
Validation, Verification, and Testing of Computer Software

W. RICHARDS ADRION
Dw~smn of Mathematical and Computer Scwnces, Nattonal Scwnce Foundation, Washington, D.C. 20550

MARTHA A. BRANSTAD
Institute for Computer Sctence and Technology, Natmnal Bureau of Standards, Washington, D.C. 20234

AND

JOHN C. CHERNIAVSKY
Dwtsmn of Mathematical and Computer Sciences, Natmnal Scwnce Foundation, Washington, D.C. 20550

Software quahty is achieved through the apphcatlon of development techniques and the
use of verification procedures throughout the development process Careful consideratmn
of specific quality attmbutes and validation reqmrements leads to the selection of a
balanced collection of review, analysis, and testing techmques for use throughout the life
cycle. This paper surveys current verification, validation, and testing approaches and
discusses their strengths, weaknesses, and life-cycle usage. In conjunction with these, the
paper describes automated tools used to nnplement vahdation, verification, and testmg. In
the discussion of new research thrusts, emphasis is gwen to the continued need to develop
a stronger theoretical basis for testing and the need to employ combinations of tools and
techniques that may vary over each apphcation.

Categories and Subject Descriptors: D 2 1 [Sof tware Engineer ing]: Requirements/
Specifications--methodologws, tools; D 2 2 [Sof tware Engineer ing] : Tools and
Techniques--dec~smn tables; modules and interfaces, structured programming; top-
down programmtng; user ~nterfaces; D.2.3 [Sof tware Engineer ing] : Coding--
standards; D.2.4 [Software Engineering] . Program Verification--assertion checkers,
correctness proofs; rehabd~ty, validation; D.2.5 [Sof tware Engineer ing] Testmg and
Debugging--debugging a~ds; monitors; symbohc executmn; test data generators; D.2.6
[Software Engineer ing] Programming Envvconments, D.2.7 lSof tware Engineer ing] :
Distribution and Maintenance--documentatmn; versmn control; D.2.8 [Software
Engineering]: Metrics--complexity measures; D.2.9 [Sof tware Engineer ing] :
Management--hfe cycle; programming teams; software configuratmn management,
software quahty assurance (SQA)

General Terms: Reliability, Verification

INTRODUCTION
Programming is an exercise in problem
solving. As with any problem-solving activ-
ity, determination of the validity of the
solution is part of the process. This survey
discusses testing and analysis techniques
that can be used to validate software and
to instill confidence in the quality of the
programming product. It presents a collec-
tion of verification techniques that can be
used throughout the development process
to facilitate software quality assurance.

Programs whose malfunction would have
severe consequences justify greater effort
in their validation. For example, software
used in the control of airplane landings or
directing of substantial money transfers re-
quires higher confidence in its proper func-
tioning than does a car pool locator pro-
gram. For each software project, the vali-
dation requirements, as well as the product
requirements, should be determined and
specified at the initiation of the project.
Project size, uniqueness, criticalness, the

© 1982 ACM 0010-4892/82/0600-0159 $00.00
Computing Surveys, Vol. 14, No. 2, June 1982

160 • W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky

CONTENTS

INTRODUCTION
1 VERIFICATION THROUGH THE LIFE CYCLE

1 1 The Requirements Defimtlon Stage
12 The Design Stage
1.3 The Construction Stage
1.4 The Operation and Maintenance Stage

2. VALIDATION VERIFICATION AND
TESTING TECHNIQUES
2.1 Testmg Fundamentals
2 2 General Techmques
2.3 Test Data Generation
2.4 Functional Testmg Techmques
2 5 Structural Testing Techmques
2 6 Test Data Analyms
2 7 Statm Analyms Techniques
2 8 Combined Methods

3 CONCLUSIONS AND RESEARCH
DIRECTIONS

4. GLOSSARY
REFERENCES

v

Quali ty software
Reliable

Adequa te
Correct
Comple te
Cons i s ten t

R o b u s t
Tes tab le

Under s t andab le
S t ruc tu red
Concise
Self-descriptwe

Measurab le
Accessible
Quantif iable

Usable
Eff icmnt
Transpor t ab le
Main ta inab le

Figuro 1. A hmra rcby of software quah ty a t t r ibu tes

cost of malfunction, and project budget all
influence the validation needs. After the
validation requirements have been clearly
stated, specific techniques for validation,
verification, and testing (VV&T) can and
should be chosen. This paper concentrates
on VV&T in medium and large projects,
but many of the individual techniques are
also applicable to small projects. VV&T for
very small projects is discussed in BRAN80.

Some of the terms used in this article
may appear to have slightly different mean-
ings elsewhere in the literature. For that
reason, a glossary is included.

Verification, validation, and testing are
closely tied to software quality. There have
been many studies directed toward deter-
mining appropriate factors for software
quality [BoEn78, McCA77, JONE76]. A
number of attributes have been proposed;
the set given by Figure 1 is representative.
Each major quality attribute is given at the
left of the figure and its characterizations
are placed below and to the right of it. For
example, software with the quality attri-
bute of being testable has the characteri-
zation of being both understandable and
measurable, where understandable soft-
ware has, in turn, the further characteriza-

tions of being structured, concise, and self-
descrtptwe. Most of these factors are qual-
itative rather than quantitative.

The main attributes of software quality
include reliability, testability, usability, ef-
ficiency, transportability, and maintainabil-
ity, but in practice, efficiency often conflicts
with other attributes. For example, using a
vendor-specific FORTRAN feature may in-
crease execution efficiency but decrease
code transportability. Each software devel-
opment project must determine which fac-
tors have priority and must specify their
relative importance.

Two quality factors, reliability and test-
ability, are tightly coupled with testing and
verification issues. Clearly, reliable soft-
ware must first be adequate: it must be
correct, complete, and consistent at each
stage of the development. Incomplete re-
quirements will lead to an inadequate de-
sign and an incorrect implementation. The
second reliability requirement, robustness,
represents the ability of the software to
continue to operate or survive within its
environment.

Testable software must exhibit under-
standability and measurability. Under-
standability requires the product at each

Computing Surveys, Vol 14, No 2, June 1982

Validation, Verificatmn, and Testing of Computer Software • 161

stage to be represented in a structured,
concise, and self-descriptive manner so that
it can be compared with other stages, ana-
lyzed, and understood. Measurability re-
quires means to exist for actually instru-
menting or inserting probes, for testing, and
for evaluating the product of each stage.

Although good quality may be difficult to
define and measure, poor quality is glar-
ingly apparent. For example, software that
is filled with errors or does not work ob-
viously lacks quality. Program testing, by
executing the software using representative
data samples and comparing the actual re-
sults with the expected results, has been
the fundamental technique used to deter-
mine errors. However, testing is difficult,
time consuming, and often inadequate.
Consequently, increased emphasis has been
placed upon ensuring quality through-
out the entire development process, rather
than trying to do so after the process is
finished.

Life-cycle
stage

Reqmrements

Design

Construction

Verification
activities

Determine verification ap-
proach

Determine adequacy of re-
quirements

Generate functional test data

Determine consistency of de-
sign with requirements

Determine adequacy of design
Generate structural and func-

tional test data

Determine consistency w~th
design

Determine adequacy of imple-
mentation

Generate structural and func-
tional test data

Apply test data

Operation and Revenfy, commensurate with
Maintenance the level of redevelopment

1. VERIFICATION THROUGH THE LIFE
CYCLE

In this survey, we look at verification, vali-
dation, and testing techniques as they are
applied throughout the software develop-
ment life cycle. The traditional develop-
ment life cycle confines testing to a stage
immediately prior to operation and main-
tenance. All too often, testing is the only
verification technique used to determine
the adequacy of the software. When verifi-
cation is constrained to a single technique
and confined to the latter stages of devel-
opment, severe consequences can result,
since the later in the life cycle that an error
is found, the higher is the cost of its correc-
tion [INFO79]. Consequently, if lower cost
and higher quality are the goal, verification
should not be isolated to a single stage in
the development process but should be in-
corporated into each phase of development.
Barry Boehm [BoEH77] has stated that one
of the most prevalent and costly mistakes
made in software projects today is deferring
the activity of detecting and correcting soft-
ware problems until late in the project. The
primary reason for early investment in ver-
ification activity is to catch potentially ex-
pensive errors early before the cost of their
correction escalates.

Figure 2. Life-cycle verification activities

Figure 2 presents a life-cycle chart that
includes verification activities. The success
of performing verification throughout the
development cycle depends upon the exis-
tence of a clearly defined and stated prod-
uct at each development stage {e.g., a re-
quirement specification at the require-
ments stage). The more formal and precise
the statement of the development product,
the more amenable it is to the analysis
required to support verification. Many of
the new software development methodolo-
gies encourage a visible, analyzable product
in the early development stages.

1.1 The Requirements Definition Stage

The verification activities that accompany
the requirements stage of software devel-
opment are extremely significant. The ad-
equacy of the requirements, that is, their
correctness, completeness, and consistency,
must be thoroughly analyzed, and initial
test cases with the expected (correct) re-
sponses must be generated. The specific
analysis techniques that can be applied de-
pend upon the methodology used to specify
the requirements. At a minimum, disci-

Computing Surveys, VoL 14, No 2, June 1982

162 • W. R. Adrion, M. A. Branstad,

plined inspection and review should be
used, with special care taken to determine
that all pertinent aspects of the project
have been stated in the requirements.
Omissions are particularly pernicious and
difficult to discover. Developing scenarios
of expected system use, while helping to
determine the test data and anticipated
results, also help to establish completeness.
The tests will form the core of the final test
set. Generating these tests also helps guar-
antee that the requirements are testable.
Vague or untestable requirements will leave
the validity of the delivered product in
doubt since it will be difficult to determine
if the delivered product is the required one.
The late discovery of requirements inade-
quancy can be very costly. A determination
of the criticality of software quality attri-
butes and the importance of validation
should be made at this stage. Both product
requirements and validation requirements
should be established.

Some tools to aid the developer in re-
quirements definition exist. Examples in-
clude Information System Design and Op-
timization System (ISDOS) with Program
Statement Language (PSL) and Program
Statement Analyzer (PSA) [TEm77], Soft-
ware Requirements Engineering Program
(SREP) [ALFO77], Structured Analysis and
Design Technique (SADT) [Ross77], and
Systematic Activity Modeling Method
(SAMM) [LAMB78]. All provide a disci-
plined framework for expressing require-
ments and thus aid in the checking of con-
sistency and completeness. Although these
tools provide only rudimentary verification
procedures, requirement verification is
greatly needed and it is a central subject of
research being performed by Teichroew
and his group at Michigan.

Ideally, organization of the verification
effort and test management activities
should be initiated during the requirements
stage, to be completed during preliminary
design. The general testing strategy, includ-
ing selection of test methods and test eval-
uation criteria, should be formulated, and
a test plan produced. If the project size and
criticality warrants, an independent test
team should be organized. In addition, a
test schedule with observable milestones
should be constructed.

and J. C. Cherniavsky

At this same time, the framework for
quality assurance and test documentation
should be estimated [FIPS76, BUCK79,
IEEE79]. FIPS Publication 38, the Na-
tional Bureau of Standards guideline for
software documentation during the devel-
opment phase, recommends that test doc-
umentation be prepared for all multipur-
pose or multiuser projects, and for all soft-
ware development projects costing over
$5000. FIPS Publication 38 recommends
the preparation of a test plan and a test
analysis report. The test plan should iden-
tify test milestones and provide the testing
schedule and requirements. In addition, it

s h o u l d include both the specifications, de-
scriptions, and procedures for all tests, and
the test data reduction and evaluation cri-
teria. The test analysis report should sum-
marize and document the test results and
findings. The analysis summary should
present the software capabilities, deficien-
cies, and recommendations. As with all
types of documentation, the extent, formal-
ity, and level of detail of the test documen-
tation are dependent upon the management
practice of the development organization
and will vary depending upon the size, com-
plexity, and risk of the project.

1.2 The Design Stage

During detailed design, validation support
tools should be acquired or developed and
the test procedures themselves should be
produced. Test data to exercise the func-
tions introduced during the design process
as well as test cases based upon the struc-
ture of the system should be generated.
Thus, as the software development pro-
ceeds, a more effective set of test cases is
built up.

In addition to the generation of test cases
to be used during construction, the design
itself should be analyzed and examined for
errors. Simulation can be used to verify
properties of the system structures and sub-
system interaction. Design walk-throughs,
a form of manual simulation, can and
should be used by the developers to verify
the flow and logical structure of the system.
Design inspection should be performed by
the test team to discover missing cases,
faulty logic, module interface mismatches,

Comput ing Surveys, Vol 14, No 2, June 1982

Validatmn, Vertfication, and

data structure inconsistencies, erroneous
I/O assumptions, and user interface in-
adequacies. Analysis techniques are used
to show that the detailed design is intern-
ally consistent, complete, and consistent
with the preliminary design and require-
ments.

Although much of the verification must
be performed manually, a formal design
technique can facilitate the analysis by pro-
viding a clear statement of the design. Sev-
eral such design techniques are in current
use. Top Down Design proposed by Harlan
Mills of IBM [MILL70], Structured Design
introduced by L. Constantine [YOUR79],
and the Jackson Method [JACK75] are ex-
amples of manual techniques. The Design
Expression and Configuration Aid (DECA)
[CARP75], the Process Design Language
[CAIN75], Higher Order Software
[HAM176], and SPECIAL [RouB76] are ex-
amples of automated design systems or lan-
guages that support automated design anal-
ysis and consistency checking.

1.3 The Construction Stage

Actual execution of the code with test data
occurs during the construction stage of de-
velopment. Many testing tools and tech-
niques exist for this stage of system devel-
opment. Code walk-through and code in-
spection [FAcA76] are effective manual
techniques. Static analysis techniques de-
tect errors by analyzing program character-
istics such as data flow and language con-
struct usage. For programs of significant
size, automated tools are required to per-
form this analysis. Dynamic analysis, per-
formed as the code actually executes, is
used to determine test coverage through
various instrumentation techniques. For-
mal verification or proof techniques may be
used on selected code to provide further
quality assurance.

During the entire test process, careful
control and management of test informa-
tion is critical. Test sets, test results, and
test reports should be cataloged and stored
in a database. For all but very small sys-
tems, automated tools are required to do an
adequate job, for the bookkeeping chores
alone become too large to be handled man-
ually. A test driver, test data generation

Testing of Computer Software • 163

aids, test coverage tools, test results man-
agement aids, and report generators are
usually required.

When using the design methodologies de-
scribed in Section 1.2, at the construction
stage, programmers are given design speci-
fications from which they can first code
individual modules based on the specifica-
tion, and then integrate these modules into
the completed system. Unless the module
being developed is a stand-alone program,
it will require considerable auxiliary soft-
ware to exercise and test it. The auxiliary
code that sets up an appropriate environ-
ment and calls the module is termed a
driver, whereas code that simulates the
results of a routine called by the module is
a stub. For many modules both stubs and
drivers must be written in order to execute
a test. However, techniques can be used to
decrease the auxiliary software required for
testing. For example, when testing is per-
formed incrementally, an untested module
is combined with a tested one and the pack-
age is then tested as one, thus lessening the
number of drivers and/or stubs that must
be written. In bottom-up testing, an ap-
proach in which the lowest level of modules,
those that call no other modules, are tested
first and then combined for further testing
with the modules that call them, the need
for writing stubs can be eliminated. How-
ever, test drivers must still be constructed
for bottom-up testing. A second approach,
top-down testing, which starts with the ex-
ecutive module and incrementally adds
modules that it calls, requires that stubs be
created to simulate the actions of called
modules that have not yet been incorpo-
rated into the system, but eliminates the
need for drivers. The testing order should
be chosen to coordinate with the develop-
ment methodology used.

The actual performance of each test
requires the execution of code with input
data, an examination of the output, and a
comparison of the output with the expected
results. Since the testing operation is repet-
itive in nature, with the same code executed
numerous times with different input values,
the process of test execution lends itself to
automation. Programs that perform this
function are called test drivers, test har-
nesses, or test systems.

Computing Surveys, Vol. 14, No 2, June 1982

164 • W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky

The simplest test drivers merely reini-
tiate the program with various input sets
and save each set of output. The more
sophisticated test systems, however, accept
not only data inputs, but also expected out-
puts, the names of routines to be executed,
values to be returned by called routines,
and other parameters. In addition to initi-
ating the test runs, these test systems also
compare the actual output with the ex-
pected output and issue concise reports of
the performance. TPL/2.0 [PANZ78], which
uses a test language to describe test proce-
dures, is an example of such a system. As is
typical, TPL/2.0, in addition to executing
the test, verifying the results, and produc-
ing reports, helps the user generate the
expected results.

PRUFSTAND [SNEE78] is an example
of such a comprehensive test system. It is
an interactive system in which data values
are either generated automatically or re-
quested from the user as they are needed.
PRUFSTAND is representative of inte-
grated tools systems for software testing
and is comprised of (1) a preprocessor to
instrument the code; a translator to convert
the source data descriptors into an internal
symbolic test data description table; (2) a
test driver to initialize and update the test
environment; (3) test stubs to simulate the
execution of called modules; (4) an execu-
tion monitor to trace control flow through
the test object; (5) a result validator; (6) a
test file manager; and (7) a postprocessor to
manage reports.

A side benefit of a comprehensive test
system is that it establishes a standard for-
mat for test materials. This standardization
is extremely useful for regression testing,
which is discussed in Section 1.4. Currently
automatic test driver systems are expensive
to build and consequently are not in wide-
spread use.

1.4 The Operation and Maintenance Stage

Over 50 percent of the life-cycle costs of a
software system are maintenance [ZELK78,
EDP81, GAO81]. As the system is used, it
often requires modification either to correct
errors or to augment its original capabili-
ties. After each modification, the system
must be retested. Such retesting activity is

termed regression testing. Usually only
those portions of the system affected by the
modifications need to be retested. However,
changes at a given level will necessitate
retesting and reverifying products, and up-
dating documentation at all levels below it.
For example, a change at the design level
requires design reverification, and unit re-
testing and subsystem and system retesting
at the construction level. During regression
testing, test cases generated during system
development are reused or used after ap-
propriate modifications. Since the mate-
rials prepared during development will be
reused during regression testing, the quality
of the test documentation will affect the
cost of regression testing. If test data cases
have been cataloged and preserved, dupli-
cation of effort will be minimized.

2. VALIDATION, VERIFICATION, AND
TESTING TECHNIQUES

Much intense research activity is directed
toward developing techniques and tools for
validation, verification, and testing. At the
same time, a variety of other (and some-
times effective) heuristic techniques and
procedures have been put into practice. To
describe this diverse collection in a coher-
ent and comparative way is difficult. In this
survey we try to follow the life-cycle frame-
work set forth above (summarized in Figure
2) and to integrate the great body of testing
heuristics used in practice with the more
recent research ideas.

2.1 Testing Fundamentals

Before discussing particular testing meth-
odologies, it is useful to examine testing and
its limitations. The objects that we test are
the elements that arise during the devel-
opment of software. These include code
modules, requirements and design specifi-
cations, data structures, and any other ob-
jects necessary for the correct development
and implementation of software. We often
use the term "program" in this survey to
refer to any object that may be concep-
tuaUy or actually executed. Thus, because
design or requirements specifications can
be conceptually executed (the flow of the
input can be followed through the steps

Comput ing Surveys, Vol 14, No. 2, June 1982

Validation, Vertfication, and

defined by the specifications to produce a
simulated output}, remarks directed toward
"programs" have broad application.

We view a program as a representat ion
of a function. The function describes the
relationship of an input e lement (called a
domain element) to an output e lement
(called a range element). The testing pro-
cess is then used to ensure tha t the program
faithfully realizes the function. The essen-
tial components of a program test are the
program in executable form, a description
of the expected behavior, a way of observ-
ing program behavior, a description of the
functional domain, and a method of deter-
mining whether the observed behavior con-
forms with the expected behavior. The test-
ing process consists of obtaining a valid
value from the functional domain (or an
invalid value from outside the functional
domain, if we are testing for robustness},
determining the expected behavior, execut-
ing the program and observing its behavior,
and finally comparing tha t behavior with
the expected behavior. If the expected and
the actual behavior agree, we say tha t the
test instance has succeeded; otherwise, we
say tha t the test instance has uncovered an
error.

Of the five necessary components in the
testing process, it is f requently most diffi-
cult to obtain the description of the ex-
pected behavior. Consequently, ad hoc
methods often must be used, including
hand calculation, simulation, and al ternate
solutions to the same problem. Ideally, we
would construct an oracle, a source which,
for any given input description, can provide
a complete description of the corresponding
output behavior.

We can classify program test methods
into dynamic analysis and static analysis
techniques. Dynamic analysis requires tha t
the program be executed, and hence follows
the tradit ional pa t te rn of program testing,
in which the program is run on some test
cases and the results of the program's per-
formance are examined to check whether
the program operated as expected. Static
analysis, on the other hand, does not usu-
ally involve actual program execution (al-
though it may involve some form of concep-
tual execution). Common static analysis
techniques include such compiler tasks as

Testing of Computer Software • 165

syntax and type checking. We first consider
some aspects of static and dynamic analysis
within a general discussion of program test-
ing.

A complete verification of a program at
any stage in the life cycle can be obtained
by performing the test process for every
e lement of the domain. If each instance
succeeds, the program is verified; otherwise,
an error has been found. This testing
me thod is known as exhaustive testzng and
is the only dynamic analysis technique tha t
will guarantee the validity of a program.
Unfortunately, this technique is not prac-
tical. Frequently, functional domains are
infinite, or even if finite, sufficiently large
to make the number of required test in-
stances infeasible.

In order to reduce this potential ly infinite
exhaustive testing process to a feasible test-
ing process, we must find criteria for choos-
ing representat ive elements from the func-
tional domain. These criteria may reflect
ei ther the functional description or the pro-
gram structure. A number of criteria, both
scientific and intuitive, have been suggested
and are discussed.

The subset of elements chosen for use in
a testing process is called a test data set
(test set for short). Thus the crux of the
testing problem is to find an adequate test
set, one large enough to span the domain
and yet small enough tha t the testing proc-
ess can be performed for each e lement in
the set. Goodenough and Gerhar t [GooD75]
present the first formal t r ea tmen t for de-
termining when a criterion for test set se-
lection is adequate. In their paper, a crite-
rion C is said to be reliable if the test sets
T~ and T2 chosen by C are such tha t all test
instances of T~ are successful exactly when
all test instances of T2 are successful. A
criterion C is said to be valid if it can
produce test sets tha t uncover all errors.
These definitions lead to the fundamental
theorem of testing, which states:

If there exmts a consistent, reliable, vahd, and com-
plete criterion for test set selection for a program P
and if a test set satmfymg the criterion is such that
all test instances succeed, then the program P is
correct

Unfortunately, it has been shown tha t
there is no algori thm to find consistent,

Computing Surveys, Vol 14, No. 2, June 1982

166 • W. R. Adrion, M. A. Branstad,

reliable, valid, and complete test criteria
[HOWD76]. This confirms the fact that test-
ing, especially complete testing, is a very
difficult process. As we shall see, there is no
one best way to generate test data or to
ensure best coverage, even heuristically.
Combinations of various techniques can in-
crease our confidence in the quality of the
software being tested. These combinations
depend heavily on the particular instance
of the problem.

Probably the most discouraging area of
research is that of testing theory, precisely
because results such as these abound, show-
ing that testing can never guarantee cor-
rectness. Many of the sophisticated tech-
niques that have been recently developed
are proving intractable in practical appli-
cations. At the same time, many of the
heuristics in practice, while often success-
fully used, do not have a solid theoretical
basis from which they can be generalized or
validated. Still the importance of the vali-
dation and verification process in software
development cannot be overstated. By us-
ing a variety of techniques and gaining a
thorough understanding of the implications
and limitations of these techniques, we can
increase our confidence in the quality of the
software.

2.2 General Techniques

Some techniques are used at many stages.
These include traditional informal methods
such as desk checking as well as disciplined
techniques such as structured walk-
throughs and inspections. Proof-of-correct-
ness research is now beginning to produce
practical and effective tools and techniques
that can be made part of each stage of
software development. Moreover, there are
other tools, such as simulation, that, al-
though not specific to testing, are highly
useful in the validation, verification, and
testing process.

2 2.1 Tradlbonal Manual Methods

Desk checking, going over a program by
hand while sitting at one's desk, is the most
traditional means for analyzing a program,
and forms the foundation for the more dis-
ciplined techniques of walk-throughs, in-
spections, and reviews. Requirements, de-

and J. C. Cherntavsky

sign specifications, and code must always
be hand analyzed as it is developed. To be
effective this analysis must be careful and
thorough. In most instances, this, as well as
all other desk checking, is used more as a
debugging technique than as a testing tech-
nique. Since seeing one's own errors is dif-
ficult, it is more effective if a second party
does the desk checking. For example, two
programmers trading listings and reading
each other's code is often more productive
than each reading his own. This approach
still lacks the group interaction and insight
present in formal walk-throughs, inspec-
tions, and reviews.

Another method of increasing the overall
quality of software production is peer re-
view, the reviewing of programmer's code
by other programmers [MYER79]. The
management can set up a panel that re-
views sample code on a regular basis for
efficiency, style, adherence to standards,
etc., and that provides feedback to the in-
dividual programmer. Project leaders or
chief programmers can maintain a note-
book that contains both required "fixes"
and revisions to the software and an index
indicating the original programmer or de-
signer. In a "chief programmer team"
[BAKE72] environment, the librarian can
collect data on programmer runs, error re-
ports, etc., and act as a review board or pass
the information on to a separate peer re-
view panel.

2 2 2 Walk-Throughs, Inspections, and
Reviews

Walk-throughs and inspections are formal
manual techniques that are a natural evo-
lution of desk checking. While both tech-
niques share a common philosophy and
similar organization, they are quite differ-
ent in execution. Furthermore, although
they evolved from the simple desk check
discipline of the single programmer, the
disciplined procedures of both are aimed at
removing the major responsibility for veri-
fication from the programmer.

Both walk-throughs and inspections re-
quire a team, usually directed by a moder-
ator and including the software developer.
The remaining three to six members and
the moderator should not be directly in-

Comput ing Surveys, Vol 14, No 2, June 1982

Vahdatton, Verification, and

volved in the development effort. Both
techniques are based on a reading of the
product (e.g., requirements, specifications,
or code) in a formal meeting environment
with specific rules for evaluation. The dif-
ference between inspection and walk-
through lies in the conduct of the meeting.

Inspection involves a step-by-step read-
ing of the product, with each step checked
against a predetermined list of criteria.
(These criteria include checks for histori-
cally common errors, adherence to pro-
gramming standards, and consistency with
program specifications.) Guidance for de-
veloping the test criteria can be found in
MYER79, FAGA76, and WEIN71. Usually the
developer narrates the reading of the prod-
uct and finds many errors just by the simple
review act of reading aloud. Others errors,
of course, are determined as a result of the
discussion with team members and by ap-
plying the test criteria.

Walk-throughs differ from inspections in
that the programmer does not narrate a
reading of the product by the team. A team
leader, either the developer or another per-
son, provides test data and leads the team
through a manual simulation of the system.
The test data are walked through the sys-
tem, with intermediate results kept on a
blackboard or paper. The test data should
be kept simple, given the constraints of
human simulation. The purpose of the
walk-through is to encourage discussion,
not just to complete the system simulation
on the test data. Most errors are discovered
by questioning the developer's decisions at
various stages, rather than by examining
the test data.

At the problem definition stage, either
walk-through or inspection can be used to
determine whether the requirements satisfy
the testability and adequacy measures of
this stage in development. If formal require-
ments have been developed, formal meth-
ods, such as correctness techniques, may be
applied to ensure adherence to the quality
factors.

Walk-throughs or inspections should be
performed again at the preliminary and
detailed design stages, especially in exam-
ining the testability and adequacy of mod-
ule and module interface designs. Any
changes that result from these analyses will

Testing of Computer Software • 167

cause at least a partial repetition of the
verification at the problem definition and
earlier design stages, with an accompanying
reexamination of the consistency between
stages.

Finally, the walk-through or inspection
procedures should be performed on the
code produced during the construction
stage. Each module should be analyzed
both separately and then as an integrated
part of the finished software.

Design reviews and audits are commonly
performed as stages in software develop-
ment. The Department of Defense has de-
veloped a standard audit and review pro-
cedure [MILS76] based on hardware pro-
curement regulations. The process is rep-
resentative of the use of formal reviews and
includes several stages (detailed in the glos-
sary).

2 2.3 Proof-of-Correctness Techmques

The most complete static analysis tech-
nique is proof of correctness. At an informal
level, proof-of-correctness techniques re-
duce to the sort of step-by-step reasoning
involved in an inspection or a walk-through.
At a more formal level, the machinery of
mathematical logic is brought to bear on
the problem of proving that a program
meets its specification.

Proof techniques as methods of valida-
tion have been used since von Neumann's
time. These techniques usually consist of
validating the consistency of an output
"assertion" (specification) with respect to
a program (or requirements or design spec-
ification) and an input assertion (specifica-
tion). In the case of programs, the asser-
tions are statements about the program's
variables. If it can be shown that executing
the program causes the output assertion to
be true for the possibly changed values of
the program's variables whenever the input
assertion is true for particular values of
variables, then the program is "proved." To
be completely sure that a program is cor-
rect, the programmer must also prove that
the program terminates. Normally, the is-
sue of termination is handled separately.

There are two approaches to proof of
correctness: formal proof and informal
proof. In order to obtain formal proofs, a

Computing Surveys, Vol 14, No. 2, June 1982

168 • W. R. Adrion, M. A. Branstad,

mathematical logic must be developed with
which one can "talk" about programming
language objects and can express the notion
of computation. Two approaches have been
taken in designing such logics: (1) to employ
mathematical logic with a natural notion of
computation, essentially keeping the two
separate [FLoY67]; and (2) to tightly inte-
grate the computation aspects of program-
ming languages with the static, mathemat-
ical aspects of programming languages
[CoNs78, PRAT77]. Because of the compu-
tational power of most programming lan-
guages, the logic used to verify programs is
normally not decidable; that is, there is no
algorithm to determine the truth or falsity
of every statement in the logic.

Most recent research in applying proof
techniques to verification has concentrated
on programs. The techniques apply, how-
ever, equally well to any level of the devel-
opment life cycle where a formal represen-
tation or description exists. The GYPSY
[AMBL78] and HDM [RoBI79, NEUM75]
methodologies use proof techniques
throughout the development stages. For ex-
ample, HDM has as a goal the formal proof
of each level of development. Good sum-
maries of program proving and correctness
research are given in KING76 and APT81.

Since formal mathematical techniques
grow rapidly in complexity, heuristic pro-
cedures for proving programs formally are
essential. Unfortunately, these are not yet
well enough developed to allow the formal
verification of a large class of programs. In
the absence of efficient heuristics, some
approaches to verification require that the
programmer provide information interac-
tively to the verification system order to
complete the proof. Examples include AF-
FIRM [GERH80], the Stanford PASCAL
Verifier [LUCK79], and PL/CV [CoNs78].
Such provided information may include
facts about the program's domain and op-
erators or facts about the program's in-
tended function.

Informal proof techniques follow the log-
ical reasoning behind the formal proof tech-
niques but without the formal details. Often
the less formal techniques are more palat-
able to the programmers because they are
intuitive and not burdened with mathemat-
ical formalism. The complexity of informal

and J. C. Cherniavsky

proof ranges from simple checks, such as
array bounds not being exceeded, to com-
plex logic chains showing noninterference
of processes accessing common data. Pro-
grammers are always using informal proof
techniques; if they make the techniques
explicit, it would require the same resource
investment as following a discipline such as
structured walk-through.

Notwithstanding the substantial re-
search efforts in developing useful proof-of-
correctness systems, there has been dispute
concerning the ultimate utility of auto-
mated correctness proving as a useful tool
of verification and validation [DEMI79,
DI~K78]. It is unlikely that this dispute will
be quickly settled, but it is likely that proof-
of-correctness techniques will continue to
play a role in the validation and verification
process.

2 2 4 Stmulatlon

Simulation is a broad term. In a sense any
validation technique that does not involve
actual execution "simulates" the execution
in some fashion. All of the techniques de-
scribed above thus use simulation by this
very broad definition. Even if we employ a
more narrow definition, that simulation is
the use of an executable model to represent
the behavior of an object, simulation, as we
shall show, is still a powerful tool for testing.

Simulation is most often employed in
real-time systems development where the
"real-world" interface is critical and inte-
gration with the system hardware is central
to the total design. There are, however,
many non-real-time applications in which
simulation is a cost-effective verification
and test data generation technique.

Several models must be developed to use
simulation as a verification tool. Verifica-
tion is performed by determining, with use
of simulation, whether the model of the
software behaves as expected on models of
the computational and external environ-
ments.

To construct a model of the software for
a particular stage in the development life
cycle, one must develop a formal represen-
tation of the product at that stage compat-
ible with the simulation system. This rep-
resentation may consist of the formal re-

Computing Surveys, Vol 14, No 2, June 1982

Validation, Verification, and

quirements specification, the design speci-
fication, or the actual code, depending on
the stage, or it may be a separate model of
the program behavior. If a different model
is used, then the developer will need to
demonstrate and verify that the model is a
complete, consistent, and accurate repre-
sentation of the software at the stage of
development being verified.

After creating the formal model for the
software, the developer must construct a
model of the computational environment in
which the system will operate. This model
will include, as components, representa-
tions of the hardware on which the system
will be implemented and of the external
demands on the total system. This model
can be largely derived from the require-
ments, with statistical representations de-
veloped for the external demand and the
environmental interactions.

Simulating the system at the early devel-
opment stages is the only means of predict-
ing the system behavior in response to the
eventual implementation environment. At
the construction stage, since the code is
sometimes developed on a host machine
quite different from the target machine, the
code may be run on a simulation of the
target machine under interpretative con-
trol.

Simulation also plays a useful role in
determining the performance of algorithms.
While this is often directed at analyzing
competing algorithms for cost, resource, or
performance trade-offs, the simulation of
algorithms on large data sets also provides
error information.

2.3 Test Data Generation

Test data generation is a critical step in
testing. Test data sets must not only con-
tain input to exercise the software, but must
also provide the corresponding correct out-
put responses to the test data inputs. Thus
the developing of test data sets involves
two aspects: the selecting of data input and
the determining of expected response. Of-
ten the second aspect is most difficult, be-
cause, although hand calculation and sim-
ulation can be used to derive expected out-
put response, such manual techniques be-
come unsatisfactory and insufficient for
very large or complicated systems.

Testing of Computer Software • 169

One promising direction is the develop-
ment of executable specification languages
and specification language analyzers
[SRS79, TEIC77]. These can be used to act
as "oracles," providing the responses for
the test data sets. Some analyzers such as
the REVS system [BELL77] include a sim-
ulation capability. An executable specifica-
tion language representation of a software
system is an actual implementation of the
design, but at a higher level than the final
code. Usually interpreted rather than com-
piled, it is less efficient, omits certain details
found in the final implementation, and is
constructed with certain information
"hidden." This implementation would be,
in Parnas' terms [PARN77], an "abstract
program," representing in less detail the
final implementation. The execution of the
specification language "program" could be
on a host machine quite different from the
implementation target machine.

Test data can be generated randomly
with specific distributions chosen to pro-
vide some statistical assurance that the sys-
tem, after having been fully tested, is error
free. This is a method often used in high-
density large-scale integrated (LSI) testing.
Unfortunately, while errors in LSI chips
appear correlated and statistically predict-
able, this is not true of software. Until re-
cently, the domains of programs were far
more intractable than those occurring in
hardware. This gap is closing with the ad-
vances in very large-scale integration
(VLSI).

Given the apparent difficulty of applying
statistical tests to software, test data are
derived in two global ways, often called
"black box," or functional, analysis and
"white box," or structural, analysis. In func-
tional analysis, the test data are derived
from the external specification of the soft-
ware behavior with no consideration given
to the internal organization, logic, control,
or data flow. One such technique, design-
based functional analysis [HowD80a], in-
cludes examination and analysis of data
structure and control flow requirements
and specifications throughout the hierar-
chical decomposition of the system during
the design. In a complementary fashion,
tests derived from structural analysis de-
pend almost completely on the internal log-

Computing Surveys, Vol. 14, No 2, June 1982

Validation, Verification, and Testing of Computer Software • 171

a null matrix should be tested. Often the
single-element data structure is a good
choice. If numeric values are used in arith-
metic computations, then the test data
should include values that are numerically
very close and values that are numerically
quite different. Guessing carries no guar-
antee for success, but neither does it carry
any penalty.

2 4 2 Design-Based Functional Testing

The techniques described above derive test
data sets from analysis of functions speci-
fied in the requirements. Howden has ex-
tended functional analysis to functions used
in the design process [HowD80a]. A distinc-
tion can be made between requirements
functions and design functions. Require-
ments functions describe the overall func-
tional capabilities of a program, and cannot
usually be implemented without the devel-
oper first inventing other "smaller func-
tions" to design the program. If one thinks
of this relationship as a tree structure, then
a requirements function would be repre-
sented as a root node, and the "smaller
functions," all those functional capabilities
corresponding to design functions, would be
represented by boxes at the second level in
the tree. Implementing one design function
may require inventing still other design
functions. This successive refinement dur-
ing top-down design can then be repre-
sented as levels in the tree structure,
where the (n + 1)st-level nodes are refine-
ments or subfunctions of the nth-level
functions.

To utilize design-based functional test-
ing, the functional design trees as described
above should be constructed. The functions
included in the design trees must be chosen
carefully with the most important selection
criteria being that the function be accessi-
ble for independent testing. It must be pos-
sible to find a test data set that tests the
function, to derive the expected values for
the function, and to observe the actual out-
put computed by the code implementing
the function.

If top-down design techniques are fol-
lowed, each of the functions in the func-
tional design tree can be associated with
the final code used to implement that func-

tion. This code may consist of one or more
procedures, parts of a procedure, or state-
ments. Design-based functional testing re-
quires that the input and output variables
for each design function be completely
specified. Given these multiple functions to
analyze, test data generation can proceed
as described in the boundary value analysis
discussion above. Extremal, nonextremal,
and special-values test data should be se-
lected for each input variable. Test data
should also be selected to generate extre-
mal, nonextremal, and special-output
values.

2 4 3 Cause-Effect Graphing

Cause-effect graphing [MYER79] is a tech-
nique for developing test cases for programs
from the high-level specifications. For ex-
ample, a program that has specified re-
sponses to eight characteristic stimuli
{called causes) has potentially 256 "types"
of input {i.e., those with characteristics 1
and 3, those with characteristics 5, 7, and 8,
etc.). A naive approach to test case gener-
ation would be to try to generate all 256
types. A more sophisticated approach is to
use the program specifications to analyze
the program's effect on the various types of
inputs.

The program's output domain can be
partitioned into various classes called
"effects." For example, inputs with charac-
teristic 2 might be subsumed by (i.e., cause
the same effect as) those with characteris-
tics 3 and 4. Hence, it would not be neces-
sary to test inputs with just characteristic
2 and also inputs with characteristics 3 and
4. This analysis results in a partitioning of
the causes according to their corresponding
effects.

After this analysis, the programmer can
construct a limited-entry decision table
from the directed graph reflecting these
dependencies {i.e., causes 2 and 3 result in
effect 4; causes 2, 3, and 5 result in effect 6;
and so on), reduce the decision table in
complexity by applying standard tech-
niques [METZ77], and choose test cases to
exercise each column of the table. Since
many aspects of the cause-effect graphing
can be automated, it is an attractive tool
for aiding in the generation of functional
test cases.

Computing Surveys, Vol. 14, No. 2, June 1982

172 • W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky

2.5 Structural Testing Techniques

Unlike functional testing, which was con-
cerned with the function the program per-
formed and did not deal with how the func-
tion was implemented, structural testing is
concerned with testing its implementation.
Although used primarily during the coding
phase, structural testing should be used in
all phases of the life cycle where the soft-
ware is represented formally in some algo-
rithmic, design, or requirements language.
The intent of structural testing is to find
test data that will force sufficient coverage
of the structures present in the formal rep-
resentation. In order to determine whether
the coverage is sufficient, it is necessary to
have a structural coverage metric. Thus the
process of generating tests for structural
testing is sometimes known as metric- based
test data generation.

Metric-based test data generation can be
divided into two categories by the metric
used: coverage-based testing and complex-
ity-based testing. In the first category, a
criterion is used that provides a measure of
the number of structural units of the soft-
ware which are fully exercised by the test
data sets. In the second category, tests are
derived in proportion to the software com-
plexity.

2.5.1 Coverage-Based Testing

Most coverage metrics are based on the
number of statements, branches, or paths
in the program that are exercised by the
test data. Such metrics can be used both to
evaluate the test data and to aid in the
generation of the test data.

Any program can be represented by a
graph. The nodes represent statements or
collections of sequential statements, and
the lines or edges represent the control
flow. A node with a single exiting edge to
another node represents a sequential code
segment. A node with multiple exiting
edges represents a branch predicate or a
code segment containing a branch predicate
as the last statement.

As an example of the representation of a
program by a graph, consider the bubble
sort program of Figure 3 (from an example
due to Pare77) and its associated program
graph shown in Figure 4.

1 S U B R O U T I N E B U B B L E (A, N)
2 BEGIN
3 FOR I -- 2 S T E P S 1 U N T I L N DO
4 BEGIN
5 IF A(I) GE A (I - l) T H E N GOTO N E X T
6 J = I

7 LOOP: IF J LE 1 T H E N GOTO N E X T
8 IF A(J) GE A (J - 1) T H E N G O T O N E X T
9 T E M P = A(J)
10 A(J) = A (J - 1)
11 A (J - I) = T E M P
12 J = J - i
13 GOTO LOOP
14 NEXT" N U L L
15 E N D
16 E N D

Figure 3. A bubble sor t program. (Adapted from
PAI677, I E E E Transactions on Software Engtneer-
tng SE-3, 6 (Nov. 1977), 387, with permiss ion of the
IEEE.)

On a particular set of data, a program
will execute along a particular path, where
certain branches are taken or not taken,
depending on the evaluation of branch
predicates. Any program path can be rep-
resented by a sequence, possibly with re-
peating subsequences (when the program
has backward branches), of edge names
from the program graph. These sequences
are called path expressions. Each path or
each data set may vary, depending on the
number of loop iterations executed. A pro-
gram with variable loop control may have
effectively an infinite number of paths, and
hence an infinite number of path expres-
sions.

To test the program structure com-
pletely, the test data chosen should ideally
cause the execution of all paths. But be-
cause some, possibly many, paths in a pro-
gram are not finite, they cannot be executed
under test conditions. Since complete cov-
erage is not possible in general, metrics
have been developed that give a measure of
the quality of test data based on its prox-
imity to this ideal coverage. Path coverage
determination is further complicated by the
existence of infeasible paths, that, owing to
inadvertent program design, are never exe-
cuted, no matter what data are used. Au-
tomatic determination of infeasible paths is
generally difficult if not impossible. A main
theme in structured top-down design
[DIJK72, JACK75, YOUR79] is to construct
modules that are simple and of low corn-

Computing Surveys, Vol 14, No 2, June 1982

Validation, Verification, and Testing of Computer Software • 1 7 3

/

.®

Ftgure 4. Control-flow graph for the program in Figure 3 (Adapted from
PAI677, IEEE Transactions on Software Engtneermg SE-3, 6 (Nov. 1977), 389,
with permission of the IEEE)

Computing Surveys, Vol. 14, No 2, June 1982

174 • W.R. Adrion, M. A. Branstad, and J. C. Cherniavsky

plexity so that all paths, excluding loop
iteration, may be tested and that infeasible
paths may be avoided. Of course, during
integration testing when simple modules
are combined into more complex modules,
paths will cross modules and infeasible
paths may again arise. The goal is to main-
tain simple structure at all levels of integra-
tion, therefore maximizing path coverage.

All techniques for determining coverage
metrics are based on graph requirements
of programs. A variety of metrics exist rang-
ing from simple-statement coverage to
full-path coverage. There have been sev-
eral attempts to classify these metrics
[MILL77]; however, new variations appear
so often that such attempts are not always
successful. We discuss the major ideas with-
out attempting to cover all the variations.

The simplest metric measures the per-
centage of statements executed by all the
test data. Since coverage tools collect data
about which statements have been exe-
cuted (as well as about the percentage of
coverage), results can guide the program-
mer in selecting test data to ensure com-
plete coverage. To apply the metric, the
programmer instruments the program or
module either by hand or by a preprocessor,
and then uses either a postprocessor or
manual analysis of the results to find the
level of statement coverage. Finding an ef-
ficient and complete test data set that sat-
isfies this metric is more difficult. Branch
predicates that send control to omitted
statements can, when examined, help de-
termine which input data will cause execu-
tion of those omitted statements.

Examination of the program's actions on
the test set, $1 = {A(1) = 5, A(2) = 3,
N = 2} (Figure 3), demonstrates that 100
percent statement coverage is reached.
This metric, however, is not strong enough.
A slight change in the example program
(replacing the greater or equal test by an
equality test) results in an incorrect pro-
gram and an error that the test set does not
uncover.

A slightly stronger metric measures the
percentage of segments executed under the
application of all test data. A segment in
this sense corresponds to a decision-to-de-
cision path (dd path) [MILL77]. It is a
portion of a program path beginning with

the execution of a branch predicate and
including all statements up to the evalua-
tion (but not execution) of the next branch
predicate. In the example of Figure 4, the
path including statements 8, 9, 10, 11, 12,
13 is a segment. Segment coverage clearly
guarantees statement coverage. It also cov-
ers branches with no executable state-
ments, as in the case in an I F - T H E N -
ELSE with no ELSE statement; coverage
still requires data, causing the predicate to
be evaluated as both true and false, and
segment coverage guarantees that both
have been checked. Techniques similar to
those used for statement coverage are used
for applying the metric and deriving test
data.

Returning to the example program, the
test data set, $1, proposed earlier does not
cover the two segments with no executable
statements (segments beginning at nodes 5
and 8). The set

Se = ((A(1) = 5, A(2) = 3, A(3) = 3, N = 3},

(,4(1) = 3, A(2)=5 , N = 2 } }

yields 100 percent segment coverage, but
still does not uncover the error introduced
by replacing greater or equal by equal.

Often a loop construct is improperly
used. An improper termination may result
when the loop predicate is not initially sat-
isfied. Thus, the next logical step is to
strengthen the metric by requiring separate
coverage for both the exterior and interior
of loops. Since segment coverage only re-
quires that both branches from a branch
predicate be taken, the situation can arise
that test sets always execute the loop body
at least once (satisfies internal test) before
the exiting branch is traversed (external
test satisfied). To ensure that a test data
set contains data that requires the exiting
branch to be taken without executing the
loop body, segment coverage is strength-
ened so as to require that external tests be
performed without loop body execution.
This metric requires more paths to be cov-
ered than does segment coverage, whereas
segment coverage requires more paths to
be covered than does statement coverage.

In the example, adding (A(1) = 3,
N = 1} to the test data set $2 gives a test

Comput ing Surveys, Vol 14, No 2, June 1982

Vahdatton, Verification, and

set, $3, that forces execution of both the
interior and exterior of the FOR loop. The
single element array ensures that the loop
controlling predicate is tested without exe-
cution of the loop body.

Variations on the loop and segment met-
ric include requiring at least k interior it-
erations per loop or requiring that all 2 n
combinations of Boolean variables be ap-
plied for each n-variable predicate expres-
sion. The latter variation has led to a new
path-testing technique called finite-domain
testing [W H I T 7 8] .

Automated tools for instrumenting and
analyzing the code have been available for
a few years [MILL75, OSTE76, LYON74,
RAMA74, MAIT80]. These tools are gener-
ally applicable to most of the coverage met-
rics described above. Automating test data
generation, however, is less advanced. Of-
ten test data are generated by iteratively
using analyzers, and then applying manual
methods for deriving tests. A promising but
expensive way to generate test data for path
testing is through the use of symbolic
executors [BOYE75, KING76, CLAR77,
HOWD77]. The use of these tools is dis-
cussed further in Section 2.7. Even though
any particular structural metric may be
satisfied, there is still no guarantee that
software is correct. As discussed in Section
2.1, the only method of ensuring that the
testing is complete is to test the program
exhaustively. None of the above coverage
metrics, nor any proposed coverage metrics,
guarantees exhaustive testing. The choice
of which coverage metric to use must be
guided by the resources available for test-
ing. A coverage metric that forces more
paths to be tested in order to achieve the
same coverage as a simplier metric is more
expensive to use because more test cases
must be generated. The last few errors un-
covered can cost several orders of magni-
tude more than the first error uncovered.

2.5.2 Complexity-Based Testing

Several complexity-based metrics have
been proposed recently. Among these are
cyclomatic complexity [McCA76], Hal-
stead's metrics [HAas77], and Chapin's
software complexity measure [CHAP79].
These and many other metrics are designed

Testing of Computer Software • 175

to analyze the complexity of software sys-
tems. Although these metrics are valuable
new approaches to the analysis of software,
most are unsuited, or have not been applied
to the problem of testing. The McCabe
metrics are the exception.

McCabe actually proposed three metrics:
cyclomatic, essential, and actual complex-
ity. All three are based on a graphical rep-
resentation of the program being tested.
The first two metrics are calculated from
the program graph, while the third metric
is calculated at run time.

McCabe defines cyclomatic complexity
by finding the graph theoretic "basis set."
In graph theory, there are sets of linearly
independent program paths through any
program graph. A maximal set of these
linearly independent paths, called a "basis
set," can always be found. Intuitively, since
the program graph and any path through
the graph can be constructed from the basis
set, the size of this basis set should be
related to the program complexity. From
graph theory, the cyclomatic number of the
graph, V(G), is given by

V(G} -- e - n + p

for a graph G with number of nodes n, edges
e, and connected components p. The num-
ber of linearly independent program paths
though a program graph is V(G) + p, a
number McCabe calls the cyclomatic com-
plexity of the program. Cyclomatic com-
plexity, CV(G), where

CV(G) = e - n + 2p,

can then be calculated from the program
graph. In the graph of Figure 4, e = 19,
v = 16, and p = 1. Thus V(G) = 4 and
CV(G) = 5.

A proper subgraph of a graph G is a
collection of nodes and edges such that, if
an edge is included in the subgraph, then
both nodes it connects in the complete
graph G must also be in the subgraph. Any
flow graph can be reduced by combining
sequential single-entry, single-exit nodes
into a single node. Structured constructs
appear in a program graph as proper
subgraphs with only one single-entry node
whose entering edges are not in the
subgraph, and with only one single-exit

Computing Surveys, Vol. 14, No 2, June 1982

176 • W.R . Adrton, M. A. Branstad, and J. C. Cherntavsky

node, whose exiting edges are also not in-
cluded in the subgraph. For all other nodes,
all connecting edges are included in the
subgraph. This single-entry, single-exit
subgraph can then be reduced to a single
node.

Essential complexity is a measure of the
"unstructuredness" of a program. The de-
gree of essential complexity depends on the
number of these single-entry, single-exit
proper subgraphs containing two or more
nodes. There are many ways in which to
form these subgraphs. For a straight-line
graph (no loops and no branches), it is
possible to collect the nodes and edges to
form from 1 to v/2 (v = number of nodes)
single-entry, single-exit subgraphs. Hecht
and Ullman [HEcH72] have a simple algo-
ri thm that is guaranteed to find the mini-
mum number of such subgraphs in a graph.
Figure 5 is an example of a program graph
with single-entry, single-exit proper sub-
graphs identified from Hecht and Ullman's
algorithm. The nodes in the four proper
subgraphs are (1, 2}, {3, 4, 5, 6, 16}, (7, 8,
9, 10, 11, 12, 13}, and (14, 15).

Let m be the minimum number calcu-
lated from Hecht and Ullman's algorithm.
The essential complexity EV(G) is defined
a s

EV(G) = CV(G) - m.

The program graph for a program built
with structured constructs will generally be
decomposable into subgraphs that are sin-
gle entry, single exit. The minimum number
of such proper subgraphs (calculated
from Hecht and Ullman's algorithm) is
CV(G) - 1. Hence, the essential complexity
of a structured program is 1. The program
of Figure 3 has essential complexity of 1
indicating that the program is structured.

Actual complexity, AV, is the number of
independent paths actually executed by a
program running on a test data set. AV is
always less than or equal to the cyclomatic
complexity and is similar to a path coverage
metric. A testing strategy would be to at-
tempt to drive AV closer to CV(G) by find-
ing test data which cover more paths or by
eliminating decision nodes and reducing
portions of the program to in-line code.
There exist tools [MAIT80] to calculate all
three McCabe metrics.

2.6 Test Data Analysis

After the construction of a test data set, it
is necessary to determine the "goodness" of
that set. Simple metrics like statement cov-
erage may be required to be as high as 90-
95 percent. It is much more difficult to find
test data providing 90 percent coverage un-
der the more complex coverage metrics.
However, it has been noted [BRow73] that
methods based on the more complex met-
rics with lower coverage requirements have
uncovered as many as 90 percent of all
program faults.

2.6.1 Stat~sbcal Analyses and Error
Seeding

The most common type of test data analy-
sis is statistical. An estimate of the number
of errors in a program can be obtained by
analyzing of errors uncovered by the test
data. In fact, as we shall see, this leads to a
dynamic testing technique.

Let us assume that there are some num-
ber of errors E in the software being tested.
We would like to two things: a maximum
likelihood estimate for the number of errors
and a level-of-confidence measure on that
estimate. Mills developed a technique
[MILL72] to "seed" known errors into the
code so that their placement is statistically
similar to that of actual errors. The test
data are then applied, and the number of
known seeded errors and the number of
original errors uncovered is determined. If
one assumes that the statistical properties
of the seeded and unseeded errors are the
same (i.e., that both kinds of errors are
equally findable) and that the testing and
seeding are statistically unbiased, then the
maximum-likelihood estimator for E is
given by

estimate E = I S / K

where S is the number of seeded errors, K
is the number of discovered seeded errors,
and I is the number of discovered unseeded
errors. This estimate obviously assumes
that the proportion of undetected errors is
very likely to be the same for the seeded
and original errors. This assumption is open
to criticism [SCHI78] since many errors left
after the debugging stage are very subtle,
deep logical errors [DEMI78], which are not

Computing Surveys, Vol 14, No 2, June 1982

Validation, Verifwation, and Testing of Computer Software • i 7 7

/ i ~ ~ - ~ - - - - .

I ~ . " -~ZI I I / I
IL I I / /
i l ~ " ' , - . ~ / 1] I / /
i , " - - ~ ' ~),," / / ' J / /

/ ~ - - - 7 - - - ~ / / / / /

J
f

Fugure 5. Example from Figure 4 with subgraphs identified.

Computing Surveys, Vol. 14, No 2, June 1982

178 • W.R . Adrmn, M. A. Branstad, and J. C. Cherniavsky

statistically independent and are likely to
be quite different f rom the seeded errors.

Mills developed confidence levels for his
techniques, which are revised and discussed
in TAUS77. A fur ther and perhaps more
complete examinat ion of confidence levels
is described in DURA81a. A strategy for
using this statistical technique in dynamic
testing is to moni tor the maximum like-
lihood estimator, and to perform the confi-
dence-level calculation as testing prog-
resses. If the est imator becomes high rela-
tive to the number of seeded errors, then it
is unlikely tha t a desirable confidence level
can be obtained. The seeded errors should
be removed and the testing resumed. If the
number of real errors discovered remains
small (ideally, remains zero) as the number
of seeded errors uncovered approaches the
total number seeded, then our confidence
level increases.

Schick and Wolver ton [Scm78] and oth-
ers have described a technique of using two
people to test the software, using one per-
son's discovered errors as the "seeded" er-
rors and then applying the est imator to the
second person's results. But it is difficult to
make the two people's testing procedures
sufficiently different so tha t the overlap in
their uncovered errors is small; as the over-
lap increases, confidence of the est imation
must decrease.

T a u s w o r t h e [TAus77] d iscusses a
me thod for seeding errors tha t has some
hope of imitating the distribution of the
actual errors. He suggests randomly choos-
ing lines at which to insert the error, and
then making various different modifications
to the code, introducing errors. The modi-
fications of the code are similar to those
used in muta t ion testing as described be-
low. Duran and Wiorkowski [Dul~A81a]
suggest using errors detected during prelim-
inary testing as seed errors for this tech-
nique. In ei ther case, again, success depends
on the detected errors having the same
probabil i ty of detect ion as the undiscovered
errors, which is not likely.

2 6 2 Mutabon Analysis

A new method of determining the adequacy
of test da ta sets has been developed by
DeMillo, Lipton, and Sayward and is called
muta t ion analysis [DEMI78]. As above, the

Computing Surveys, Vol 14, No 2, June 1982

program tha t is to be tested is seeded with
errors. Several mutan ts of the original pro-
gram are generated. Each is created by
introducing different errors or sets of errors
into the original program. T h e program and
its mutan t s are then run interpret ively on
the test set.

The set of mutants must be held to a
manageable size. First, consider the
"competen t p rogrammer assumption,"
stating tha t an incorrect program will not
differ much from the desired program. T h a t
is, a competen t p rogrammer will not make
a massive number of errors when writing a
program. Second, consider the "coupling
effect," the conjecture tha t tests tha t un-
cover simple errors will also uncover deeper
and more complex errors.

These two assumptions greatly simplify
the construction of program mutations. To
determine the adequacy of test sets, we
introduce a muta t ion score ms(P, T) de-
fined as

ms(P, T) = ',DM(P, T),/L M(P) - E(P)I,

where P is a program, T is a test set, M(P)
is some finite set of mutan t programs of the
language, E(P) is the set of functionally
equivalent programs to P in M(P), and
DM(P, T) is the set of programs in M(P)
differentiated from P by the test set T. If
the construct ion of mutan ts is correct ly
chosen (i.e., the finite set of program mu-
tat ions is appropria te ly constructed), then
as the muta t ion score, ms(P, T), ap-
proaches 1, the adequacy of the test set T
increases (and T uncovers more errors).

The construct ion of the set of muta t ions
is crucial to the success of the technique.
The mu tan t set is obtained from P by mod-
ifying single s ta tements of the program in
order to reflect probable errors. Since each
e lement of the finite set of program muta-
tions differs f rom P in only one s ta tement
and since variable names may be changed
in order to construct elements of the set of
mutat ions, the size of M(P) is bounded by
a quadrat ic function of the length of P.

T h e muta t ion analysis method of deter-
mining the adequacy of test sets includes
both branch coverage and s ta tement cov-
erage metrics as special cases. Over the last
two years, the me thod has been run on a
number of F O R T R A N and COBOL pro-
grams ranging from a few lines in length to

Vahdation, Verification, and Testing of Computer Software • 179

production programs of 1700 lines in length.
Test sets with mutation scores of 0.95 or
higher were experimentally shown to be
adequate in that additional errors were not
discovered with subsequent use of the pro-
grams [ACRE80].

It must be stressed that mutation analy-
sis rests on two assumptions: that the pro-
gram is "nearly correct" (a consequence of
the competent programmer hypothesis)
and that test sets which uncover single
errors are also effective in uncovering mul-
tiple errors (the coupling effect hypothesis).
Both of these assumptions have been ex-
perimentally validated over a fairly large
range of programs [ACRE80].

Recently Howden [HOwD81a] developed
a new test completeness metric that is
stronger than branch coverage, but weaker
than mutant coverage. Derived from the
ideas on design-based functional testing,
the metric depends either on coverage of
functions computed by a program, parts of
the program, or by parts of statements in
the program. This method is less costly
than mutation analysis, but much more
effective than branch coverage.

2.7 Static Analysis Techniques

As we stated at the outset, analytical tech-
niques can be categorized as dynamic or
static. Dynamic activity, such as the appli-
cation and analysis of test data, usually
involves the actual execution of code,
whereas static analysis usually does not.
Many of the general techniques discussed
above, such as formal proof techniques and
inspections, are static analysis techniques.
Static analysis is part of any testing tech-
nique, since it must be used in analysis that
derives test data, calculates assertions, or
determines instrumentation breakpoints.
But the actual verification must be
achieved through dynamic testing. The line
between static and dynamic analysis is not
always easily drawn. For example, proof-of-
correctness techniques and symbolic exe-
cution both "execute" code, but usually not
in a real environment.

Most static analysis is performed by par-
sers and associated translators residing in
compilers. Depending upon the sophistica-
tion of the parser, it uncovers errors ranging
in complexity from ill-formed arithmetic

expressions to complex type-incompatibili-
ties. In most compilers, the parser and
translator are augmented with additional
capabilities that allow activities useful for
producing quality software, such as code
optimization, listing of variable names, and
pretty printing. Preprocessors are also fre-
quently used in conjunction with the par-
ser. These may perform activities such as
allowing "structured programming" in an
unstructured programming language,
checking for errors such as mismatched
common areas, and checking for module
interface incompatibilities. The parser may
also serve in a policing role. Thus, by using
static analysis the parser can enforce cod-
ing standards, monitor quality of code,
and check adherence to programming
standards (standards such as FORTRAN77
[ANSI78].

2 7 1 Flow Analysts

Data-flow and control-flow analysis are
similar in many ways. Both are based upon
graphical representation. In control-flow
analysis, the program graph has nodes, rep-
resenting a statement or segment, that pos-
sibly end in a branch predicate. The edges
represent the allowed flow of control from
one segment to another. The control-flow
graph is used to analyze the program be-
havior, to locate instrumentation break-
points, to identify paths, and to perform
static analysis activities. In data-flow anal-
ysis, graph nodes usually represent single
statements, while the edges still represent
the flow of control. Nodes are analyzed to
determine the transformations made on
program variables. Data-flow analysis is
used to discover program anomalies such
as undefined or unreferenced variables.
Data-flow analysis was used by Cocke and
Allen [ALLE74, ALLE76] to do global pro-
gram optimization.

Data-flow anomalies are more easily
found than resolved. Consider the following
FORTRAN code segment:

SUBROUTINE HYP (A, B, C)
U = 0.5
W = 1/V
Y = A * * W
Y = E * * W
Z = X + Y
C = Z ** (V)

Computing Surveys, Vol 14, No. 2, June 1982

180 • W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky

There are several anomalies in this code
segment. One variable, U, is defined and
never used, while three variables, X, V, and
E, are undefined when used. The problem
is not in detecting these errors, but in re-
solving them. It is possible, for instance,
that U was meant to be V, E was meant to
be B, and the first occurrence of Y on the
left of an assignment was a typo for X.
There is no answer to the problem of reso-
lution, but data-flow analysis can help to
detect the anomalies, including ones more
subtle than those above.

In data-flow analysis, we are interested
in tracing the behavior of program variables
as they are initialized and modified during
the program execution. This behavior can
be classified according to when a particular
variable is referenced, defined, or unrefer-
enced in the program. A variable is refer-
enced when its value is obtained from mem-
ory during the evaluation of an expression
in a statement. For example, a variable is
referenced when it appears on the right-
hand side of an assignment statement, or
when it appears as an array index anywhere
in a statement. A variable is defined if a
new value for that variable results from the
execution of a statement, as occurs when a
variable appears on the left-hand side of an
assignment. A variable becomes unrefer-
enced when its value is no longer determin-
able from the program flow. Examples of
unreferenced variables are local variables
in a subroutine after exit and FORTRAN
DO indices on loop exit.

Data-flow analysis is performed, at each
node in the data flow graph, by associating
values for tokens (the latter representing
program variables) that indicate whether
the corresponding variable is referenced,
unreferenced, or defined with the execution
of the statement represented by that node.
If, for instance, the symbols, u, d, r, and l
(for null), are used to represent the values
of a token, then path expressions for a
variable (or token) can be generated begin-
ning at, ending in, or for some particular
node, yielding, for example, the typical path
expression drlUllrrllllldllrll. This expression
can then be reduced, by eliminating nulls,
to drrrdru. Such a path expression contains
no anomalies, but the presence of a double
nonnull value in an expression, such as

• . .dd indicates a variable defined twice
without being referenced, and does identify
a potential anomaly. Most anomalies, such
as unreferenced followed by referenced or
referenced without being defined, can be
discovered through analysis of the path
expressions.

To simplify the analysis of the flow
graph, statements can be combined, as in
control-flow analysis, into segments of nec-
essarily sequential statements represented
by a single node. Often, however, state-
ments must be represented by more than
one node. Consider the expression,

IF (X.GT.1) X = X - 1

The variable X is certainly referenced in
the statement, but it will be defined only if
the predicate is true. In such a case, the
representation would use two nodes, and
the graph would actually represent the
code:

IF (X.GT.1) loo, 200
100X= X - 1
2OO CONTINUE

Another problem requiring node splitting
arises at the last statement of a FORTRAN
DO loop, in which case the index variable
will become undefined if the loop is exited.
The problems introduced by subroutine
and function calls can also be resolved using
data-flow analysis. Osterweil [OSTE76]
and Fosdick [FOSD76] describe the use of
data-flow analysis for static analysis and
testing.

2 7.2 Symbohc Execution

Symbolic execution is a method of symbol-
ically defining data that forces program
paths to be executed. Instead of executing
the program with actual data values, the
variable names that hold the input values
are used as input values•

All branches are taken during a symbolic
execution, and the effect of assignments
during a symbolic execution is to replace
the value of the left-hand side variable by
the unevaluated expression on the right-
hand side. Sometimes symbolic execution
is combined with actual execution in order
to simplify the terms being collected in
variables. Most often, however, all variable

Computing Surveys, Vo] 14, No. 2, June 1982

Validation, Verification, and

manipulations and decisions are made sym-
bolically. As a consequence, all assignments
become string assignments and all decision
points are indeterminate. To illustrate a
symbolic execution, consider the following
small pseudocode program:

IN a, b;
a := a * a;
x:=a+b;
I F x = 0 T H E N x : = 0

ELSE x := 1;

The symbolic execution of the program will
result in the following expression:

i fa * a + b = 0 then x :- 0
else i f a * a + b # O t h e n x : = l

Note that we are unable to determine the
result of the equality test for we only have
symbolic values available.

The result of a symbolic execution is a
large, complex expression that can be de-
composed and viewed as a tree structure,
where each leaf represents a path through
the program. The symbolic values of each
variable are known at every point within
the tree and the branch points of the tree
represent the decision points of the pro-
gram. Every program path is represented
in the tree, and every branch path is, by
definition, taken.

If the program has no loops, then the
resultant tree structure is finite, and can be
used as an aid in generating test data that
will cause every path in the program to be
executed. The predicates at each branch
point of the tree structure, for a particular
path, are then collected into a single logical
expression. Data that cause a particular
path to be executed can be found by deter-
mining which data will make the path
expression true. If the predicates are equal-
ities, inequalities, and orderings, the prob-
lem of data selection becomes the classic
problem of trying to solve a system of equal-
ities and orderings. For more detail, see
CLAR77 or HowD77.

There are two major difficulties with us-
ing symbolic execution as a test set con-
struction mechanism. The first is the com-
binatorial explosion inherent in the tree
structure construction: the number of paths

Testing of Computer Software • 181

in the symbolic execution tree structure
may grow as an exponential in the length
of the program, leading to serious compu-
tational difficulties. If the program has
loops, then the symbolic execution tree
structure is necessarily infinite (since every
predicate branch is taken). ~sually only a
finite number of loop executions is required,
enabling a finite loop unwinding to be per-
formed. The second difficulty is that the
problem of determining whether the path
expression has values that satisfy it is un-
decidable even with restricted program-
ming languages [CHER79a]. For certain ap-
plications, however, symbolic execution has
been successful in constructing test sets.

Another use of symbolic execution tech-
niques is in the construction of verification
conditions from partially annotated pro-
grams. Typically, the program has attached
to each of its loops an assertion, called an
"invariant," that is true at both the first
and the last statement of the loop. (Thus
the assertion remains "invariant" over one
execution of the loop.) From this assertion,
the programmer can construct an assertion
that is true before entrance to the loop and
an assertion that is true after exit of the
loop. Such a program can then be viewed
as free of loops (since each loop is consid-
ered as a single statement) and assertions
can be extended to all statements of the
program (so it is fully annotated) using
techniques similar to those for symbolic
execution. A good survey of these methods
has been done by Hantler [HANT76], and
an example of their use in verifiers appears
in Luckham [LucK79].

2.7.3 Dynamic Analysis Techniques

Dynamic analysis is usually a three-step
procedure involving static analysis and in-
strumentation of a program, execution of
the instrumented program, and finally,
analysis of the instrumentation data. Often
this is accomplished interactively through
automated tools.

The simplest instrumentation technique
for dynamic analysis is the insertion of a
counter or "turnstile." Branch and segment
coverage are determined in this manner. A
preprocessor analyzes the program (usually
by internally representing the program as

Computmg Surveys, VoL 14, No. 2, June 1982

182 • W.R . Adrion, M. A. Branstad, and J. C. Cherniavsky

a program graph) and inserts counters at
appropriate places.

For example, for IF statements, control
will be directed, first, to a distinct statement
responsible for incrementing a counter for
each possible branch, and, second, back to
the original statement. Two separate
counters are dmployed when two IF state-
ments branch to the same point. Loop con-
structs often have to be modified so that
both interior and exterior paths can be in-
strumented. For example, the exterior path
of a loop usually has no executable state-
ments. To insert a counter, the loop con-
struct must be modified, as below:

DO 20 1 = J, K, L

20 Statement k

IF (I.GT.K) THEN 201
20 N(20) = N(20) + 1

Statement k
I = I + L
IF (I.LE.K) THEN 20

201 N(201) = N(201) + 1

N(201) counts the exterior executions and
N(20) counts the interior executions.

Simple statement coverage requires
much less instrumentation than does either
branch coverage or more extensive metrics.
For complicated assignments and loop and
branch predicates, more detailed instru-
mentation is employed. Besides simple
counts, it is useful to know the maximum
and minimum values of variables (particu-
larly useful for array subscripts), the initial
and final value, and other constraints par-
ticular to the application.

Instrumentation does not have to rely on
direct code insertion. A simple alternate
implementation is to insert calls to run-time
routines in place of actual counters. The
developer can insert commands in the code
which is then passed through a preproces-
sor/compiler. The preprocessor adds the
instrumentation only if the correct com-
mands are set to enable it.

Stucki introduced the concept of instru-
menting a program with dynamic asser-
tions. A preprocessor generates instrumen-
tation for dynamically checking conditions
that are often as complicated as those used

in program-proof techniques [Svuc77].
These assertions are entered as comments
in program code and are meant to be per-
manent. They provide both documentation
and means for maintenance testing. All or
individual assertions are enabled during
test by using simple commands to the pre-
processor.

There are assertions which can be em-
ployed globally, regionally, locally, or at
entry and exit. The general form for a local
assertion is

ASSERT LOCAL [optional qualifier]
(extended-logical-expression) [control]

The optional qualifiers are adjectives such
as ALL and SOME. The control options
include (1) LEVEL, which controls the
levels in a block-structured program; (2)
CONDITIONS, which allows dynamic en-
abling of the instrumentation; and (3)
LIMIT, which allows a specific number of
violations to occur. The logical expression
is used to represent an expected condition,
which is then dynamically verified. For ex-
ample, placing

ASSERT LOCAL
(A(2 : 6, 2 : 10).NE.0) LIMIT 4

within a program will cause the values of
array elements A(2, 2), A(2, 3) , A(2, 10),
A(3, 2), . . . , A(6, 10) to be checked against
a zero value at each locality. After four
violations during the execution of the pro-
gram, the assertion will become false.

The global, regional, and entry-exit as-
sertions are similar in structure to the local
assertions described earlier. Note the simi-
larity with proof-of-correctness techniques.
These assertions are very much like the
input, output, and intermediate assertions
used in program proving (called verification
conditions), especially if the entry-exit as-
sertions are employed. Furthermore, sym-
bolic execution can be used, just as it was
with proof techniques, to generate the as-
sertions. Some efforts are currently under
way to integrate dynamic assertions, proof
techniques, and symbolic evaluation. One
of these is described below.

Andrews and Benson have described a
system developed by General Research
[ANDR81] that employs dynamic assertion

Computing Surveys, Vol 14, No 2, June 1982

Validation, Verification, and

techniques in an automated test system.
Code with embedded executable assertions
can be tested using constrained optimiza-
tion search strategies to vary an initial test
data set over a range of test inputs, adapt-
ing the test data to the test results. The
automated test system records the dynamic
assertion evaluation for a large number of
tests.

There are many other techniques for dy-
namic analysis. Most involve the dynamic
{while under execution) measurement of
the behavior of a part of a program, where
the features of interest have been isolated
and instrumented based on a static analy-
sis. Some typical techniques include expres-
sion analysis, flow analysis, and timing
analysis.

2.8 Combined Methods

There are many ways in which the tech-
niques described above can be used in con-
cert to form a more powerful and efficient
testing technique. One of the more common
combinations today merges standard test-
ing techniques with formal verification. Our
ability, through formal methods, to verify
significant segments of code is improving
[GERH78], and certain modules, either for
security or reliability reasons, now justify
the additional expense of formal verifica-
tion.

Other possibilities for combination in-
clude using symbolic execution or formal
proof techniques to verify those segments
of code that, through coverage analysis,
have been shown to be most frequently
executed. Mutation analysis, for some spe-
cial cases like decision tables, can be used
to verify programs fully [BUDD78b]. Formal
proof techniques may be useful in one of
the problem areas of mutation analysis, the
determination of equivalent mutants.

Another example, combining data-flow
analysis, symbolic execution, elementary
theorem proving, dynamic assertions, and
standard testing is suggested by Osterweil
[OSTE80]. Osterweil addresses the issue of
how to combine efficiently these powerful
techniques in one systematic method. As
has been mentioned, symbolic evaluation
can be used to generate dynamic assertions
by first executing paths symbolically so that

Testing of Computer Software * 183

each decision point and every loop has an
assertion, then checking for consistency us-
ing both data-flow and proof techniques. If
all the assertions along a path are consist-
ent, they can be reduced to a single dynamic
assertion for the path. Either theorem-
proving techniques can be used to "prove"
the path assertion and termination, or dy-
namic testing methods can be used to test
and evaluate the dynamic assertions for the
test data.

Osterweil's technique allows for several
trade-offs between testing and formal
methods. For instance, symbolically de-
rived dynamic assertions, although more
reliable than manually derived assertions,
cost more to generate. Consistency analysis
of the assertions using proof and data-flow
techniques adds cost to development, but
reduces the number of repeated executions.
Finally there is the overall trade-off be-
tween theorem proving and testing to verify
the dynamic assertions.

3. CONCLUSIONS AND RESEARCH
DIRECTIONS

We have surveyed many of the techniques
used to validate software systems. Of the
methods discussed, the most successful
have been the disciplined manual tech-
niques, such as walk-throughs, reviews, and
inspections, applied to all stages in the life
cycle [FAGA76]. Discovery of errors within
the first stages of development {require-
ments and design) is particularly critical
since the cost of these errors escalates sig-
nificantly if they remain undiscovered until
construction or later. Until the develop-
ment products at the requirements and de-
sign stages become formalized, and hence
amenable to automated analysis, disci-
plined manual techniques will continue to
be the key verification techniques.

Many of the other techniques discussed
in Section 2 have not seen wide use. These
techniques appeal to our intuition, but we
have only anecdotal evidence that they
work. Howden showed in a study of a com-
mercial FORTRAN-based scientific library
[IMSL78, HOWD80b] that the success of
particular testing technique does not cor-
relate with structural or functional attri-
butes of the code. It was this study that led

Computing Surveys, Vol. 14, No. 2, June 1982

184 • W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky

Howden to develop the ideas of design-
based functional testing described in Sec-
tion 2.4.

Recently Howden performed a similar
study of a commercial COBOL-based gen-
eral ledger system [HowD81b], in which he
found that the errors were much different
from those in the IMSL library. As one
might expect, errors in the data definition
were much more common than errors in
the procedures. Moreover, the most com-
mon errors were due to missing logic (i.e.,
various cases not being covered by program
logic) and thus invisible to any structurally
based technique. Glass [GLAs81] has noted
similar experiences with embedded soft-
ware. These experiences point up another
problem that most of the techniques de-
scribed in Section 2 are directed at proce-
dural languages with only rudimentary in-
put /output capability and are probably not
as useful when applied to COBOL and sim-
ilar languages. Test coverage will have to
be more closely tied to the requirements to
overcome this difficulty. Structural tech-
niques based on data-flow coverage rather
than control-flow coverage will need to be
developed as well.

The Howden studies point to the major
problem in testing: the lack of a sound
theoretical foundation. Besides the work of
Goodenough and Gerhart, Howden, and the
Lipton, DeMillo, Sayward, and Budd mu-
tation research we have made very little
progress toward developing a theoretical
basis from which to relate software behav-
ior to validation and verification. While
there have been efforts in this area by
White [WHIT78], Clarke and Richardson
[RICH81], Weyuker et al. [WEYU80,
OSTR80, DAVI81], and others, it clearly re-
quires considerably more research effort.

There are problems with these tech-
niques other than just the lack of a sound
theoretical basis. Many of the techniques
have major costs associated with custom-
izing them to the verification process (sim-
ulation) or high costs for their use (symbolic
execution), or unproved applicability in
practice (proof of correctness). Many of the
techniques are areas of intense current re-
search, but have not yet been developed or
proven sufficiently in the real world. Only
recently has validation and verification

been given the attention it deserves in the
development cycle. Budgets, except for a
few highly critical software projects, have
not included sufficient funds for adequate
testing.

Even with these problems, the impor-
tance of performing validation throughout
the life cycle is not diminished. One of the
reasons for the great success of disciplined
manual techniques is their uniform appli-
cability at requirements, design, and coding
phases. These techniques can be used with-
out massive capital expenditure. However,
to be most effective, they require a serious
commitment and a disciplined application.
Careful planning, clearly stated objectives,
precisely defined techniques, good manage-
ment, organized record keeping, and strong
commitment are critical to successful vali-
dation.

We view the integration of validation
with software development as crucial, and
we suggest that it be an integral part of the
requirements statement. Validation re-
quirements should specify the type of man-
ual techniques, the tools, the form of proj-
ect management and control, the develop-
ment methodology, and the acceptability
criteria that are to be used during software
development. These requirements are in
addition to the functional requirements of
the system ordinarily specified at this stage.
If this practice were followed, embedded
within the project requirements would be
a statement of work aimed at enhancing
the quality of the completed software.

A major difficulty with any proposal such
as the above, however, is that we have
neither the means of accurately measuring
the effectiveness of validation methods nor
the means of determining "how valid" the
software should be. We assume that it is
not possible to produce a "perfect" software
system and take as our goal getting as close
to perfect as can be reasonably (given these
constraints) required. In addition, what
constitutes perfect and how important it is
for the software to be perfect may vary
from project to project. Some software sys-
tems (such as those for reactor control)
have more stringent quality requirements
than other software (such as an address
label program). Defining "perfect" (by
specifying which quality attributes must be

Computing Surveys, Vol 14, No. 2, June 1982

Validation, Verification, and Testing of Computer Software

met) and determining its importance
should be part of the validation require-
ments. However, validation mechanisms
written into the requirements do not guar-
antee "perfect" software, just as the use of
a particular development methodology
does not guarantee high-quality software.
The evaluation of competing validation
mechanisms will be difficult.

A further difficulty is that validation
tools do not often exist in integrated pack-
ages. Since no one verification tool is suffi-
cient, this means that the group performing
the verification must acquire several tools
and learn several methods that may be
difficult to use in combination. This is a
problem that must receive careful thought
[ADRI80, BRAN81a], for, unless the combi-
nation is chosen judiciously, their use can
lead to costs and errors beyond that nec-
essary to acquire them in the first place.
The merits of both the tool collection as a
whole and of any single tool must be con-
sidered.

The efforts described in Section 2.9 to
integrate verification techniques are very
important. At present the key to high qual-
ity remains the disciplined use of a devel-
opment methodology accompanied by ver-
ification at each stage of the development.
No single technique provides a magic solu-
tion. For this reason, the integration of tools
and techniques and the extension of these
to the entire life cycle is necessary before
adequate validation and verification be-
comes possible.

The current research on software support
systems and programming environments
[BRAN81b, BARS81a, BARS81b, WAss81a,
WASS81b] can have major impact on vali-
dation and verification. The use of such
environments has the potential to improve
greatly the quality of the completed soft-
ware. In addition, such systems may pro-
vide access by the user/customer to the
whole process, providing a mechanism for
establishing confidence in the quality of the
software [CHER79b, CHER80].

Clearly, research is still necessary on the
basic foundations of verification, on new
tools and techniques, and on ways to inte-
grate these into a comprehensive and au-
tomated development methodology. More-
over, given the increasing cost of software,

• 185

both absolutely and as a proportion of total
system cost, and the increasing need for
reliability, it is important that management
apply the needed resources and direction
so that verification and validation can be
effective.

4. GLOSSARY

Audit. See DOD Development Reviews.
Black Box Testing. See Functional
Testing.
Boundary Value Analyses. A selection
technique in which test data are chosen to
lie along "boundaries" of input domain (or
output range) classes, data structures, pro-
cedure parameters, etc. Choices often in-
clude maximum, minimum, and trivial val-
ues or parameters. This technique is often
called stress testing. (See Section 2.4.)
Branch Testing. A test method satisfy-
ing coverage criteria that require that for
each decision point each possible branch be
executed at least once. (See Section 2.5.)
Cause-Effect Graphing. Test data se-
lection technique. The input and output
domains are partitioned into classes and
analysis is performed to determine which
input classes cause which effect. A minimal
set of inputs is chosen that will cover the
entire effect set. (See Section 2.4.)
Certification. Acceptance of software by
an authorized agent usually after the soft-
ware has been validated by the agent, or
after its validity has been demonstrated to
the agent.
Cri t ical Design Review. See DOD De-
velopment Reviews.
Complete Test Set. A test set contain-
ing data that causes each element of a
prespecified set of Boolean conditions to be
true. Additionally, each element of the test
set causes at least one condition to be true.
(See Section 2.2.)
Consistent Condition Set. A set of Bool-
lean conditions such that complete test sets
for the conditions uncover the same errors.
(See Section 2.2.)
Cyclomatic Complexity. The cyclo-
matic complexity of a program is equivalent
to the number of decision statements plus
1. (See Section 2.5.)

Computing Surveys, Vol. 14, No. 2, June 1982

186 • W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky

DD (decision-to-decision) Path. A path
of logical code sequence that begins at an
entry or decision statement and ends at a
decision statement or exit. (See Section
2.5.)
Debugging . The process of correcting
syntactic and logical errors detected during
coding. With the primary goal of obtaining
an executing piece of code, debugging
shares with testing certain techniques and
strategies, but differs in its usual ad hoc
application and local scope.
Design-Based Functional Testing.
The application of test data derived
through functional analysis (see Func-
t ional Testing) extended to include design
functions as well as requirement functions.
(See Section 2.4.)

DOD D e v e l o p m e n t Rev iews . A series
of reviews required by DOD directives.
These include

(1) The Systems Requirements Review is
an examination of the initial progress
during the problem definition stage and
of the convergence on a complete sys-
tem configuration. Test planning and
test documentation are begun at this
review.

(2) The System Design Review occurs
when the system definition has reached
a point where major system modules
can be identified and completely speci-
fied along with the corresponding test
requirements. The requirements for
each major subsystem are examined
along with the preliminary test plans.
Tools required for verification support
are identified and specified at this
stage.

(3) The Preliminary Design Review is a
formal technical review of the basic de-
sign approach for each major subsys-
tem or module. The revised require-
ments and preliminary design specifi-
cations for each major subsystem and
all test plans, procedures, and docu-
mentation are reviewed at this stage.
Development and verification tools are
further identified at this stage. Changes
in requirements will lead to an exami-
nation of the test requirements to main-
tain consistency.

(4) The Critical Design Review occurs just
prior to the beginning of the construc-
tion stage. The complete and detailed
design specifications for each module
and all draft test plans and documen-
tation are examined. Again, consistency
with previous stages is reviewed, with
particular attention given to determin-
ing if test plans and documentation re-
flect changes in the design specifica-
tions at all levels.

(5) Two audits, the Functional Configu-
ration Audit and the Physical Config-
uration Audit are performed. The for-
mer determines if the subsystem per-
formance meets the requirements. The
latter audit is an examination of the
actual code. In both audits, detailed
attention is given to the documenta-
tion, manuals and other supporting ma-
terial.

(6) A Formal Qualification Review is per-
formed to determine through testing
that the final coded subsystem con-
forms with the final system specifica-
tions and requirements. It is essentially
the subsystem acceptance test.

Dr iver . Code that sets up an environ-
ment and calls a module for test. (See Sec-
tion 1.3.)
D y n a m i c Analys is . Analysis that is per-
formed by executing the program code.
(See Section 2.7.)
D y n a m i c Asser t ion . A dynamic analy-
sis technique that inserts assertions about
the relationship between program variables
into the program code. The truth of the
assertions is determined as the program
executes. (See Section 2.7.)
E r r o r Guess ing . Test data selection
technique. The selection criterion is to pick
values that seem likely to cause errors. (See
Section 2.4.}
E x h a u s t i v e Test ing. Executing the pro-
gram with all possible combinations
of values for program variables. (See Sec-
tion 2.1.)
E x t r e m a l Test Data. Test data that is
at the extreme or boundary of the domain
of an input variable or which produces re-
sults at the boundary of an output domain.
(See Section 2.4.)

Computing Surveys, Vol. 14, No 2, ,June 1982

Vahdatmn, Verificatmn, and

Forma l Qual i f icat ion Review. See
DOD Deve lopment Reviews.
Functional Configuration Audit . See
DOD Deve lopment Reviews.
Functional Testing. Application of test
data derived from the specified functional
requirements without regard to the final
program structure. (See Section 2.4.)
Infeasible Path . A sequence of program
statements that can never be executed. (See
Section 2.5.)
Inspection. A manual analysis tech-
nique in which the program {requirements,
design, or code) is examined in a very for-
mal and disciplined manner to discover er-
rors. (See Section 2.2.)
Instrumentation. The insertion of ad-
ditional code into the program in order to
collect information about program behavior
during program execution. (See Section
2.7.)

Invalid Input (Test Data for Invalid
Input Domain). Test data that lie out-
side the domain of the function the program
represents. (See Section 2.1.)

Life-Cycle Test ing. The process of ver-
ifying the consistency, completeness, and
correctness of the software entity at each
stage in the development. (See Section 1.)

Metric-Based Test Data Genera-
tion. The process of generating test sets
for structural testing based upon use of
complexity metrics or coverage metrics.
(See Section 2.5.)

Mutation Analysis . A method to deter-
mine test set thoroughness by measuring
the extent to which a test set can discrimi-
nate the program from slight variants (mu-
tants) of the program. (See Section 2.6.)

Oracle. A mechanism to produce the
"correct" responses to compare with the
actual responses of the software under test.
(See Section 2.1.)

P a t h Express ions . A sequence of edges
from the program graph which represents
a path through a program. (See Section
2.5.)

Path Testing. A test method satisfying
coverage criteria that each logical path
through the program be tested. Often paths
through the program are grouped into a

Testing of Computer Software • 187

finite set of classes; one path from each
class is then tested. (See Section 2.5.)
Preliminary Design Review. See DOD
Development Reviews.
P r o g r a m Graph. Graphical representa-
tion of a program. (See Section 2.5.)
P r o o f of Correc tness . The use of tech-
niques of mathematical logic to infer that
a relation between program variables as-
sumed true at program entry implies that
another relation between program variables
holds at program exit. (See Section 2.2.)

Regression Testing. Testing of a pre-
viously verified program required following
program modification for extension or cor-
rection. (See Section 1.4.)
Simulation. Use of an executable model
to represent the behavior of an object. Dur-
ing testing the computational hardware, the
external environment, and even code seg-
ments may be simulated. (See Section 2.2.)
Self-Validating Code. Code which
makes an explicit attempt to determine its
own correctness and to proceed accord-
ingly. (See Section 2.7.)
Special Test Data. Test data based on
input values that are likely to require spe-
cial handling by the program. (See Section
2.4.)

Statement Testing. A test method sat-
isfying the coverage criterion that each
statement in a program be executed at least
once during program testing. (See Section
2.5.)

Static Analysis , Analysis of an program
that is performed without executing the
program. (See Section 2.7.)

Stress Testing. See Boundary Value
Analysis.
Structural Testing. A testing method
where the test data are derived solely from
the program structure. (See Section 2.5.)
Stub. Special code segments that, when
invoked by a code segment under test, will
simulate the behavior of designed and spec-
ified modules not yet constructed. (See Sec-
tion 1.3.)

Symbol ic Execut ion. A static analysis
technique that derives a symbolic expres-
sion for each program path. (See Section
2.7.)

Coraputmg Surveys, VoL 14, No 2, June 1982

• W.R. Adrion, M. A. Branstad, and J. C. Cherniavsky

System Design Review. See DOD De- ALLE74
velopment Reviews.
System Requirements Review. See
DOD Deve lopment Reviews. ALLE76

Tes t Da ta Set. Set of input elements
used in the testing process. (See Section AMBL78
2.1.)
Tes t Driver . A program that directs the
execution of another program against a col-
lection of test data sets. Usually the test
driver also records and organizes the output
generated as the tests are run. (See Section

1.3.) ANDR81
Tes t Harness . See Test Driver.
Test ing. Examination of the behavior of
a program by executing the program on
sample data sets.
Valid Input (test data for a valid input
domain). Test data that lie within the ANSI78
domain of the function represented by the
program. (See Section 2.1.)

APTSI Validation. Determination of the cor-
rectness of the final program or software
produced from a development project with
respect to the user needs and requirements. BAKE72
Validation is usually accomplished by ver-
ifying each stage of the software develop-
ment life cycle.
Verif icat ion. In general, the demonstra-
tion of consistency, completeness, and cor-
rectness of the software at each stage and
between each stage of the development life
cycle.

Walk -Through . A manual analysis tech- BELL77
nique in which the module author describes
the module's structure and logic to an au-
dience of colleagues. (See Section 2.2.)
Whi te Box Test ing. See S t ruc tu r a l BOEH77
Testing.

ACRE80

ADRIS0

BARS81a

ALFO77

BARs81b

REFERENCES
BOEH78

ACREE, A. "On Mutation," Ph.D dis-
sertation, Information and Computer
Science Dep, Georgia Institute of
Technology, Atlanta, June, 1980
ADRION, W R. "Issues in software BOYE75
validation, verification, and testing,"
ORSA/TIMS Bull. (1980 TIMS-ORSA
Conf.) 10 (Sept. 1980), 80.
ALFORD, M W "A requirement engi-
neering methodology for real-time
processing requirements ," IEEE BRANS0
Trans Softw Eng SE-2, 1 (1977), 60-
69.

ALLEN, F. E. "Interprocedural data
flow analysis," in Proc IFIP Congress
1974, North-Holland, Amsterdam, 1974,
pp. 398-402.
ALLEN, F. E , AND COCKE, J. "A pro-
gram data flow procedure," Commun.
ACM 19, 3 (March 1976), 137-147.
AMBLER, A. L., GOOD, D. I., BROWNE,
J C, BURGER, W F , COHEN, R. M,
HOCH, C. G , AND WELLS, R.
E "Gypsy: A language for specifica-
tion and implementation of verifiable
programs," m Proc. Conf. Language
Design for Reliable Software, D. B.
Wortman (Ed.), ACM, New York, pp.
1-10.
ANDREWS, D. M., AND BENSON, J.
P. "An automated program testing
methodology, and its implementation,"
in Proc. 5th Int. Conf. Software Eng~-
neerzng (San Diego, Calif., March 9-
12), IEEE Computer Society Press, Sil-
ver Spring, Maryland, 1981, pp. 254-
261.
ANSI X3 9-1978, "FORTRAN," Amer-
ican National Standards Institute, New
York, 1978.
APT, S. R., "Ten years of Hoare's
logic: A survey--Part I," Trans. Pro-
gram Lang. Syst. 3, 4 (Oct. 1981), 431-
483.
BAKER, V. T. "Chief programmer
team management of production pro-
gramming," IBM Syst. J 11, 1 (1972),
56-73.
BARSTOW, D. R., AND SHROBE, H. E.
(Eds). Special Issue on Programming
Environments, IEEE Trans. Softw.
Eng. SE-7, 5 (Sept. 1981).
BARSTOW, D R., SHROBE, H , AND SAN-
DEWALL, E., Eds. Interactwe pro-
gramm~ng enwronments, McGraw-
Hill, New York, 1981
BELL, T. E., BIXLER, D. C., AND DYER,
M.E. "An extendable approach to
computer-alded software requirements
engineering," IEEE Trans. Softw Eng.
SE-3, 1 (1977), 49-60.
BOEHM, B. W., "Seven basic princi-
ples of software engineering," in Soft-
ware engineering techniques, Infotech
State of the Art Report, Infotech, Lon-
don, 1977.
BOEHM, B. W, BROWN, J. R., KASPAR,
H., LiPow, M., MACLEOD, G. J, AND
MERRIT, M.J. Characterlstws of soft-
ware quahty, North-Holland, New
York, 1978.
BOYER, R. S., ELSPAS, B., AND LEVITT,
K.N. "SELECT--A formal system
for testing and debugging programs by
symbolic execution," in Proc. 1975 Int.
Conf. Reliable Software (Los Angeles,
April), 1975, pp 234-245.
BRANSTAD, M. A, CHERNIAVSKY, J. C.,
AND ADRION, W. R "Validation, ver-
ification, and testing for the individual

Computing Surveys, Vol 14, No 2, June 1982

BRAN81a

BRAN81b

BROW73

BUCK79

BUDD78a

BUDD78b

CAIN75

CARP75

CHAP79

CHER79a

CHER79b

CHER80

CLAR77

Validation, Verification, and Testing of Computer Software

programmer," Computer 13, 12 (Dec CONS78
1980), 24-30
BRANSTAD, M. A., ADRION, W. R., AND
CHERNIAVSKY, J . C . "A view of soft- DAVI81
ware development support systems," in
Proc. Nat Electronics Conf., vol. 35,
National Engineering Consortium,
Oakbrook, Ill., Oct. 1981, pp. 257-262.
BRANSTAD, M. A, AND ADRION, W.R., DEMI78
Eds. "NBS programming environ-
ment workshop," Softw. Eng Notes 6,
4 (Aug 1981), 1-51.
BROWN, J.R., ET AL. "Automated
software quality assurance," in W DEMI79
Hetzel (Ed.), Program test methods,
Prentice-Hall, Englewood Cliffs, N.J ,
1973, Chap 15.
BUCKLEY, F. "A standard for software
quality assurance plans," Computer 12, DIJK72
8 (Aug 1979), 43-50
BUDD, T , DEMILLO, R. A., LIPTON, R.
J., AND SAYWARD, F .G. "The design
of a prototype mutation system for pro-
gram testing," in Proc AFIPS Nat DIJK78
Computer Conf., vol 47, AFIPS Press,
Arlington, Va., 1978, pp 623-627.
BUDD, T A., AND LIPTON, R.
J. "Mutation analysis of decision table
programs," in Proc. 1978 Conf. Infor- DURA81a
matlon Science and Systems, Johns
Hopkins Univ, Baltimore, Md., pp.
346-349.
CAINE, S. H , AND GORDON, E.
K. "PDL--Balt imore, A tool for soft- DURA81b
ware design," in Proc Natmnal Com-
puter Conf., vol. 44, AFIPS Press, Ar-
lington, Va., 1975, pp. 271-276.
CARPENTER, L. C., AND TRIPP, L.
L. "Software design validation tool," EDP81
in Proc 1975 Int Conf Rehable Soft- FAGA76
ware (Apt 1975)
CHAPIN, N "A measure of software
complexity," in Proe. AFIPS Natmnal
Computer Conf., vol 48, AFIPS Press, FIPS76
Arlington, Va., 1979, pp 995-1002.
CHERNIAVSKY, d. C "On finding test
data sets for loop free programs," In-
form. Process. Lett 8, 2 (1979).
CHERNIAVSKY, J. C., ADRION, W R.,
AND BRANSTAD, M . A . "The role of
testing tools and techniques m the pro- FLOY67
curement of quality software and sys-
tems," In Proc. 13th Annu. Ahsomar
Conf Ctrcutts, Systems, and Com-
puters, IEEE Computer Society, Long
Beach, Calif., 1979, pp. 309-313
CHERNIAVSKY, J C., ADBION, W.R. , FOSD76
AND BRANSTAD, M. A. "The role of
programming environments in software
quality assurance," in Proc. Nat Elec-
tronws Conf., vol. 34, National Engi- GAO81
neering Consortium, Oakbrook, Ill,
1980, pp. 468-472
CLARKE, A. "A system to generate
test data and symbolically execute pro- GERH78
grams," IEEE Trans Softw Eng. SE-
2, 3 (Sept. 1977), 215-222.

• 189

CONSTABLE, R. L., AND O'DONNELL, M.
J. A programming logic, Winthrop,
Cambridge, Mass., 1978.
DAVIS, M. D., AND WEYUKER, E.
J "Pseudo-oracles for montestable
programs," Tech. Rep., Courant Insti-
tute of Mathematical Sciences, New
York, 1981.
DEMILLO, R. A., LIPTON, R. J, AND
SAYWARD, F.G. "Hints on test data
selection: Help for the practicing pro-
grammer," Computer 11, 4 (1978), 34-
43.
DEMILLO, R. A., LIPTON, R. J., AND
PERLIS, A. J. "Social processes and
the proofs of theorems and programs,"
Commun. ACM 225 (May 1979), 271-
280.
DIJKSTRA, E.W. "Notes on structured
programming," in O. J. Dahl, E. J. Dijk-
stra, and C. A. R. Hoare (Eds.), Struc-
tured programming, Academic Press,
London, 1972.
DIJKSTRA, E.W. "On a political pam-
phlet from the Middle Ages (regarding
the POPL paper of R. A. DeMillo, R. J.
Lipton, and A. J. Perils)," Softw Eng
Notes 3, 2 {Apr. 1978), 14-15.
DURAN, J. W., AND WIORKOWSKI, J J
"Capture-recapture sampling for esti-
mating software error content," IEEE
Trans Softw. Eng SE-7 (Jan 1981),
147-148.
DURAN, J. W., AND NTAFOS, S. "A
report on random testing," in Proc. 5th
Int. Conf. Software Engmeering, IEEE
Computer Society Press, Silver Spring,
Md, 1981, pp. 179-183.
EDPAnalyzer, vol. 9, 8 (Aug. 1981).
FAGAN, M. E. "Design and code In-
spections to reduce errors in program
development," IBM Syst. J 15, 3
(1976), 182-211.

FIPS. "Guidelines for documentation
of Computer Programs and Automated
Data Systems," FIPS38, Federal Infor-
mation Processing Standards Pubhca-
tlons, U.S. Depar tment of Commerce/
National Bureau of Standards, Wash-
mgton, D.C., 1976.
FLOYD, R .W. "Assigning meaning to
programs," in Proc. Symposia Apphed
Mathematics, vol. 19, American Math-
ematics Society, Providence, R.I., 1967,
pp. 19-32.
FOSDICK, L. D., AND OSTERWEIL, L.
J "Data flow analysis in software re-
liabfllty," Comput Surv (ACM) 8, 3
(Sept. 1976), 305-330.
GENERAL ACCOUNTING OFFICE "Fed-
eral agencies' maintenance of computer
programs" Expensive and underman-
aged," GAO, Washington, D C, 1981
GERHART, S.L. "Program verification
in the 1980s: Problems, perspectives,
and opportunities," Pep. ISI/RR-78-71,

Computing Surveys, Vol. 14, No. 2, June 1982

190

GERH80

GLAS81

GOOD75

HALS77

HAMI76

HANT76

HECH72

HOWD76

HOWD77

HOWD78

HowD80a

HowD80b

HowD81a

HowD81b

W. R. Adr ion , M. A. B r a n s t a d , a n d J. C. C h e r n i a v s k y

Information Sciences Institute, Marina IEEE79
del Rey, Calif., Aug. 1978.
GERHART, S. L., MUSSER, D. R,
THOMPSON, D. H., BAKER, D. A.,
BATES, R. L , ERICKSON, R W., LON-
DON, R. L., TAYLOR, D. G., AND WILE, IMSL78
D. S "An overview of AFFIRM, A
specification and verification system,"
in Proc. IFIP Congress 1980, North- INFO79
Holland, Amsterdam, pp. 343-347
GLASS, R.L . "Persistent software er-
rors," IEEE Trans Softw Eng. SE-7, JACK79
2 (March 1981), 162-168.
GOODENOUGH, J. B., AND GERHART, S.
L. "Toward a theory of test data se- JONE76
lection," IEEE Trans Softw. Eng SE-
1, 2 (March 1975).
HALSTEAD, M. H. Elements of soft-
ware science, Elsevier North-Holland, KERN74
New York, 1977
HAMILTON, N., AND ZELDIN, S.
"Higher order software--A methodol-
ogy for defining software," IEEE
Trans Softw Eng SE-2, 1 (1976), 9- KING76
32.
HANTLER, S L, AND KING, J .C. "An
introduction to proving the correctness KoPP76
of programs," Comput. Surv. (ACM) 8,
3 (Sept. 1976), 331-353
HECHT, M., AND ULLMAN, J. "Flow-
graph reducibility," SIAM J Appl.
Math 1 (1972), 188-202.
HOWDEN, W. E "Reliability of the LAMB78
path analysis testing strategy," IEEE
Trans. Softw. Eng. SE-2, 3 (1976).
HOWDEN, W. E. "Symbolic testing
and the DISSECT symbolm evaluation
system," IEEE Trans Softw Eng SE-
3, 4 (1977), 266-278 LIPT78
HOWDEN, W E. "A survey of dynamic
analysis methods," m E. Miller and W.
E. Howden (Eds), Tutorial. Software
testzng and vahdatton techniques,
IEEE Computer Soc, New York, 1978

LUCK79
HOWDEN, W.E. "Functional program
testing," IEEE Trans. Soft. Eng SE-6,
2 (1980), 162-169
HOWDEN, W.E. "Applicablhty of soft-
ware validation techniques to scientific
programs," Trans Program Lang.
Syst 2, 3 (June 1980), 307-320. LYON74
HOWDEN, W E. "Completeness cri-
teria for testing elementary program
functions," in Proc 5th Int Conf on
Software Engineering (San Dingo, MAIT80
March 9-12), IEEE Computer Society
Press, Silver Spring, Md., 1981, pp 235-
243.
HOWDEN, W E "Errors in data
processing programs and the refine- MANN74
merit of current program test method-
ologies," Final Rep, NBS Contract
NB79BCA0069, Natmnal Bureau of McCA76
Standards, Washington, D C., July
1981.

IEEE. Draft Test Documentation
Standard, IEEE Computer Socmty
Technical Committee on Software En-
gineering, Subcommittee on Software
Standards, New York, 1979
IMSL. L~brary reference manual. In-
ternational Mathematical and Statisti-
cal Libraries, Houston, Tex., 1978.
INFOTECH Software testing, IN-
FOTECH state of the art report, Info-
tech, London, 1979
JACKSON, M A Prmctples of pro-
gram design, Academic Press, New
York, 1975.
JONES, C "Program quality and pro-
grammer productivity," IBM Tech
Rep., International Business Machines
Corp., San Jose, Calif, 1976.
KERNIGHAN, B. W. "RATFOR--A
preprocessor for a rational FOR-
TRAN," Bell Labs. Internal Memoran-
dum, Bell Laboratorms, Murray Hill,
N.J., 1974.
KING, J .C . "Symbolic execution and
program testing," Commun. ACM 19, 7
(July 1976), 385-394.
KOPPANG, R .G. "Process design sys-
t e m - A n integrated set of software de-
velopment tools," in Proc. 2nd Int Soft-
ware Engineering Conf (San Fran-
ciisco, Oct. 13-15), IEEE, New York,
1976, pp. 86-90.
LAMB, S S , LECK, V G, PETERS, L. J.,
AND SMITH, G L "SAMM" A model-
ing tool for requirements and design
specification," in Proc COMPSAC 78,
IEEE Computer Society, New York,
1978, pp 48-53.
LIPTON, R. J , AND SAYWARD, F
G "The status of research on program
mutation," in Proc Workshop on Soft-
ware Testing and Test Documentatmn,
IEEE Computer Society, New York,
1978, pp. 355-367.
LUCKHAM, D., GERMAN, S., VON HENKE,
F., KARP, R , MILNE, P , OPPEN,
D., POLAK, W., AND SCHENLIS, W.
"Stanford Pascal Verifier user's man-
ual," AI Memo. CS-79-731, Computer
Science Dep., Stanford University,
Stanford, Calif, 1979.
LYON, G, AND STILLMAN, R.B. "A
FORTRAN analyzer," NBS Tech Note
849, National Bureau of Standards,
Washington, D.C., 1974.
MAITLAND, R "NODAL," In NBS
software tools database, R. Houghton
and K. Oakley (Eds.), NBSIR, National
Bureau of Standards, Washington,
D C, 1980.
MANNA, Z. Mathematical theory of
computation, McGraw-Hill, New York,
1974
MCCABE, T. J. "A complexity mea-
sure," IEEE Trans. Softw Eng SE-2,
4 {1976), 308-320

Computing Surveys, Vol 14, No. 2, June 1982

MCCA77

METZ77

MILL70

MILL72

MILL75

MILL77

MILS76

MYER76

MYER79

NEUM75

OSTE76

OSTE80

OSTRS0

PAIG77

PANZ78

PARN77

Validation, Verification, and Testing of Computer Software • 191

MCCALL, J., RICHARDS, P., AND WAL-
TERS, G Factors tn software quahty,
vols. 1-3, NTIS Rep File Nos. AD-
A049-014, 015, 055, 1977.
METZNER, J. R., AND BARNES, B. PRAT77
H Dectsmn table languages and sys-
tems, Academic Press, New York, 1977.
MILLS, H D "Top down program-
ming in large systems," in Debugging
techntques m large systems, R. Rustin
(Ed), Prentice-Hall, Englewood Cliffs, RAMA74
N J., 1970, pp 41-55.
MILLS, H. D "On statistical vahda-
tlon of computer programs," IBM Rep.
FSC72-6015, Federal Systems Division,
IBM, Gaithersburg, Md, 1972. RICH81
MILLER, E F., JR. "RXVP--An au-
tomated verification system for FOR-
TRAN," in Proc. Workshop 4, Com-
puter Science and Stattstws" 8th Ann.
Syrup on the Interface (Los Angeles,
Calff, Feb), 1975.
MILLER, E. R., JR. "Program testing RoBI79
Art meets theory," Computer 10, 7
(1977), 42-51
MILITARY STANDARD. "Technical re- Ross77
views and audits for systems, equip-
ment, and computer programs," MIL-
STD-1521A (USAF), U.S. Department
of the Air Force, Washington, D.C, ROUB76
1976.
MYERS, G. J. Software rehabthty--
Prtnctples and practtces, Wiley, New
York, 1976 SCHI78
MYERS, G.J. The art of software test-
tng, Wiley, New York, 1979.
NEUMANN, P G., ROBINSON, L, LEV-
ITT, K., BOYER, R S., AND SAXEMA, A.
R. "A provably secure operating sys- SNEE78
tern," SRI Project 2581, SRI Interna-
tional, Menlo Park, Calif., 1975
OSTERWEIL, L. J., AND FOSDICK, L.
D. "DAVE--A validation, error de-
tection, and documentation system for
FORTRAN programs," Softw. Pract. SRS79
Exper 6 (1976), 473-486
OSTERWEIL, L . J . "A strategy for ef-
fective integration of verification and
testing techniques," Tech Rep. CU-CS- STUC77
181-80, Computer Science Dep., Univ.
of Colorado, Boulder, 1980.
OSTRAND, T. J., AND WEYUCKER, E
J "Current directions in the theory of
testing," in Proc IEEE Computer Soft-
ware and Apphcttons Conf. (COMP-
SACSO), IEEE Press, Silver Spring, TAUS77
Md, 1980, pp. 386-389.
PAIGE, M. R. "Oil partitioning pro-
gram graphs," IEEE Trans. Soflw
Eng. SE-3, 6 (1977), 87, 386-393 TEIC77
PANZL, D J "Automatic revision of
formal test procedures," in Proc 3rd
Int Conf Software Engtneermg (At-
lanta, May 10-12), ACM, New York,
1978, pp. 320-326
PARNAS, D L "The use of precise WASS81a

specifications in the development of
software," in Informatwn processing
77, B. Gilchrist (Ed.), North-Holland,
Amsterdam, 1977, pp. 861-867.
PRATT, V R. "Semantic considera-
tions m Floyd-Hoare logic," m Proc.
17th Annu. IEEE Symp. on the Foun-
dations of Computer Science, IEEE
Computer Society Press, Long Beach,
Cahf, 1976, pp. 109-112.
RAMAMOORTHY, C. V., AND Ho, S
F. FORTRAN automated code eval-
uation system, ERL--M466, Electron-
ics Research Lab., Univ. of California,
Berkeley, 1974.
RICHARDSON, D. J., AND CLARKE, L.
A. "A partition analysis method to m-
crease program reliability," in Proe 5th
Int Conference SoftwareEngmeermg
(San Diego, March 9-12), IEEE Com-
puter Society Press, Silver Spring, Md,
1981, pp. 244-253.
ROBINSON, L. The HDM handbook,
vol. I-III, SRI Project 4828, SRI Inter-
national, Menlo Park, Calif., 1979.
Ross, D T., AND SCHOMAN, K. E.,
JR. "Structured analysis for reqmre-
ments definition," IEEE Trans Softw.
Eng. SE-3, 1 (1977), 6-15.
ROUBINE, O., AND ROBINSON, L.
Special Reference Manual, Stanford
Research Institute Tech. Rep CSG-45,
Menlo Park, Calif., 1976.
SCHICK, G. J., AND WOLVERTON, R.
W. "An analysis of competing "soft-
ware reliability models," IEEE Trans.
Softw Eng. SE-4 (March, 1978), 104-
120.
SNEED, H., AND KIRCHOFF,
K "Prufstand--A testbed for sys-
tematic software components," in Proc
INFOTECH State of the Art Conf.
Software Testing, Infotech, London,
1978.
SRS Proc. Specifications of Rehable
Software Conference, IEEE Catalog
No. CH1401-9C, IEEE, New York,
1979.
STUCK1, L.G. "New directions in au-
tomated tools for improving software
quality," in R. Yeh (Ed), Current
trends m programming methodology,
vol II--Program validation, Prentice-
Hall, Englewood Cliffs, N J., 1977, pp.
80-111.
TAUSWORTHE, R. C. Standar&zed
development of computer software,
Prentice-Hall, Englewood Cliffs, N J.,
1977.
TEICHROEW, D., AND HERSHEY, E. A ,
III "PSL/PSA: A computer-aided
technique for structured documenta-
tion and analysis of information proc-
essing systems," IEEE Trans. Softw.
Eng SE-3, 1 (Jan. 1977), 41-48.
WASSERMAN, A. (Ed.). Special Issue

Computing Surveys, Vol. 14, No 2, June 1982

192

WASs81b

WEIN71

WEYU80

W. R. Adrion, M. A. Brans tad , and J. C. Cherniavsky

on Programming Environments, Corn- WHIT78
puter 14, 4 (Apr. 1981).
WASSEm~tAN, A. (Ed.). Tutorial: Soft-
ware development enwronments, IEEE
Computer Society, Silver Spring, Md.,
1981.
WEINBERG, G M The psychology of
computer programming, Van Nos- YouR79 trand-Reinhold, Prmceton, N J., 1971
WEYUCKER, E. J., AND OSTRAND, T.
J. "Theories of program testing and
the application of revealing subdo- ZELK78
mains," IEEE Trans. Softw. Eng. SE-
6 (May, 1980), 236-246.

WHITE, L. J., AND COHEN, E. I. "A
domain strategy for computer program
testing," Digest for the Workshop on
Software Testing and Test Documen-
tation (Ft. Lauderdale, Fla), pp 335-
354. Also appears in IEEE Trans.
Softw. Eng. SE-6 (May 1980), 247-257.

YOURDON, E., AND CONSTANTINE, L.
L. Structured design, Prentice-Hall,
Englewood Cliffs, N.J., 1979.

ZELKOWITZ, M. V. "Perspectives on
software engineering," Comput. Surv.
(ACM) 10, 2 (June 1978), 197-216

Recewed January 1980; final revision accepted March 1982

Computmg Surveys, Vol 14, No 2, June 1982

