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| exical

of or relating to words or the vocabulary of a language as

distinguished from its grammar and construction.
Merriam-Webster Dictionary, m-w. com

Lexical analyser, also called lexer, scanner or tokeniser.

splits input (stream of characters) into tokens.

e Token: smallest meaningful unit for a programming language
Keyword, number, comment, parenthesis, semicolon, ...

Tokens are classes of concrete input (called lexeme).
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Contents and goals of this Part

@ What is Lexical Analysis?
Regular expressions and languages
A Tool for Lexical Analysis

@® Finite automata
Non-deterministic and Deterministic Automata (NFA and DFA)
Converting and Minimising Automata

© Automata Construction for Lexical Analysis
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Contents and goals of this Part

@ What is Lexical Analysis?
Regular expressions and languages
A Tool for Lexical Analysis

@® Finite automata
Non-deterministic and Deterministic Automata (NFA and DFA)
Converting and Minimising Automata

© Automata Construction for Lexical Analysis

Goals:

e Understand regular expressions and the concept of formal
languages, and apply them for lexical analysis

o Use scanner generators for lexical analysis
e Construct, convert, and minimise finite automata

e Know automata limitations and use them as arguments
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Lexical analysis — Example

4n SML program Converting textual input into a

(x MgMiirSt token sequence
* program. . i
) e Input file read as a string

val result .
= let val x = 10 :: 020 :: 0x30 :: [] e Contains comments and

in List.map (fn x => x div 2) x meaningful formatting
end

e Easy to read with
layout/colours
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Lexical analysis — Example

4n SML program Converting textual input into a

(x MgMiirSt token sequence
* program. . i
) e Input file read as a string

val result .
= let val x = 10 :: 020 :: 0x30 :: [] e Contains comments and

in List.map (fn x => x div 2) x meaningful formatting
end

e Easy to read with
layout/colours

...read by the scanner
(kuMyfirst\ng *, SML_program. ._.\n._.*g\nval._.result\n=letuval._.x._.=u10u : 1,020

Ut 1u0x30y: i [1\nin List .map,, (fn x =>xdiv,2) _x\nend\n

e Machine-read. Formatting only helps human readers.

e Lexical analysis: character stream to token sequence
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Lexical analysis — Example

4n SML program Converting textual input into a

(: Mﬁs’MiirSt token sequence
program. . .
) e Input file read as a string

vat resuit o Contains comments and
= let val x = 10 :: 020 :: 0x30 :: []
in List.map (fn x => x div 2) x meaningful formatting
end L.
e Split into token sequence
for machine processing

resulting token sequence
[Keyw_val, Id "result', Equal, Keyw_let, Keyw_val, Id "x",Equal, Int 10,

Op "::", Int 20, Op "::", Int 48, Op "::", LBracket, RBracket, Keyw_in,
Id "List", Dot, Id "map", LParen, Keyw_fn, Id "x", FnArrow,

e Tokens: classes of input lexemes.

e No comments or formatting (only position for error messages)

e Some tokens group input lexemes: identifiers, number literals

e Other lexemes (keywords, special symbols) stay separate. @
Built-in type names are often considered as keywords. ®
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Formal languages
Building a machine to process words and compile programmes
requires formal definitions.
Definition (Formal Language)
Let > be an alphabet: a finite set of allowed characters.
e A word over ¥ is a string w = a1a> . .. a, of characters
aj € .
n =0 is allowed, and results in the empty string ¢.
We write 2* for the set of all words over X.

e A language L over X is a set of words over 2: L C **
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Formal languages
Building a machine to process words and compile programmes
requires formal definitions.

Definition (Formal Language)
Let > be an alphabet: a finite set of allowed characters.
e A word over ¥ is a string w = a1a> . .. a, of characters
aj € .

n = 0 is allowed, and results in the empty string .
We write 2* for the set of all words over X.

e A language L over X is a set of words over 2: L C **

Examples (alphabet: small latin letters)
e Y* and 0. o {a"b"c" | n € N}
o All C++ keywords: {if, else, return, do, while, int, char...}
e All palindromes (words that are the same backward and
forward): {kayak, racecar, mellem, retter, }
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Example languages: Number literals

...let x = 10::020::0x30::[]

What different formats for literal numeric constants
do you know? (in different programming languages)
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Example languages: Number literals in C++

e Integers in decimal format: 123 4 0 8 but not 68 abe

e Integers in octal format: 0123 07 007 but not o8 abe
e Integers in hexadecimal format: 0x123 oxCafe but not ex oxe
e Floating point decimals: 0.  .123 0123.45

Scientific notation: 0123E-45 0.E123 .123e+45

A decimal integer is a sequence of digits 0-9 which does not start by 0 or is
only a single 0. An octal integer is a sequence of digits starting with 0,
followed by any number of digits 0-7.

Floating-point constants have a “mantissa,” [..][and] an “exponent,” [..] The
mantissa is specified as a sequence of digits followed by a period, followed by
an optional sequence of digits[..] The exponent, if present, specifies the
magnitude[..] using e or E[..] followed by an optional sign (+ or -) and a
sequence of digits. If an exponent is present, the trailing decimal point is
unnecessary in whole numbers. nttp://msdn.microsoft.com/en-us/1ibrary/tfh6£0u2. aspx.
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Example languages: Number literals in C++

e Integers in decimal format: 123 4 0 8 but not 68 abe

e Integers in octal format: 0123 07 007 but not o8 abe
e Integers in hexadecimal format: 0x123 oxCafe but not ex oxe
e Floating point decimals: 0.  .123 0123.45

Scientific notation: 0123E-45 0.E123 .123e+45

A decimal integer is a sequence of digits 0-9 which does not start by 0 or is
only a single 0. An octal integer is a sequence of digits starting with 0,
followed by any number of digits 0-7.

Floating-point constants have a “mantissa,” [..][and] an “exponent,” [..] The
mantissa is specified as a sequence of digits followed by a period, followed by
an optional sequence of digits[..] The exponent, if present, specifies the
magnitude[..] using e or E[..] followed by an optional sign (+ or -) and a
sequence of digits. If an exponent is present, the trailing decimal point is
unnecessary in whole numbers. nttp://msdn.microsoft.com/en-us/1ibrary/tfh6£0u2. aspx.

We need a more formal description for automatic processing.
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Regular expressions

Definition (Regular Expression)

Let > be an alphabet of allowed characters.

The set RE(X) of regular expressions over ¥ is defined recursively.
e ¢ € RE(X): describes the empty word.
e a € RE(X) for a € ¥: describes word a.

Furthermore, for every o, f € RE(X):

e o € RE(X): Sequence, one word described by «, followed
by one described by (.

e | f € RE(X): Alternative, a word described by « or by f.

e o € RE(X): Repetition, zero or more words described by «.

e Round parentheses (...) for grouping regular expressions.

e Sequence binds tighter than alternative, albc* = a|(b(c*))

Slide 9/37 — J.Berthold — Compilers: Lexical Analysis — 11/2012




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Example languages: Number literals in C++

e Integers in decimal format: 123 4 0 8 but not 68 abe
e Integers in octal format: 0123 07 007 but not o8 abe

e Integers in hexadecimal format: 0x123 oxCafe but not ex oxe

Floating point decimals: o. .123 0123.45

Scientific notation: 0123E-45 0.E123 .123e+45

Decimal Numbers: ¢t121...19)l112]...19)*] 0

Shorthand — character range: [1-91[0-91%1 0
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Example languages: Number literals in C++

e Integers in decimal format: 123 4 0 8 but not 68 abe

e Integers in octal format: 0123 07 007 but not o8 abe

e Integers in hexadecimal format: 0x123 oxCafe but not ex oxe
e Floating point decimals: 0. .123 0123.45

e Scientific notation: 0123E-45 0.E123 .123e+45

e Decimal Numbers: (1121...19)(0l1112]...19)*| 0
Shorthand — character range: [1-91[0-91*1 0

e Octal format: o [0-71*

e Hexadecimal format: o ([xX] [0-9a-fA-F] [0-9a-fA-F1*
Shorthand — at least once: o [xX] [0-9a-fA-F1+

e Floating point numbers: ... (later)
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Common abbreviations for regular expressions

e Character Sets
[a132... a0 :==(a1 | a2 | ... |an)
One of a1,...,a, € *.
Can be negated: ["ajay...] describes any a € X\ {a1,a2...}
e Character Ranges
[a1 —an] :==(a1 | a2 | ... |an) when {a;} is ordered.
One character in the range between a; and a,.
e Optional Parts
a? = (a | €) for a € RA(Y).
Optionally a string described by a.
e Repeated Parts
at = aa* for a € RA(Y).
At least one string described by @ (maybe more).
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Mosml-lex: Generating Lexical Analysis Programs

{ (* initial part containing SML code *)
(¥ helper functions and data types *)
data type MyTokens = Decimal of int | Octal of int |

fun decodelnBase (base:int) (s:string) :int =
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Mosml-lex: Generating Lexical Analysis Programs

{ (* initial part containing SML code x)
(¥ helper functions and data types *)
of int | Octal of int |

data type MyTokens = Decimal
fun decodelnBase (base:int) (s:string) :int =
}

= ['0'=‘7‘] (¥ a helper definition for reg. expr.s *)

let oct =

Slide 12/37 — J.Berthold — Compilers: Lexical Analysis — 11/2012



UNIVERSITY OF COPENHAG DEPARTMENT OF COMPUTER S

Mosml-lex: Generating Lexical Analysis Programs

{ (* initial part containing SML code x)
(¥ helper functions and data types *)

data type MyTokens = Decimal of int | Octal of int |
fun decodelnBase (base:int) (s:string) :int =

}

let oct = ['0'—='7‘] (% a helper definition for reg. expr.s *)
(* Rules section: regular expr., action (returning a token) x*)
rule Token = parse
‘0' octx { Octal (decodelnBase 8 (getLexeme lexbuf)) }
| ..regexp2.. { ...action.2.. (* (SML code) *) }
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Mosml-lex: Generating Lexical Analysis Programs

{ (* initial part containing SML code x)
(¥ helper functions and data types *)

data type MyTokens = Decimal of int | Octal of int |
fun decodelnBase (base:int) (s:string) :int =

}

let oct = ['0'—='7‘] (% a helper definition for reg. expr.s *)
(¥ Rules section: regular expr., action (returning a token) *)
rule Token = parse
‘0' octx { Octal (decodelnBase 8 (getLexeme lexbuf)) }
| ..regexp2.. { ...action.2.. (* (SML code) *) }

Demo
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Under the hood: States and actions

Octal numbers 0 [0-7]*, from mosml-lex code:

e Start in state A:
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Under the hood: States and actions

Octal numbers 0 [0-7]*, from mosml-lex code:

e Start in state A:
Input o: go to state B

(input anything else:
abort analysis)
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Under the hood: States and actions

Octal numbers 0 [0-7]*, from mosml-lex code:

e Start in state A:
Input o: go to state B
[0-71 .p 8 )
(input anything else:
abort analysis)
e When in state B:

Input o0-7: continue
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Under the hood: States and actions

Octal numbers 0 [0-7]*, from mosml-lex code:

e Start in state A:

Input o: go to state B
[0-71 P 8

(input anything else:
6 0 abort analysis)
e When in state B:

Input o0-7: continue

End of input: success!
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A more complex analysis automaton ...

«— PN «— .31.4159
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A more complex analysis automaton ...

«— PN «— _31.4159

e Starting at the pointed state
e Transitions to new states,
possibly reading input @
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A more complex analysis automaton ...

: «— P — _1.4159

e Starting at the pointed state
e Transitions to new states,
possibly reading input @
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A more complex analysis automaton ...

.3 «— P —— _ 1.4159

e Starting at the pointed state
e Transitions to new states,
possibly reading input @
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A more complex analysis automaton ...

e Starting at the pointed state
e Transitions to new states,
possibly reading input @
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A more complex analysis automaton ...

e Starting at the pointed state
e Transitions to new states,
possibly reading input @
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A more complex analysis automaton ...

31 <« I — 4159

o At end of input: check if

e Starting at the pointed state " -
state “accepting

e Transitions to new states,

possibly reading input e [f no transition: stuck,

input refused. @
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Non-deterministic Finite Automaton (NFA) —
Definition
Definition (NFA)

Let X be an alphabet of (input) characters.
A Non-deterministic Finite Automaton (NFA) consists of

e A finite set S of states,

e an alphabet ¥ of input characters,

a start state 55 € S,
a set of final states F C S

and a relation T C S x (X U{e}) x S describing state
transitions (notation: s;¢s; € T)

e Meaning of s19s, € T: in s with input a, go to s,
e Meaning of s1°sp € T: in s1, go to sp.
e Several options may exist, T is a relation.
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Example NFA — formalised

S={1,...,8}, T=1{01...,9, .. e E}, s =1,F = {3,5,8)
T ={192, 1-4, 292, 23, 286, 2E6, 393, 3¢6, 3Ep,

4d5 5°4 5%, 5E6 617,677, 657, 798, 8°7}
(de{0,1...,9})

Picture sufficient as definition — Formalisation: machine-processing.
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Other examples / exercise

e |dentifiers e Binary numbers
(X: letters, digits, underscore) without leading zeros.
Starting with a letter or
underscore, then any number of
letters, underscores, and digits.
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Other examples / exercise

e |dentifiers e Binary numbers
(X: letters, digits, underscore) without leading zeros.
Starting with a letter or
underscore, then any number of
letters, underscores, and digits.

[a-zA-Z

[a-z 0-9_1]
RO

[a-zA-Z_] [a-zA-Z0-9_]*
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Other examples / exercise

e |dentifiers
(X: letters, digits, underscore)
Starting with a letter or
underscore, then any number of
letters, underscores, and digits.

[a-zA-Z

[a-z 0-9_1]
RO

[a-zA-Z_] [a-zA-Z0-9_]*

DEPARTMENT OF COMPUTER SCIENC

e Binary numbers
without leading zeros.

¥ = {01}, S={0,1,2}
so = 0,F={1,2}
T = {0%1, 0l2,
202 2123
0| 1 [01]*

E

Slide 17/37 — J.Berthold — Compilers: Lexical Analysis — 11/2012



UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

NFA construction from regular expression

e Define an NFA fragment for every regular expression
Fragments have exactly one entry (arrow) and exit (line)

e Fragment composition follows expression composition
A single final state is added at the end of the construction.

Expr. Fragment Expr. Fragment
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Construction example: Binary numbers

o1 ]| D
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Construction example: Binary numbers

o1 ]| D
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Construction example: Binary numbers

0ol1 (]| D
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Construction example: Binary numbers

01| D"
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Construction example: Binary numbers

01| D"

Undesired Non-determinism:

e Many ¢ transitions (branch and exit for alternatives)

e Multiple alternatives for same input (or without input) .@

Slide 19/37 — J.Berthold — Compilers: Lexical Analysis — 11/2012




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Deterministic Finite Automaton — Definition

Definition (DFA)

Let X be an alphabet of (input) characters.

A Deterministic Finite Automaton (DFA) consists of
e A finite set S of states,

e an alphabet ¥ of input characters,

e astart state 5p € S,

a set of final states F C S

and a function § : S X ¥ — S describing state transitions.

Meaning of d(s1,a) = sp: in s; with input a, go to s,

e No empty input: always read an input character.

Only one transition possible, 4 is a (partial) function.
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Extended Transition Function (whole words)

We define an extended version:
A walk through the DFA reading a whole word w € X* at once.

Definition (Word Transition Function)

Let D= (S,%, s, F,d) a DFA.
The word transition function § : S x ¥* — S of D is defined
recursively over words:

@ For the empty word: §(s,e) = s
® Foracy, weX* i(s,aw) = 6((s,a), w)
if 4(s,a) is defined.

Language accepted by the DFA: {w € ¥* | §(sp, w) € F} C *.
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Converting an NFA to a DFA: Idea
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Converting an NFA to a DFA: Idea

O——23=®

e States 1,2,5,6,7 reachable from the
start state 1.
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Converting an NFA to a DFA: Idea

O——23=®

e States 1,2,5,6,7 reachable from the
start state 1.

e With input a, the NFA can go to
state 3 and 8.
On input b, only state 8 possible.

e States 1,2,5,6,7,8 reachable from 8.

DEPARTMENT OF COMPUTER SCIENCE
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Converting an NFA to a DFA: Idea

O——23=®

e States 1,2,5,6,7 reachable from the
start state 1.

e With input a, the NFA can go to
state 3 and 8.
On input b, only state 8 possible.

e States 1,2,5,6,7,8 reachable from 8.

e If in state 3, the NFA can go to state
4 on input c (otherwise nowhere).
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Converting an NFA to a DFA: Idea

O——23=®

e States 1,2,5,6,7 reachable from the /—Z {17375767 7}
start state 1. B: E12,2,2 31;}8}
e With input a, the NFA can go to g 54}

state 3 and 8.
On input b, only state 8 possible.

e States 1,2,5,6,7,8 reachable from 8.

e If in state 3, the NFA can go to state
4 on input c (otherwise nowhere). @

E is an error state.
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The Subset Construction: Preparation
To formalise the idea, we first define this reachability.

Definition (e-Closure £(.))
Let N =(S,X,s0,F, T) a given NFA, and M C S a set of states.
The e-Closure of M, written £(M) contains all states reachable
from states in M. It is recursively defined:

O McCéM)

@ If s € (M), then {s' | s°s’ € T} C &(M).
£(M) is the smallest subset of S that fulfills these conditions.
As a set equation: X = MU {s' | 3sex :s°s' € T}
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The Subset Construction: Preparation
To formalise the idea, we first define this reachability.
Definition (e-Closure £(.))

Let N =(S,X,s0,F, T) a given NFA, and M C S a set of states.
The e-Closure of M, written £(M) contains all states reachable
from states in M. It is recursively defined:

O McCéM)
@ If s € (M), then {s' | s°s’ € T} C &(M).
£(M) is the smallest subset of S that fulfills these conditions.
As a set equation: X = MU {s' | 3sex :s°s' € T}
Solve this equation by computing a fixed point of Fy:
Frg: X — MU{s" | Jsex :s°s' € T}

Starting by Xp = (), compute X; = F(X;_1) until X, = F(X,)
(works because F is monotonic: X C Y = F(X) C F(Y)).
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e-Closure £(.): Example

Fp: X — MU{s' | Jsex :s°s' € T}

Starting with Xo = (), compute:
Xi = Fu(Xi-1) = Fj;(0)
< .. until X, = F(X,).
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e-Closure £(.): Example

Fpv X — MU{s | sex : 555’ € T}

Starting with Xo = (), compute:
Xi = Fu(Xi—1) = Fjy(0)
—~(223~® .. until X, = F(Xy).

Xl = {1}7 F(Xl) = X2 = {17275}a
F(X2) = X3 ={1,2,5,6,7} = F(X3) = £({1})
&({8}) =

£({3,8}) = @
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e-Closure £(.): Example

Fpv X — MU{s | sex : 555’ € T}

Starting with Xo = (), compute:
Xi = Fm(Xi-1) = Fy(0)

—(233)%® _until X, = F(X,).

é({1}) = {1,2,5,6,7}
X1 = {1}, F(X1) = X2 = {1,2,5},
F(X2) = X3 ={1,2,5,6,7} = F(X3) = £({1})
&({8)) = {1,2,5,6,7,8}
5({3.8)) = {1,2,3,56,7,8)
&

o
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e-Closure £(.): Example

More transitions:

O——@2C*® 4)=c:

{1,2,5,6,7}
{1,2,3,5,6,7,8}
{1,2,5,6,7,8}

0

No new states.

{4}

E is an error state.

DEPARTMENT OF COMPUTER SCIENCE
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The Subset Construction: Definition

Theorem (Subset Construction)
Let N = (S,X,s0, F, T) a given NFA.
Define a DFA D = (S9,%,s§, Fy, ) as follows:
o Sq =1P(S) (all subsets of S).
. s = e({s})
o Fg={M C S| MnNF #0} (subsets with a final NFA state).
o §(s?a)=2({t|se€s9s)c T})
(t reachable from an s € s on input a, and their e-Closure).
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The Subset Construction: Definition

Theorem (Subset Construction)
Let N = (S,X,s0, F, T) a given NFA.
Define a DFA D = (S9,%,s§, Fy, ) as follows:
o Sq =1P(S) (all subsets of S).
. s = e({s})
o Fg={M C S| MnNF #0} (subsets with a final NFA state).
o §(s?a)=2({t|se€s9s)c T})
(t reachable from an s € s? on input a, and their e-Closure).
@ This indeed defines a DFA.
® This DFA D accepts the same language as the NFA N.
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The Subset Construction: Definition

Theorem (Subset Construction)
Let N = (S,X,s0, F, T) a given NFA.
Define a DFA D = (S9,%,s§, Fy, ) as follows:
o Sq =1P(S) (all subsets of S).
. s = e({s})
o Fg={M C S| MnNF #0} (subsets with a final NFA state).
o §(s?a)=2({t|se€s9s)c T})
(t reachable from an s € s? on input a, and their e-Closure).
@ This indeed defines a DFA.
® This DFA D accepts the same language as the NFA N.

Proof idea: Consider a word w = ajas...a, accepted by the NFA. There is a state
sequence si ... S, such that (si—13s!) € T and s; € &({s/}) and £({sa}) N F # 0.
Therefore: s; € s¢ = 5(2({s0}), a1), s2 € s§ = (s, a2), ...sn € s¢ = 5(s?_1, an).

=There exists an accepting state sequence sfsg ...sd in the DFA (since s¢ € F). PY
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Subset Construction: A Second Example

o1 (0| 1)*
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Subset Construction: A Second Example

SO {17275}
S {3,4}
01 (0|1 * S {6,3.7,4,8,9)

S3: {10,6,3,7,4,8,9}
Sa: 0 (error)
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Subset Construction: A Second Example

SO {17275}
S {3,4}
01 (0|1 * S {6,3.7,4,8,9)

S3: {10,6,3,7,4,8,9}
Sa: 0 (error)
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Minimising a DFA

The DFAs we obtain from the subset construction are big!
Very often, they contain superfluous states.
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Minimising a DFA

The DFAs we obtain from the subset construction are big!
Very often, they contain superfluous states.

But, what exactly does “superfluous” mean?

e States that cannot lead to a final
state (dead states).

o States that have identical transitions
as others.
More generally: States that lead to
the same outcome (acceptance,
rejection) for any input.
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Minimising a DFA: Preparation

Definition (DFA State Equivalence)
Let D =(S,X%, s, F,d) a DFA.

e A state s is called dead if and only if no
final state can be reached from s with
any input. Formally:

s dead :< (s, w) N F =0 for all
w e X*.

e States s and s’ € S are called
equivalent, s ~ s’, if and only if both
lead to either acceptance or rejection
with any input. Formally:
s~s & is,w)eFso(s,w)eF
for all w € ¥*.
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Minimising a DFA: Preparation

Definition (DFA State Equivalence)
Let D =(S,X%, s, F,d) a DFA.

e A state s is called dead if and only if no
final state can be reached from s with
any input. Formally:

s dead : = 6(s,w) N F = () for all
w e X*.

e States s and s’ € S are called
equivalent, s ~ s’, if and only if both
lead to either acceptance or rejection Sy~ S;
with any input. Formally: S4 is a dead state.
s~s & d(s,w)eF&is,w)eF
for all w € ¥*.
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Minimising a DFA: Algorithm

We compute the equivalent states backwards from final states.

Algorithm (DFA minimisation)

Let D= (S,X%, s, F,0) a DFA. We assume ¢ is total.
Determine state equivalence for a minimised DFA as follows:
® Start with two unmarked groups, F and S\ F.
® While there are unmarked groups:
e Pick an unmarked group G.
e For all a € ¥, check for all states s € G to which group a
transition d(s, a) leads.
o If for any respective input a, all transitions lead to the same
group: mark the group.
e Otherwise: Split the group into maximal groups that lead to
the same group on transitions and unmark all groups.

©® Repeat from 2 until all groups are marked.

The resulting groups contain equivalent states
(all dead states will be equivalent).. _
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Minimising a DFA: Example

Blackboard
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Minimising a DFA: Example

Slide 31/37 — J.Berthold — Compilers: Lexical Analysis — 11/2012




UNIVERSITY OF COPENHAGEN DEPARTMENT OF COMPUTER SCIENCE

Minimising a DFA: Example

in the book: no dead states!
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Back to our original question. ..

Result so far: Is an input w described by the regular expression a7
Decision problem: for w € ¥*: is w in the language described by
a € RE(X)?
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Back to our original question. ..

Result so far: Is an input w described by the regular expression a7
Decision problem: for w € ¥*: is w in the language described by
a € RE(X)?

How can we recognise a whole sequence of tokens?

...read by the lezer
(*uMyufirst\nu*uuSMLuprogram.U\nu*)%nvaluresult\n=1etuvaluxu=u10u::u020

Ut 1u0x30y: i [1\nin List .map,, (fn x =>xdiv,2)  x\nend\n

resulting token sequence
[Keyword "val", Id "result", Equal, Keyword "let", Keyword "val", Id "x",

Equal, Int 10, Doublecolon, Int 20, Doublecolon, Int 48, Doublecolon,
LBracket, RBracket, Keyword "in", Id "List", Dot, Id "map", LParen,...

e Recognise prefixes of input as tokens.
e Restart on remaining input after recognising something.

e Often, several decompositions of the input possible. @
[
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Principles of Longest and First Match

Principle of Longest Match
A lexical analyser usually outputs the token that consumes the
longest part of the input.

This is important when reading in identifiers and numbers
(prefixes could otherwise be recognised instead).

Principle of First Match

Tokens are usually prioritised, so the lexical analyser can decide
which token to recognise if two tokens are possible for the same
input.

This is especially important when recognising keywords
(they could otherwise be recognised as identifiers).
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Principles of Longest and First Match

Principle of Longest Match
A lexical analyser usually outputs the token that consumes the
longest part of the input.

This is important when reading in identifiers and numbers
(prefixes could otherwise be recognised instead).

Principle of First Match

Tokens are usually prioritised, so the lexical analyser can decide
which token to recognise if two tokens are possible for the same
input.

This is especially important when recognising keywords
(they could otherwise be recognised as identifiers).

e Define combined NFA with prioritised final states, backtrack.
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Lexical Analysis: Putting it All Together

Construction of the automaton:
@ Define an NFA for each token class.

® Mark final states in each NFA with the respective token name.
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Lexical Analysis: Putting it All Together

Construction of the automaton:
@ Define an NFA for each token class.
® Mark final states in each NFA with the respective token name.
©® Combine the NFAs using new start state and ¢ transitions.

® Construct a small combined DFA, using subset construction
and minimisation. Prioritise token classes in final DFA states
to decide what to recognise.
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Lexical Analysis: Putting it All Together

Construction of the automaton:
@ Define an NFA for each token class.
® Mark final states in each NFA with the respective token name.
©® Combine the NFAs using new start state and ¢ transitions.

® Construct a small combined DFA, using subset construction
and minimisation. Prioritise token classes in final DFA states
to decide what to recognise.

if o)

(Example taken from the book)

{ IDENT"}_
A

S e L@ v @
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Lexical Analysis: Putting it All Together (2)

Processing input with the automaton:
@ Start the DFA in normal mode.

® When reaching a final state:
save it, enter read-ahead mode.

® In read-ahead mode:
o Buffer all input when reading.
e When reaching a new final state:
clear buffer.
e End of input or DFA stuck: output
last final state, restore input from
buffer.

O Restart in normal mode until input
ends.

[a-zA-Z 0-9]

FLOAT

Example taken from the book
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Lexical Analysis: Putting it All Together (2)

Processing input with the automaton:
@ Start the DFA in normal mode.

® When reaching a final state:
save it, enter read-ahead mode.
® In read-ahead mode:

o Buffer all input when reading.

e When reaching a new final state:
clear buffer.

e End of input or DFA stuck: output
last final state, restore input from
buffer.

O Restart in normal mode until input
ends.

Example: Input 12E.3

[a-zA-Z 0-9]

[0-9]

“FLOAT

Example taken from the book
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Lexical Analysis: Putting it All Together (2)

Processing input with the automaton:
@ Start the DFA in normal mode.

® When reaching a final state:
save it, enter read-ahead mode.
® In read-ahead mode:

o Buffer all input when reading.

e When reaching a new final state:
clear buffer.

e End of input or DFA stuck: output
last final state, restore input from
buffer.

O Restart in normal mode until input
ends.

Example: Input 12E. 3, recognised as Num,

[a-zA-Z 0-9]

[0-9]

“FLOAT

Example taken from the book

Ip, FrLoAT @
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More About Regular Languages. ..
Regular languages are (by definition) described by regular
expressions, but likewise by NFAs, and DFAs. Therefore, we can
argue:
e For two regular languages L1, Ly C X*, their union Ly U L,
and intersection Ly N Ly are regular.
e For a regular language L C ©*, the complement ¥*\ L is
regular.
e Regular languages are also closed under common string
operations: Prefix, Suffix, Subsequence, Reversal.
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More About Regular Languages. ..

Regular languages are (by definition) described by regular
expressions, but likewise by NFAs, and DFAs. Therefore, we can
argue:

e For two regular languages L1, Ly C X*, their union Ly U L,
and intersection Ly N Ly are regular.

e For a regular language L C ©*, the complement ¥*\ L is
regular.

e Regular languages are also closed under common string
operations: Prefix, Suffix, Subsequence, Reversal.

e The minimised DFA is uniquely determined. Two regular
expressions are thus equivalent if their minimised DFAs are
the same (apart from renaming states).

Regular languages are limited. Typically, what requires unbounded

memory cannot be expressed as a regular language.
Palindromes ({kayak,racecar,mellem,retter, }) not regular.
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Summary

In this part, you have seen

e Formal languages: Sets of words over a finite alphabet.

e Regular expressions, describing regular languages
(a subset of all formal languages)

e A compiler tool for lexical analysis (mosmllex)
...and how the tool works internally:
e Deterministic and non-deterministic finite automata

...and how to convert, minimise, and combine them.
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