
Natural Language Processing With Prolog
in the IBM Watson System

Adam Lally
IBM Thomas J. Watson Research Center

Paul Fodor
Stony Brook University

24 May 2011

On February 14-16, 2011, the IBM Watson question answering system won the
Jeopardy! Man vs. Machine Challenge by defeating two former grand champions, Ken
Jennings and Brad Rutter. To compete successfully at Jeopardy!, Watson had to answer
complex natural language questions over an extremely broad domain of knowledge.
Moreover, it had to compute an accurate confidence in its answers and to complete its
processing in a very short amount of time.

The Question-Answering (QA) problem requires a machine to go beyond just match-
ing keywords in documents, which is what a web-search engine does, and correctly in-
terpret the question to figure out what is being asked. The QA system also needs to find
the precise answer without requiring the aid of a human to read through the returned
documents.

To address these challenges, the research team at IBM developed a software archi-
tecture called DeepQA, on which Watson is implemented. The DeepQA architecture
assumes and pursues multiple interpretations of the question, generates many plausi-
ble answers or hypotheses, collects evidence for these hypotheses, and evaluates the
evidence to determine if it supports or refutes those hypotheses [2]. Watson contains
hundreds of different algorithms that evaluate evidence along different dimensions.

Watson utilizes Natural Language Processing (NLP) technology to interpret the
question and extract key elements such as the answer type and relationships between
entities. Also, NLP was used to analyze (prior to the competition) the vast amounts
of unstructured text (encyclopedias, dictionaries, news articles, etc.) that may provide
evidence in support of the answers to the questions. Some of Watson’s algorithms
evaluate whether the relationships between entities in the question match those in the
evidence.

Watson’s NLP begins by applying a parser [5] that converts each text sentence
into a more structured form: a tree that shows both surface structure and deep, logical
structure. For example, in the following example Jeopardy! question:

POETS & POETRY: He was a bank clerk in the Yukon before he published
“Songs of a Sourdough” in 1907

1



The output of the parser includes, among many other things, that “published” is
a verb with base form (or lemma) “publish”, subject “he”, and object “Songs of a
Sourdough”.

Next, Watson applies numerous detection rules that match patterns in the parse.
These rules detect elements such as the focus of the question (the words that refer
to the answer, in this case “he”), the lexical answer types (terms in the question or
category that indicate what type of entity is being asked for, in this case “poet”), and
the relationships between entities in either a question or a potential supporting passage.

We required a language in which we could conveniently express pattern matching
rules over the parse trees and other annotations (such as named entity recognition re-
sults), and a technology that could execute these rules very efficiently. We found that
Prolog was the ideal choice for the language due to its simplicity and expressiveness.
The information in the parse is easily converted into Prolog facts, such as (the numbers
representing unique identifiers for parse nodes):

lemma(1, "he").

partOfSpeech(1,pronoun).

lemma(2, "publish").

partOfSpeech(2,verb).

lemma(3, "Songs of a Sourdough").

partOfSpeech(3,noun).

subject(2,1).

object(2,3).

Such facts were consulted into a Prolog system and several rule sets were executed
to detect the focus of the question, the lexical answer type and several relations between
the elements of the parse. A simplified rule for detecting the authorOf relation can be
written in Prolog as follows:

authorOf(Author,Composition) :-

createVerb(Verb),

subject(Verb,Author),

author(Author),

object(Verb,Composition),

composition(Composition).

createVerb(Verb) :-

partOfSpeech(Verb,verb),

lemma(Verb,VerbLemma),

member(VerbLemma, ["write", "publish",...]).

The author and composition predicates, not shown, apply constraints on the
nodes (“he” and “Songs of a Sourdough”, respectively) to rule out nodes that are not
valid fillers for the author and composition roles in the relation.

This rule, applied to the example, results in the new fact authorOf(1,3), which
is recorded and passed to downstream components in the Watson pipeline.

Now, assume that among the evidence that Watson gathered while attempting to
answer the question is the text:

2



Songs of a Sourdough by Robert W. Service

This is phrased differently from the question and it would not match the example
authorOf rule shown above. However, we have many other clauses of the authorOf
relation that match different expressions of the same semantic relation, including one
that applies in cases such as this, for example:

authorOf(Author,Composition) :-

composition(Composition),

argument(Composition,Preposition),

lemma(Preposition, "by"),

objectOfPreposition(Preposition,Author),

author(Author).

Since both the question and text passage have a common relation, Watson can de-
termine that the passage provides good support for the answer “Robert W. Service”.

This is a very simple example that illustrates just one kind of pattern matching that
Watson performs. Watson uses many different techniques for detecting and scoring the
occurrence of concepts and relations in text including statistical and other rule-based
methods.

In practice, natural language is complex and ambiguous, and the pattern matching
rules that we require are therefore more complex than this simplified example. This
problem is suited for solving with backtracking over pattern matching because we must
check for lots of conditions over the parse and we want a query language where we can
include/exclude these conditions depending on some context. The Prolog language
is recognized to be an excellent solution for the problem of pattern matching and all
problems that involve a depth-first search and backtracking [6, 1]. Although simple, the
Prolog language is very expressive allowing recursive rules to represent reachability in
parse trees and the operation of negation-as-failure to check the absence of conditions.

Prior to our decision to use Prolog for this task, we had implemented custom pattern
matching frameworks over parses. These frameworks tend to end up replicating some
of the features of Prolog but lack the full feature set of Prolog or the efficiency of a
good Prolog implementation. Using Prolog for this task has significantly improved our
productivity in developing new pattern matching rules and has delivered the execution
efficiency necessary in order to be competitive in a Jeopardy! game.

More details on our use of NLP and Prolog in Watson are forthcoming [4, 3].

References
[1] Michael A. Covington. Natural Language Processing for Prolog Programmers.

Prentice Hall, 1994.

[2] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya A. Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John Prager,
Nico Schlaefer, and Chris Welty. Building Watson: An Overview of the DeepQA
Project. AI Magazine, 31(3), 2010.

3



[3] Adam Lally, John Prager, Michael McCord, Branimir Boguraev, Siddharth Pat-
wardhan, James Fan, Paul Fodor, and Jennifer Chu-Carroll. Question Analysis:
How Watson Reads a Clue. IBM Journal of Research and Development, submit-
ted.

[4] Michael McCord, Branimir Boguraev, John Prager, , and J. William Murdock.
Parsing and Semantic Analysis in DeepQA. IBM Journal of Research and Devel-
opment, submitted.

[5] Michael C. McCord. Using Slots and Modifiers in Logic Grammars for Natural
Language. Artificial Intelligence, 18(3):327–367, 1982.

[6] Leon Sterling and Ehud Y. Shapiro. The Art of Prolog - Advanced Programming
Techniques. MIT Press, 2 edition, 1993.

4


