COMPUTER ETHICS IN THE UNDERGRADUATE

CURRICULUM: CASE STUDIES AND THE JOINT SOFTWARE

ENGINEER'S CODE’

Dr. Don Gotterbarn Dr. Keith W. Miller
Eastern Tennessee State University University of Illinois at Springfield
Dept. of Computer Science Dept. of Computer Science

Box 70711 One University Plaza
Johnson City, TN 37614 Springfield, IL 62703
ABSTRACT

This paper illustrates how to use the Software Engineering Code of Ethics and
Professional Practice [1,2] in three case studies suitable for computer science
instruction. This code of ethics was approved by both the Association of
Computing Machinery (ACM) and the IEEE Computer Society in 1998. Since
then, the code has been translated into seven more languages, and adopted by
organizations in many countries.

The paper argues that instruction in ethics is vital in computer science
education, and that case studies featuring the Software Engineer's Code can be
an effective method for that instruction. The three cases all focus on realistic
situations in which a software engineer must make choices that involve
technical and ethical judgments. For each case, the paper identifies relevant
sections of the Code, and analyzes the case study using ideas from those
sections.

1. INTRODUCTION

As society becomes more dependent on computing, there is pressure to increase the
emphasis on professional ethics in college curricula. Sometimes this responsibility is
assigned to professors of philosophy who understand significant ethical issues but are ill

" Copyright © 2004 by the Consortium for Computing Sciences in Colleges. Permission to copy
without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

156



CCSC: Northwestern Conference

equipped to deal with issues that depend on subtle technical details of computing. We
contend that it is essential to discuss professional ethics in technical classes taught by
faculty competent in computer science. We further hold that one effective technique is
case analysis based on the Software Engineering Code of Ethics and Professional
Practice. Referred to as "the Joint Code" or simply "the Code" in this paper, the Software
Engineering Code of Ethics and Professional Practice can be seen in its entirety
(including its short form and a more detailed, longer form) at its website [1]. Information
about the adoption of the Code by the ACM and the IEEE Computer Society is included
in [2]. Figure 1 shows the short form of the Code.

There is little contention about the effectiveness of using cases to train practitioners
in many professions. [3] But there are numerous questions about using a code of ethics
to fill the critical role of support and insight for professional ethics. On the negative side,
codes often seem to be too general. Their scope does not seem to relate uniquely to the
domain of software development project. Even if you can identify imperatives that need
to be followed, these imperatives may seem to conflict, leaving the developer waffling
between two alternatives. Worst of all from the teaching perspective, codes of ethics may
seem dry and boring to students.

But there are good reasons to use a code of ethics, especially if it can avoid some of
the drawbacks mentioned above. Codes of ethics have been developed to educate the
public, practitioners, and students about the obligations of software professionals. A good
code of ethics for software engineers can guide all professional software developers, not
just bad actors. In what follows we demonstrate the utility of using one particular code,
the Joint Code introduced above, using three case studies that can be used in computer
science classes.

In this paper, we concentrate on using the Joint Code as it relates to practicing
professionals and to students who aspire to joining the profession. Indeed, the Joint Code
was developed with those audiences in mind. [2]

1.1 A Short History of the Joint SE Code

The ACM - IEEE Computer Society Joint Steering Committee for the
Professionalization of Software Engineering established the Software Engineering Ethics
and Professional Practice task force to document and codify software engineering's
standards of ethical and professional practice. The development of the Joint Code was
an international project with participants from every continent. The participants
responded to a call for participation sent to the memberships of the ACM and the IEEE
Computer Society, news groups, other professional societies, companies, and interested
parties. Major companies aided in the process by posting early drafts of the Code on
their electronic bulletin boards for comment by their employees. Reviews, re-drafts, and
balloting on the Code were conducted in the international arena.

Members of the task force formulated imperatives that were refined over the long
history of the code's development. The draft Code was reviewed by members of several
professional computing societies and went through several revisions. Version 3 appeared
with a turnaround ballot in the journals IEEE Computer and Communications of the ACM.
Most clauses in the code received better than a 90% approval rating. Contributed

157



JCSC 20, 1 (October 2004)

comments led to the development of Version 4 which was submitted for peer review
using the IEEE's formal technical standard review process. The Code passed this process
and comments from that review were used to develop the Version 5.2 of the Code.
Version 5.2 was approved by the ACM in November of 1998 and by the [IEEE-Computer
Society in December of 1998. Because of its wide dissemination (the Joint Code has been
translated into Chinese, Croation, French, Hebrew, Italian, Japanese, and Spanish), and
its growing influence, it is not unreasonable to say that this Code represents movement
toward an international consensus of what software engineers believe to be their
professional ethical obligations.

1.2 Why the Joint SE Code is Useful for Future Computing Professionals

We want our students to understand their obligations to the well-being of those who
use their software, and the Code stresses this obligation. Because computer science
education emphasizes technical information and skills, students may fail to recognize
when they encounter a significant ethical issue. The Code can help them identify these
situations.

Our students may someday work in environments where they are asked to act in
unprofessional ways by their management, and the Code will help them withstand those
pressures. Many of our students will become managers; the Code includes clauses that
explore management obligations, and that will help students prepare to fill those
management roles ethically.

In general, the Code will help students think carefully about their ethical obligations
as it encourages them to consider the consequences of their actions. The Code also alerts
students that unethical actions are condemned by professional organizations that matter
in their chosen field.

1.3 Teaching Students to Use the Code Professionally

How can students use the Code? The Code is a normative code. Historically, there
has been a transition away from regulatory codes designed to penalize divergent behavior
and internal dissent, toward codes which are more normative, giving general guidance.
Such normative codes are only a partial representation of the ethical standards of the
profession. [4,5] However, statements in the Joint Code can be used to help students and
professionals carefully examine alternative actions when they recognize ethically charged
situations.

Because normative codes are incomplete, they should not be considered as
mechanical decision procedures to automatically decide what is wrong. The use of
normative codes requires moral judgment on the part of the professional. The Codes offer
guidance, not an algorithm. But the Code does not leave the reader without support in
exercising the required judgment. It includes the following advice about how to make
decisions:

158



CCSC: Northwestern Conference

PREAMBLE

The short version of the code summarizes aspirations at a high level of
abstraction. The clauses that are included in the full version give examples and
details of how these aspirations change the way we act as software engineering
professionals. Without the aspirations, the details can become legalistic and
tedious; without the details, the aspirations can become high sounding but empty;
together, the aspirations and the details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification,
design, development, testing and maintenance of software a beneficial and
respected profession. In accordance with their commitment to the health, safety
and welfare of the public, software engineers shall adhere to the following Eight
Principles:

1 PUBLIC - Software engineers shall act consistently with the public interest.

2 CLIENT AND EMPLOYER - Software engineers shall act in a manner that is in
the best interests of their client and employer, consistent with the public interest.

3 PRODUCT - Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.

4 JUDGMENT - Software engineers shall maintain integrity and independence in
their professional judgment.

5 MANAGEMENT - Software engineering managers and leaders shall subscribe to
and promote an ethical approach to the management of software development and
maintenance.

6 PROFESSION - Software engineers shall advance the integrity and reputation of
the profession consistent with the public interest.

7 COLLEAGUES - Software engineers shall be fair to and supportive of their
colleagues.

8 SELF - Software engineers shall participate in lifelong learning regarding the
practice of their profession and shall promote an ethical approach to the practice of
the profession.

Figure 1. The short form of the Code

These Principles should influence software engineers to consider broadly who
is affected by their work; to examine if they and their colleagues are treating
other human beings with due respect; to consider how the public, if reasonably
well informed, would view their decisions; to analyze how the least
empowered will be affected by their decisions; and to consider whether their
acts would be judged worthy of the ideal professional working as a software
engineer. In all these judgments concern for the health, safety and welfare of
the public is primary; that is, the "Public Interest" is central to this Code.

159



JCSC 20, 1 (October 2004)

The Code establishes a priority in meeting the obligations described in the code. In
all decisions the public interest should be the software engineer's primary concern. To
reinforce the priority of public well being, the Code explicitly identifies the public good
to take priority over loyalty to the employer or profession. Indeed, some of the few
serious objections to the Code arose because of this strong position on the public good.

The Joint Code includes these guides to decision-making, but does not include
examples that illustrate their use. The next sections of this paper provide three such
examples. In the case studies that follow we include a short analysis based on specific
clauses in the code, and based on the Code's advice about making professional judgments.
Computer science faculty are encouraged to adapt these examples in their classrooms, and
to develop new examples based on different case studies. The three cases here were
adapted from Computer Ethics by Deborah Johnson [6], and are used with permission of
the author. The first case was influenced by an earlier paper by Michael C. McFarland.

[7]

2. Case Study about Testing: George and the Jet

George Babbage is an experienced software developer working for Acme Software
Company. Mr. Babbage is now working on a project for the U.S. Department of Defense,
testing the software used in controlling an experimental jet fighter. George is the quality
control manager for the software. Early simulation testing revealed that, under certain
conditions, instabilities would arise that could cause the plane to crash. The software was
patched to eliminate the specific problems uncovered by the tests. After these repairs, the
software passed all the simulation tests.

George is not convinced that the software is safe. He is worried that the problems
uncovered by the simulation testing were symptomatic of a design flaw that could only
be eliminated by an extensive redesign of the software. He is convinced that the patch that
was applied to remedy the specific tests in the simulation did not address the underlying
problem. But, when George brings his concerns to his superiors, they assure him that the
problem has been resolved. They further inform George that any major redesign effort
would introduce unacceptable delays, resulting in costly penalties to the company.

There is a great deal of pressure on George to sign off on the system and to allow
it to be flight tested. It has even been hinted that, if he persists in delaying the system, he
will be fired. What should George do next?

2.1 Particularly relevant clauses in the Joint SE Code

Principle 1. PUBLIC Software engineers shall act consistently with the public
interest. In particular, software engineers shall, as appropriate:

1.03. Approve software only if they have a well-founded belief that it is safe, meets
specifications, passes appropriate tests, and does not diminish quality of life, diminish
privacy or harm the environment. The ultimate effect of the work should be to the public
good.

160



CCSC: Northwestern Conference

1.04. Disclose to appropriate persons or authorities any actual or potential danger
to the user, the public, or the environment, that they reasonably believe to be associated
with software or related documents.

Principle 3. PRODUCT Software engineers shall ensure that their products and
related modifications meet the highest professional standards possible. In particular,
software engineers shall, as appropriate:

3.10. Ensure adequate testing, debugging, and review of software and related
documents on which they work.

Principle 5. MANAGEMENT Software engineering managers and leaders shall
subscribe to and promote an ethical approach to the management of software
development and maintenance. In particular, those managing or leading software
engineers shall, as appropriate:

5.01 Ensure good management for any project on which they work, including
effective procedures for promotion of quality and reduction of risk.

5.11. Not ask a software engineer to do anything inconsistent with this Code.

2.2 Applying the Code

In this case, Carl Babbage must contend with issues of physical safety that is
dependent on software reliability. If we look at this case too narrowly, we might think
that the safety of the test pilot is the exclusive safety concern. Although Mr. Babbage
does have responsibilities towards the pilot, test pilots know about the risks inherent in
their profession, and the test pilot may be quite willing to fly the plane despite Babbage's
misgivings. However, the test pilot is not the only one endangered if the software is
faulty; anyone under the plane is endangered if things go awry. Especially if the test flight
might fly over populated areas (and remember that instability might lead the plane in
unplanned directions before crashing), many people under the plane are unlikely to have
given their consent to "testing" the software. Carl's responsibilities to those people are a
vital part of our analysis.

Clause 1.03 makes public safety a priority concern for a software engineer. It is
exactly this concern that is central to George's decision. George clearly recognizes this
obligation, and the obligation in clause 1.04 to disclose his professional opinion that the
software has not been sufficiently certified as safe. Unfortunately, George's superiors
have not supported his decision about the software, and are trying to convince him to sign
off on the software despite his reservations.

His superiors have put George in a difficult position. Clearly, the Code sections
above confirm Mr. Babbage's ethical duty to refuse to sign off on the software before he
is reasonably sure of its safety. (We note that for almost all complex software, we can
never be entirely sure software is reliable and safe. It is a professional judgment whether
or not the software is "safe enough." [8]) By pressuring George to sign off, his superiors
are forcing George to choose between his loyalty to his employers (and his continued
employment) and his obligation to public safety. As McFarland points out, this is an
untenable position. [7] It is hoped that the existence of, and support for, an effective
ethics code can help someone in this position; but it is still difficult.

161



JCSC 20, 1 (October 2004)

So far our analysis has concentrated on Mr. Babbage and his dilemma. But the Joint
Code also requires his managers to act ethically. The clauses in section 5 of the Code
prohibit managers from forcing a software engineering employee to violate the code. The
Code also makes managers responsible for ensuring that there are processes to ensure the
reduction of risks. The managers might object that they have adequate processes, and that
the process was followed. Simulation testing revealed problems, and those problems were
addressed. The managers are not convinced that Mr. Babbage's suspicions are well
founded, and are not willing to jeopardize the project based on his misgivings.

The wording of clause 1.03 in the Code is an important part of our analysis of this
case. That clause states that software engineers should approve software only if they have
a "well-founded belief that it is safe" (our emphasis). The idea of a well-founded belief
is key to the dispute between George and his superiors. Perhaps George is right about the
software, but perhaps his managers are right. Although the case does not offer many
details about George's misgivings, he apparently did not present sufficient evidence to his
superiors about the remaining problems in the software. (If the managers were convinced
about the seriousness of the remaining problems, it seems unlikely that they would
approve a test flight that would likely end in a costly disaster.) Perhaps this dilemma
could be resolved to the satisfaction of all parties if the managers agreed to a short term
delay not for a major redesign, but for further testing to either confirm George's
suspicions, or convince George that the managers are correct, and that the test flight
should go on. This resolution would be far better than George signing off on a system he
thinks is deficient, and far better than George being fired for not doing so. The standard
supported by the Code is to have the burden to demonstrate that the software is safe
before deployment instead of having to prove it unsafe before deployment is halted.

3. CASE STUDY ON DATABASE: LEVELS OF SECURITY

Leikessa Jones owns her own consulting business, and has several people working
for her. Leikessa is currently designing a database management system for the personnel
office of ToyTimelnc., a mid-sized company that makes toys. Leikessa has involved
ToyTimelnc management in the design process from the start of the project. It is now
time to decide about the kind and degree of security to build into the system.

Leikessa has described several options to the client. The client has decided to opt
for the least secure system because the system is going to cost more than was initially
planned, and the least secure option is the cheapest security option. Leikessa knows that
the database includes sensitive information, such as performance evaluations, medical
records, and salaries. With weak security, she fears that enterprising ToyTimelnc
employees will be able to easily access this sensitive data. Furthermore, she fears that the
system will be an easy target for external hackers. Leikessa feels strongly that the system
should be more secure than it would be if the least secure option is selected.

Ms. Jones has tried to explain the risks to ToyTimelnc, but the CEO, the CIO, and
the Director of Personnel are all convinced that the cheapest security is what they want.
Should Jones refuse to build the system with the least secure option?

162



CCSC: Northwestern Conference

3.1 Particularly relevant clauses in the Joint SE Code

Principle 1. PUBLIC Software engineers shall act consistently with the public
interest. In particular, software engineers shall, as appropriate:

1.01. Accept full responsibility for their own work.

1.03. Approve software only if they have a well-founded belief that it is safe, meets
specifications, passes appropriate tests, and does not diminish quality of life, diminish
privacy or harm the environment. The ultimate effect of the work should be to the public
good.

1.04 Disclose to appropriate persons or authorities any actual or potential danger to
the user, the public, or the environment, that they reasonably believe to be associated with
software or related documents.

Principle 2. CLIENT AND EMPLOYER Software engineers shall act in a manner
that is in the best interests of their client and employer, consistent with the public interest.
In particular, software engineers shall, as appropriate:

2.05. Keep private any confidential information gained in their professional work,
where such confidentiality is consistent with the public interest and consistent with the
law.

Principle 3. PRODUCT Software engineers shall ensure that their products and
related modifications meet the highest professional standards possible. In particular,
software engineers shall, as appropriate:

3.01. Strive for high quality, acceptable cost, and a reasonable schedule, ensuring
significant tradeoffs are clear to and accepted by the employer and the client, and are
available for consideration by the user and the public.

3.03. Identify, define and address ethical, economic, cultural, legal and
environmental issues related to work projects.

3.12. Work to develop software and related documents that respect the privacy of
those who will be affected by that software.

3.2 Applying the Code

Ms. Jones has competing duties to the people who hired her, the people who work
at the company, to her consulting firm (including the people who work for her) and to
herself. The Joint Code makes it clear that Ms. Jones must be careful about the issue of
privacy; as a steward of sensitive data, she should not lose sight of that responsibility. In
our first case, Carl Babbage was most concerned with avoiding physical harm to people;
Ms. Jones is concerned with a different kind of harm. Both kinds are important.

At the same time, Ms. Jones needs to balance the need for security with the
economic interests of the company that hired her to do this work. Professionals have to
make subjective judgments to balance cost and the customer's needs; there cannot be
perfect security, and there are never infinite resources. This tension between finite
resources and attaining the highest quality policy is a common cause for ethical conflicts.

163



JCSC 20, 1 (October 2004)

However, in this case Ms. Jones made a mistake by offering a security "option" to
the company that, apparently on later reflection, she thought was inadequate. By not
informing the company up front about the necessity and cost for adequate security, she
has created a difficult situation, both for ToyTimelnc and for herself. In order to fulfill
her obligation to the company employees, she must admit her mistake and remove that
insecure system as a viable option, insisting on better security. Although the employees
of ToyTimelnc haven't been consulted (at least according to this short description), they
clearly will be affected by the decisions ToyTimelnc and Jones make.

One possible objection to Ms. Jones not mentioning the low-security option is that
she wouldn't be allowing ToyTimelnc to make an informed decision. But according to the
Code, Ms. Jones is responsible for building systems that are beneficial to the public. If
the low security system isn't good enough, then she shouldn't pretend that it is. An
engineer designing a bridge should not be compelled to include the possibility of building
it with shoddy materials in cost estimates.

If the company refuses to upgrade the security, Ms. Jones should probably remove
herself from the project if staying in the project will force her to deliver a system she
thinks is unethically insecure. (Clause 1.01 is central here.) There are two objections to
this suggestion. First, the company will have to find someone else to do the work, and this
seems unfair to the company since they were (we assume in good faith) simply agreeing
with one of Ms. Jones' suggestions. While this is unfortunate for the company and for Ms.
Jones, Ms. Jones' duty to protect sensitive information to a reasonable level of security
cannot be brushed aside. A second objection is that if Ms. Jones leaves the project, the
company is likely to hire someone else (who perhaps has less ethical scruples) to deliver
the job with the unacceptable level of security. Although that may be true, that possible
outcome does not absolve Ms. Jones of her responsibility to be an ethical professional.
Ms. Jones is first and foremost responsible for her own actions; the next professional
hired to take her place will have to wrestle with these responsibilities, but Ms. Jones
cannot let that possibility tempt her to dodge her own responsibilities.

There is another effect if Ms. Jones delivers the less secure system. She will have
harmed the profession of software engineering by allowing a degradation of the standards
for quality software. Such acts will, one software engineer at a time, reduce society's
trust in software engineering as a whole.

If ToyTimelnc insists on building the system with inadequate security, Clause 2.05
becomes important. That clause requires Ms. Jones to keep information confidential,
where such confidentiality is consistent with the public interest (our emphasis). If she
thinks the security is sufficiently bad, her obligation to the employees of ToyTimelnc (see
clause 1.04) will take priority of the obligation for confidentiality in clause 2.05.

Another possible solution for Jones is for her to tell ToyTimelnc that she and her
consulting company will build in better security, but only charge ToyTimelnc for the
cheaper option. This will hurt her financially, and may adversely affect her employees.
But since Jones made the mistake of offering inadequate security is an "option," she may
decide it is best for her professional reputation (and the long term success of her
consulting firm) for her to absorb this loss. This option clearly fulfills her obligation to
ToyTimelnc employees, although it is less clear that she has been fair to her own

164



CCSC: Northwestern Conference

employees who may be harmed by the decision if her company loses money on the
ToyTimelnc contract.

4. CASE STUDY ON CONFLICTS OF INTEREST

Juan Rodriguez is a private consultant who advises small businesses about their
computer needs. Juan examines a company's operations, evaluates their automation needs,
and recommends hardware and software to meet those needs.

Recently, Juan was hired by a small, private hospital interested in upgrading their
system for patient records and accounting. The hospital had already solicited proposals
for upgrading the system, and hired Juan to evaluate the proposals they'd received.

Juan carefully examined the proposals on the basis of the systems proposed, the
experience of the companies that bid, and the costs and benefits of each proposal. He
concluded that Tri-Star Systems had proposed the best system for the hospital, and he
recommended that the hospital should buy the Tri-Star system. He included a detailed
explanation for why he thought the Tri-Star bid was the best.

Juan did not reveal to the hospital that he is a silent partner (a co-owner) in Tri-Star
Systems. Was Juan's behavior unethical? We will assume for our discussion that Juan
evaluated the bids in good faith, and sincerely believed that Tri-Star had given the best
bid.

4.1 Particularly relevant clause in the Joint SE Code

Principle 4. JUDGMENT Software engineers shall maintain integrity and
independence in their professional judgment. In particular, software engineers shall, as
appropriate:

4.05. Disclose to all concerned parties those conflicts of interest that cannot
reasonably be avoided or escaped.

4.2 Applying the Code

Not all case studies require sophisticated analysis; clause 4.05 clearly labels Mr.
Rodriguez's actions as wrong. Mr. Rodriguez did not fulfill his professional obligations
when he neglected to disclose his conflict of interest to the hospital. Notice that his
sincerity about the superiority of the Tri-Star bid is not a central issue here. The central
issue is the trust Tri-Star has invested in Juan. If Mr. Rodriguez had disclosed his part
ownership in Tri-Star to the hospital, and the hospital had still hired him to evaluate the
bids, then Juan could have attempted to do a professional job of evaluation. (Some people
might find that difficult, but it is at least theoretically possible.) However, the Code
clearly prohibits Juan from taking this job without first giving the hospital the opportunity
to judge for itself whether or not they wanted to hire Mr. Rodriguez despite his interest
in Tri-Star.

165



JCSC 20, 1 (October 2004)

5. CONCLUSIONS

The Joint Code can and should be used in computer science classes. Its use there
shows the relevance of professional behavior in the development of quality software. By
using the Code and cases, a computer science faculty member can make the study of
ethics relevant and compelling to students who are looking forward to careers in
computing. The case about Ms. Jones and ToyTimelnc could be used in a database class;
the case about Mr. Babbage and the jet fighter could be used during a testing lesson in
any programming course; and the case about Mr. Rodriguez and the hospital would be
appropriate in a software engineering course.

Students should know that there are standards for ethical, professional behavior.
They should realize that professional organizations care about these standards. Computer
science faculty can help their students understand the Code and how to apply it in
situations the students will soon face in the workplace.

There are many different ways to use ethical case studies in computer science
classroom. Three of the ways we've tried in our classrooms are:

A. We have organized an in-class discussion based on a case. Students are given a written
copy of the case and the Code, and organized into small groups to answers questions
about how to apply the code to the case. Each small group presents its conclusions to the
rest of the class at the end of the exercise.

B. We have assigned a case study as homework, including a set of questions for written
responses from the students. Alternatively, we have had students write an essay in which
the students do their own original analysis instead of answering specific questions.

C. We have staged debates during class. Students are given a written copy of the case and
the Code. Then the teacher identifies two possible decisions for the case. (For example,
"Fred should do X" and "Fred should do Y.") Then students are invited to debate based
on these two possible decisions. One student at a time can defend each position at the
front of the class. Students "tag team" to keep the debate going, new students replacing
students who have been debating for awhile.

In our classes, we've found that some students are not enthusiastic when asked to
study an ethics code. The careful language of ethical codes and the emphasis on
professional obligations can be daunting for students. However, most students become
more enthusiastic when they use that same ethics code to help them develop and justify
a solution to a realistic problem. They find the process of ethical problem solving
engaging.

No matter how you introduce the Code in your classes, we think it is useful to at
least demonstrate how the Code can be applied to cases. We think it is even more useful
to have students practice applying the Code themselves. For more information about
teaching techniques for computer ethics, please visit the DOLCE website, established
using a National Science Foundation grant, CCLI-DUE-9952841. [9]

6. ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their careful reading
of the submitted paper. Their suggested changes were all improvements.

166



CCSC: Northwestern Conference

7. REFERENCES

[1]

2]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

D. Gotterbarn, K. Miller, and S. Rogerson. Software Engineering Code of Ethics
and Professional Practice. (n.d). Retrieved May 28, 2004, from
http://csciwww.etsu.edu/gotterbarn/SECEPP .

D. Gotterbarn, K. Miller, and S. Rogerson. Software engineering code of ethics is
approved. Communications of the ACM, Vol. 42, No. 10 (October 1999), 102-107.

The Online Ethics Center for Engineering and Science at Case Western University.
Cases. (n.d.). Retrieved March 10, 2004, from
http://www.onlineethics.org/eng/cases.html

R. Anderson. The ACM Code of Ethics: History, Process, and Implications. In
Social Issues in Computing, Huff and Finholt, eds.McGraw Hill, 1995.

D. Gotterbarn. Software Engineering: the new professionalism. In The Professional
Software Engineer. Colin Myer, ed., 1996.

D. Johnson. Computer Ethics, 3rd Edition. Prentice-Hall, 2001.

M. McFarland. Urgency of ethical standards intensifies in computer community.
IEEE Computer (March 1990), 77-81.

W. R. Collins, K. Miller, B. Spielman, and P. Wherry. How good is good enough?
An ethical analysis of software construction and use. Communications of the ACM,
Vol. 37, No. 1 (January 1994), 81-91.

Developing On/Off Line Computer Ethics. (n.d.). Retrieved May 28, 2004 from
http://csethics.uis.edu/dolce/.

167





