
The Design of A Pascal 
Compiler

Mohamed Sharaf, Devaun 
McFarland, Aspen Olmsted



Part I

Mohamed Sharaf



Introduction 
The Compiler is for the programming language 
PASCAL.
The design decisions Concern the layout of program 
and data, syntax analyzer.
The compiler is written in its own language.
The compiler is intended for the CDC 6000 computer 
family. 

CDC 6000 is a family of mainframe computer 
manufactured by Control Data Corporation in the 1960s.
It consisted of CDC 6400, CDC 6500, CDC 6600 and 
CDC 6700 computers, which all were extremely rapid and 
efficient for their time.
It had a distributed architecture and was a reduced 
instruction set (RISC) machine many years before such a 
term was invented.

http://en.wikipedia.org/wiki/Control_Data_Corporation
http://en.wikipedia.org/wiki/CDC_6400
http://en.wikipedia.org/wiki/CDC_6500
http://en.wikipedia.org/wiki/CDC_6600
http://en.wikipedia.org/wiki/CDC_6700
http://en.wikipedia.org/wiki/RISC


Pascal Language

 Imperative Computer Programming 
Language, developed in 1971 by Niklaus 
Wirth.
 The primary unit in Pascal is the 
procedure.
Each procedure is represented by a data 
segment and the program/code segment. 
The two segments are disjoint.



Compiling Programs: 
Basic View

gp
c

Pascal 
compile
rinpu

t a.out

Machine 
languag
e 
program

outputfilename .
p

Pascal 
program



Representation of Data
Compute all the addresses at compile time to 
optimize certain index calculation.
Entire variables always are assigned at least one full 
PSU “Physical Storage Unit” i.e CDC6000 has 
‘wordlength’ of 60 bits.
Scalar types
Array types 

the first term is computed by the compiler
w=a+(i-l)*s

Record types: reside only within one PSU if it is 
represented as packed. If it is not packed its size will 
be the size of the largest possible variant.



Data types …
Powerset types

The set operations of PASCAL are realized by the conventional bit-parallel logical 
instructions ‘and ‘ for intersection, ‘or’ for union

File types
The data transfer between the main store buffer and the secondary store is 
performed by a Peripheral Processor (PP).
The CPU actions caused by the standard procedures put and get by just change 
pointers.
s ” buffer size” 
n ” n>2”
s’ ”File component size”
s=n*s’
The buffer should be able to hold at least one Physical Record Unit (PRU). “PRU : 
the unit that is used to represent file on secondary storage”

Class types
Domain: the component of the class variable to which they are bound.
The allocated area of memory is calculated by the compiler.



Basic Structure 
Of Pascal Programs

Program documentation

program name  (input, 
output);

Part I: Header

const

:

Part II: Declarations

begin

:
end.

Part III: 
Statements

Program name .p (Pascal source code)



Header

Program documentation
Comments for the reader of the program 
(and not the computer)

(* Marks the Start of the documentation
*) Marks the End of the documentation

Program heading
Keyword: program, Name of program, if input 
and/or output operations performed by the 
program.



Heading

Documentation

(*
* Tax-It v1.0: This program will 
* electronically calculate your tax 
* return.

* This program will only allow you to 
* complete a Canadian tax return
*) 

program taxIt (input, output);

Example Header



Declarations

List of constants
List of variables



Reserved Words

and
array
begin
case
const
div
do
downt
o
else

end
file
for
foward
functio
n
goto
if
in
labelFor more information on reserved words go to the url: http://www.gnu-pascal.de/gpc/index.

html

Have a predefined meaning in Pascal 
that cannot be changed



Reserved Words

mod
nil
not
of
or
packed
procedur
e
program
record

repeat
set
then
to
type
until
var
while

For more information on reserved words go to the url: http://www.gnu-pascal.de/gpc/index.
html

Have a predefined meaning in Pascal 
that cannot be changed

and
array
begin
case
const
div
do
downt
o
else

end
file
for
foward
functio
n
goto
if
in
label



Standard Identifiers
Have a predefined 
meaning in Pascal 
that SHOULD NOT  
be changed
Predefined constants

false
true
maxint

Predefined types
boolean
char
integer
real
text

Predefined files
input
output

For more information on standard identifiers go to the url: http://www.gnu-pascal.de/gpc/index.html



Predefined Functions 
abs
arctan
chr
cos
eof
eoln
exp
ln
odd

ord
pred
round
sin
sqr
sqrt
succ
trunc

Know the ones in Table 3.1 of your 
book.



Predefined Procedures 
dispose
get
new
pack
page
put
read

readln
reset
rewrite
unpack
write
writeln



Declaring Variables

Program documentation

program name  (input, 
output);

Part I: Header

const

:

Part II: Declarations

begin

:
end.

Part III: 
Statements

Declare variables between the ‘begin’ and ‘end.’

Declare variables
just after the ‘begin’



Procedure Parameters 

Parameters denoting a constant “ no assignment is 
allowed”

Parameters denoting a variable.
Parameters denoting procedure:

To represent procedure uniquely: 
The address of the entry point of the code.
The address of the data segment of that 
procedure declared local variables.



Code Optimization

Taking array index into consideration. 
This done mutually by HW or by 
Compiler.
The 2nd important optimization is 
arithmetic optimization

x div c if c is 2,4,8… Just shift right 1,2,3.. 
times.
x*c and c is 2,4,8… Just shift left 1,2,3.. 
times.



Syntax Analysis

Conway “Separable transition diagram”:
The syntax of the language is presented as a 
finite set of pseudo-finite-state recognizers. This 
is because the basic symbols to be recognized 
are replaced by sentences are replaced by the 
member of this set. Using TD Parsing.
The syntax of the language is formulated as a 
set S of finite graphs.
It is straightforward to translate to and from the 
diagrams to BNF and it is easy to verify 
unambiguity.
To strictly adhere to the constraint of a one-
symbol lookahead .



Part II

Devaun McFarland



Performance and statistical data 

At a Glance 
The Source Program 

4000
130,000
33

Contents 
Distinct identifiers
Word-delimiters 

End, begin, if, then, and else



The object program:

Field length requires 19,000 words
Compiler Program proper – 67.8%
Object code Buffering – 4.7%
Object Table – 9.2%
Other Data – 4.5%
Input and Output Buffering – 8.3%
Interface and I/O routines - 5.5%



Program Instruction Set 

Program consists of 32,700 instructions 
as follows:

Long instructions(30-bit) = 48.7%
Short instructions(15-bit)=28.7%
Padding Instructions(NOOP)=22.8%

Long/Short instruction breakdown
Fetch/store, load literal, arithmetic, logical/shift, 
base address register, and jumps/subroutine 
calls. 



On registers
X-registers – used as a stack, holds 
results while evaluating expressions

X1, X2, X3,X4, and X5 percentages.

B-registers – are used for the display D
B1, B2,B3, and B4 percentages.



Performance on recompilation

Time to load and compile (the source 
program)

40 sec(CP)+15 sec(PP)

Yielding an average of
100 lines of source code processed per (CP) 
second.
820 instructions generated per second.



Compiler Design Technique

1968 – Earlier version of PASCAL
Compiler written in FORTRAN - the motive 
here is a result of wanting a compiler that 
could be available automatically for multiple 
computers.

1969 – Written in PASCAL
Here the compiler was translated ‘by hand’ 
and did not attempt to optimize. Several 
features were omitted. 



Task division
Type definitions, variable declarations and 
procedure headings including formal 
parameter list.
Expressions and Statements.
Interface with the operating system. 



Part III

Aspen Olmsted



Relationship Between The 
Complexity of Compilation and 

Computer Architecture



Desirable Computer Architecture 
Properties 

Pascal is a language designed without any specific 
computer in mind 
At Least Two Registers
Simplicity of Instruction Set
Make optimizations unnecessary 



CDC 6000 Architecture

Regularity and brevity of instruction set
64 Total Insturctions
42 used in compiler (66 percent)



Graph of Instructions By %Source 
Code



Conclusions



Program Comparison

Compared Algol, Fortran & Pascal on 4 programs:
Matrix multiplcation B: A*A, no output
Sorting an array of 2,000 numbers
Finding all possible additive partitions of integers 1-30
Counting the characters in a file

The performance differences between languages was 
negligible
The reliability of the code generated by Pascal was higher



Successes

High Reliability
Scheme of syntax analysis allows separate features to be 
tested separately
Recursive Descent for syntax analysis - requires 
implementation language supporting recursion
Syntax designed in flow diagrams instead of BNF (giving 
readability)



Syntax Diagram - Simple Expression

<Simple Expression> :== <Term> | <Simple Expression> 
<adding operator><Term> | <adding operator><Term>



Syntax Diagram - Term

<Term> :== <Factor> | <Term> <multiplying operator><Factor>



Syntax Diagram - Factor

<Factor> :== <variable> | <unsigned constant> | <function 
designator> | <set> | (<expression>) | !<factor>


