
Does AI have a methodology different from
Softwar..:! Engineering!

MCCS-86-53

Derek Partridge and Yorick Wilks

Computing Research Laboratory
New Mexico State University

Box 3CRL
Las Cruces, NM 88003

ABSTRACT

The paper argues that the conventional methodology of software engineering is inappropri­
ate to AI, but that the failure of many in AI to see this is producing a Kuhnian paradigm "crisis".
The key point is that classic software engineering methodology (which we call SPIV: Specify­
Prove-Implement-Verify) requires that the problem be circumscribable or surveyable in a way
that it is not for areas of AI like natural language processing. In addition, it also requires that a
program be open to formal proof of correctness. We contrast this methodology with a weaker
form SAT (complete Specification And Testability - where the last term is used in a strong sense:
every execution of the program gives decidably correct/incorrect results) whir.li captures both the
essence of SPIV and the key assumptions in practical software engineering. We argue that failure
to recognize t.he inapplicability of the SAT methodology to areas of AI has prevented develop­
ment of a disciplined methodology (unique to AI, which we call RUDE: Run-Understand-Debug­
Edit) that will accommodate the peculiarities of AI and also yield robust, reliable, comprehensible,
and hence maintainable AI software.

The Computing Research Laboratory is principally funded by the
New Mexico State Legislature,

administered by its Scientific and Technical Advisory Committee
as part of the Rio Grande Research Corridor.

Introduction: Kuhnian paradigms in AI

Is it helpful or revealing to see the state of AI in, perhaps over-fashionable, Kuhnian (Kuhn,
1M2) terms? In the l(uhnia.n view of things, scientific progress comes from social crisis: there are
pre-paradigm sciences struggling to develop to the state of "normal science" in which routine
experiments are done within a.n overarching theory that satisfies its adherents, and without daily
worrj' a.bout the adequacy of the theory.

At the same time, there will be other scientific theories under threat, whose theory is under
pressure from either disconfirming instances or fundamental doubts about its foundations. In these
situations, normal science can continue if the minds of adherents to the theory are closed to possi­
ble falsification until some irresistible falsifying circumstances arise, by accretion or by the
discovery of a phenomenon that can no longer be ignored.

There is much that is circular in this (the notion of "irresistible" for example) and there
may be doubts as to whether AI is fundamentally science or engineering (we return to this below).
But we may assume, for simplicity, that even if AI were engineering, similar social descriptions of
its progress might apply {see Duffy 1984).

Does AI show any of the signs of normality or crisis that would put it under one of those
Kuhnian descriptions, and what would follow if that were so? It is easy to find normality: the
production of certain kinds of elementary expert system (ES) within commercial software houses
and other companies. These work well enough for straightforward applications, yet doubts about
their extensibility are widespread.

Crisis and pathology are even easier to find, and our diagnosis in brief is this: normal AI is
impeded by the fact that, whether they are aware of it or not, a wide range of Al's academic
practitioners are struggling to conform to another paradigm because they suspect their own is
inadequate. On our view the natural normal paradigm of AI is RUDE (Run-Understand-Debug­
Edit). But pressure and crisis come from the SPN (Specify-Prove-Implement-Verify) methodol­
ogy, and its weaker version SAT (complete Specification-And-Testability of program behavior).
The nature of this crisis is not one of disconfirming instances -- for how could that be, a fac­
tor which adds to the strong evidence that we should be talking in terms of engineering not
scientific practice-but from pressure concerning foundations.

The basic pressure is coming from the methodology of software engineering (SE) and its
unlikely allies, and their belief that software development must proceed by a certain path: that of
SPIV. Some work in expert systems, at least of the more simple minded variety, is a leaC.i.ng edge
of this pressure on AI, because it shares the central SPIV assumption that applications are, or
should be, to areas of phenomena that are completely specifiable as to their behaviors, and
specifiable in advance, not during the process of programming. We shall discuss this issue in detail
below; here we just want to note a key ally of SPIV, and one that might be thought historically
unlikely: Chomskyan linguistics and its current phrase-structure grammar successors (e.g. Gaz­
dar,1983).

The natural language case is a. central and relevant one, for it is the area of human
phenomena modelled by AI where the strongest ease can be made that the data. are not of a type
that allows complete pre-specification, in the sense that that would be the ease if the set of sen­
tences of, say, English were a decidable set. Yet, Chomsky's intention was always to show that his
grammaxs did cover such a set, and even though that enterprise failed his successors
have made it a central feature of their claims about grammar that the set to be covered should

be recursively decidable (Gazdar 1984). In the sense under discussion, therefore, some recent
work in AI and natural language processing (NLP) has been an example of SPN methodology and
in an area where it is, to some at at least, the most counter-intuitive. We shall expand on this
point below.

Our claim then is that AI methodology is under threat from an opposing paradigm, one not
appropriate to Al's subject matter, and one that encompasses conventional SE plus much of
current ES and areas of NLP. As we shall discuss. below, the SPN paradigm is not a via� le one
for practical software development, and it is a. matter of some contention as to whether the

c-..�ITent lack of practical utility, is a logical necessity, or just a puzzle to be eventually solved in
the course of normal science or engineering.

Nevertheless, what we do see in the methodology of practical software engineering is a firm
adherence to both prior specification of the problem and clear testability of program behavior, in
that any given instance of program behavior is decidably correct or incorrect. We shall call this
methodological variant on SPIV, which lacks the stronger requirement of the proof of the
software's correctness, SAT.

The advocates of SPIV

Dijkstra (1972) laments the state of programming and predicts a revolution that will enable
us "well before the seventies have run to completion ... to design and implement the kind of sys­
tems that ... will be virtually free of bugs." Two key arguments th !l.t he uses a.re:

(1) "the programmer only needs to consider intellectually manageable problems"
(2) "The only effective way to raise the confidence level of a program significantly is to give
a convincing proof of its correctness ... correctness proof and program grow hand in hand."
Almost ten years on, in his preface to Gries (1981), Dijkstra says: "the 'program' we wrote

ten years ago and the 'program' we can write today can both be executed by a computer, that is
about all they have in common The difference between the 'old program' and the 'new pro­
gram' is as profound as the difl'erence between a conjecture and a proven theorem, between pre­
seientific knowledge of mathematical facts and consequences rigorously deduced from a body of
postulates."

Gries himself is more cautious. He admits the truth of the charge that the formal approach
to reasoning about programs has only been successfully applied to small (and we might add)
abstract, problems. Nevertheless, he writes "I believe the next ten years will see it extended to
and practiced on large programs." Gries sees hims"elf as taking "a middle view" on proving pro­
gram correctness: "one should develop a proof and program hand-in-hand, but the proof should
be a mixture of formality _and common sense."

Clearly this is a weakened view of the proof notion in software engineering, but still it takes
for granted that there is some crucial essence of the program (i.e., the underlying algorithm) to be
proven correct with respect to the problem specification, and further that this is the sort of pro­
cess that admits the possibility of classical proof.

Hoare (1981) in his Turing Lecture states that "A la.ck of clarity in specification is one of
the surest signs of a deficiency in the program it describes, and the two faults must be removed
simultaneously before the project is embarked upon." Hoare also believes in the necessity of
proving programs correct, and his axiomatic semantics is a formalism designed to dci just that.

A "sad remark" in Dijkstra's (1976) book is: "we have witnessed the proliferation of
baroque, ill-defined and, therefore, unstable software systems. Instead of working with a formal
tool, which their task requires, many programmers now live in a limbo of folklore, in a vague and
slippery world, in which they are never quite sure what the system will do to their programs.
Under such regretful circumstances the whole notion of a correct program - let alone a program
that has been proven correct - becomes void. What the proliferation of such systems has done to
the morale of the computing community is more than I can describe."

These are not clear statements of what we have called SPIV1 but they all take it for
granted: (a) that a formal specification of the problem is a necessary prerequisite of serious
software engineering; and (b) that formal proof of correctness of a program is, at least in principle
if not in practice, possible. They admit no alternative in software engineering science. They hold
SPIV as the single exemplar t.o aspire to.

·

We can draw two possible implications from this hardline SPIV viewpoint:
either (i) implementation of certain problems should never be attempted because they are
not formally circumscribable problems; hence AI software is a fundamentally misguided

notion.

or (ii) the absence of formal specifications in some areas is only a reflection of our current
ignorance, and eventually problems such as NLP will yield to formal circumscription and
thus the SPIV methodology. The present task is to develop the requisite formalisms first,
rather than hack at implementations.

We argue that the truth of (i) is an open question but would be widely resisted by members
of Ai\AI presumably, and that (ii) is false. Certain problems are not formally circumscribable,
even in principle, but nevertheless there are possibilities quite outside the SPIV paradigm for pro­
ducing robust and reliable software products. But only if this possibility is accepted can we
expect sufficient work on the alternative RUDE methodology to generate a discipline of incremen­
tal program development.

Dijkstra. (1972) states "an article of faith ... viz, that the only problems we can really solve
in a satisfactory manner are those that admit a nicely factored solution.,, He further expects that
living with this limitation "will repeatedly lead to the discovery that an initially intractable prob­
lem ean be factored after all." Thus Dijkstra seems to favor implication (ii) above - the one that
appears to be more promising for the practical applications of AI, but also the one that we believe
is quite demonstrably wrong.

Practical SE is still SPIVish

It can be argued that SPIV is just a straw man, and is just not a practical methodology. It
might be said that programming realists know that iteration, incremental development, and test­
ing for correctness are essential components of practical software development. We maintain that
this is true but that the general SPIV paradigm under which th�y operate only permits explora­
tion of alternatives that are consistent with the two key assumptions of SPIV given earlier. In
fact, assumption {b) is weakened to correct/incorrect testability of specific program behaviors:
from proof of correctness of an algorithm to clear testability of specific instances of behavior.
And this is what we a.re calling SAT (complete Specification and Testability), and we will main­
tain that it is still quite distinct from RUDE.

First, we can see the crucial role of specification (and this is the key assumption that to
some extent implies the clear testability of program behavior). Thus, we find this assertion in
Liskov and Guttag {1986), "The principle tenet of the book is that abstraction and specification
are the linchpins of any eft'ective approach to programming."

Yourdon {1975), an important figure in practical, la.rge-scale software engineering, makes the
general point about the feasibility of top-down design (the most popular strategy) being critically
reliant upon the prior existence of a complete and rigorous specification. He says: "It is extremely
difficult to develop an organized top-down design from incoherent, incomplete, disorganized
specifications." None or those qualities is desirable, of course, but although we can eliminate the
first and third from AI, we must learn to live with the second.

>From the largely unquestioned assertion about the centrality or SAT in conventional
software engineering, we can briefly examine some recent, AI-related, · attempts to propose more
realistic practical program development methodologies - attempts that seem to recognize the cru­
cial role of incremental program development in some problem areas. At first sight these "new
paradigms" appear to be attempts to develop the RUDE methodology, but on closer inspection we
can see that they a.re actually SAT proposals.

Balzer, Cheatham & Green (1983) call their scheme "a new paradigm" for "software tech­
nology in the 1990's." Essentially what they propose is that the iteration and incremental
development is restricted to a formal specification which can be more or less automatically
transformed into an implementation. This proposal clearly hinges on the prior and continued avai­
lability of a formal specification, and this being the case it is a SAT scheme that does not solve
our problem. This approach has been suggested as a solution to the problem of incremental pro­
gram development in AI (Mostow, 1985), and some of the problems with it have been pointed out

elsewhere (Partridge, 1986a briefly, and at length in Partridge, 1986b).

Kowalski's (1984) presentation of a. "new technology" for software design describes an itera­
tive, trial-and-error process for "analysing the knowledge that lies behind the user requirement."
But once we have a formal specification the situation is different: "Good programmers start with
rigid, or at least formal, software specifications and then implement them correctly first time
round - never get it wrong." Clearly formal specification is still the key assumption, and the
notion of a correct implementation is there also. This is a. scheme that is at least SAT, if not
something a lot closer to true SPIV.

Rapid prototyping is a key idea in the methodology of expert systems development: build a
quick, small-scale version in order to generate an understanding of the problem such that the real
system can then be specified and implemented. We accept the value of exploring the application
domain using a working program, but the implication is that one preliminary venture into the
field will be sufficient to support a full-scale specification of the problem. It is almost as if one
iteration of SPIV followed by SPIV is expected to take care of the performance-mode specification
aspects of AI problems; and this seems unlikely to us.

Much more a.kin to the spirit of the RUDE methodology are some of the general schemes
that are being abstracted from the practice of constructing expert systems.

The "stages in the evolution of an expert system" described by Hayes-Roth, Waterman &
Lenat (1983) are:
IDENTIFICATION - determining problem characteristics

CONCEPTUALIZATION - finding concepts to represent knowledge
FORMALIZATION - designing structures to organize knowledge
IMPLE:MENTATION - formulating rules that embody knowledge
TESTING - validating rules that embody knowledge

Clearly, there is still a belief in the desirability of formalization, and this is quite consistent with
RUDE, for it is not a complete a priori formalization of the problem. Testing is also a feature of
the above design scheme, but it is not the testability of SAT: in general it is a judgment of ade­
quacy of system output. We begin to see a significant departure Crom the SPIV paradigm, and
this will eventually lead us into the RUDE paradigm.

Circumscribability and decidability as needed for SPIV

Let us then stand back 8Jld look at why SPIV cannot be applied to certain areas of
phenomena. That applicability requires both:

a) circumscribability of behavior, in that the data must form a recursive, decidable set

b) in its strongest form SPIV requires openness to proofs of the program.
Natural language at least is the clearest example of a phenomenon where this is not possi­

ble: the set of meaningful sentences, however described, will be confronted with meaningful utter­
ances outside it. We could all perform this operation if called upon to do so - it is not so much a
matte1· of ingenuity as part of the processes of everyday life. This case is set out in detail in
(Wilks 1971). If that case is correct, all current post-Chomskyan attempts to introduce what is
essentially SPIV methodology into AI/NLP drag tha.t part of AI in the direction of the SPIV /SAT
methodology, are misguided, and should be abandoned. Natural language will be understcod by
machines in terms of complex pattern-matching a.nd motivated relaxation of rules, or the accom­
modation of new data to existing re'presentations.

The second requirement, involving the nature of proof, is more complex, a.nd applies only to
the stronger forms of SPIV. This again can be reduced to proof by example: there just are no use­
ful striking examples of basic AI programs proved correct, ones where trust in them in any way
depends on that proof. We agree with De Millo et al (1979) that the history of mathematics sug­
gests that program proof could never be more reliable � principle than proof in mathematics, and

that has shown itself to be a shifting ideal, utterly dependent on time-dependent social standards.

The conclusion from this, for us, is not at all the advocacy of a new methodology for AI but
a call to return to RUDE, which is the classic methodology of AI, and its distinctive feature in
both areas (of behaviors and proof) is that traditionally associated with the term "heuristic": that
which does not admit of formal proof. What is needed is proper foundations for RUDE, and not a
drift towards a neighboring paradigm.

An introduction to RUDE methodology

Hall problems are not subsumable under SPIV or SAT, a.nd we do not wish to abandon the
possibility of implementing those problems, what methodology could we use? Can we forgo the
comfort of complete, prior, formal specification, the notion of program correctness, and even the
clear testability of program behavior, and yet still generate useable software? Ii seems to us tha:.
the (almost) unanimous response to this question from CS and AI researchers alike is, NO. We
believe that this negative position is both premature and entails severe limitations on the future
of AI software if true. Thus we would like to see a thorough exploration of alternatives which
reject the key assumptions of SPIV and SAT, and in this regard we shall offer some remarks on
what the necessary methodology might look like. Essentially what we shall propose is a discip­
lined development of the 'hacking' methodology of classical Al. We believe that the basic idea is
correct but that the paradigm is in need of substantial development before it will yield robust and
reliable AI software.

It would seem that any development of RUDE must yield programs that are interior to
those cf pure SPIV (with its guarantees of correctness), if only SPIV can be applied to the prob­
lems of Al. So one of the prerequisites for a serious consideration of RUDE must be to demon­
strate that SPIV is an impossible ideal. SAT adherents have regretfully waived the requirement
of proof. They work with SAT as an inferior stopgap that future puzzle-solving will transform
into something more closely approaching SPIV; the RUDE methodology has no such pretensions.

\Ve propose that adequate implementations of, say, the NLP problem can be generated by
incremental development of a machine-executable specification. In place of the correctness notion
of SPN or the clear testability of SAT we argue for a notion of adequacy. Intelligence is not typ­
ically associated with the notion of correctness in some absolute sense. The criteria. of intelligence
are adequacy and flexibility. . It is misguided to impose absolute binary decisions on say, the
meaning of a sentence, or even on its grammaticality. More realistically there is likely to be a set
of more or less adequate meanings given certain contextual constraints.

Rather than implementation of an abstract specification, we propose exploration of the
problem space in a quest for an adequate approximation to the NLP problem. The key develop­
ments that are needed are methodological constituents that ca.n guide the exploration - since for
a random search is unlikely to succeed. We ca.n list some of the puzzles (we would claim) of the
RUDE paradigm - puzzles which, if they a.re indeed solvable as such, are en route to a disciplined
version of the RUDE methodology.

DECOMPILIN'G - deriving consequences for the 'form' from observations of the 'function';

STEPWISE ABSTRACTION - a sequence of deco�piling operations;
STRUCTURED GROWTH - techniques for reversing the usual entropy increase that
&ccompanies incremental development;
ADEQUACY VALIDATION - adequacy usefully considered as a lack of major performance
inadequacies, etc.;

CONTROLLED MODIFICATION - a strategy of incremental change through analy&is of
program abstractions, subsuming both decompiling and structured growth.

A RUDE-based methodology that also yields programs with the desiderata of practical
software - reliability, robustness, comprehensibility, and hence maintainability - is not close at
hand. But if the alternative to developing such a methodology is the nonexistence of AI software

- 6 -

then the search is well motivated.

Furth.er sociological complexity

Let us expand for a moment on this notion of the paradigms SPIV and SAT that are neigh-
bors to RUDE. An illustrative table might be the following ordered list of methodologies:

1. Only properly proved programs are OK.

2. On1y programs conforming to the standards of SE are OK.
3. Only programs founded upon adequate logical or linguistic theories a.re OK.

4. Expert systems as a form of SE are OK.

5. AI programs that exist as practical/ commercial software are OK.

6. Working Al demonstration programs of the standard type in AAAI papers are OK.

OK is a. hopelessly weak term here, and readers may prefer to substitute "acceptable" or
"intellectually defensible'' or any term they prefer. The point of the table is its order and not the
predicates attached to lines. For each level, its adherents believe that those below it are NOT
OK! Readers may also enjoy the exercise of attaching names of individuals or companies to each
line: it is easily done, and provides an easy check on the table via the transitivity-of-scorn rule.
The upwards direction in the table is not simply interpretable, but a close approximation is: any­
thing above this line cannot be seriously performed, but might be OK if it were. By our
classification 5 & 6 are RUDE, 2, 3 & 4 a.re SAT, and 1 is SPIV.

Putting RUDE on a better intellectual foundation

Where should we seek for this, for it must not be simply a. matter of sociological issues but
intellectual ones? It is a. familiar argument that computer projects, particularly large scale ones
(see Bennett 1982, or the classic, Brooks 1975) fail for an extraordinary range of social and organi­
zational reasons, and that would continue to be the case even if, per impossible, realistic proofs of
programs were to become available. Conversely, th:e problems that AI seems to have in getting
out into the world, in convincing itself and others that there is or has been at least one piece of
real red-blqoded useful and workable Al, is not a matter of social constraints and inhibitions as
Schank seemed to claim (in Schank 1983). The fact is that the only saleable parts of real AI at
the moment (a.pa.rt from chess games, perhaps) seem to be toolkits for building other bits (which
might seem to confirm Bundy's view, expressed in his reply to Schank (Bundy 1983) that Al is
really a toolkit set, but not in a way that he would like).

Even if Ru"DE is, in some sense, the basic, classical, method of advance in AI, would it be
sufficient to simply declare that and carry on as before? Almost certainly not, and even if AI were
deemed to be at some level engineering, there too the search for proper defensible foundations
cannot be a.voided.

One natural pla.ce to look is for a claim that programs themselves can be theories: this has
been defended before (e.g., Wilks 1974);
declared to be not impossible (e.g., Simon 1979); supported, indirectly at least, but in terms

that no AI practitioner could accept (e.g., Sampson 1985, which requires that the area under
study be a closed Corm like that or a dead language-this would be a drastic return to the very
Chomskyan assumptions that RUDE advocates would reject); and even demonstrated by example
(Partridge, Johnston, and Lopez, 1984) .

Note that it might be a reductio ad absurdum to have programs as theories, but this is just
the kind or reductio that AI has willingly embraced in the past: consider, for example, the posi­
tion that seems natural to many AI researchers in which every truth in a world is considered an
axiom, a reductio Tarski foresaw.

Finally, we note that these issues of methodological validity may not be a purely parochial
concern of the AI community. It has been suggested (e.g., Giddings 1984) that the SPIV/SAT
paradigm may be inappropriate for much of SE as well. It may be that RUDE should be the

major paradigm instead of SPN /SAT.

References

Balzer, R., Cheatham, T. E., & Green, C. 1983. Software Technology in the 1990's: Using a New
·

Paradigm, IEEE Computer, Nov., pp. 39-45.

Bennett, J. 1982. Large Computer Project Problems and their Causes, Tech. Report. 188, Basser
Dept. of CS, Uni,,ersity of Sydney.

Brooks, F. P. 1975. The Mythical Man-Month, Addison-Wesley: Reading, Mass.

Bundy, A. 1983. The Nature of AI: A Reply to Schank, The Al Magazine, Winter, pp. 29-31.

De Milla, R. A., Lipton, R. J., & Perlis, A. J. 1979. Social Processes and Proofs of Theorems and
Programs, Comm. ACM., 22, pp.271-280.

Dijkstra, E.W. 1972. The humble programmer, Comm. ACM, 15, 10, pp. 859-866.

Dijkstra., E. W. 1976. A Discipline of Programming, Prentice-Hall: Englewood Cliffs, NJ.

Duffy, M. C. 1984. Technomorphology, Engineering Design and Technological Method, Proc.
Annual Conference of the Brit., Soc. for the Philosophy of Science.

Gazda.r, G. 1983. NLs, CFLs, and CF-PSGs. In Sparck-Jones and Wilks (eds.) Automatic Natural
Language Parsing, Ellis Horwood: West Sussex, UK.

Giddings, R. V. 1984. Accommodating Uncertainty in Software Design, Comm. ACM, 27, 5, pp.
428-435.

.

Gries, D. 1981. The Science of Programming, Springer-Verlag: NY.

Hayes-Roth, F., Waterman, D. A., & Lenat, D. B. 1983. Building Expert Systems, Addison­
Wesley: Reading, Mass.

Hoa.re, C. A. R. 1981. The Emperor's Old Clothes, Comm. ACM, 24, 2, pp. 75-83.

Kowalski, R. 1984. Software Engineering and Artificial Intelligence in New generation Computing,
The SPL-Insight 1983/84 Awa.rd Lecture.

Kuhn, T. S. 1962. The Structure of Scientific Revolutions, University of Chicago: Ill.

Liskov, B. & Guttag, J. 1986. Abstraction and Specification in Program Development, McGraw-
Hill: NY.

Mostow, J. 1985. Response to Derek Partridge, The Al Magazine, 6, 3, pp. 51-52.

Partridge, D. 1986a. RUDE vs COURTEOUS, The AI Magazine, 6, 4, pp. 28-29.

Partridge, D. 1986b. Artificial Intelligence: applications in the future of software engineering, Ellis
Horwood & Wiley: UK.

Partridge, D., Johnston, V. S., & Lopez, P. D., 1984 Computer Programs as Theories in Biology,
J. Theor. Biol., 108, 539-564.

Schank, R.C. 1983.The Current State of AI: One Man's Opinion. Al Magazine, Winter/Spring,
Pil· 3-8.

Sampson, G. 1975. Theory choice in a two-level science. Brit. Jnl. Philos. of Science. pp. 97-107.

Simon, T.W. 1982. Philosophical Objections to Programs as Theories. In. Ringle, Philosophical
Perspectives in Al, Humanities Press: Atlantic Highlands, NJ.

Wil:�s, Y. 1971. Decidability and Natural Language. Mind. 80. pp.491-516.

Wilks, Y. 197 4. One Small Head: Models and Theories in Linguistics. Foundations of Language.
11. pp.77-95.

Wilks, Y. 1986. Bad Metaphors: Chomsky and Artificial Intelligence, In S. & C. Mogdil (eds)
Noam Chomsky: Consensus and Controversy.

Yourdrn, E. 1975. Techniques of Program Structure and Design, Prentice-Hall: Englewood Cliffs,
NJ.

