Expressions as Boolean values, negation:
TransCond : (Cond, Label, Label, Vtable, Ftable) -> [ICode]
TransCond(cond , labelt , labelf , vtable, ftable) = case cond of

. . .
Exp t = newvar()

code = TransExp(Exp, vtable, ftable, t)
code @ [IF t 6= 0 THEN labelt ELSE labelf]

notCond TransCond(Cond , labelf , labelt , vtable, ftable)

. . .

Conversion of Boolean values to numbers (by jumps):
TransExp : (Exp, Vtable, Ftable) -> [ICode]
TransExp(exp, vtable, ftable, place) = case exp of

. . .
Cond label1 = newlabel()

label2 = newlabel()
t = newvar()
code = TransCond(Cond , label1, label2, vtable, ftable)
[t := 0] @ code @ [LABEL label1, t := 1] @ [LABEL label2, place := t]

23 / 38

University of Copenhagen Department of Computer Science

Numbers and Boolean Values, Negation
Expressions as Boolean values, negation:
TransCond : (Cond, Label, Label, Vtable, Ftable) -> [ICode]
TransCond(cond , labelt , labelf , vtable, ftable) = case cond of

. . .
Exp t = newvar()

code = TransExp(Exp, vtable, ftable, t)
code @ [IF t 6= 0 THEN labelt ELSE labelf]

notCond TransCond(Cond , labelf , labelt , vtable, ftable)

. . .

Conversion of Boolean values to numbers (by jumps):
TransExp : (Exp, Vtable, Ftable) -> [ICode]
TransExp(exp, vtable, ftable, place) = case exp of

. . .
Cond label1 = newlabel()

label2 = newlabel()
t = newvar()
code = TransCond(Cond , label1, label2, vtable, ftable)
[t := 0] @ code @ [LABEL label1, t := 1] @ [LABEL label2, place := t]

23 / 38

University of Copenhagen Department of Computer Science

Sequential Evaluation of Conditions

Moscow ML version 2.01 (January 2004)

Enter ‘quit();’ to quit.

- fun f l = if (hd l = 1) then "one" else "not one";

> val f = fn : int list -> string

- f [];

! Uncaught exception:

! Empty

In most languages, logical operators are evaluated sequentially.

If B1 = false, do not evaluate B2 in B1&&B2 (anyway false).

If B1 = true, do not evaluate B2 in B1||B2 (anyway true).
- fun g l = if not (null l) andalso (hd l = 1) then "one" else "not one";

> val g = fn : int list -> string

- g [];

> val it = "not one" : string

24 / 38

University of Copenhagen Department of Computer Science

Sequential Evaluation of Conditions

Moscow ML version 2.01 (January 2004)

Enter ‘quit();’ to quit.

- fun f l = if (hd l = 1) then "one" else "not one";

> val f = fn : int list -> string

- f [];

! Uncaught exception:

! Empty

In most languages, logical operators are evaluated sequentially.

If B1 = false, do not evaluate B2 in B1&&B2 (anyway false).

If B1 = true, do not evaluate B2 in B1||B2 (anyway true).

- fun g l = if not (null l) andalso (hd l = 1) then "one" else "not one";

> val g = fn : int list -> string

- g [];

> val it = "not one" : string

24 / 38

University of Copenhagen Department of Computer Science

Sequential Evaluation of Conditions

Moscow ML version 2.01 (January 2004)

Enter ‘quit();’ to quit.

- fun f l = if (hd l = 1) then "one" else "not one";

> val f = fn : int list -> string

- f [];

! Uncaught exception:

! Empty

In most languages, logical operators are evaluated sequentially.

If B1 = false, do not evaluate B2 in B1&&B2 (anyway false).

If B1 = true, do not evaluate B2 in B1||B2 (anyway true).
- fun g l = if not (null l) andalso (hd l = 1) then "one" else "not one";

> val g = fn : int list -> string

- g [];

> val it = "not one" : string

24 / 38

University of Copenhagen Department of Computer Science

Sequential Evaluation by “Jumping Code”
TransCond : (Cond, Label, Label, Vtable, Ftable) -> [ICode]
TransCond(cond , labelt , labelf , vtable, ftable) = case cond of

. . .
Cond1 labelnext = newlabel()
and code1=TransCond(Cond1, labelnext , labelf , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Cond1 labelnext = newlabel()
or code1=TransCond(Cond1, labelt , labelnext , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Note: No logical operations in intermediate language!
Logics of and and or encoded by jumps.

Alternative: Logical operators in intermediate language
Cond ⇒ Exp ⇒ Exp binop Exp

Translated as an arithmetic operation. Evaluates both sides!

25 / 38

University of Copenhagen Department of Computer Science

Sequential Evaluation by “Jumping Code”
TransCond : (Cond, Label, Label, Vtable, Ftable) -> [ICode]
TransCond(cond , labelt , labelf , vtable, ftable) = case cond of

. . .
Cond1 labelnext = newlabel()
and code1=TransCond(Cond1, labelnext , labelf , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Cond1 labelnext = newlabel()
or code1=TransCond(Cond1, labelt , labelnext , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Note: No logical operations in intermediate language!
Logics of and and or encoded by jumps.

Alternative: Logical operators in intermediate language
Cond ⇒ Exp ⇒ Exp binop Exp

Translated as an arithmetic operation. Evaluates both sides!

25 / 38

University of Copenhagen Department of Computer Science

Sequential Evaluation by “Jumping Code”
TransCond : (Cond, Label, Label, Vtable, Ftable) -> [ICode]
TransCond(cond , labelt , labelf , vtable, ftable) = case cond of

. . .
Cond1 labelnext = newlabel()
and code1=TransCond(Cond1, labelnext , labelf , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Cond1 labelnext = newlabel()
or code1=TransCond(Cond1, labelt , labelnext , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Note: No logical operations in intermediate language!
Logics of and and or encoded by jumps.

Alternative: Logical operators in intermediate language
Cond ⇒ Exp ⇒ Exp binop Exp

Translated as an arithmetic operation.

Evaluates both sides!

25 / 38

University of Copenhagen Department of Computer Science

Sequential Evaluation by “Jumping Code”
TransCond : (Cond, Label, Label, Vtable, Ftable) -> [ICode]
TransCond(cond , labelt , labelf , vtable, ftable) = case cond of

. . .
Cond1 labelnext = newlabel()
and code1=TransCond(Cond1, labelnext , labelf , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Cond1 labelnext = newlabel()
or code1=TransCond(Cond1, labelt , labelnext , vtable, ftable)
Cond2 code2=TransCond(Cond2, labelt , labelf , vtable, ftable)

code1 @ [LABEL labelnext] @ code2

Note: No logical operations in intermediate language!
Logics of and and or encoded by jumps.

Alternative: Logical operators in intermediate language
Cond ⇒ Exp ⇒ Exp binop Exp

Translated as an arithmetic operation. Evaluates both sides!

25 / 38

University of Copenhagen Department of Computer Science

1 Why Intermediate Code?
Intermediate Language
To-Be-Translated Language

2 Syntax-Directed Translation
Arithmetic Expressions
Statements
Boolean Expressions, Sequential Evaluation

3 Translating More Complex Structures
More Control Structures
Arrays and Other Structured Data
Role of Declarations in the Translation

26 / 38

University of Copenhagen Department of Computer Science

More Control Structures

Control structures determine control flow: which instruction to
execute next

A while-loop is enough

. . . but . . . languages usually offer more.

Explicit jumps: Stat → label :
| goto label

Necessary instructions are in the intermediate language.
Needs to build symbol table of labels.

Case/Switch: Stat → case Exp of [Alts]
Alts → num : Stat | num : Stat, Alts

When exited after each case: chain of if-then-else

When “falling through” (e.g., in C): if-then-else and goto.

Break and Continue: Stat → break | continue
(break: jump behind loop, continue: jump to end of loop body).
Needs two jump target labels used only inside loop bodies
(parameters to translation function TransStat)

. . . considered
harmful (Dijkstra 1968)

27 / 38

University of Copenhagen Department of Computer Science

More Control Structures

Control structures determine control flow: which instruction to
execute next

A while-loop is enough . . . but . . . languages usually offer more.

Explicit jumps: Stat → label :
| goto label

Necessary instructions are in the intermediate language.
Needs to build symbol table of labels.

Case/Switch: Stat → case Exp of [Alts]
Alts → num : Stat | num : Stat, Alts

When exited after each case: chain of if-then-else

When “falling through” (e.g., in C): if-then-else and goto.

Break and Continue: Stat → break | continue
(break: jump behind loop, continue: jump to end of loop body).
Needs two jump target labels used only inside loop bodies
(parameters to translation function TransStat)

. . . considered
harmful (Dijkstra 1968)

27 / 38

University of Copenhagen Department of Computer Science

More Control Structures

Control structures determine control flow: which instruction to
execute next

A while-loop is enough . . . but . . . languages usually offer more.

Explicit jumps: Stat → label :
| goto label

Necessary instructions are in the intermediate language.
Needs to build symbol table of labels.

Case/Switch: Stat → case Exp of [Alts]
Alts → num : Stat | num : Stat, Alts

When exited after each case: chain of if-then-else

When “falling through” (e.g., in C): if-then-else and goto.

Break and Continue: Stat → break | continue
(break: jump behind loop, continue: jump to end of loop body).
Needs two jump target labels used only inside loop bodies
(parameters to translation function TransStat)

. . . considered
harmful (Dijkstra 1968)

27 / 38

University of Copenhagen Department of Computer Science

More Control Structures

Control structures determine control flow: which instruction to
execute next

A while-loop is enough . . . but . . . languages usually offer more.

Explicit jumps: Stat → label :
| goto label

Necessary instructions are in the intermediate language.
Needs to build symbol table of labels.

Case/Switch: Stat → case Exp of [Alts]
Alts → num : Stat | num : Stat, Alts

When exited after each case: chain of if-then-else

When “falling through” (e.g., in C): if-then-else and goto.

Break and Continue: Stat → break | continue
(break: jump behind loop, continue: jump to end of loop body).
Needs two jump target labels used only inside loop bodies
(parameters to translation function TransStat)

. . . considered
harmful (Dijkstra 1968)

27 / 38

University of Copenhagen Department of Computer Science

More Control Structures

Control structures determine control flow: which instruction to
execute next

A while-loop is enough . . . but . . . languages usually offer more.

Explicit jumps: Stat → label :
| goto label

Necessary instructions are in the intermediate language.
Needs to build symbol table of labels.

Case/Switch: Stat → case Exp of [Alts]
Alts → num : Stat | num : Stat, Alts

When exited after each case: chain of if-then-else

When “falling through” (e.g., in C): if-then-else and goto.

Break and Continue: Stat → break | continue
(break: jump behind loop, continue: jump to end of loop body).
Needs two jump target labels used only inside loop bodies
(parameters to translation function TransStat)

. . . considered
harmful (Dijkstra 1968)

27 / 38

University of Copenhagen Department of Computer Science

1 Why Intermediate Code?
Intermediate Language
To-Be-Translated Language

2 Syntax-Directed Translation
Arithmetic Expressions
Statements
Boolean Expressions, Sequential Evaluation

3 Translating More Complex Structures
More Control Structures
Arrays and Other Structured Data
Role of Declarations in the Translation

28 / 38

University of Copenhagen Department of Computer Science

Translating Arrays (of int elements)

Extending the Source Language

Array elements used as an expression

Assignment to an array element

Array elements accessed by an index
(expression)

Exp → . . . | Idx
Stat → . . . | Idx := Exp

Idx → id[Exp]

Again we extend TransExp and TransStat .

Arrays stored in pre-allocated memory area, generated code will
use memory access instructions.

Static (compile-time) or dynamic (run-time) allocation possible.

29 / 38

University of Copenhagen Department of Computer Science

Translating Arrays (of int elements)

Extending the Source Language

Array elements used as an expression

Assignment to an array element

Array elements accessed by an index
(expression)

Exp → . . . | Idx
Stat → . . . | Idx := Exp

Idx → id[Exp]

Again we extend TransExp and TransStat .

Arrays stored in pre-allocated memory area, generated code will
use memory access instructions.

Static (compile-time) or dynamic (run-time) allocation possible.

29 / 38

University of Copenhagen Department of Computer Science

Generating Code for Address Calculation

vtable contains the base address of the array.

Elements are int here, so 4 bytes per element for address.

TransIdx(index , vtable, ftable) = case index of

id[Exp] base = lookup(vtable, getname(id))
addr = newvar()
code1 = TransExp(Exp, vtable, ftable, addr)
code2 = code1 @ [addr := addr∗4, addr := addr+base]
(code2, addr)

Returns:

Code to calculate the absolute address . . .

of the array element in memory (corresponding to index), . . .

. . . and a new variable (addr) where it will be stored.

30 / 38

University of Copenhagen Department of Computer Science

Generating Code for Array Access

Address-calculation code: in expression and statement translation.

Read access inside expressions:

TransExp(exp, vtable, ftable, place) = case exp of

. . .

Idx (code1, address) = TransIdx(Idx , vtable, ftable)
code1 @ [place := M[address]]

Write access in assignments:

TransStat(stat, vtable, ftable) = case stat of

. . .

Idx := Exp (code1, address) =TransIdx(Index , vtable, ftable)
t = newvar()
code2 = TransExp(Exp, vtable, ftable, t)
code1 @ code2 @ [M[address] := t]

31 / 38

University of Copenhagen Department of Computer Science

Multi-Dimensional Arrays

Arrays in Multiple Dimensions

Only a small change to previous
grammar: Idx can now be recursive.

Needs to be mapped to an address in
one dimension.

Exp → . . . | Idx
Stat → . . . | Idx := Exp

Idx → id[Exp] | Idx [Exp]

Arrays stored in row-major or column-major order.
Standard: row-major, index of a[k][l] is k · dim1 + l
(Index of b[k][l][m] is k · dim1 · dim2 + l · dim2 + m)

Address calculation need to know sizes in each dimension.
Symbol table: base address and list of array-dimension sizes.

Need to change TransIdx , i.e., add recursive index calculation.

32 / 38

University of Copenhagen Department of Computer Science

Multi-Dimensional Arrays

Arrays in Multiple Dimensions

Only a small change to previous
grammar: Idx can now be recursive.

Needs to be mapped to an address in
one dimension.

Exp → . . . | Idx
Stat → . . . | Idx := Exp

Idx → id[Exp] | Idx [Exp]

Arrays stored in row-major or column-major order.
Standard: row-major, index of a[k][l] is k · dim1 + l
(Index of b[k][l][m] is k · dim1 · dim2 + l · dim2 + m)

Address calculation need to know sizes in each dimension.
Symbol table: base address and list of array-dimension sizes.

Need to change TransIdx , i.e., add recursive index calculation.

32 / 38

University of Copenhagen Department of Computer Science

Multi-Dimensional Arrays

Arrays in Multiple Dimensions

Only a small change to previous
grammar: Idx can now be recursive.

Needs to be mapped to an address in
one dimension.

Exp → . . . | Idx
Stat → . . . | Idx := Exp

Idx → id[Exp] | Idx [Exp]

Arrays stored in row-major or column-major order.
Standard: row-major, index of a[k][l] is k · dim1 + l
(Index of b[k][l][m] is k · dim1 · dim2 + l · dim2 + m)

Address calculation need to know sizes in each dimension.
Symbol table: base address and list of array-dimension sizes.

Need to change TransIdx , i.e., add recursive index calculation.

32 / 38

University of Copenhagen Department of Computer Science

Address Calculation in Multiple Dimensions
TransIdx(index , vtable, ftable) =

(code1, t, base, []) = CalcIdx(index , vtable, ftable)
code2 = code1 @ [t := t ∗ 4, t := t + base]
(code2, t)

Recursive index calculation, multiplies with dimension at each step.

CalcIdx(index , vtable, ftable) = case index of

id[Exp] (base, dims) = lookup(vtable, getname(id))
addr = newvar()
code = TransExp(Exp, vtable, ftable, addr)
(code, addr , base, tail(dims))

Index [Exp] (code1, addr , base, dims) = CalcIdx(Index , vtable, ftable)
d = head(dims)
t = newvar()
code2 = TransExp(Exp, vtable, ftable, t)
code3 = code1 @ code2 @ [addr := addr ∗ d , addr := addr + t]
(code3, addr , base, tail(dims))

33 / 38

University of Copenhagen Department of Computer Science

Address Calculation in Multiple Dimensions
TransIdx(index , vtable, ftable) =

(code1, t, base, []) = CalcIdx(index , vtable, ftable)
code2 = code1 @ [t := t ∗ 4, t := t + base]
(code2, t)

Recursive index calculation, multiplies with dimension at each step.

CalcIdx(index , vtable, ftable) = case index of

id[Exp] (base, dims) = lookup(vtable, getname(id))
addr = newvar()
code = TransExp(Exp, vtable, ftable, addr)
(code, addr , base, tail(dims))

Index [Exp] (code1, addr , base, dims) = CalcIdx(Index , vtable, ftable)
d = head(dims)
t = newvar()
code2 = TransExp(Exp, vtable, ftable, t)
code3 = code1 @ code2 @ [addr := addr ∗ d , addr := addr + t]
(code3, addr , base, tail(dims))

33 / 38

University of Copenhagen Department of Computer Science

1 Why Intermediate Code?
Intermediate Language
To-Be-Translated Language

2 Syntax-Directed Translation
Arithmetic Expressions
Statements
Boolean Expressions, Sequential Evaluation

3 Translating More Complex Structures
More Control Structures
Arrays and Other Structured Data
Role of Declarations in the Translation

34 / 38

University of Copenhagen Department of Computer Science

Declarations in the Translation

Declarations are necessary

to allocate space for arrays,

to compute addresses for multi-dimensional arrays,

. . . and when the language allows local declarations (scope).

Declarations and scope

Statements following a declarations
can see declared data.

Declaration of variables and arrays

Here: Constant size, one dimension

Stat → Decl ; Stat
Decl → int id

| int id[num]

Function TransDecl : (Decl, VTable) -> ([ICode], VTable)

translates declarations to code and new symbol table.

35 / 38

University of Copenhagen Department of Computer Science

Declarations in the Translation

Declarations are necessary

to allocate space for arrays,

to compute addresses for multi-dimensional arrays,

. . . and when the language allows local declarations (scope).

Declarations and scope

Statements following a declarations
can see declared data.

Declaration of variables and arrays

Here: Constant size, one dimension

Stat → Decl ; Stat
Decl → int id

| int id[num]

Function TransDecl : (Decl, VTable) -> ([ICode], VTable)

translates declarations to code and new symbol table.

35 / 38

University of Copenhagen Department of Computer Science

Translating Declarations to Scope and Allocation
Code with local scope (extended symbol table):

TransStat(stat, vtable, ftable) = case stat of

Decl ; Stat1 (code1, vtable1) = TransDecl(Decl , vtable)
code2 = TransStat(Stat1, vtable1, ftable)
code1 @ code2

Building the symbol table and allocating:

TransDecl : (Decl, VTable) -> ([ICode], VTable)

TransDecl(decl , vtable) = case decl of

int id t1 = newvar()
vtable1 = bind(vtable, getname(id), t1)
([], vtable1)

int id[num] t1 = newvar()
vtable1 = bind(vtable, getname(id), t1)
([t1 := HP, HP := HP + (4 ∗ getvalue(num))], vtable1)

. . . where HP is the heap pointer, indicating the first free space in a managed heap
at runtime; used for dynamic allocation.

36 / 38

University of Copenhagen Department of Computer Science

Translating Declarations to Scope and Allocation
Code with local scope (extended symbol table):

TransStat(stat, vtable, ftable) = case stat of

Decl ; Stat1 (code1, vtable1) = TransDecl(Decl , vtable)
code2 = TransStat(Stat1, vtable1, ftable)
code1 @ code2

Building the symbol table and allocating:

TransDecl : (Decl, VTable) -> ([ICode], VTable)

TransDecl(decl , vtable) = case decl of

int id t1 = newvar()
vtable1 = bind(vtable, getname(id), t1)
([], vtable1)

int id[num] t1 = newvar()
vtable1 = bind(vtable, getname(id), t1)
([t1 := HP, HP := HP + (4 ∗ getvalue(num))], vtable1)

. . . where HP is the heap pointer, indicating the first free space in a managed heap
at runtime; used for dynamic allocation.

36 / 38

University of Copenhagen Department of Computer Science

Other Structures that Require Special Treatment

Floating-Point values:
Often stored in different registers
Always require different machine operations
Symbol table needs type information when creating variables in
intermediate code.

Strings
Sometimes just arrays of (1-byte) char type, but variable length.
In modern languages/implementations, elements can be char or
unicode (UTF-8 and UTF-16 variable size!)
Usually handled by library functions.

Records and Unions
Linear in memory. Field types and sizes can be different.
Field selector known at compile time: compute offset from base.

37 / 38

University of Copenhagen Department of Computer Science

Other Structures that Require Special Treatment

Floating-Point values:
Often stored in different registers
Always require different machine operations
Symbol table needs type information when creating variables in
intermediate code.

Strings
Sometimes just arrays of (1-byte) char type, but variable length.
In modern languages/implementations, elements can be char or
unicode (UTF-8 and UTF-16 variable size!)
Usually handled by library functions.

Records and Unions
Linear in memory. Field types and sizes can be different.
Field selector known at compile time: compute offset from base.

37 / 38

University of Copenhagen Department of Computer Science

Other Structures that Require Special Treatment

Floating-Point values:
Often stored in different registers
Always require different machine operations
Symbol table needs type information when creating variables in
intermediate code.

Strings
Sometimes just arrays of (1-byte) char type, but variable length.
In modern languages/implementations, elements can be char or
unicode (UTF-8 and UTF-16 variable size!)
Usually handled by library functions.

Records and Unions
Linear in memory. Field types and sizes can be different.
Field selector known at compile time: compute offset from base.

37 / 38

University of Copenhagen Department of Computer Science

Structure of a Compiler
Program text

↓
Lexical analysis Binary machine code

↓ ↑
Symbol sequence Assembly and linking

↓ ↑
Syntax analysis Ditto with named registers

↓ ↑
Syntax tree Register allocation

↓ ↑
Typecheck Symbolic machine code

↓ ↑
Syntax tree Machine code generation

↓ ↑
Intermediate code generation −→ Intermediate code

38 / 38

	Why Intermediate Code?
	Intermediate Language
	To-Be-Translated Language

	Syntax-Directed Translation
	Arithmetic Expressions
	Statements
	Boolean Expressions, Sequential Evaluation

	Translating More Complex Structures
	More Control Structures
	Arrays and Other Structured Data
	Role of Declarations in the Translation

