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Preface

It was 1985, when I graduated from Eindhoven University. I had some options about what to
do. Instead of picking one, I asked Bob Wielinga whether he had some short-term employ-
ment in the European ‘Esprit’ project that just had started. My plan was to wait for a nice
opportunity to work on what I, then, considered a more fundamental artificial intelligence
subject, such as machine learning. I started work on the KADS project, where Anjo Anjew-
ierden tried to teach me the difference between hacking and programming. By studying and
extending code from Anjo and Richard O’Keefe, whom I had met during a training period
at Edinburgh University, I gradually discovered the beauty of proper programming. Anjo’s
motto was “the ultimate documentation is the source”. For good source, handed to someone
with basic knowledge of the programming language, this indeed comes close to the truth.
Nevertheless, I am proud to have him as a co-author of a paper on a Prolog documentation
system (chapter 8 of this thesis). The ‘art of programming’ had caught me and I abandoned
my original plans doing AI research.

At least as important as the joy of striving for clear coding of large and complex systems,
was the way Bob Wielinga dealt with ‘scientific programmers’. Later, I realised that in
most research groups this species was treated as a semi-automated code-generation facility.
Instead, Bob involved Anjo and me in the research, gave us almost unlimited freedom and
was always the first to try our prototypes. His never lasting energy to modify and comment
on our work was a source of inspiration. I still wonder how Bob managed to demonstrate
our prototypes at project reviews without making them crash.

During this period, I had plenty of time to play the Chinese game of Go and hack around
on the University computer systems on anything I liked. This resulted in SWI-Prolog. Some-
how, the developers in the KADS project quickly ignored the consortium decision to use the
commercial Quintus Prolog system and started using my little toy. Well, possibly it helped
that I promised a bottle of cognac for every 10 reported bugs. Although this resulted in
endless arguments on whether a spelling error in a warning message was a bug or not, Huub
Knops managed to earn his bottle. Anja van der Hulst joined SWI, and I soon had to deal with
Anja, Go and SWI-Prolog. My support in realising a prototype for her research is reminded
later in this preface.
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At some point, Frank van Harmelen joined SWI and pointed us to great ‘free’ software,
notably Emacs and LATEX. Not really knowing what to do with SWI-Prolog, we decided to
join the free software community and make it available from our FTP-server. We sold aca-
demic licenses for the accompanying graphical toolkit PCE, designed by Anjo and extended
a bit by me. Selling software and dealing with legal issues around licenses is not the strength
of a University, as Lenie Zandvliet and Saskia van Loo will agree. Sorry for all the extra
work.

SWI-Prolog/PCE became a vehicle in the department to accumulate experience on build-
ing ‘knowledge intensive interactive applications’. At some point in the early 90s, a wider
academic community started to form around SWI-Prolog/PCE. An invitation to work as guest
researcher for SERC by Peter Weijland allowed to initiate the ideas that lead to chapter 5 of
this thesis and the research on version management systems filled a gap in my experience
Anjo never conveyed to me: the use of a version management system. Robert de Hoog
never thought very highly of Prolog, but he needed Anjo to work on the PIMS project and
convinced me to port the system to Microsoft’s operating systems. I first tried Windows 3.1,
then Windows 95 and finally succeeded on Windows NT 3.5. It was no fun, but I must admit
that it was probably the step that made SWI-Prolog a success: suddenly SWI-Prolog could run
for free and without any strings attached on the University Unix networks as well as on the
student’s home PCs. When search engines became important on the internet, pointers from
many University course-pages to SWI-Prolog greatly helped making the system popular. So,
thank you, Robert!

Although SWI-Prolog was supported by a large and growing community, I started wor-
rying. Projects tended to move to other programming languages. Although Bob managed to
organise projects such that we could deploy Prolog to create ‘executable specifications’, this
was a worrying development. Fortunately, a number of opportunities came along. Projects
moved towards networked component-based designs, which allowed partners to use their
language of choice instead of having to agree on a single language. At the ICLP in Mum-
bai (2003), Tom Schrijvers and Bart Demoen came with the deal where, with their help,
I would provide the low-level support for constraint programming and their Leuven-based
team would make their constraint systems available on SWI-Prolog. Without this cooperation
SWI-Prolog might have lost contact with the logic programming community.

In the meanwhile SWI-Prolog started to attract serious commercial users. One came as
a surprise. Considering the shift towards networking, I had added concurrency and Unicode
to SWI-Prolog. Suddenly I was bombarded by mails from Sergey Tikhonov from Solvo
in St. Petersburg. Without his bug-reports and patches, multi-threaded SWI-Prolog would
never have become stable and this thesis would not have existed. Steve Moyle helped to
turn this into a paper (chapter 6) and his company funded the development of SWI-Prolog
testing framework and documentation system. Of course I should not forget to mention his
elaborations on Oxford pubs and colleges. Mike Elston from SecuritEase in New Zeeland
funded several projects and his colleagues Keri Harris and Matt Lilley have sent me many
bug reports and fortunately more and more patches. I was pleased that he and his wife
unexpectedly showed up at our doorstep a year ago. They showed me and Anja parts of
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Amsterdam that were unknown to us.
The young and brilliant student Markus Triska showed up to work in Amsterdam during

the summer. Unfortunately the apartment I managed to arrange for him turned out to house
some companions in the form of flees, so at some point he preferred the University couch.
Nevertheless, this didn’t break his enthusiasm for SWI-Prolog, which resulted in various
constraint programming libraries. He also managed to interest Ulrich Neumerkel. I will
always admire his dedication to find bugs. His work surely contributed in realising 24 × 7
Prolog-based services.

Unfortunately, I cannot acknowledge everybody from the Prolog community. I will name
a few and apologise to the others. Richard O’Keefe shows up again. He has followed the
mailinglist for many years. Without his comments, the list would be much less informative
and less fun. Then we have Paulo Moura, always trying to keep the herd of Prolog developers
together. Considering that Prolog developers are more like cats than sheep, this effort cannot
be left unacknowledged. Vitor Santos Costa’s open mind, combined with some pressure by
Tom Schrijvers has resulted in some level of cooperation between YAP and SWI-Prolog that
we want to deepen in the near future. Paul Singleton connects Prolog to Java and hence
allows me to survive in this world.

The most important opportunity for me was created by Guus Schreiber, who managed
to participate in the MIA and MultimediaN projects on search and annotation of physical
objects. These projects were run by an inspiring team from SWI, CWI and the VU. Guus’
choice to use the emerging Semantic Web created a great opportunity for deploying Pro-
log. While I tried to satisfy their demands on the infrastructure, Michiel Hildebrand and
Jacco van Ossenbruggen did most of the Prolog programming that created a price-winning
demonstrator at ISWC-2006. More important for this thesis, these projects provided the
opportunity and inspiration to write scientific papers. These papers, and especially the one
published as chapter 10 made this thesis possible.

Writing software isn’t always easy to combine with writing papers or a thesis. Somehow
these two tasks require two incompatible states of mind. As there was no obvious need to
write a thesis, many evaluations of my functioning at the University contained some suffi-
ciently vague statement about a PhD, after which I and Anja had a good laugh and another
year had passed. Until somewhere fall 2007, I was in the local pub with Bob Wielinga and
Guus Schreiber. After some beers I ventilated some bold statements about the Semantic Web
and Guus commented “you should write this down in a paper and then we can combine it
with some of your recent papers and turn it into a PhD”. Not completely sober, I turned home
and told Anja: “They want me to write a PhD.” Anja started laughing hilariously, expecting
me to do the same. I didn’t. Anja stared at me, confused and then slightly worried. This was
not the standard act. When I asked for her support she replied: “Well, if you really want it,
you should.”, to continue with “As long as I don’t have to read it.” It was her well deserved
revenge for my attitude towards reading specifications for software prototypes.

Next to work-wise, SWI has always been a great group to work in. For me, it started on
the top-floor of what is now known as ‘het Blauwe Huis’ on the Herengracht in Amsterdam.
SWI was a gathering of great people with whom I have spent many hours in the pubs nearby.
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From there we moved to the top-floor of the psychology building at the Roetersstraat. I
will not forget the discussions in café Solo with Frank van Harmelen, Gertjan van Heijst,
Manfred Aben, Dieter Fensel and many more. I have many good memories of the colleagues
with whom I shared an office. John van den Elst was very noisy, so after a month I was happy
he would be in Antibes for the next month and after a month in an empty office I was happy
he returned, etc. Luckily Chris van Aart, though we never shared offices, made the months
without John bearable with his admiration for Java. Sharing the office with Dennis Beckers
and Hedderik van Rijn was great. In that period I lived in Leiden and many Wednesdays
I enjoyed a pizza quatro formaggi with Carolien Metselaar in Palermo before visiting the
Amsterdam Go-club. Noor Christoph learned me that finishing a PhD implied there was
never a dull moment.



Chapter 1

Introduction

Traditionally, Logic Programming is used first of all for problem solving. Although an im-
portant task, implementing the pure problem solving task of a program is typically a minor
effort in the overall development of an application. Often, interaction is responsible for a
much larger part of the code. Where the logic programming community typically stresses
the declarative aspects of the language, imperative languages provide control, an important
aspect of interaction. In practice, the distinction is not that rigid. In problem solving we want
some control over the algorithms actually used while rules play a role in defining interaction
policies.

Mixing languages is a commonly used way to resolve this problem. However, mixing
languages harms rapid prototyping because it requires the developers to master multiple lan-
guages and to define an interface between the interaction and problem solving components
of the application. In this thesis we investigate using the Logic Programming paradigm for
both the application logic and the interaction under the assumption that a united environ-
ment provides a productive programming environment for knowledge intensive interactive
applications.

This introduction starts with a description of the context in which the research was car-
ried out and a characterisation of the software built, followed by a brief overview of and
motivation for the use of Logic Programming. After that, we give a historical overview that
ends with a timeline of projects described in this thesis, followed by the research questions
and an outline of the thesis.

1.1 Application context

This thesis studies the construction of a software infrastructure for building tools that help
humans in understanding and modifying knowledge. With software infrastructure, we refer
to language extensions and libraries developed to support this class of applications. Our
infrastructure is the result of experience accumulated in building tools, a process that is dis-
cussed in more detail in section 1.3. Examples of knowledge we studied are conceptual
models created by knowledge engineers, ontologies and collections of meta-data that are
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based on ontologies. If humans are to create and maintain such knowledge, it is crucial to
provide suitable visualisations of the knowledge. Often, it is necessary to provide multiple
visualisations, each highlighting a specific aspect of the knowledge. For example, if we con-
sider an ontology, we typically want a detailed property sheet for each concept or individual.
Although this presentation provides access to all aspects of the underlying data, it is poorly
suitable to assess aspects of the overall structure of the ontology such as the concept hier-
archy, part-of structures or causal dependencies. These are much better expressed as trees
(hierarchies) or graphs that present one aspect of the ontology, spanning a collection of con-
cepts or individuals. The user must be able to interact with each of these representations to
edit the model. For example, the user can change the location of a concept in the concept
hierarchy both by moving the concept in the tree presentation and changing the parent in the
property sheet.

Next to visualisations, a core aspect of tools for knowledge management is the actual
representation of the knowledge, both internally in the tool and externally for storage and
exchange with other tools. In projects that pre-date the material described in this thesis
we have used various frame-based representations. Modelling knowledge as entities with
properties is intuitive and maps much easier to visualisations than (logic) language based
representations (Brachman and Schmolze 1985). In the MIA project (chapter 9, Wielemaker
et al. 2003a) we adopted the Semantic Web language RDF (Resource Description Format,
Lassila and Swick 1999) as our central knowledge representation format. RDF is backed
by a large and active community that facilitates exchange of knowledge with tools such as
Protégé (Grosso et al. 1999) and Sesame (Broekstra et al. 2002). RDF provides an extremely
simple core data model that exists of triples:

〈Subject, Predicate, Object〉

Informally, 〈Predicate, Object〉 tuples provide a set of name-value pairs of a given Sub-
ject. The power of RDF becomes apparent where it allows layering more powerful languages
on top of it. The two commonly used layers are RDFS that provides classes and types (Brick-
ley and Guha 2000) and OWL that provides Description Logic (DL, Horrocks et al. 2003;
Baader et al. 2003). If the knowledge modelling is done with some care the same model can
be interpreted in different languages, providing different levels of semantic commitment.
Moreover, we can define our own extensions to overcome current limitations of the frame-
work. RDF with its extensions turned out to be an extremely powerful representation vehicle.
In this thesis we present a number of technologies that exploit RDF as an underpinning for
our infrastructures and tools.

Most of the work that is presented in this thesis was executed in projects that aim at
supporting meta data (annotations) for items in collections. Initially we used collections
of photos, later we used museum collections of artworks. Knowledge management in this
context consists of creating and maintaining the ontologies used to annotate the collection,
creating and maintaining the meta data and exploring the knowledge base. Our knowledge
bases consist of large RDF graphs in which many edges (relations) and vertices (concepts
and instances) are only informally defined and most ‘concepts’ have too few attributes for
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computers to grasp their meaning. In other words, the meaning of the graph only becomes
clear if the graph is combined with a commonsense interpretation of the labels. This im-
plies we have little use for formal techniques such as description logic reasoning (see sec-
tion 10.5.0.5). Instead, we explore the possibilities to identify relevant sub-graphs based
on a mixture of graph properties (link counts) and the semantics of a few well understood
relations (e.g., identity, is-a) and present these to the user.

In older projects as well as in the photo annotation project (chapter 9) we aimed at appli-
cations with a traditional graphical user interface (GUI). Recently, our attention has switched
to web-based applications. At the same time attention shifted from direct manipulation of
multiple views on relatively small models to exploring vast knowledge bases with relatively
simple editing facilities.

From our experience with projects in this domain we assembled a number of core re-
quirements for the tools we must be able to create with our infrastructure:

1. Knowledge
For exchange purposes, we must be able to read and write the standard RDF syntaxes.
For editing purposes, we need reliable and efficient storage of (small) changes, to-
gether with a history on how the model evolved and support for undo. As different
applications need different reasoning facilities, we need a flexible framework for ex-
perimenting with specialised reasoning facilities. Considering the size of currently
available background knowledge bases as well as meta-data collections we estimate
that support for about 100 million triples suffices for our experimental needs.

2. Interactive web applications
Current emphasis on web applications requires an HTTP server, including concurrency,
authorisation and session management. Creating web applications also requires sup-
port for the document serialisation formats that are in common use on the web.

3. Interactive local GUI applications
Although recent projects needs have caused a shift towards web applications, tradi-
tional local GUI applications are still much easier to build, especially when aiming for
highly interactive and complex graphical tools.

1.2 Logic Programming

Although selecting programming languages is in our opinion more a matter of ‘faith’1 than
science, we motivate here why we think Logic Programming is especially suited for the
development of knowledge-intensive interactive (web) applications.

Logic programming is, in its broadest sense, the use of mathematical logic
for computer programming. In this view of logic programming, which can be

1The Oxford Concise English Dictionary: “strong belief [in a religion] based on spiritual conviction rather than
proof.”
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traced at least as far back as John McCarthy’s (McCarthy 1969) advice-taker
proposal, logic is used as a purely declarative representation language, and a
theorem-prover or model-generator is used as the problem-solver. The problem-
solving task is split between the programmer, who is responsible only for ensur-
ing the truth of programs expressed in logical form, and the theorem-prover or
model-generator, which is responsible for solving problems efficiently.

Wikipedia, oct. 2008

Defined as above, logic programming is obviously the perfect paradigm for expressing
knowledge. However, when applying this paradigm we are faced with two problems: (1)
there is no sufficiently expressive logic language with an accompanying efficient theorem
prover and (2) although control may not be of interest for theorem proving, it is important
when communicating with the outside world where ordering communication actions often
matters.

An important break through in the field of logic programming was the invention of the
Prolog programming language (Colmerauer and Roussel 1996; Deransart et al. 1996). The
core of Prolog provides a simple resolution strategy (SLD resolution) for Horn clauses. The
resulting language has a declarative reading, while its simple resolution strategy provides an
imperative reading for a Prolog program at the same time. For example,2 the program below
can be read as “a(X,Z) is true if b(X,Y) and c(Y,Z) are true”. Particularly if the literals b and
c have exactly one solution, the first argument is input and the second output, it can also be
read as “To create Z from X, first call b to create Y from X and then call c to create Z from Y.

a(X, Z) :-
b(X, Y),
c(Y, Z).

In our view, this dual interpretation of the same code greatly contributes to the value of Pro-
log as a programming language for interactive knowledge-intensive applications. Notably
in chapter 4 we see the value of the declarative reading of RDF expressions to achieve op-
timisation. Declarative reading also helps in many simple rules needed both as glue for the
knowledge and as rules in the interactive interface. On the other hand I/O, associated to in-
teractivity, often asks for an imperative reading: we do not want to prove write(’hello
world’) is true but we want to execute this statement.

Since its birth, the Prolog language has evolved in several directions. Notably with the
introduction of the WAM (Hassan Aı̈t-Kaci 1991) compiler technology has improved, provid-
ing acceptable performance. The language has been extended with extra-logical primitives,
declarations, modules and interfaces to other programming languages to satisfy software en-
gineering requirements. At the same time it has been extended to enhance its power as a
declarative language by introducing extended unification (Holzbaur 1990) which initiated

2Throughout this thesis we use ISO Prolog syntax for code.
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constraint logic programming (CLP) and new resolution techniques such as SLG resolution
(Ramakrishnan et al. 1995) which ensures termination of a wider class of Horn clause pro-
grams.

Practical considerations In addition to the above motivation for a language that combines
declarative and imperative notions there are other aspects of the language that make it suit-
able for prototyping and research. Many AI languages, both functional- and logic-based,
share reflexiveness, incremental compilation and safe execution and lack of destructive op-
erations.

Reflexiveness is the ability to process programs and goals as normal data. This feature
facilitates program transformation, generation and inspection. Based on this we can easily
define more application oriented languages. Examples can be found in section 3.2, defining a
language to match XML trees and section 7.2.2.1, defining a language to generate compliant
HTML documents and chapter 5 where Prolog syntax is translated partly into code for an
external object oriented system. In chapter 4 we exploit the ability to inspect and transform
goals for optimising RDF graph matching queries.

Incremental compilation is the ability to compile and (re-)load files into a running ap-
plication. This is a vital feature for the development of the interactive applications we are
interested in because it allows modifying the code while the application is at a certain state
that has been reached after a sequence of user interactions. Without incremental compilation
one has to restart the application and redo the interaction to reach the critical state again. A
similar argument holds for knowledge stored in the system, where reloading large amounts
of data may take long. Safe execution prevents the application from crashing in the event
of program errors and therefore adds to the ability to modify the program under develop-
ment while it is running. Prolog comes with an additional advantage that more permanent
data is generally stored in clauses or a foreign extension, while volatile data used to pass
information between steps in a computation is often allocated on the stacks, which is com-
monly discarded after incremental computation. This makes the incremental development
cycle less vulnerable to changes of data formats that tend to be more frequent in intermediate
results than in global data that is shared over a larger part of the application.

The lack of destructive operations on data is shared between functional and logical lan-
guages. Modelling a computation as a sequence of independent states instead of a single
state that is updated simplifies reasoning about the code, both for programmers and program
analysis tools.

Challenges Although the above given properties are useful for the applications we want
to build, there are also vital features that are not or poorly supported in many Prolog im-
plementations. Interactive applications need a user interface; dealing with RDF requires a
scalable RDF triple store; web applications need support for networking, the HTTP protocol
and document formats; internationalisation of applications needs UNICODE; interactivity and
scalability require concurrency. Each of these features are provided to some extent in some
implementations, but we need integrated support for all these features in one environment.
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1.3 Project context

Our first project was Shelley (Anjewierden et al. 1990). This tool provided a comprehensive
workbench managing KADS (Wielinga et al. 1992) models. The use of (Quintus-)Prolog
was dictated by the project. We had to overcome two major problems.

• Adding graphics to Prolog.

• Establishing a framework for representing the complex KADS models and connecting
these representations to the graphics layer.

Anjo Anjewierden developed PCE for Quintus Prolog based on ideas from an older
graphics interface for C-Prolog developed by him. PCE is an object oriented foreign (C-
)library to access external resources. We developed a simple frame-based representation
model in Prolog and used the MVC (Model-View-Controller) architecture to manage models
using direct manipulation, simultaneously rendering multiple views of the same data (Wiele-
maker and Anjewierden 1989).

At the same time we started SWI-Prolog, initially out of curiosity. Quickly, we identi-
fied two opportunities provided by—at that time—SWI-Prolog’s unique feature to allow for
recursive calls between Prolog and C. We could replace the slow pipe-based interface to
PCE with direct calling and we could use Prolog to define new PCE classes and methods as
described in chapter 5 (Wielemaker and Anjewierden 2002).

XPCE as it was called after porting the graphics to the X11 windowing system was the
basis of the CommonKADS workbench, the followup of Shelley. The CommonKADS work-
bench used XPCE objects both for modelling the GUI and the knowledge. Extending XPCE

core graphical classes in Prolog improved the design significantly. Using objects for the
data, replacing the Prolog-based relational model of Shelley, was probably a mistake. XPCE

only allows for non-determinism locally inside a method and at that time did not support
logical variables. This is not a big problem for GUI programming, but loses too much of the
power of Prolog for accessing a knowledge base.

In the MIA project (chapter 9, Wielemaker et al. 2003a; Schreiber et al. 2001) we
built an ontology-based annotation tool for photos, concentrating on what is depicted on the
photo (the subject matter). We decided to commit to the Semantic Web, which then only
defined RDF and RDFS. The MIA tool is a stand-alone graphics application built in XPCE.
All knowledge was represented using rdf(Subject, Predicate, Object), a natural mapping
of the RDF data model. Rdf/3 is a pure Prolog predicate that was implemented using several
dynamic predicates to enhance indexing. With this design we corrected the mistake of the
CommonKADS Workbench. In the same project, we started version 2 of the RDF-based
annotation infrastructure. The pure semantics of the rdf/3 predicate was retained, but it
was reimplemented in C to enhance performance and scalability as described in chapter 3
(Wielemaker et al. 2003b). We developed a minimal pure Prolog Object layer and associated
this with XPCE to arrive at a more declarative approach for the GUI, resulting in the Triple20
ontology tool (chapter 2, Wielemaker et al. 2005).
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In the HOPS project3 we investigated the opportunities for RDF query optimisation (chap-
ter 4, Wielemaker 2005) and identified the web, and particularly the Semantic Web, as a
new opportunity for the Prolog language. We extended Prolog with concurrency (chap-
ter 6, Wielemaker 2003a) and international character set support based on UNICODE and
UTF-8 and added libraries to support this application area better. Motivated in chapter 7
(Wielemaker et al. 2008), we decided to provide native Prolog implementations of the HTTP

protocol, both for the server and client. This infrastructure was adopted by and extended in
the MultimediaN E-culture project that produced ClioPatria (chapter 10, Wielemaker et al.
2008). Extensions were demand driven and concentrated on scalability and support for a
larger and decentralised development team. Scalability issues included concurrency in the
RDF store and indexed search for tokens inside RDF literals. Development was supported
by a more structured approach to bind HTTP paths to executable code, distributed manage-
ment of configuration parameters and PlDoc, an integrated literal programming environment
(chapter 8, Wielemaker and Anjewierden 2007).

Figure 1.1 places applications and infrastructure on a timeline. The actual development
did not follow such a simple waterfall model. Notably ClioPatria was enabled by the previ-
ously developed infrastructure, but at the same time initiated extensions and refinements of
this infrastructure.

1.4 Research questions

Except for section 1.2 and section 1.3, we consider the choice for Prolog and RDF a given.
In this thesis, we want to investigate where the Prolog language needs to be extended and
what design patterns must be followed to deploy Prolog in the development of knowledge-
intensive interactive (web) applications. This question is refined into the three questions
below.

1. How to represent knowledge for interactive applications in Prolog?
The RDF triple representation fits naturally in the Prolog relational model. The size of
RDF graphs and the fact that they are more limited than arbitrary 3-argument relations
pose challenges and opportunities.

(a) How to store RDF in a scalable way?
Our RDF store must appear as a pure Prolog predicate to facilitate reasoning and
at the same time be scalable, allow for reliable persistent storage and to allow
for concurrent access to act as a building block in a web service.

(b) How to optimise complex queries on RDF graphs?
Naively executed, queries to match RDF graph expressions can be extremely
slow. How can we optimise them and which knowledge can the low-level RDF

store provide to help this process?

3http://www.bcn.es/hops/
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Shelley

CommonKADS

MIA
(9)

RDF-DB
(3)

Triple20
(2)

SeRQL
(4)

XPCE
(5)

Threads
(6) Web

libraries
(SGML/XML,

HTTP,...)
(7)

PlDoc
(8)

ClioPatria
(10)

Applications & Projects Infrastructure

Time

HOPS
project

Figure 1.1: This diagram shows all projects and components in chronological order.
Numbers between brackets are the chapter numbers describing the component. The ar-
rows indicate the most important influence relations.

2. How to support web applications in Prolog?
Since approximately 2004 our attention in projects shifted from stand-alone GUI ap-
plications to web-based applications. As we show in the related work sections of
chapter 7, web support is recognised as an issue in the Prolog community, but the
solutions are only partial.

(a) How to represent web documents?
The web defines data formats such as HTML, XML and RDF. What is the appro-
priate way to read, process and write these using Prolog?

(b) How to support web services?
A web service must bind HTTP requests to executable code that formulates a
reply represented as a web document. What architecture is needed if this exe-
cutable code is in Prolog? How do we realise an environment that allows for
debugging, is scalable and simple to deploy?

3. How to support graphical applications in Prolog?
As we have seen above, visualisation plays a key role in applications that support the
user in managing knowledge. Graphics however does not get much attention in the
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Prolog community and intuitively, like I/O, does not fit well with the declarative nature
of Prolog.

(a) How can we interface Prolog to external object oriented GUI systems?
Virtually all graphics systems are object oriented and therefore a proper interface
to an external object oriented system is a requirement for graphics in Prolog.

(b) How to create new graphical primitives?
Merely encapsulating an object oriented system is step one. New primitives can
often only be created by deriving classes from the GUI base classes and thus we
need a way to access this functionality transparently from Prolog.

(c) How to connect an interactive GUI to the knowledge
The above two questions are concerned with the low-level connection between
Prolog and a GUI toolkit. This question addresses the interaction between knowl-
edge stored in an RDF model and the GUI.

1.5 Approach

Development of software prototypes for research purposes is, in our setting, an endeavour
with two goals: (1) satisfy the original research goal, such as evaluating the use of ontologies
for annotation and search of multi-media objects and (2) establish a suitable architecture for
this type of software and realise a reusable framework to build similar applications. As de-
scribed in section 1.3, many projects over a long period of time contributed to the current
state of the infrastructure. Development of infrastructure and prototypes is a cyclic activity,
where refinements of existing infrastructure or the decision to build new infrastructure is
based on new requirements imposed by the prototypes, experience in older prototypes and
expectations about requirements in the future. Part II of this thesis describes three prototype
applications that both provide an evaluation and lessons learned that guide improvement
of the technical infrastructure described in Part I. In addition to this formative evaluation,
most of the infrastructure is compared with related work. Where applicable this evaluation
is quantitative (time, space). In other cases we compare our design with related designs,
motivate our choices and sometimes use case studies to evaluate the applicability of our
ideas. Externally contributed case studies are more neutral, but limited due do lack of un-
derstanding of the design patterns with which the infrastructure was developed or failure
to accomplish a task (efficiently) due to misunderstandings or small omissions rather than
fundamental flaws in the design. The choice between self-evaluation and external evalua-
tion depends on the maturity of the software, where mature software with accompanying
documentation is best evaluated externally. Chapter 7 and 8 include external experience.

1.6 Outline

Where figure 1.1 shows projects and infrastructure in a timeline to illustrate how projects in-
fluenced the design and implementation of the infrastructure, figure 1.2 shows how libraries,
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tools and applications described in this thesis depend on each other.

ClioPatria
(10)

SWI-Prolog

C

rdf-db
(3)

XPCE
(5)

Triple20
(2)

rdfs/owl
(2,4)

SeRQL
SPARQL

(4)

PlDoc
(8)

Web Libraries
(7)

Core languages

Core libraries

Libraries

Applications

MIA tool
(9)

Tools

Search
API

Threads
(6)

Figure 1.2: Overview of software described in this thesis. The arrows indicate ‘imple-
mented on top of’, where we omitted references from the higher level libraries and ap-
plications written in Prolog. Numbers between brackets refer to the chapter that describe
the component.

We start our survey near the top with Triple20 (chapter 2, Wielemaker et al. 2005), a
scalable RDF editor and browser. The paper explains how the simple and uniform RDF triple-
based data model can be used as an implementation vehicle for highly interactive graphical
applications. Triple20 can both be viewed as an application and as a library and is discussed
first because it illustrates our approach towards knowledge representation and interactive
application development. The paper is followed by four papers about enabling technology:
chapter 3 (Wielemaker et al. 2003b) on RDF storage, chapter 4 (Wielemaker 2005) on query
optimisation and RDF query language implementation, chapter 5 (Wielemaker and Anjew-
ierden 2002) on handling graphics in Prolog and finally chapter 6 (Wielemaker 2003a) on a
pragmatic approach to introduce concurrency into Prolog. The first part is completed with
chapter 7 (Wielemaker et al. 2008), providing a comprehensive overview of the (seman-
tic) web support in SWI-Prolog. Being an overview paper it has some overlap with earlier
chapters, notably with chapters 3, 4 and 6.

In part II we describe three applications. The first application is PlDoc (chapter 8, Wiele-
maker and Anjewierden 2007), a web-based tool providing literate programming for Prolog.
Although PlDoc itself is part of the infrastructure it is also an application of our Prolog-based
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libraries for building web applications. Chapter 9, (Schreiber et al. 2001; Wielemaker et al.
2003a) describes the role of ontologies in annotation and search, an application that involves
knowledge and a traditional GUI. This chapter ends with a lessons learned section that moti-
vates a significant part of the infrastructure described in part I. We conclude with chapter 10
(Wielemaker et al. 2008), which discusses architectural considerations for Semantic Web
applications aiming at handling heterogenous knowledge that is only in part covered by for-
mal semantics. The described application (ClioPatria) involves large amounts of knowledge
and a rich web-based interactive interface.
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Chapter 2

Using triples for implementation: the
Triple20 ontology-manipulation tool

About this chapter This chapter has been published at the ISWC-05, Gal-
way (Wielemaker et al. 2005) and introduces Triple20, an ontology editor and
browser. The Triple20 application is described in the beginning of this thesis
to clarify our position in knowledge representation for interactive applications,
addressing research question 3c. The infrastructure needed to build Triple20
is described in the subsequent chapters, notably chapter 3 (the RDF database),
chapter 6 (multi-threading) and chapter 5 (XPCE, connecting object oriented
graphics libraries to Prolog).

Depending on the context, we refer to Triple20 as a tool, library, browser or
editor. It can be used as a stand-alone editor. It can be loaded in—for example—
ClioPatria (chapter 10) to explore (browse) the RDF for debugging purposes,
while tOKo (Anjewierden and Efimova 2006; Anjewierden et al. 2004) uses
Triple20 as a library.

Abstract Triple20 is an ontology manipulation and visualisation tool for lan-
guages built on top of the Semantic-Web RDF triple model. In this article we
introduce a triple-centred application design and compare this design to the use
of a separate proprietary internal data model. We show how to deal with the
problems of such a low-level data model and show that it offers advantages
when dealing with inconsistent or incomplete data as well as for integrating
tools.

2.1 Introduction

Triples are at the very heart of the Semantic Web (Brickley and Guha 2000). RDF, and
languages built on top of it such as OWL (Dean et al. 2004) are considered exchange lan-
guages: they allow exchanging knowledge between agents (and humans) on the Semantic
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Web through their atomic data model and well-defined semantics. The agents themselves
often employ a data model that follows the design, task and history of the software. The
advantages of a proprietary internal data model are explained in detail by Noy et al. 2001 in
the context of the Protégé design.

The main advantage of a proprietary internal data model is that it is neutral to external de-
velopments. Noy et al. 2001 state that this enabled their team to quickly adapt Protégé to the
Semantic Web as RDF became a standard. However, this assumes that all tool components
commit to the internal data model and that this model is sufficiently flexible to accommodate
new external developments. The RDF triple model and the higher level Semantic Web lan-
guages have two attractive properties. Firstly, the triple model is generic enough to represent
anything. Secondly, the languages on top of it gradually increase the semantic commitment
and are extensible to accommodate almost any domain. Our hypothesis is that a tool infras-
tructure using the triple data model at its core can profit from the shared understanding of
the triple model. We also claim that, where the layering of Semantic Web languages pro-
vides different levels of understanding of the same document, the same will apply for tools
operating on the triple model.

In this article we describe the design of Triple20, an ontology editor and browser that
runs directly on a triple representation. First we introduce our triple store, followed by a
description of how the model-view-controller design pattern (Krasner and Pope 1988, fig-
ure 2.1) can be extended to deal with the low level data model. In section 2.4.1 to section 2.6
we illustrate some of the Triple20 design decisions and functions, followed by some metrics,
related work and discussion.

2.2 Core technology: Triples in Prolog

The core of our technology is Prolog-based. The triple-store is a memory-based extension
to Prolog realising a compact and highly efficient implementation of rdf/3 (chapter 3,
Wielemaker et al. 2003b). Higher level primitives are defined on top of this using Prolog
backward chaining rather than transformation of data structures. Here is a simple example
that relates the title of an artwork with the name of the artist that created it:

artwork_created_by(Title, ArtistName) :-
rdf(Work, vra:creator, Artist),
rdf(Work, vra:title, literal(Title)),
rdf(Artist, rdfs:label, literal(ArtistName)).

The RDF infrastructure is part of the Open Source SWI-Prolog system and used by many
internal and external projects. Higher-order properties can be expressed easily and efficiently
in terms of triples. Object manipulations, such as defining a class are also easily expressed
in terms of adding and/or deleting triples. Operating on the same triple store, triples not only
form a mechanism for exchange of data, but also for cooperation between tools. Semantic
Web standards ensure consistent interpretation of the triples by independent tools.
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2.3 Design Principles

Most tool infrastructures define a data model that is inspired by the tasks that have to be per-
formed by the tool. For example, Protégé, defines a flexible metadata format for expressing
the basic entities managed by Protégé: classes, slots, etc. The GUI often follows the model-
view-controller (MVC) architecture (Krasner and Pope 1988, figure 2.1). We would like to
highlight two aspects of this design:

• All components in the tool set must conform to the same proprietary data model. This
requirement complicates integrating tools designed in another environment. Also,
changes to the requirements of the data model may pose serious maintainability prob-
lems.

• Data is translated from/to external (file-)formats while loading/saving project data.
This poses problems if the external format contains information that cannot be repre-
sented by the tool’s data model. This problem becomes apparent of the external data
is represented in extensible formats such as XML or RDF.

Event

Controller

View-1 View-N

Model changeschanges

modify
UI

modify
DATA

modify
UI

Figure 2.1: Model-View-Controller (MVC) design pattern. Controllers modify UI aspects
of a view such as zooming, selection, etc. directly. During editing the controller modifies
the model that in turn informs the views. Typically, the data structures of the Model are
designed with the task of the application in mind.

The MVC design pattern is commonly used and successful. In the context of the Seman-
tic Web, there is an alternative to the proprietary tool data model provided by the stable RDF

triple model. This model was designed as an exchange model, but the same features that
make it good for exchange also make it a good candidate for the internal tool data model. In
particular, the atomic nature of the model with its standardised semantics ensure the cooper-
ating tools have a sound basis.

In addition to providing a sound basis, the triple approach deals with some serious con-
sistency problems related to more high-level data models. All Semantic Web data can be
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expressed precisely and without loss of information by the toolset, while each individual
tool can deal with the data using its own way to view the world. For example, it allows an
RDFS tool to work flawlessly with an OWL tool, although with limited understanding of the
OWL semantics. Different tools can use different subsets of the triple set, possibly doing
different types of reasoning. The overall semantics of the triple set however is dictated by
stable standards and the atomic nature of the RDF model should minimise interoperability
problems. Considering editing and browsing tools, different tools use different levels of
abstractions, viewing the plain triples, viewing an RDF graph, viewing an RDFS frame-like
representation or an OWL/DL view (figure 2.4, figure 2.5).

Finally, the minimalist data model simplifies general tool operations such as undo,
save/load, client/server interaction protocols, etc.

In the following architecture section, we show how we deal with the low-level data model
in the MVC architecture.

2.4 Architecture

Using a high-level data model that is inspired by the tasks performed by the tools, mapping
actions to changes in the data model and mapping these changes back to the UI is relatively
straightforward. Using the primitive RDF triple model, mapping changes to the triple store to
the views becomes much harder for two reasons. First of all, it is difficult to define concisely
and efficiently which changes affect a particular view and second, often considerable reason-
ing is involved deducing the visual changes from the triples. For example, adding the triple
below to a SKOS-based (Miles 2001) thesaurus turns the triple set representing a thesaurus
into an RDFS class hierarchy:1

skos:narrower rdfs:subPropertyOf rdfs:subClassOf .

The widgets providing the ‘view’ have to be consistent with the data. In the example above,
adding a single triple changes the semantics of each hierarchy relation in the thesaurus:
changes to the triple set and changes to the view can be very indirect. We deal with this
problem using transactions and mediators (Wiederhold 1992).

Both for journaling, undo management, exception handling and maintaining the con-
sistency of views, we introduced transactions. A transaction is a sequence of elementary
changes to the triple-base: add, delete and update,2 labelled with an identifier and optional
comments. The comments are used as a human-readable description of the operation (e.g.,
“Created class Wine”). Transactions can be nested. User interaction with a controller causes
a transaction to be started, operations to be performed in the triple-store and finally the trans-
action to be committed. If anything unexpected happens during the transaction, the changes

1Whether this interpretation is desirable is not the issue here.
2The update change can of course be represented as a delete-and-add, but a separate primitive is more natural,

requires less space in the journal and is easier to interpret while maintaining the view consistency.
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are discarded, providing protection against partial and inconsistent changes by malfunction-
ing controllers. A successful transaction results in an event.

Simple widgets whose representation depends on one or more direct properties of a
resource (e.g., a label showing an icon and label-text for a resource) register themselves
as a direct representation of this resource. If an event involves a triple where the resource
appears as subject or object, the widget is informed and typically refreshes itself. Because
changes to the property hierarchy can change the interpretation of triples, all simple widgets
are informed of such changes.

Event Controller

View

Triple
Model

simple
changes

modify
DATA

modify
UI

Function I Mediator I

Function N Mediator N

complex
changes

Updater (thread)

Registration &
Scheduling

Figure 2.2: Introducing mediators to bridge the level of abstraction between triples and
view. Update is performed in a different thread to avoid locking the UI.

Complex widgets, such as a hierarchical view, cannot use this schema as they cannot eas-
ily define the changes in the database that will affect them and recomputing and refreshing
the widget is too expensive for interactive use. It is here that we introduce mediators. A me-
diator is an arbitrary Prolog term that is derived from the triple set through a defined function
(see figure 2.2). For example, the mediator can be an ordered list of resources that appear
as children of a particular node in the hierarchy, while the function is an OWL reasoner that
computes the DL class hierarchy. Widgets register a mediator and accompanying function
whenever real-time update is considered too expensive. If a mediator is different from the
previous result, the controllers that registered the mediator are notified and will update us-
ing the high-level representation provided by the mediator. The function and its parameters
are registered with the updater. The updater is running in a separate thread of execution
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(chapter 6, Wielemaker 2003a), updating all mediators after each successfully committed
transaction. This approach has several advantages.

• Because updating the mediators happens in a separate thread, the UI remains respon-
sive during the update.

• Updates can be aborted as soon as a new transaction is committed.

• Multiple widgets depending on the same mediator require only one computation.

• The updater can schedule on the basis of execution time measured last time, frequency
of different results and relation of dependent widgets to the ‘current’ widget.3

• One or multiple update threads can exploit multi-CPU (SMP) hardware as well as
schedule updates over multiple threads to ensure that likely and cheap updates are
not blocked for a long time by unlikely expensive updates.

2.4.1 Rules to define the GUI

The interface is composed of a hierarchy of widgets, most of them representing one or more
resources. We have compound and primitive widgets. Each widget is responsible for main-
taining a consistent view of the triple set as outlined in the previous section. Triple20 widgets
have small granularity. For example, most resources are represented by an icon and a textual
label. This is represented as a compound widget which controls the icons and displays a
primitive widget for the textual label.

In the conventional OO interface each compound widgets decides which member widgets
it creates and what their their configuration should be, thus generating the widget hierarchy
starting at the outermost widget, i.e., the toplevel window. We have modified this model
by having context-sensitive rule sets that are called by widgets to decide on visual aspects
as well as define context sensitive menus and perform actions. Rule sets are associated
with widget classes. Rules are evaluated similar to OO methods, but following the part-of
hierarchy of the interface rather than the subclass hierarchy. Once a rule is found, it may
decide to wrap rules of the same name defined on containing widgets similar to sending
messages to a superclass in traditional OO.

The advantage of this approach is that widget behaviour can inherit from its containers
as well as from the widget class hierarchy. For example, a compound widget representing
a set of objects can define rules both for menu-items and the required operations at the data
level that deal with the operation delete, deleting a single object from the set. Widgets inside
the compound ‘inherit’ the menu item to their popup. This way, instances of a single widget
class have different behaviour depending on its context in the interface.

Another example of using rules is shown in figure 2.3, where Triple20 is extended to
show SKOS ‘part-of’ relations in the hierarchy widget using instances of the graphics class
‘rdf part node’, a subclass of ‘rdf node’ that displays a label that indicates the part-of re-
lation. The code fragment refines the rule for child cache/3, a rule which defines the

3This has not yet been implemented in the current version.
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mediator for generating the children of a node in the hierarchy window (shown on an exam-
ple from another domain in the left frame of figure 2.5). The display argument says the
rule is defined at the level of display, the outermost object in the widget part-of hierarchy
and therefore acts as a default for the entire interface. The part argument identifies the new
rule set. The first rule defines the mediator for ‘parts’ of the current node, while the second
creates the default mediator. The call to rdf cache/3 registers a mediator that is a list of
all solutions of V of the rdf/3 goal, where the solutions are sorted alphabetically on their
label. Cache is an identifier that can be registered by a widget to receive notifications of
changes to the mediator.

:- begin_rules(display, part).

child_cache(R, Cache, rdf_part_node) :-
rdf_cache(lsorted(V),

rdf(V, skos:broaderPartitive, R), Cache).
child_cache(R, Cache, Class) :-

super::child_cache(R, Cache, Class).

:- end_rules.

Figure 2.3: Redefining the hierarchy expansion to show SKOS part-of relations. This rule
set can be loaded without changing anything to the tool.

Rule sets are translated into ordinary Prolog modules using the Prolog preprocessor.4

They can specify behaviour that is context sensitive. Simple refinement can be achieved by
loading rules without defining new widgets. More complicated customisation is achieved by
defining new widgets, often as a refinement of existing ones, and modify the rules used by a
particular compound widget to create its parts.

2.5 An overview of the Triple20 user interface

RDF documents can be viewed at different levels. Our tool is not a tool to support a particular
language such as OWL, but to examine and edit arbitrary RDF documents. It provides several
views, each highlighting a particular aspect of the RDF data.

• The diagram view (figure 2.4) provides a graph of resources. Resources can be shown
as a label (Noun) or expanded to a frame (cycle). If an elements from a frame is
dropped on the diagram a new frame that displays all properties of the element is
shown. This tool simply navigates the RDF graph and works on any RDF document.

4Realised using term expansion/2.
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Figure 2.4: Triple20 graph diagram. Resources are shown using just their label or as a
frame. Values or properties can be dragged from a frame to the window to expand them.

• The hierarchy view (figure 2.5, left window) shows different hierarchies (class, prop-
erty, individuals) in a single view. The type of expansion is indicated using icons.
Expansion can be controlled using rules as explained in section 2.4.1.

• A tabular view (figure 2.5, right window) allows for multiple resource specific repre-
sentations. The base system provides an instance view and a class view on resources.

Editing and browsing are as much as possible integrated in the same interface. This im-
plies that most widgets building the graphical representation of the data are sensitive. Visual
feedback of activation and details of the activated resource are provided. In general both
menus and drag-and-drop are provided. Context-specific rules define the possible operations
dropping one resource onto another. Left-drop executes the default operation indicated in
the status bar, while right-drop opens a menu for selecting the operation after the drop. For
example, the default for dropping a resource from one place in a hierarchy on another node
is to move the resource. A right-drop will also offer the option to associate an additional
parent.

Drag-and-drop can generally be used to add or modify properties. Before one can drop
an object it is required to be available on the screen. This is often impractical and therefore
many widgets provide menus to modify or add a value. This interface allows for typing the
value using completion, selecting from a hierarchy as well as search followed by selection.
An example of the latter is shown in figure 2.6.
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Figure 2.5: Triple20 main window after a search and select.

2.6 Implementation

2.6.1 The source of triples

Our RDF store is actually a quadruple store. The first three fields represent the RDF triple,
while the last identifies the source or named graph it is related too. The source is maintained
to be able to handle triples from multiple sources in one application, modify them and save
the correct triples to the correct destination.

Triple20 includes a library of background ontologies, such as RDFS and OWL as well as
some well-known public toplevel ontologies. When a document is loaded which references
to one of these ontologies, the corresponding ontology is loaded and flagged ‘read-only’,
meaning no new triples will be added to this source and it is not allowed to delete triples that
are associated to it. This implies that trying to delete such a triple inside a transaction causes
the operation to be aborted and the other operations inside the transaction to be discarded.

Other documents are initially flagged ‘read-write’ and new triples are associated to
sources based on rules. Actions involving a dialog window normally allow the user to ex-
amine and override the system’s choice, as illustrated in figure 2.7.

Triple20 is designed to edit triples from multiple sources in one view as it is often desir-
able to keep each RDF document in its own file(s). If necessary, triples from one file can be
inserted into another file.

2.7 Scalability

The aim of Triple20 and the underlying RDF store is to support large ontologies in mem-
ory. In-memory storage is much faster than what can be achieved using a persistent store
(chapter 3, Wielemaker et al. 2003b) and performance is needed to deal with the low-level
reasoning at the triple level. The maximum capacity of the triple store is approximately 20
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Figure 2.6: Create a property with name set and range oai:Server. While typing in
the Range field, the style of the typed text is updated after each keystroke, where bold
means ‘ok and unique’, red is ‘no resource with this prefix exists’ and green (showed)
means ‘multiple resources match’. Clicking the binocular icon shows all matches in the
hierarchy, allowing the user to select.

million triples on 32-bit hardware and virtually unlimited on 64-bit hardware.
We summarise some figures handling WordNet 1.6 (Miller 1995) in RDF as converted

by Decker and Melnik. The measurements are taken on a dual AMD 1600+ machine with
2Gb memory running SuSE Linux. The 5 RDF files contain a total of 473,626 triples.
The results are shown in table 2.1. For the last test, a small file is added that defines
the wns:hyponymOf property as a sub property of rdfs:subClassOf and defines
wns:LexicalConcept as a subclass of rdfs:Class. This reinterprets the WordNet
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Figure 2.7: Create a new class DcRecord. The system proposes the file the class will be
saved to (oai.rdfs) as well as the namespace (oai-)based on the properties of the super
class. Both can be changed.

hierarchy as an RDFS class hierarchy. Note that this work is done by the separate update
thread recomputing the mediators and thus does not block the UI.

Operation Time (sec)
Load from RDF/XML 65.4
Load from cache 8.4
Re-interpret as class hierarchy 16.3

Table 2.1: Some figures handling WordNet on a dual AMD 1600+ machine. Loading time
is proportional to the size of the data.

2.8 Related work

Protégé (Musen et al. 2000) is a landmark in the world of ontology editors. We have de-
scribed how our design uses the RDF triple model as a basis, where Protégé uses a proprietary
internal data model. As a consequence, we can accommodate any RDF document without in-
formation loss and we can handle multiple RDF sources as one document without physically
merging the source material. Where Protégé is primarily designed as an editor, browsing is
of great importance to Triple20. As a consequence, we have reduced the use of screen-space
for controls to the bare minimum, using popup menus and drag-and-drop as primary inter-
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action paradigm. Protégé has dedicated support for ontology engineering, which Triple20
lacks.

Miklos et al. 2005 describe how they reuse large ontologies by defining views using an
F-logic-based mapping. In a way our mediators, mapping the complex large triple store to a
manageable structure using Prolog can be compared to this, although their purpose is to map
one ontology into another, while our purpose is to create a manageable structure suitable for
driving the visualisation.

2.9 Discussion

We have realised an architecture for interactive tools that is based directly on the RDF triple
model. Using the triples instead of an intermediate representation any Semantic Web docu-
ment can be represented precisely and tools operating on the data can profit from established
RDF-based standards on the same grounds as RDF facilitates exchange between applications.
Interface components are only indirectly related to the underlying data model, which makes
it difficult to apply the classical model-view-controller (MVC) design pattern for connecting
the interface to the data. This can be remedied using mediators: intermediate data struc-
tures that reflect the interface more closely and are updated using background processing.
Mediators are realised as Prolog predicates that derive a Prolog term from the triple database.

With Triple20, we have demonstrated that this design can realise good scalability, pro-
viding multiple consistent views (triples, graph, OWL) on the same triple store. Triple20 has
been used successfully as a stand-alone ontology editor, as a component in other applications
and as a debugging tool for applications running on top of the Prolog triple store, such as
ClioPatria (chapter 10).

The presented design is applicable to interactive applications based on knowledge stored
as RDF triples (research question 3c). The overall design is language independent, although
the natural fit of RDF onto Prolog makes it particularly attractive for our purposes.

Software availability

Triple20 is available under Open Source (LGPL) license from the SWI-Prolog website.5 SWI-
Prolog with graphics runs on MS-Windows, MacOS X and almost all Unix/Linux versions,
supporting both 32- and 64-bit hardware.
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Chapter 3

Prolog-based Infrastructure for RDF:
Scalability and Performance

About this chapter The core of this chapter has been published at the ISWC-
03 (Wielemaker et al. 2003b). This paper has been updated with material from
Wielemaker et al. 2007. We also provide an update of performance and scala-
bility figures in section 3.6.

This paper elaborates on research question 1, investigating implementation al-
ternatives for rdf/3 and associated predicates. The discussion is continued in
chapter 4 on query optimisation, while chapter 10 discusses its role in building
a Semantic Web search tool.

Abstract The Semantic Web is a promising application-area for the Prolog pro-
gramming language for its non-determinism and pattern-matching. In this paper
we outline an infrastructure for loading and saving RDF/XML, storing triples in
memory, and for elementary reasoning with triples. A predecessor of the in-
frastructure described here has been used in various applications for ontology-
based annotation of multimedia objects using Semantic Web languages. Our
library aims at fast parsing, fast access and scalability for fairly large but not
unbounded applications upto 20 million triples on 32-bit hardware or 300 mil-
lion on 64-bit hardware with 64Gb main memory.

3.1 Introduction

Semantic-web applications will require multiple large ontologies for indexing and querying.
In this paper we describe an infrastructure for handling such large ontologies, This work
was done in the context of a project on ontology-based annotation of multi-media objects to
improve annotating and querying (chapter 9, Schreiber et al. 2001), for which we use the
Semantic Web languages RDF and RDFS. The annotations use a series of existing ontologies,
including AAT (Peterson 1994), WordNet (Miller 1995) and ULAN (Getty 2000). To facilitate
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this research we require an RDF toolkit capable of handling approximately 3 million triples
efficiently on current desktop hardware. This paper describes the parser, storage and basic
query interface for this Prolog-based RDF infrastructure. A practical overview using an older
version of this infrastructure is in Parsia (2001).

We have opted for a purely memory-based infrastructure for optimal speed. Our tool set
can handle the 3 million triple target with approximately 300 Mb. of memory and scales
to approximately 20 million triples on 32-bit hardware. Scalability on 64-bit hardware is
limited by available main memory and requires approximately 64Gb for 300 million triples.
Although insufficient to represent “the whole web”, we assume 20 million triples is sufficient
for applications operating in a restricted domain such as annotations for a set of cultural-
heritage collections.

This document is organised as follows. In section 3.2 we describe and evaluate the
Prolog-based RDF/XML parser. Section 3.3 discusses the requirements and candidate choices
for a triple storage format. In section 3.4 we describe the chosen storage method and the
basic query API. In section 3.5.1 we describe the API and implementation for RDFS reasoning
support. This section also illustrates the mechanism for expressing higher level queries.
Section 3.6 evaluates performance and scalability and compares the figures to some popular
RDF stores.

3.2 Parsing RDF/XML

The RDF/XML parser is the oldest component of the system. We started our own parser
because the existing (1999) Java (SiRPAC1) and Pro Solutions Perl-based2 parsers did not
provide the performance required and we did not wish to enlarge the footprint and complicate
the system by introducing Java or Perl components. The RDF/XML parser translates the
output of the SWI-Prolog SGML/XML parser (see section 7.2) into a Prolog list of triples
using the steps summarised in figure 3.1. We illustrate these steps using an example from
the RDF Syntax Specification document (RDFCore WG 2003), which is translated by the
SWI-Prolog XML parser into a Prolog term as described in figure 3.2.

The core of the translation is formed by the second step in figure 3.1, converting the
XML DOM structure into an intermediate representation. The intermediate representation is
a Prolog term that represents the RDF at a higher level, shielding details such as identifier
generation for reified statements, rdf bags, blank nodes and the generation of linked lists
from RDF collections from the second step. Considering the rather instable specification of
RDF at the time this parser was designed, we aimed at an implementation where the code
follows as closely as possible the structure of the RDF specification document.

Because the output of the XML parser is a nested term rather than a list we can-
not use DCG. Instead, we designed a structure matching language in the spirit of DCGs,
which we introduce with an example. Figure 3.3 shows part of the rules for the pro-

1http://www-db.stanford.edu/˜melnik/rdf/api.html
2http://www.pro-solutions.com/rdfdemo/
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Figure 3.1: Steps converting an RDF/XML document into a Prolog list of triples.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://description.org/schema/">

<rdf:Description about="http://www.w3.org/Home/Lassila">
<s:Creator>Ora Lassila</s:Creator>

</rdf:Description>
</rdf:RDF>

[element(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’:’RDF’,
[xmlns:rdf = ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’,
xmlns:s = ’http://description.org/schema/’
],
[element(’http://www.w3.org/1999/02/22-rdf-syntax-ns#’:’Description’,

[about = ’http://www.w3.org/Home/Lassila’ ],
[ element(’http://description.org/schema/’:’Creator’,

[], [ ’Ora Lassila’ ])
])

])
]

Figure 3.2: Input RDF/XML document and output of the Prolog XML Parser, illustrating
the input for the RDF parser

duction parseTypeCollectionPropertyElt3 into a Prolog term (intermediate representation)
collection(Elements), where Elements holds an intermediate representation for the
collection-elements. The body of the rules guiding this process consists of the term that
must be matched, optionally followed by raw Prolog code between {. . .}, similar to DCG.
The matched term can call rule-sets to translate a sub-term using a \ escape-sequence. In
figure 3.3, the first rule (propertyElt) matches a term element(Name, Attributes, Con-
tent), iff Attributes matches the attribute specification and Content can be matched by the
nodeElementList rule-set.

3http://www.w3.org/TR/rdf-syntax-grammar/#parseTypeCollectionPropertyElt
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The intermediate representation is translated into a list of rdf(Subject, Predicate, Ob-
ject) terms using a set of traditional DCG rules.

propertyElt(Id, Name, collection(Elements), Base) ::=
element(Name,

\attrs([ \parseCollection,
\?idAttr(Id, Base)

]),
\nodeElementList(Elements, Base)).

parseCollection ::=
\rdf_or_unqualified(parseType) = ’Collection’.

rdf_or_unqualified(Tag) ::=
Tag.

rdf_or_unqualified(Tag) ::=
NS:Tag,
{ rdf_name_space(NS), !
}.

Figure 3.3: Source code of the second step, mapping the XML-DOM structure into an
intermediate representation derived from the RDF syntax specification. This fragment
handles the parseType=Collection element

Long documents cannot be handled this way as both the entire XML structure and the re-
sulting list of RDF triples must fit on the Prolog stacks. To avoid this problem the XML parser
can be operated in streaming mode. In this mode the RDF parser handles RDF-Descriptions
one-by-one, passing the resulting triples to a user-supplied Prolog goal.

The source-code of the parser counts 1170 lines, 564 for the first pass creating the inter-
mediate state, 341 for the generating the triples and 265 for the driver putting it all together.
The parser passes the W3C RDF Test Cases4.

3.3 Storing RDF triples: requirements and alternatives

3.3.1 Requirement from integrating different ontology representations

Working with multiple ontologies created by different people and/or organisations poses
some specific requirements for storing and retrieving RDF triples. We illustrate with an
example from our own work on annotating images (chapter 9, Schreiber et al. 2001).

Given absence of official RDF versions of AAT and IconClass we created our own RDF

representation, in which the concept hierarchy is modelled as an RDFS class hierarchy. We
wanted to use these ontologies in combination with the RDF representation of WordNet cre-
ated by Decker and Melnik.5 However, their RDF Schema for WordNet defines classes and

4http://www.w3.org/TR/2003/WD-rdf-testcases-20030123/
5http://www.semanticweb.org/library/
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properties for the metamodel of WordNet. This means that WordNet synsets (the basic Word-
Net concepts) are represented as instances of the (meta)class LexicalConcept and that
the WordNet hyponym relations (the subclass relations in WordNet) are represented as tuples
of the meta property hyponymOf relation between instances of wns:LexicalConcept.
This leads to a representational mismatch, as we are now unable to treat WordNet concepts
as classes and WordNet hyponym relations as subclass relations.

Fortunately, RDFS provides metamodeling primitives for coping with this. Consider the
following two RDF descriptions:

<rdf:Description rdf:about="&wns;LexicalConcept">
<rdfs:subClassOf rdf:resource="&rdfs;Class"/>

</rdf:Description>

<rdf:Description rdf:about="&wns;hyponymOf">
<rdfs:subPropertyOf rdf:resource="&rdfs;subClassOf"/>

</rdf:Description>

The first statement specifies that the class LexicalConcept is a subclass of the built-
in RDFS metaclass Class, the instances of which are classes. This means that now all
instances of LexicalConcept are also classes. In a similar way, the second statement
defines that the WordNet property hyponymOf is a subproperty of the RDFS subclass-of
relation. This enables us to interpret the instances of hyponymOf as subclass links.

We expect representational mismatches to occur frequently in any realistic semantic-web
setting. RDF mechanisms similar to the ones above can be employed to handle this. However,
this poses the requirement on the toolkit that the infrastructure is able to interpret subtypes
of rdfs:Class and rdfs:subPropertyOf. In particular the latter is important for
our applications.

3.3.2 Requirements

Based on our lessons learned from earlier annotation experiments as described in section 9.3
we state the following requirements for the RDF storage module.

Efficient subPropertyOf handling As illustrated in section 3.3.1, ontology-based anno-
tation requires the re-use of multiple external ontologies. The subPropertyOf
relation provides an ideal mechanism to re-interpret an existing RDF dataset.

Avoid frequent cache updates In our first prototype we used secondary store based on the
RDFS data model to speedup RDFS queries. The mapping from triples to this model is
not suitable for incremental update, resulting in frequent slow re-computation of the
derived model from the triples as the triple set changes.
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Scalability At the time of design, we had access to 1.5 million triples in vocabularies. To-
gether with actual annotations we aimed at storing 3 million triples on a (then) com-
modity notebook with 512 Mb main memory. Right now,6 we have access to over
30 million triples and we plan to support 300 million triples in commodity server
hardware with 8 cores and 64 Gb main memory.

Fast load/save At the time of design, the RDF/XML parsing and loading time for 1.5 million
triples was 108 seconds. This needs to be improved by an order of magnitude to
achieve reasonable startup times, especially for interactive development.

3.3.3 Storage options

The most natural way to store RDF triples is using facts of the format rdf(Subject, Predicate,
Object) and this is, except for a thin wrapper improving namespace handling, the represen-
tation used in our first prototype. As standard Prolog systems only provide indexing on the
first argument this implies that asking for properties of a subject is indexed, but asking about
inverse relations is slow. Many queries involve reverse relations: “what are the sub-classes of
X?”. “what instances does Y have?”, “what subjects have label L?” are queries commonly
used in our annotation tool.

Our first tool (section 9.1) solved these problems by building a secondary Pro-
log database following the RDFS data model. The cached relations included
rdfs class(Class, Super, Meta). rdfs property(Class, Property, Facet),
rdf instance(Resource, Class) and rdfs label(Resource, Label). These relations
can be accessed quickly in any direction. This approach has a number of drawbacks. First
of all, the implications of even adding or deleting a single triple are potentially enormous,
leaving the choice between complicated incremental update of the cache with the triple set or
frequent slow total recompute of the cache. Second, storing the cache requires considerable
memory resources and third, it is difficult to foresee for which derived relations caching is
required because this depends on the structure and size of the triple set as well as the frequent
query patterns.

In another attempt we used Predicate(Subject, Object) as database representation and
stored the inverse relation as well in InversePred(Object, Subject) with a wrapper to call
the ‘best’ version depending on the runtime instantiation. Basic triple query is fast, but
queries that involve an unknown predicate or need to use the predicate hierarchy (first re-
quirement) cannot be handled efficiently. When using a native Prolog representation, we can
use Prolog syntax for caching parsed RDF/XML files. Loading triples from Prolog syntax
is approximately two times faster than RDF/XML, which is insufficient to satisfy our fourth
requirement.

Using an external DBMS for the triple store is an alternative. Assuming an SQL database,
there are three possible designs. The simplest one is to use Prolog reasoning and simple
SELECT statements to query the DB. This approach does not exploit query optimisation

6November 2008
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and causes many requests involving large amounts of data. Alternatively, one could either
write a mixture of Prolog and SQL or automate part of this process, as covered by the Prolog
to SQL converter of Draxler (1991). Our own (unpublished) experiences indicate a sim-
ple database query is at best 100 and in practice often over 1,000 times slower than using
the internal Prolog database. Query optimisation is likely to be of limited effect due to
poor handling of transitive relations in SQL. Many queries involve rdfs:subClassOf,
rdfs:subPropertyOf and other transitive relations. Using an embedded database such
as BerkeleyDB7 provides much faster simple queries, but still imposes a serious efficiency
penalty. This is due to both the overhead of the formal database API and to the mapping
between the in-memory Prolog atom handles and the RDF resource representation used in
the database.

In the end we opted for a Prolog foreign-language extension: a module written in C to
extend the functionality of Prolog.8 A significant advantage using an extension to Prolog
rather than a language independent storage module separated by a formal API is that the
extension can use native Prolog atoms, significantly reducing memory requirements and
access time.

3.4 Realising an RDF store as C-extension to Prolog

3.4.1 Storage format

Triples are stored as a C-structure holding the three fields and 6 ‘next’ links, one for the
linked list that represents all triples as a linear list and 5 hash-tables links. The 5 hash-
tables cover all instantiation patterns with at least one field instantiated, except for all fields
instantiated (+,+,+) and subject and object instantiated (+,-,+). Indexing of fully is less
critical because a fully instantiated query never produces a choicepoint. Their lookup uses
the (+,+,-) index. Subject and object instantiated queries use the (+,-,-) index.9 The size of
the hash-tables is automatically increased as the triple set grows. In addition, each triple
is associated with a source-reference consisting of an atom (normally the filename) and
an integer (normally the line-number) and a general-purpose set of flags, adding up to 13
machine words (52 bytes on 32-bit hardware) per triple, or 149Mb for the intended 3 million
triples. Our reference-set of 1.5 million triples uses 890,000 atoms. In SWI-Prolog an atom
requires 7 machine words overhead excluding the represented string. If we estimate the
average length of an atom representing a fully qualified resource at 30 characters the atom-
space required for the 1.8 million atoms in 3 million triples is about 88Mb. The required
total of 237Mb for 3 million triples fits in 512Mb.

7http://www.sleepycat.com/
8Extending Prolog using modules written in the C-language is provided in most todays Prolog systems although

there is no established standard foreign interface and therefore the connection between the extension and Prolog needs
to be rewritten when porting to other implementation of the Prolog language (Bagnara and Carro 2002).

9On our usage pattern this indexing schema performs good. Given that that database maintains statistics on the
used indexing, we can consider to make existence and quality (size of the hash-table) dynamic in future versions.
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To accommodate active queries safely, deletion of triples is realised by flagging them as
erased. Garbage collection can be invoked if no queries are active.

3.4.1.1 Indexing

Subjects and resource Objects use the immutable atom-handle as hash-key. The Predicate
field needs special attention due to the requirement to handle rdfs:subPropertyOf ef-
ficiently. Each predicate is a first class citizen and is member of a predicate cloud, where
each cloud represents a graph of predicates connected through rdfs:subPropertyOf
relations. The cloud reference is used for indexing the triple. The cloud contains a reacha-
bility matrix that contains the transitive closure of the rdfs:subPropertyOf relations
between the member predicates. The clouds are updated dynamically on assert and retract
of rdfs:subPropertyOf triples. The system forces a re-hash of the triples if a new
triple unites two clouds, both of which represent triples, or when deleting a triple splits a
cloud in two non-empty clouds. As a compromise to our requirements, the storage layer
must know the fully qualified resource for rdfs:subPropertyOf and must rebuild the
predicate hierarchy and hash-tables if rdfs:subPropertyOf relations join or split non-
empty predicate clouds. The index is re-build on the first indexable query. We assume that
changes to the rdfs:subPropertyOf relations are infrequent.

RDF literals have been promoted to first class citizens in the database. Typed literals are
supported using arbitrary Prolog terms as RDF object. All literals are kept in an AVL-tree,
where

numericliterals < stringliterals < termliterals

. Numeric literals are sorted by value. String literals are sorted alphabetically, case insen-
sitive and after removing UNICODE diacritics. String literals that are equal after discarding
case and diacritics are sorted on UNICODE code-point. Other Prolog terms are sorted on Pro-
log standard order of terms. Sorted numeric literals are used to provide indexed search for
dates. Sorted string literals are used for fast prefix search which is important for suggestions
and disambiguation as-you-type with AJAX style interaction (chapter 10, Wielemaker et al.
2008). The core database provides indexed prefix lookup on the entire literals. Extended
with the literal search facilities described above, it also supports indexed search on tokens
and prefixes of tokens that appear in literals.

The literal search facilities are completed by means of monitors. Using
rdf monitor(:Goal, +Events) we register a predicate to be called at one or more given
events. Monitors that trigger on literal creation and destruction are used to maintain a word-
index for the literals as well as an index from stem to word and metaphone (Philips 2000)
key to word.

The above representation provides fully indexed lookup using any instantiation pattern
(mode) including sub-properties. Literal indexing is case insensitive and supports indexed
prefix search as well as indexed search on ranges of numerical values.
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3.4.2 Concurrent access

Multi-threading is supported by means of read-write locks and transactions. During normal
operation, multiple readers are allowed to work concurrently. Transactions are realised using
rdf transaction(:Goal, +Context). If a transaction is started, the thread waits until
other transactions have finished. It then executes Goal, adding all write operations to an
agenda. During this phase the database is not actually modified and other readers are allowed
to proceed. If Goal succeeds, the thread waits until all readers have completed and updates
the database. If Goal fails or throws an exception the agenda is discarded and the failure or
error is returned to the caller of rdf transaction/2. Note that the rdf/3 transaction-
based update behaviour differs from the multi-threaded SWI-Prolog logical update behaviour
defined for dynamic predicates:

• Prolog dynamic predicates
In multi-threaded (SWI-)Prolog, accessing a dynamic predicate for read or write de-
mands synchronisation only for a short time. In particular, readers with an open
choice-point on the dynamic predicate allow other threads to update the same predi-
cate. The standard Prolog logical update semantics are respected using time-stamps
and keeping erased clauses around. Erased clauses are destroyed by a garbage collec-
tor that is triggered if the predicate has a sufficient number of erased clauses and is
not in use.

• RDF-DB transactions
Multiple related modifications are bundled in a transaction. This is often desirable
as many high-level (RDFS/OWL) changes involve multiple triples. Using transactions
guarantees a consistent view of the database and avoids incomplete modifications if a
sequence of changes is aborted.

3.4.3 Persistency and caching

Loading RDF from RDF/XML is slow, while quickly loading RDF databases is important to
reduce application startup times. This is particularly important during program development.
In addition, we need a persistent store to accumulate loaded RDF and updates such as human
edits. We defined a binary file format that is used as a cache for loading external RDF

resources and plays a role in the persistent storage.
Although attractive, storing triples using the native representation of Prolog terms (i.e.,

terms of the form rdf(Subject, Predicate, Object)) does not provide the required speedup,
while the files are, mainly due to the expanded namespaces, larger than the RDF/XML source.
Unpublished performance analysis of the Prolog parser indicates that most of the time is
spent in parsing text to atoms used to represent RDF resources. Typically, the same re-
source appears in multiple triples and therefore we must use a serialisation that performs
the expensive conversion from text to atom only once per unique resource. We use a simple
incremental format that includes the text of the atom only the first time that the atom needs
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to be saved. Later references to the same atom specify the atom as the N-th atom seen while
loading this file. An atom on the file thus has two formats: A 〈length〉 〈text〉 or X 〈integer〉.
Saving uses a hash table to keep track of already saved atoms, while loading requires an ar-
ray of already-loaded atoms. The resulting representation has the same size as the RDF/XML

within 10%, and loads approximately 20 times faster.
The predicate rdf load(+SourceURL) can be configured to maintain a cache that is

represented as a set of files in the above format.
A persistent backup is represented by a directory on the filesystem and one or two files

per named graph: an optional snapshot and an optional journal. Both files are maintained
through the monitor mechanism introduced in section 3.4.1.1 for providing additional indices
for literals. If an initial graph is loaded from a file, a snapshot is saved in the persistent
store using the fast load/save format described above. Subsequent addition or deletion of
triples is represented by Prolog terms appended to the journal file. The journal optionally
stores additional information passed with the transaction such as the time and user, thus
maintaining a complete changelog of the graph. If needed, the current journal can be merged
into the snapshot. This reduces disk usage and enhances database restore performance, but
looses the history.

3.4.4 API rationale

The API is summarised in table 3.2. The predicates support the following datatypes:

• Resource
A fully qualified resource is represented by an atom. Prolog maps atoms representing
a string uniquely to a handle and implements comparison by comparing the handles.
As identity is the only operation defined on RDF resources, this mapping is perfect.
We elaborate on namespace handling later in this section.

• literal(Literal)
A literal is embedded in a term literal/1. The literal itself can be any Prolog
term. Two terms have a special meaning: lang(LangID, Text) and type(TypeIRI,
Value).

The central predicate is rdf/3, which realises a pure10 Prolog predicate that matches
an edge in the RDF graph. In many cases it is desirable to provide a match specification
other than simple exact match for literals, which is realised using a term literal(+Query,
-Value) (see rdf/3 in table 3.2). RDFS subPropertyOf entailment (requirement one of
section 3.3.2) is realised by rdf has/4.

10A pure predicate is a predicate that behaves consistently, regardless of the instantiation pattern. Conjunctions of
pure predicate can be ordered freely without affecting the semantics.
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Declarativeness Many types of reasoning involve transitive relations such as
rdfs:subClassOf which are allowed to contain cycles. Normal Prolog non-recursion
to express the transitive closure of a relation as illustrated in figure 3.4 (top) does not ter-
minate if the relation contains cycles. Simple cases can be fixed easily by maintaining a set
of visited resources. Complicated mutual recursive definitions can be handled transparently
in Prolog systems that provide tabling (Ramakrishnan et al. 1995). Currently, we provide
rdf reachable/3 which provides cycle-safe breadth-first search to simplify some of the
coding (figure 3.4, bottom).

rdfs_subclass_of(Class, Class).
rdfs_subclass_of(Class, Super) :-

rdf_has(Class, rdfs:subClassOf, Super0),
rdfs_subclass_of(Super0, Super).

rdfs_subclass_of(Class, Super) :-
rdf_reachable(Class, rdfs:subClassOf, Super).

Figure 3.4: Coding a transitive relation using standard Prolog recursion does not terminate
(top) because most relations may contain cycles. The predicate rdf reachable/3
(bottom) explores transitive relations safely.

Namespace handling Fully qualified resources are long, hard to read and difficult to main-
tain in application source-code. On the other hand, representing resources as atoms holding
the fully qualified resource is attractive because it is compact and compares fast.

We unite the advantage of fully qualified atoms with the compactness in the source of
〈NS〉:〈Identifier〉 using macro-expansion based on Prolog goal expansion/2 rules. For
each of the arguments that can receive a resource, a term of the format 〈NS〉:〈Identifier〉,
where 〈NS〉 is a registered abbreviation of a namespace and 〈Identifier〉 is a local name, is
mapped to the fully qualified resource.11 The predicate rdf db:ns/2 maps registered short
local namespace identifiers to the fully qualified namespaces. The initial definition contains
the well-known abbreviations used in the context of the Semantic Web. See table 3.1. The
mapping can be extended using rdf register ns/2.

With these declarations, we can write the following to get all individuals of
http://www.w3.org/2000/01/rdf-schema#Class on backtracking:

?- rdf(X, rdf:type, rdfs:’Class’).

11In a prototype of this library we provided a more powerful version of this mapping at runtime. In this version,
output-arguments could be split into their namespace and local name as well. After examining actual use of this extra
facility in the prototype and performance we concluded a limited compile-time alternative is more attractive.
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rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
rdfs http://www.w3.org/2000/01/rdf-schema#
owl http://www.w3.org/2002/7/owl#
xsd http://www.w3.org/2000/10/XMLSchema#
dc http://purl.org/dc/elements/1.1/
eor http://dublincore.org/2000/03/13/eor#

Table 3.1: Initial registered namespace abbreviations

3.5 Querying the RDF store

3.5.1 RDFS queries

Queries at the RDFS level are provided as a library implemented using Prolog rules exploiting
the API primitives in table 3.2. For example the code in, figure 3.5 realises testing and
generating of individuals. The first rule tests whether an individual belongs to a given class
or generates all classes the individual belongs to. The second rule generates all individuals
that belong to a specified class. The last rule is called in the unbound condition. There is
not much point generating all classes and all individuals that have a type that is equal to or a
subclass of the generated class and therefore we generate a standard Prolog exception.

rdfs_individual_of(Resource, Class) :-
nonvar(Resource), !,
rdf_has(Resource, rdf:type, MyClass),
rdfs_subclass_of(MyClass, Class).

rdfs_individual_of(Resource, Class) :-
nonvar(Class), !,
rdfs_subclass_of(SubClass, Class),
rdf_has(Resource, rdf:type, SubClass).

rdfs_individual_of(_Resource, _Class) :-
throw(error(instantiation_error, _)).

Figure 3.5: Implementation of rdfs individual of/2
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rdf(?Subject, ?Predicate, ?Object)
Elementary query for triples. Subject and Predicate are atoms representing the fully qualified URL of the
resource. Object is either an atom representing a resource or literal(Text) if the object is a literal value.
For querying purposes, Object can be of the form literal(+Query, -Value), where Query is one of

exact(+Text)
Perform exact, but case-insensitive match. This query is fully indexed.

substring(+Text)
Match any literal that contains Text as a case-insensitive substring.

word(+Text)
Match any literal that contains Text as a ‘whole word’.

prefix(+Text)
Match any literal that starts with Text.

rdf has(?Subject, ?Predicate, ?Object, -TriplePred)
This query exploits the rdfs:subPropertyOf relation. It returns any triple whose stored predicate equals
Predicate or can reach this by following the transitive rdfs:subPropertyOf relation. The actual stored
predicate is returned in TriplePred.

rdf reachable(?Subject, +Predicate, ?Object)
True if Object is, or can be reached following the transitive property Predicate from Subject. Either Subject or
Object or both must be specified. If one of Subject or Object is unbound this predicate generates solutions in
breadth-first search order. It maintains a table of visited resources, never generates the same resource twice
and is robust against cycles in the transitive relation.

rdf subject(?Subject)
Enumerate resources appearing as a subject in a triple. The reason for this predicate is to generate the known
subjects without duplicates as one would get using rdf(Subject, , ). The storage layer ensures the first triple
with a specified Subject is flagged as such.

rdf transaction(:Goal, +Context)
Run Goal, recording all database modifying operations. Commit the operations if Goal succeeds, discard
them otherwise. Context may associate addition information for the persistency layer as well as providing
feedback to the user in interactive applications. See section 3.4.2.

rdf assert(+Subject, +Predicate, +Object)
Assert a new triple into the database. Subject and Predicate are resources. Object is either a resource or a term
literal(Value).

rdf retractall(?Subject, ?Predicate, ?Object)
Removes all matching triples from the database.

rdf update(+Subject, +Predicate, +Object, +Action)
Replaces one of the three fields on the matching triples depending on Action:

subject(Resource)
Changes the first field of the triple.

predicate(Resource)
Changes the second field of the triple.

object(Object)
Changes the last field of the triple to the given resource or literal(Value).

Table 3.2: API summary for accessing the triple store
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3.5.2 Application queries

We study the Prolog implementation of some queries on WordNet 1.6 (Miller 1995) in RDF

as converted by Decker and Melnik to get some insight in how queries are formulated and
what performance considerations must be taken into account. Timing is performed on an
AMD 1600+ processor. Consider the question ‘Give me an individual of WordNet ‘Noun’
labelled right’. This non-deterministic query can be coded in two ways, which are semanti-
cally equivalent:

right_noun_1(R) :-
rdfs_individual_of(R, wns:’Noun’),
rdf_has(R, rdfs:label, literal(right)).

right_noun_2(R) :-
rdf_has(R, rdfs:label, literal(right)),
rdfs_individual_of(R, wns:’Noun’).

The first query enumerates the subclasses of wns:Noun, generates their 66025 individuals
and tests each for having the literal ‘right’ as label. The second generates the 8 resources in
the 0.5 million triples with label ‘right’ and tests them to belong to wns:Noun. The first
query requires 0.17 seconds and the second 0.37 milli-seconds to generate all alternatives, a
460× speedup. Query optimisation by ordering goals in a conjunction is required for good
performance. Automatic reordering of conjunctions is discussed in chapter 4 (Wielemaker
2005) in the context of implementing the Semantic Web query languages SeRQL (Broekstra
et al. 2002) and SPARQL (Prud’hommeaux and Seaborne 2008) on top of this library.

3.5.3 Performance of rdf/3 and rdf has/4

The most direct way to describe the query performance is to describe the metrics of the core
API functions: rdf/3 and rdf has/4. Other reasoning must be defined on top of these
primitives and as we are faced with a large variety of potential tasks that can be fulfilled
using a large variety of algorithms that are not provided with the RDF-DB library it is beyond
the scope of this paper to comment on the performance for high-level queries.

We examined two queries using WordNet 1.6, executed on an AMD 1600+ CPU with
2Gb main memory. First we generated all solutions for rdf(X, rdf:type, wns:’Noun’). The
66,025 nouns are generated in 0.046 seconds (1.4 million alternatives/second). Second we
asked for the type of randomly generated nouns. This deterministic query is executed at
526,000 queries/second. Tests comparing rdf/3 with rdf has/4, which exploits the
rdfs:subPropertyOf relation show no significant difference in performance. In sum-
mary, the time to setup a query and come with the first answer is approximately 2µs and the
time to generate subsequent solutions is approximately 0.7µs per solution.
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3.6 Performance and scalability comparison

Comparing the performance of RDF stores has several aspects. First, there is the data. Here
we see a number of reference datasets,12 such as the Lehigh University Benchmark (Guo
et al. 2004). Second, there are the queries, which are closely related to the tasks for which
we wish to use the RDF store. Examples of tasks are graph-exploration algorithms such as
discussed in chapter 10, graph pattern matching as supported by SPARQL and (partial) OWL

reasoning as supported by OWLIM (Kiryakov et al. 2005). Third, there is the different basic
design which depends in part on the intended usage. We identified six design dimensions
as listed below. This list has some overlap with section 3.3.3, but where the discussion in
section 3.3.3 is already focused because of the requirements (section 3.3.2) and the choice
for Prolog, the list below covers design choices made by a wider range of RDF stores which
we can consider to include into our comparison.

• Memory vs. disk-based
Disk-based storage allows for much larger amounts of triples and can ensure short
application startup times. However, access is several orders of magnitude slower.
This can be compensated for by using caching, pre-computing results (forward chain-
ing) and additional indexes. Because our aim is to provide a platform where we can
prototype different reasoning mechanisms and support updates to the database, pre-
computing is unattractive. Many RDF stores can be configured for either disk-based or
memory-based operation. Because of the totally different performance curve and stor-
age limits there is not much point comparing our memory-based infrastructure with
disk-based implementations.

• Node vs. relational model
RDF can be stored as a graph in memory, where nodes link directly to their neighbours
or as a table of RDF triples. Both these models can be used on disk and in memory.
The SWI-Prolog RDF store uses the relational model. We have no information on the
other stores.

• Read-only vs. read/write
Systems differ widely in the possibility to update the database. Some offer no update
at all (e.g., BRAHMS, Janik and Kochut 2005); systems using forward reasoning pro-
vide much slower updates than systems doing backward reasoning only, notably on
delete operations. Because annotation is one of our use cases, changes are not very
frequent but must be supported. Read-only databases are generally faster and provide
more compact storage because they can use fixed-size data structures (e.g., arrays) and
require no locking for concurrent access.

• Forward vs. backward reasoning
Forward reasoning systems pre-compute (part of) the entailment and can therefore

12See also http://esw.w3.org/topic/RdfStoreBenchmarking
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answer questions that require that entailment instantaneously. The price is a higher
memory footprint, slower loading, slow updates and more difficult (or lack of) support
to enable/disable specific entailment (see section 10.5.0.5). This model fits poorly
with our use cases and the Prolog backward reasoning bias.

• Built-in support for RDFS, OWL, etc.
Especially stores using backward reasoning may have built-in support for specific in-
ferences. Our store has special support for rdfs:subPropertyOf (rdf has/4) and
transitive properties (rdf reachable/3). Others provide support for identity mapping
using owl:sameAs.

• Direct access to the triple store vs. query-language only
Some stores can be deployed as a library which provided direct access to the triple
store. Typically these stores provide an iterator that can be used to iterate over all
triples in the store that match some pattern. This is comparable to our rdf/3 pred-
icate that iterates on backtracking over matching triples. Other stores only provide
access through a query language such as SPARQL and some can be used in both modes.

Each value on each of the above six dimensions have advantages and disadvantages for
certain classes of RDF-based applications, and it should therefore not come as a surprise that
it is hard to compare RDF stores.

In 2005, Janik and Kochut (2005) compared the main-memory RDF store BRAHMS on
load time, memory usage and two graph-exploration tasks to several RDF stores that provide
a direct API to the triple store from the language in which they are implemented (see last
bullet above). A direct API is important for their use case: searching RDF graphs for long as-
sociative relations. This use case compares well to the general purpose graph-exploration we
aim at (see section 10.3) and therefore we decided to use the same RDF stores and datasets.
The data (except for the ‘small synthetic’ mentioned in the paper) is all publically available.
For the RDF stores we downloaded the latest stable version. We added SwiftOWLIM (OWLIM

using main memory storage) because it is claimed13 to be a very fast and memory efficient
store. Data, stores and versions are summarised in table 3.3.

Our hypothesis was that the hardware used Janik and Kochu (dual Intel Xeon@3.06Ghz)
is comparable to ours (Intel X6800@2.93Ghz) and we could add our figures to the tables
presented in their paper. After installing BRAHMS and re-running some of the tests we con-
cluded this hypothesis to be false. For example, according to Janik and Kochut (2005),
BRAHMS required 363 seconds to load the ‘big SWETO’ dataset while our timing is 37 sec-
onds. BRAHMS search tests run 2-4 times faster in our setup with a significant variation.
Possible explanations for these differences are CPU, compiler (gcc 3.2.2 vs. gcc 4.3.1), 32-
bit vs. 64-bit version and system load. Dependency on system load cannot be excluded
because examining the source for the timings on BRAHMS learned us that the reported time
is wall time. Possible explanations for the much larger differences in load time are enhance-
ments to the Raptor parser (the version used in the BRAHMS paper is unknown) and I/O

13http://www.ontotext.com/owlim/OWLIMPres.pdf
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System Remarks
Jena version 2.5.6 (McBride 2001)
Sesame version 2.2.1 (Broekstra et al. 2002) Storage (sail): built-in memory
Sesame version 2.2.1 (Broekstra et al. 2002) Storage (sail): OWLIM 3.0beta
Redland version 1.0.8 (Beckett 2002) Parser: Raptor 1.4.18; in-memory trees
BRAHMS version 1.0.1 (Janik and Kochut 2005) Parser: Raptor 1.4.18
SWI-Prolog version 5.7.2
Dataset file size #triples
Small SWETO (Aleman-Meza et al. 2004) 14Mb 187,505
Big SWETO 244Mb 3,196,692
Univ(50,0) (Guo et al. 2004) 533Mb 6,890,961

Table 3.3: Systems and datasets used to evaluate load time and memory usage. The
Raptor parser is part of the Redland suite described in the cited paper.

speed. Notably because time was measured as wall time differences between, for example
local disk and network disk can be important.

Given availability of software and expertise to re-run the load time and memory usage
experiments, we decided to do so using the currently stable version of all software and using
the same platform for all tests. Section 3.6.1 describes this experiment.

All measurements are executed on an Intel core duo X6800@2.93Ghz, equipped with
8Gb main memory and running SuSE Linux 11.0. C-based systems where compiled with
gcc 4.3.1 using optimisation settings as suggested by the package configure program and in
64-bit mode (unless stated otherwise); Java-based systems where executed using SUN Java
1.6.0 (64-bit, used -Xmx7G to specify 7Gb heap limit).

3.6.1 Load time and memory usage

Load time and memory usage put a limit on the scalability of main-memory-based RDF

stores. Load time because it dictates the startup time of the application and memory usage
because it puts a physical limit on the number of triples that can be stored. The amount of
memory available to 32-bit applications is nowadays dictated by the address space granted
to user processes by the OS and varies between 2Gb and 3.5Gb. On 64-bit machines it is
limited by the amount of physical memory. In 2008, commodity server hardware scales to
64Gb; higher amounts are only available in expensive high-end hardware.

Table 3.4 shows both the load times for loading RDF/XML and for loading the propri-
etary cache/images formats. Redland was not capable of processing the Univ(50,0) dataset
due to a ‘fatal error adding statements’. We conclude that our parser is the slowest of the
tested ones; only by a small margin compared to Jena and upto five times slower compared
to Raptor+BRAHMS. Based on analysing the SWI-Prolog profiler output we conclude that
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the interpreted translation from XML to RDF triples (section 3.2) and especially the transla-
tion of resources to their final IRI format provides significant room for improvement. Janik
and Kochut 2005 show extremely long load times for Univ(50,0) for both Jena and Sesame
(Sesame: 2820 seconds for Univ(50,0) vs. 158 for big SWETO; nearly 18 times longer for
loading only a bit over 2 times more data). A likely cause is garbage collection time because
both systems where operating close to their memory limit on 32-bit hardware. We used a
comfortable 7Gb Java heap limit on 64-bit hardware and did not observe the huge slowdown
reported by Janik and Kochu. SWI-Prolog’s infrastructure for loading RDF/XML is not sub-
ject to garbage collection because the parser operates in streaming mode and the RDF store
provides its own memory management.

The SWI-Prolog RDF-DB cache format loads slower than BRAHMS images. One expla-
nation is that BRAHMS internalises RDF resources as integers that are local to the image. In
SWI-Prolog, RDF resources are internalised as Prolog atoms that must be resolved at load
time. BRAHMS can only load exactly one image, while the SWI-Prolog RDF-DB can load any
mixture of RDF/XML and cache files in any order.

Table 3.5 shows the memory usage each of the tested RDF stores. Results compare well
to Janik and Kochu when considering the 32-bit vs. 64-bit versions of the used software.
SWI-Prolog RDF-DB uses slightly more memory than BRAHMS, which is to be expected
as BRAHMS is a read-only database, while SWI-Prolog’s RDF-DB is designed to allow for
updates. It is not clear to us why the other systems use so much more memory, particularly
so because the forward reasoning of all systems has been disabled. Table 3.5 also provides
the figures for the 32-bit version of SWI-Prolog. As all memory except for some flag fields
and the resource string consists of pointers, memory usage is almost 50% lower.

Small SWETO Big SWETO Univ(50,0)
Jena 7.4 120 180
Sesame 5.7 88 127
Sesame – OWLIM 4.1 63 104
Redland 3.1 66 –
BRAHMS – create image 1.8 37 69
BRAHMS – load image 0.1 1 1
SWI – initial 8.2 161 207
SWI – load cache 0.4 11 19
SWI – Triples/second 22,866 19,887 29,701

Table 3.4: RDF File load time from local disk in seconds. Reported time is CPU time,
except for the BRAHMS case, which is wall time because we kept the original instrumen-
tation. System load was low.
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Small SWETO Big SWETO Univ(50,0)
Jena 304 2669 2793
Sesame 141 2033 3350
Sesame – OWLIM 143 1321 2597
Redland 96 1514 –
BRAHMS 31 461 714
SWI 36 608 988
SWI – 32-bit 24 365 588

Table 3.5: Memory usage for RDF file load in Mb. Except for the last row, all systems
were used in 64-bit mode.

3.6.2 Query performance on association search

Janik and Kochut 2005 evaluate the performance by searching all paths between two given
resources, without considering paths to schema information, in an RDF graph. They use
two algorithms for this: depth-first search (DFS) and bi-directional breadth first search (bi-
BFS). We implemented both algorithms in Prolog on top of the SWI-Prolog RDF-DB store.
Implementing DFS is straightforward, but the implementation of bi-BFS leaves more options.
We implemented a faithful translation of the C++ bi-BFS implementation that is part of the
examples distributed with BRAHMS.

DFS We replicated the DFS experiment with BRAHMS and SWI-Prolog using the software
and hardware described on page 43. The results for the other stores are the values reported
by Janik and Kochu, multiplies by the performance difference found between their report on
BRAHMS and our measurements (3.3×). We are aware that these figures are only a rough
approximations. In the Prolog version, rdf/3 is responsible for almost 50% of the CPU

time. Memory requirements for DFS are low and the algorithm does not involve garbage
collection. BRAHMS performs best on this task. Read-only access, no support for concurrent
access and indexing that is optimised for this task are a few obvious reasons. For the other
stores we see a large variation with SWI-Prolog on a second position after Sesame.

bi-BFS Similar to the load test and unlike the DFS test, the figures in Janik and Kochut
2005 on bi-BFS performance show large and hard-to-explain differences. Garbage collection
and swapping14 could explain some of these, but we have no information on these details. We
decided against replicating the association search experiment for all stores on the observation
that for bi-BFS, only 5% of the time is spent on rdf/3. In other words, the bi-BFS tests are
actually about comparing the implementation of bi-BFS in 4 different languages (C, C++,

14If all measurements are wall time. We confirmed this for BRAHMS by examining the source code but have no
access to the source code used to test the other stores.
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Association length 9 10 11 12
Measured

DFS SWI 1.6 2.1 7 28
DFS BRAHMS 0.1 0.1 0.9 2.2

Scaled down 3.3×
DFS Jena 23 32 53 –
DFS Sesame 0.6 0.6 3 16
DFS Redland 5 8 16 62
Found paths 47 61 61 61

Table 3.6: Search time on small SWETO in seconds. The numbers in the top half of the
table are measured on the hardware described on page 43. The numbers on the bottom
half of the table are scaled versions of the measurements by Janik and Kochu.

Java and Prolog). Implementation details do matter: our final version of bi-BFS is an order
of magnitude faster than the initial version. Such optimisations are easily missed by non-
experts in the programming language and/or the RDF store’s API.

We executed all bi-BFS experiments on SWI-Prolog and make some qualitative com-
ments. All tests by Janik and Kochu were executed on the 32-bit versions of the RDF stores
and many of the tests could not be executed by Jena, Sesame or Redland due to memory ex-
haustion. As SWI-Prolog memory usage is comparable to BRAHMS, even the 32-bit version
can complete all tests. On smaller tests, SWI-Prolog is approximately 10 times slower than
BRAHMS. In addition to the argument for DFS, an additional explanation for SWI-Prolog
being slower than BRAHMS on bi-BFS can be found in sorting the bi-BFS agendas before
joining the paths from both directions, a task on which our implementation spends 10-30%
of the time. This step implies sorting integers (representing resources) for BRAHMS and
sorting atoms for Prolog. Built-in alphabetical comparison of atoms is considerably slower,
especially so because resources only differ after comparing the often equal XML namespace
prefix. As the number of paths grows, SWI-Prolog slows down due to excessive garbage
collection, particularly so because the current version of SWI-Prolog lacks an incremental
garbage collector.

After applying the scale factor of 3.3 found with the DFS experiment, SWI-Prolog is
significantly faster than the other systems in the comparison except for BRAHMS. For a
fair experiment, the search algorithms must be implemented with involvement of experts in
the programming language and the API of the store. Considering the low percentage of the
time spent in fetching neighbouring nodes in the RDF graph, this would still largely be a
cross-language and programming-skill competition rather than a competition between RDF

stores.
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3.7 Conclusions

We have outlined different ways to implement an RDF store in Prolog before describing our
final implementation as a C library that extends Prolog. The library scales to approximately
20M triples on 32-bit hardware or 300M triples on a 64-bit machine with 64Gb main mem-
ory. The 300M triples can be loaded from the internal cache format in approximately 30
minutes, including concurrent rebuilding of the full text search index. The performance of
indexed queries is constant with regard to the size of the triple set. The time required for
not-indexed queries and re-indexing due to changes in the property hierarchy is proportional
to the size of the triple set.

We compared our RDF store on load time, memory footprint and depth-first search for
paths that link two resources with four other main memory RDF stores: BRAHMS, Jena,
Sesame and Redland. BRAHMS performs best in all these tests, which can be explained
because it is designed specially for this job. In particular, BRAHMS is read-only and single-
threaded. Compared to Sesame, Jena and Redland, SWI-Prolog’s RDF infrastructure has a
slower parser (1.1 to 5 times), requires significantly less memory (3 to 8 times) and has com-
petitive search performance (2 times slower to 7 times faster). Profiling indicates that there
is significant room for improving the parser. Replacing our parser with Raptor (currently the
fastest parser in our test-set) is also an option.

Experience has indicated that the queries required for our annotation and search pro-
cess (see chapter 9 and 10) can be expressed concisely in the Prolog language. In chapter 4
(Wielemaker 2005) we show how conjunctions of RDF statements can be optimised for op-
timal performance as part of the implementation of standard RDF query languages (SeRQL

and SPARQL) and making these accessible through compliant HTTP APIs. This optimisation
is in part based on metrics about the triple set that is maintained by this library.
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Chapter 4

An optimised Semantic Web query language
implementation in Prolog

About this chapter This chapter was published at the ICLP-05 (Wielemaker
2005). It continues on research question 1 on knowledge representation, pro-
viding an answer to question 1b on efficient matching of RDF graph expressions.
From section 4.6 onwards the paper has been updated to reflect the current state
of the optimiser, enhance the presentation and create links to the remainder of
this thesis in the conclusions.

Abstract
The Semantic Web is a rapidly growing research area aiming at the exchange
of semantic information over the World Wide Web. The Semantic Web is built
on top of RDF, an XML-based exchange language representing a triple-based
data model. Higher languages such as RDFS and the OWL language family are
defined on top of RDF. Making inferences over triple collections is a promising
application area for Prolog.

In this article we study query translation and optimisation in the context of the
SeRQL RDF query language. Queries are translated to Prolog goals, which are
optimised by reordering literals. We study the domain specific issues of this
general problem. Conjunctions are often large, but the danger of poor perfor-
mance of the optimiser can be avoided by exploiting the nature of the triple
store. We discuss the optimisation algorithms as well as the information re-
quired from the low level storage engine.

4.1 Introduction

The Semantic Web (Berners-Lee et al. 2001) initiative provides a common focus for On-
tology Engineering and Artificial Intelligence based on a simple uniform triple-based data
model. Prolog is an obvious candidate language for managing graphs of triples.
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Semantic Web languages, such as RDF (Brickley and Guha 2000), RDFS and OWL, (Dean
et al. 2004) define which new triples can be deduced from the current triple set (i.e., are
entailed by the triples under the language). In this paper we study our implementation of
the SeRQL (Broekstra et al. 2002) query language in Prolog. SeRQL provides a declarative
search specification for a sub-graph in the deductive closure under a specified Semantic Web
language of an RDF triple set. The specification can be augmented with conditions to match
literal text, do numerical comparison, etc.

The original implementation of the SeRQL language is provided by Sesame (Broekstra
et al. 2002), a Java-based client/server system. Sesame realises entailment reasoning by
computing the complete deductive closure under the currently activated Semantic Web lan-
guage and storing this either in memory or in an external database (forward reasoning).

We identified several problems using the Sesame implementation. Sesame stores both
the explicitely provided triples and the triples that can be derived from them given de se-
mantics of a specified Semantic Web language (e.g., RDFS) in one database. This implies
that changing the language to (for example) OWL-DL requires deleting the derived triples
and computing the deductive closure for the new language. Also, where the full deductive
closure for RDFS is still fairly small, it explodes for more expressive languages like OWL.
Sesame is sensitive to the order in which path expressions are formulated in the query, which
is considered undesirable for a declarative query language. Finally we want the reasoning
in Prolog because we assume Prolog is a more suitable language for expressing application
specific rules.

To overcome the above mentioned problems we realised a server hosting multiple rea-
soning engines realised as Prolog modules. Queries can be formulated in the SeRQL lan-
guage and both queries and results are exchanged through the language independent Sesame
HTTP-based client/server protocol. We extend the basic storage and query system described
in Wielemaker, Schreiber, and Wielinga (2003b) with SeRQL over HTTP and a query opti-
miser.

Naive translation of a SeRQL query to a Prolog program is straightforward. Being a
declarative query language however, authors of SeRQL queries should not have to pay at-
tention to efficient ordering of the path expressions in the query and therefore the query
compiler has to derive the optimal order of joins (often called query planning). This prob-
lem as well as our solution is similar to what is described by Struyf and Blockeel (2003) for
Prolog programs generated by an ILP (Muggleton and Raedt 1994) system. We compare our
work in detail with Struyf in section 4.11.

In section 4.2 and section 4.3 we describe the already available software components
and introduce RDF. Section 4.4 to section 4.9 discuss naive translation of SeRQL to Prolog
and optimising the naive translation through reordering of literals.
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4.2 Available components and targets

Sesame1 and its query language SeRQL is one of the leading implementations of Semantic
Web RDF storage and query systems (Haase et al. 2004). Sesame consists of two Java-based
components. The server is a Java servlet providing HTTP access to manage the RDF store
and run queries on it. The client provides a Java API to the HTTP server.

The SWI-Prolog SemWeb package (chapter 3, Wielemaker et al. 2003b) is a library
for loading and saving triples using the W3C RDF/XML standard format and making them
available for querying through the Prolog predicate rdf/3. After several iterations (see
section 3.3.3) we realised the memory-based triple-store as a foreign language extension to
SWI-Prolog. Using foreign language (C), we optimised the data representation and indexing
for RDF triples, dealing with upto about 20 million triples on 32-bit hardware or virtually
unlimited on 64-bit hardware. The SWI-Prolog HTTP client/server library (chapter 7, Wiele-
maker et al. 2008) provides a multi-threaded (chapter 6, Wielemaker 2003a) HTTP server
and client library.

By reimplementing the Sesame client/server architecture in Prolog we make our high
performance triple store available to the Java world. Possible application scenarios are il-
lustrated in figure 4.1. In our project we needed access from Java applications to the Prolog
server. Other people are interested in fetching graphs from huge Sesame hosted triple sets
stored in an external database to Prolog for further processing.

Prolog
Client

Java
Client

Prolog
Server

Java
Server

Prolog SeRQL

Sesame

HTTP

Figure 4.1: With two client/server systems sharing the same HTTP API we have created
four scenarios for cooperation: Java or Prolog client connected to Java or Prolog server.

4.3 RDF graphs and SeRQL queries graphs

In this section we briefly introduce RDF graphs and SeRQL queries. The RDF data model
is a set of triples of the format <Subject Predicate Object>. The model knows about two

1http://www.openrdf.org
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data types:2 resources and literals. Resources are Internationalised Resource Identifiers
(IRI, rfc39873), in our toolkit represented by Prolog atoms. Representing resources using
atoms exploits the common representation of atoms in Prolog implementations as a unique
handle to a string. This representation avoids duplication of the string and allows for efficient
equality testing, the only operation defined on resources. Literals are represented by the term
literal(Value), where Value is one of type(IRI, Text), lang(LangID, Text) or plain
Text, and Text is the canonical textual value of the literal expressed as an atom (chapter 3,
Wielemaker et al. 2003b).

A triple informally states that Subject has an attribute named Predicate with value Ob-
ject. Both Subject and Predicate are resources, Object is either a resource or a literal. As a
resource appearing as Object can also appear as Subject or Predicate, a set of triples forms a
graph. A simple RDF graph is shown in figure 4.2 (from Beckett and McBride 2004).

http://www.w3.org/TR/rdf-syntax-grammar

http://purl.org/net/dajobe

_:123

Dave Beckett

RDF/XML Syntax Specification (Revised)

http://www.example.org/terms/editor

http://www.example.org/terms/homePage http://www.example.org/terms/fullName

http://purl.org/dc/elements/1.1/title

Figure 4.2: A simple RDF graph. Ellipses are resources. Rectangles are literal values.
Arrows point from Subject to Object and are labelled with the Predicate.

RDF triples are naturally expressed using the Prolog predicate rdf(Subject, Predicate,
Object). Finding a subgraph with certain properties is now expressed as a Prolog conjunc-
tion. The example below finds the home page for a named person in the graph of figure 4.2.

homepage_of(Name, HomePage) :-
rdf(Author, ’http://www.example.org/terms/fullName’, literal(Name)),
rdf(Report, ’http://www.example.org/terms/homePage’, HomePage).

SeRQL is a language with a syntax inspired by SQL, useful to represent target subgraphs
as a set of edges, possibly augmented with conditions. An example is given in figure 4.3.

4.4 Compiling SeRQL queries

The SWI-Prolog SeRQL implementation translates a SeRQL query into a Prolog goal, where
edges on the target subgraph are represented as calls to rdf(Subject, Predicate, Object)

2Actually literals can be typed using a subset of the XML Schema primitive type hierarchy, but this refinement is
irrelevant to the discussion in this paper.

3http://www.faqs.org/rfcs/rfc3987.html
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and the WHERE clause is represented using natural Prolog conjunction and disjunction of
predicates provided in the SeRQL runtime support module. The compiler is realised by a DCG

parser, followed by a second pass resolving SeRQL namespace declarations and introducing
variables. We illustrate this translation using an example from the SeRQL documentation,4

shown in figure 4.3.

SELECT Painter, FName
FROM {Painter} <rdf:type> {<cult:Painter>};

<cult:first_name> {FName}
WHERE FName like "P*"
USING NAMESPACE

cult = <!http://www.icom.com/schema.rdf#>

Figure 4.3: Example SeRQL query asking for all resources of type cult:Painter
whose name starts with the capital P.

Figure 4.5 shows the naive translation represented as a Prolog clause and modified for
better readability using the variable names from the SeRQL query. To solve the query, this
clause is executed in the context of an entailment module as illustrated in figure 4.4. An
entailment module is a Prolog module that provides a pure implementation of the predicate
rdf/3 that can generate as well as test all triples that can be derived from the actual triple
store using the Semantic Web language the module defines. This implies that the predi-
cate can be called with any instantiation pattern, will bind all arguments and produce all
alternatives that follow from the entailment rules on backtracking. If rdf/3 satisfies these
criteria, any naive translation of the SeRQL query is a valid Prolog program to solve the
query. Primitive conditions from the WHERE clause are mapped to predicates defined in the
SeRQL runtime module which is imported into the entailment module. As the translation of
the WHERE clause always follows the translation of the path expression, all variables have
been instantiated. The call to serql compare/3 in figure 4.5 is an example of calling a
SeRQL runtime predicate that implements the like operator.

Optional path expressions SeRQL path expressions between square brackets ([. . . ]) are
optional. They bind variables if they can be matched, but they do not change the graph
matched by the non-optional part of the expression. Optional path expressions are translated
using the SWI-Prolog soft-cut control structure represented by *->.5 Figure 4.6 shows a
SeRQL query (top) that finds instances of class cult:Painter and enriches the result with the
painter’s first name(s) if known. The bottom of this figure shows the translation into Prolog,

4http://www.openrdf.org/sesame/serql/serql-examples.html
5Some Prolog dialects (e.g., SICStus) call this construct if/3.
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HTTP Server SeRQL Parser Optimiser

RDF Entailment RDFS Entailment

Triple store

rdf/3

rdf/3

rdf/3

rdf/3

SeRQL Goal

Figure 4.4: Architecture, illustrating the role of entailment modules. These modules
provide a pure implementation of rdf/3 for the given Semantic Web language.

q(row(Painter, FName)) :-
rdf(Painter,

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,
’http://www.icom.com/schema.rdf#Painter’),

rdf(Painter,
’http://www.icom.com/schema.rdf#first_name’,
FName),

serql_compare(like, FName, ’P*’).

Figure 4.5: Naive translation of the query of figure 4.3. The row-term in the head de-
scribes the bindings of a single result row of the SELECT query.

which leaves FName unbound if no first name is known and enumerates all known first
names otherwise.

4.5 The ordering problem

Given the purely logical definition of rdf/3, conjunctions of RDF goals can be placed in
any order without changing the result if we consider two results equivalent if they represent
the same set of solutions (set-equivalence, Googley and WAH 1989). Literals that result
from the WHERE clause are side-effect free boolean tests and can be executed as soon as
their arguments have been instantiated.

To study the ordering problem in more detail we will consider the example query in
figure 4.7 on WordNet (Miller 1995). The query finds words that can be interpreted in at
least two different lexical categories. WordNet is organised in synsets, an abstract entity
roughly described by the associated wordForms. Synsets are RDFS instances of one of the
subclasses of LexicalConcept. We are looking for a wordForm belonging to two synsets
of a different subtype of LexicalConcept. Figure 4.8 illustrates a query result and gives
some relevant metrics on WordNet. The pseudo property serql:directSubClassOf
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SELECT Painter, FName
FROM {Painter} <rdf:type> {<cult:Painter>} ;

[<cult:first_name> {FName}]
USING NAMESPACE

cult = <!http://www.icom.com/schema.rdf#>

q(row(Painter, FName)) :-
rdf(Painter,

’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’,
’http://www.icom.com/schema.rdf#Painter’),

( rdf(Painter,
’http://www.icom.com/schema.rdf#first_name’,
FName)

*-> true
; true
).

Figure 4.6: Compilation of a SeRQL optional path expression into the SWI-Prolog soft-cut
control structure.

is defined by SeRQL as a non-transitive version of rdfs:subClassOf.

SELECT DISTINCT L
FROM {S1} <wns:wordForm> {L},

{S2} <wns:wordForm> {L},
{S1} <rdf:type> {C1},
{S2} <rdf:type> {C2},
{C1} <serql:directSubClassOf> {<wns:LexicalConcept>},
{C2} <serql:directSubClassOf> {<wns:LexicalConcept>}

WHERE not C1 = C2
USING NAMESPACE

wns = <!http://www.cogsci.princeton.edu/˜wn/schema/>

Figure 4.7: Example of a SeRQL query on WordNet

To illustrate the need for optimisation as well as to provide material for further discussion
we give two translations of this query. Figure 4.9 shows the direct translation (s1), which re-
quires 3.58 seconds CPU time on an AMD 1600+ processor as well as an alternative ordering
(s2) which requires 8,305 CPU seconds to execute, a slowdown of 2,320 times. Note that this
translation could be the direct translation of another SeRQL query with the same semantics.

Before we start discussing the alternatives for optimising the execution we explain why
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LexicalConcept

Noun Verb

Synset 23 Synset 42

"sneeze"

WordNet metrics (version 1.6)
Distinct wordForms 123,497
Distinct synsets 99,642
wordForm triples 174,002
Subclasses of LexicalConcept 4

Figure 4.8: According to WordNet, the word “sneeze” can be interpreted as a noun as
well as a verb. The tabel to the right gives some metrics of WordNet.

s1(L) :-
rdf(S1, wns:wordForm, L),
rdf(S2, wns:wordForm, L),
rdf(S1, rdf:type, C1),
rdf(S2, rdf:type, C2),
rdf(C1, rdfs:subClassOf, wns:’LexicalConcept’),
rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),
C1 \== C2.

s2(L) :-
rdf(C1, rdfs:subClassOf, wns:’LexicalConcept’),
rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),
C1 \== C2,
rdf(S1, rdf:type, C1),
rdf(S2, rdf:type, C2),
rdf(S1, wns:wordForm, L),
rdf(S2, wns:wordForm, L).

Figure 4.9: Two translations for our query on WordNet. The first executes in 3.58 sec-
onds, the second in 8,305.

the execution times of these equivalent programs differ. Suppose we have a conjunction of
completely independent literals A,B,C, where independent means no variables are shared
between the members of the conjunction. If b() denotes the number of solutions for a literal,
the total solution space is b(A)× b(B)× b(C) and therefore independent of the order. If we
take the number of calls+redos (Prolog logical inferences) rather than the solution space as
a measure the formula becomes

b(A) + b(A)× b(B) + b(A)× b(B)× b(C)

Logical inferences are a good measure for the expected execution time (Escalante 1993).
It suggests to place literals with the smallest number of alternatives first, but as the last
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component of the above formula is dominant the difference is not large and certainly cannot
explain the difference between the two translations shown in figure 4.9. In fact the second is
ordered on the branching factor without considering dependencies and as we will see below,
dependencies are key to the problem.

Executing an rdf/3 literal causes all its arguments to be grounded, reducing the number
of solutions for rdf/3 literals sharing the grounded variables. What is really important is
how much the set of solutions of a literal is reduced by executing another literal before it.
The order of s1/1 in figure 4.9 executes the most unbound literal first (174,002 solutions),
but wins because after the execution of this literal not much further branching is left.

4.6 Estimating the complexity

The first step towards optimising is having an estimate of the complexity of a particular
translation. We use the number of logical inferences as an estimate for the execution time,
ignoring the (small) differences in time required to execute the different rdf/3 literals.
Crucial to this is to estimate the number of solutions for an rdf/3 literal. Our estimate
is based on information extracted from the low-level database we have realised in the C-
language. For this estimate we must consider the mode (instantiation pattern) and, if an
argument is instantiated, we must distinguish the case where it is bound to a known value by
the query and the case where is bound to an unknown value by a preceeding rdf/3 literal.
Below we enumerate the possible modes, where we use ‘-’ for unbound, ‘+’ for bound to a
known value, ‘*’ for bound to an unknown value and ‘@’ for bound (known or unknown).

rdf(@,@,@) If all arguments are bound, the call will not create a choicepoint and can suc-
ceed or fail. We estimate the the number of solutions at 0.5.

rdf(-,-,-) If no argument is bound, we have a good estimate provided by the number of
triples that is maintained by the database. The actual number can be smaller due to
duplicates, but this is generally a small proportion.

rdf(-,+,-) Bound to a known predicate we have a good estimate in the number of triples per
predicate that is maintained by the database too.

rdf(*,+,-) This is a common case where the subject is bound, but to an unknown value.
Here, we are interested in the average number of objects associated to a subject with
the given predicate. This is the total number of triples for this predicate divided by
the total number of distinct subject values, which we will call the subject branching
factor or sbf:

sbf(P ) =
triples(P )

distinctSubjects(P )
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Where the total number of triples is known, the number of distinct subjects must be
computed. The sbf is determined on the first request. The value is stored and only
recomputed if the number of triples has significantly changed since it was determined.

rdf(-,+,*) The object branching factor or obf definition is completely analogous to the
above.

rdf(*,-,-) As the database keeps track of the total number of distinct subjects, this can be
computed much like the sbf with the following formula: triples

subjects

Otherwise If none of the above holds we use information from the hash-based index. With
known values for some of the arguments we locate the hash chain that would be used
for this query and assume that the length is a good estimate for the total number of
solutions. This assumes a well distributed hash function.6 The length of the hash
chains is maintained incrementally by the database primitives.

The above handles ‘*’ as ‘-’ for some (rare) patterns, which can cause a much too high
estimate. We currently ignore this issue.

Boolean tests resulting from the WHERE clause cannot cause branching. They can suc-
ceed or fail and their branching factor is, as ground rdf/3 calls, estimated as 0.5 which
gives preference to locations early in the conjunction. This number may be wrong but, as
we explained in section 4.5, reordering of independent members of the conjunction only
has marginal impact on the execution time of the query. If not all arguments to a test are
sufficiently instantiated computation of the branching factor fails, causing the conjunction
permutation generator to generate a new order.

The total complexity of a conjunction is now expressed as the summed sizes of the
search spaces after executing 1, 2, . . . n steps of the conjunction (see formula in section 4.5).
The branching factor for each step is deduced using symbolic execution of the conjunction,
replacing each variable in a literal with a Skolem instance. Skolem instantiation is performed
using SWI-Prolog attributed variables (Demoen 2002).

4.7 Optimising the conjunction

With a precise and quick method to compute the complexity of a particular order, the optimi-
sation problem is reduced to a generate-and-test problem. A conjunction of N members can
be ordered in N ! different ways. As we have seen actual examples of N nearing 40, naive
permutation is not an option. However, we do not have to search the entire space as the order
of sub-conjunctions that do not share any variables can be established independently, after
which they can be ordered on the estimated number of solutions.

6We use MurmurHash from http://murmurhash.googlepages.com/
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Initially, for most conjunctions in a query all literals are related through shared vari-
ables.7 As execution of the conjunction progresses, more and more variables are bound.
This may cause the remainder of the conjunction to break into multiple independent sub-
conjunctions. For example, the query below is initially fully related over Painter. After
executing one of the literals, Painter is bound and the two remaining literals become inde-
pendent. Independent sub-conjunctions can be optimised separately.

q(row(Painter, FirstName, Painting)) :-
rdf(Painter, rdf:type, cult:’Painter’),
rdf(Painter, cult:first_name, Name),
rdf(Painter, cult:creator_of, Painting).

The algorithm in figure 4.10 generates on backtracking alternative orderings with
an estimate for their time complexity and number of solutions. The predicate
estimate complexity/3 estimates the number of solutions as described above, while
the time estimate is 1 (i.e., our unit of time is the time an rdf/3 call needs to generate
or test a triple). The predicate combine/3 concatenates the ordered sub-conjunctions and
computes the combined complexity.

Using the generator above, we can enumerate all permutations and select the fastest one.
The returned order is guaranteed to be optimal if the complexity estimate is perfect. In other
words, the maximum performance difference between the optimal order and the computed
order is the error of our estimation function. We have seen in section 4.6 that the error margin
varies, depending on the types of rdf/3 calls. We do not have access to a sufficiently large
set of real-world SeRQL queries to assess the accuracy in any detail.

4.8 Optional path expressions and control structures

As explained in section 4.4, SeRQL optional path expressions are compiled into
(Goal *-> true ; true), where Goal is the result of compiling the path expression. We pre-
serve control structures and apply our ordering algorithm to conjunctions that are embedded
in the control structures.

Optional path expressions do not change the result set of the obligatory part of the query.
It can only produce more variable bindings. Therefore we can simplify the optimisation
process of a conjunction by first splitting it into its obligatory and optional part and then
optimise the obligatory part followed by the optional part as shown below. The predicate
combine/2 is the same as from figure 4.10. We must do the Skolem binding of the oblig-
atory part because it affects the result when ordering conjunctions in the optional part of the
expression.

7This is not necessarily the case, but a query that consists of independent sub-queries is answered by the Cartesian
product of the answers for each of the sub-queries (see section 4.9). Processing the results of each independent sub-
query is more efficient and generally easier.
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%% order(+Conjunction, -Result) is nondet.
%
% @param Result o(Time, Solutions, Order)

order([One], o(T,N,[One])) :- !,
estimate_complexity(One, T, N),

order(Conj, Result) :-
make_subgraphs(Conj, SubConjs),
( SubConjs = [_,_|_]
-> maplist(order, SubConjs, OSubs),

sort(OSubs, OList),
combine(OList, Result)

; select(First, Conj, Rest),
skolem_bind(First),
order(Rest, o(T0,N0,O0)),
estimate_complexity(First, T1, N1),
T is T1+N1*T0,
N is N0*N1,
Result = o(T,N,[First|O0])

).

Figure 4.10: Order a conjunction. Alternative orderings are generated due to the non-
deterministic select/3

order(Goal, Result) :-
split_optional(Goal, Obligatory0, Optional0),
order(Obligatory0, Obligatory),
skolem_bind(Obligatory),
order(Optional0, Optional),
combine([Optional, Optional], Result.

4.9 Solving independent path expressions

As we have seen in section 4.7, the number of distinctive permutations is much smaller than
the number of possible permutations of a goal due to the fact that after executing a few
literals the remainder of the query breaks down into independent subgraphs. Independent
subgraphs can be solved independently and the total solution is the Cartesian product of all
partial solutions. This approach has several advantages:

• The complexity of solving two independent goals A and B separately is b(A)+ b(B)
rather than b(A) + b(A)× b(B).
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• The subgoals can be solved in parallel.

• If any of the independent goals has no solutions we can abort the whole query and
report it has no solutions.

• The solution can be expressed much more concisely as the Cartesian product of partial
results. This feature can be used to reduce the communication overhead.

This optimisation can be achieved by replacing the calls to sort/2 and combine/2
in the algorithm of figure 4.10. The replacement performs two task: identify which (inde-
pendent) projection variables of the query appear in each of the sub-conjunctions and create
a call to the runtime routine serql carthesian(+GoalsAndVars, -Solution) that is re-
sponsible for planning and executing the independent goals.

4.10 Evaluation

We evaluated three aspects of the system. The amount of source code illustrates the power
of Prolog for this type of task. Next, we study the optimisation of the WordNet query given
in figure 4.7 and finally we examine 3 queries originating from a real-world project that
triggered this research.

Source code metrics The total code size of the server is approximately 6,700 lines. Major
categories are show in table 4.1. We think it is not meaningful to compare this to the 86,000
lines of Java code spread over 439 files that make up Sesame. Although both systems share
considerable functionality, they differ too much in functionality and how much is reused
from the respective system libraries to make a detailed comparison feasible. As often seen,
most of the code is related to I/O (57%), while the core (query compiler and optimiser) is
responsible for only 26% of the code.

Category lines
HTTP server actions 2,521
Entailment modules (3) 281
Result I/O (HTML, RDF/XML, Turtle) 1,307
SeRQL runtime library 192
SeRQL parser and naive compiler 874
Optimiser 878
Miscellaneous 647
Total 6,700

Table 4.1: Size of the various components, counted in lines. RDF/XML I/O is only a
wrapper around the SWI-Prolog RDF library.
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Evaluating the optimiser We have evaluated our optimiser on two domains: the already
mentioned WordNet and an RDF set with accompanying queries from an existing application.
Measurements have been executed on a dual AMD 2600+ machine running SuSE Linux and
SWI-Prolog 5.5.15.

First we study the example of figure 4.9 on page 56. The code for s1/1 was handcrafted
by us and can be considered an educated guess for best performance. The described opti-
miser converts both s1/1 and s2/1 into o1/1 as shown in figure 4.11. Table 4.2 confirms
that the optimiser produced a better version than our educated guess and that the time to
optimise this query is negligible.

o1(L) :-
rdf(S1, rdf:type, C1),
rdf(S1, wns:wordForm, L),
rdf(C2, rdfs:subClassOf, wns:’LexicalConcept’),
rdf(S2, rdf:type, C2),
rdf(S2, wns:wordForm, L),
C1 \== C2,
rdf(C1, rdfs:subClassOf, wns:LexicalConcept))

Figure 4.11: Machine optimised WordNet query

Translation opt. time exec time total time
s1/1 - 3.58 3.58
o1/1 0.09 2.10 2.19

Table 4.2: Timing of human (s1/1) and machine (o1/1) optimised translations of the query
of figure 4.7. Opt. time is the time used optimise the query and exec time is the time used
to execute the query.

The second test-set consisted of three queries on a database of 97,431 triples coming
from a real project carried out at Isoco.8 These queries were selected because Sesame
(Broekstra et al. 2002) could not answer them (2 out of 3) or performed poorly. Later
examination revealed these queries consisted of multiple largely independent sub-queries,
turning the result in a huge Cartesian product. Splitting them into multiple queries turned
them into manageable queries for Sesame. Exploiting the analysis of independent path ex-
pressions described in section 4.9, our server does not need this rewrite. The results are
shown in table 4.3. Edges is the number of graph edges that appear in the query. The ac-
tual time spent in the optimiser (3th column) is again negligible. The next three columns

8www.isoco.com
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present the initial complexity estimate, the estimate for the optimised query and the relative
optimisation based on these estimates. Because the initial queries do not terminate in a rea-
sonable time we can not verify the estimated speedup ratio. The time column gives the total
query processing time for both our implementation and Sesame. For Sesame we only have
results for the second query as the others did not terminate overnight. The last column gives
the total number of rows in the output table. The solutions of the first and last queries are
Cartesian products (see section 4.9).

time complexity time
Id Edges optimise initial final speedup Us Sesame solutions
1 38 0.01 1.4e16 1.4e10 1.0e6 2.48 - 79,778,496
2 30 0.01 2.0e13 1.3e05 1.7e8 0.51 132 3,826
3 29 0.01 1.4e15 5.1e07 2.7e7 11.7 - 266,251,076

Table 4.3: Results on optimising complex queries. Time fields are in seconds.

4.11 Related Work

Using logic for Semantic Web processing has been explored by various research groups.
See for example (Patel and Gupta 2003) which exploits Denotational Semantics to provide
a structured mapping from language to semantics. Most of these approaches concentrate on
correctness, while we concentrate on engineering issues and performance.

Much work has been done on optimising Prolog queries as well as database joins by
reordering. We specifically refer to the work of Struyf and Blockeel (Struyf and Blockeel
2003) because it is recent and both the problem and solution are closely related. They de-
scribe the generation of programs through ILP (Muggleton and Raedt 1994). The ILP system
itself does not consider ordering for optimal execution performance, which is similar to com-
piling declarative SeRQL statements not producing optimal programs. In ILP, the generated
program must be used to test a large number of positive and negative examples. Optimising
the program before running is often worthwhile.

The described ILP problem differs in some places. First of all, for ILP one only has to
prove that a certain program, given a certain input, succeeds or fails, i.e., goals are ground.
This implies they can use the cut to separate independent parts of the conjunction (section
4.2 of Struyf and Blockeel (2003)). As we have non-ground goals and are interested in all
distinct results we cannot use cuts but instead use the Cartesian product approach described
in section 4.9. Second, Struyf and Blockeel claim complexity of generate-and-test (order
N !) is not a problem with the observed conjunctions with a maximum length of 6. We have
seen conjunctions with 40 literals. We introduce breaking the conjunctions dynamically in
independent parts (section 4.7) can deal with this issue. Finally, the uniform nature of our
data gave us the opportunity to build the required estimates for non-determinism into the
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low-level data structures and maintain them at low cost (section 4.6).

4.12 Discussion

Current Semantics Web query languages deal with graph expressions and entailment under
some Semantics Web language, which is typically implemented by computing the deduc-
tive closure under this language. As we demonstrated, graph expressions and conditions are
easily translated into pure Prolog programs that can be optimised using reordering. For lan-
guages that are not expressive such as RDFS, entailment can be realised both using forward
chaining and backward chaining. Figure 4.4 describes how we realise multiple reasoning
schemes using Prolog modules and backward chaining. As long as the entailment rules are
simple, the optimiser described here can be adapted to deal with the time and solution count
estimates related to executing these rules.

As the Semantic Web evolves with more powerful formal languages such as OWL and
SWRL,9 it becomes unlikely we can compile these easily into efficient Prolog programs and
provide estimates for their complexity. TRIPLE (Sintek and Decker 2002) is an example of
an F-logic-based RDF query language realised in XSB Prolog (Freire et al. 1997). We believe
extensions to Prolog that facilitate more declarative behaviour will prove necessary to deal
with the Semantic Web. Both XSB’s tabling and constraint logic programming, notably CHR

(Frühwirth 1998; Schrijvers and Demoen 2004) are promising extensions.

4.13 Conclusions

In chapter 3 (Wielemaker et al. 2003b) we have demonstrated the performance and scala-
bility of an RDF storage module for use with Prolog. In this paper we have demonstrated
the feasibility of realising an efficient implementation of the declarative SeRQL RDF query
language in Prolog.

The algorithm for optimising the matching process of SeRQL queries reaches optimal
results if the complexity estimate is perfect. The worse case complexity of ordering a con-
junction is poor, but for tested queries the optimisation time is shorter than the time needed
to execute the optimised query. For trivial queries this is not the case, but here the response
time is dictated by the HTTP protocol overhead and parsing the SeRQL query.

The fact that Prolog is a reflexive language (a language where programs and goals can
be expressed as data) together with the observation that a graph pattern expressed as a list
of triples with variables is equivalent to a Prolog conjunction of rdf/3 statements provides
a natural API to RDF graph expressions and the optimiser: translating a complex Prolog
goal into an optimised one. Prolog’s non-determinism greatly simplifies exploration of the
complex search space in the generate-and-test cycle for finding the optimal program. The
optimisation relies (section 4.6) on metrics maintained by the RDF store described in chap-
ter 3 (Wielemaker et al. 2003b). Many of these metrics only apply to RDF, which justifies

9http://www.daml.org/2003/11/swrl
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our decision to implement rdf/3 as a foreign language extension in favour of adding opti-
misations to Prolog that make rdf/3 feasible as a normal Prolog dynamic predicate.

The HTTP frontend we developed to create a Sesame compliant HTTP API has been the
basis for the development of ClioPatria chapter 10 (Wielemaker et al. 2008). The server has
been extended with support for the W3C standard SPARQL language and HTTP API and is now
an integral component of ClioPatria (figure 10.5). Reasoning inside ClioPatria uses direct
Prolog queries on the RDF store and the optimisation library described in this paper is used
for dynamic optimisation of goals with embedded rdf/3 statements where the ordering is
not obvious to the programmer.
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Chapter 5

An architecture for making object-oriented
systems available from Prolog

About this chapter This chapter has been published at the WLPE-02 (Wiele-
maker and Anjewierden 2002). It examines research question 3: “How to sup-
port graphical applications in Prolog?” by describing how XPCE, an object
oriented graphics library defined in C can be connected to Prolog. XPCE is
used by Triple20 (chapter 2, Wielemaker et al. 2005), the MIA tools (chap-
ter 9, Schreiber et al. 2001; Wielemaker et al. 2003a) as well as most of the
development tools of SWI-Prolog (Wielemaker 2003b).

Abstract It is next to impossible to develop real-life applications in just pure
Prolog. With XPCE (Wielemaker and Anjewierden 1992) we realised a mech-
anism for integrating Prolog with an external object-oriented system that turns
this OO system into a natural extension to Prolog. We describe the design and
how it can be applied to other external OO systems.

5.1 Introduction

A wealth of functionality is available in object-oriented systems and libraries. This paper
addresses the issue of how such libraries can be made available from Prolog, in particular
libraries for creating user interfaces.

Almost any modern Prolog system can call routines in C and be called from C. Also,
most systems provide ready-to-use libraries to handle network communication. These prim-
itives are used to build bridges between Prolog and external libraries for (graphical) user-
interfacing (GUIs), connecting to databases, embedding in (web-)servers, etc. Some, espe-
cially most GUI systems, are object-oriented (OO). The rest of this paper concentrates on
GUIs, though the arguments apply to other systems too.

GUIs consist of a large set of entities such as windows and controls that define a large
number of operations. Many of the operations involve destructive changes to the involved



68 MAKING OBJECT-ORIENTED SYSTEMS AVAILABLE FROM PROLOG

entities. The behaviour of GUI components normally involves handling spontaneous input
in the form of events. OO techniques are well suited to handle this complexity. A con-
crete GUI is generally realised by sub-classing base classes from the GUI system. In —for
example— Java and C++, the same language is used for both the GUI and the application.
This is achieved by either defining the GUI base classes in this language or by encapsulating
foreign GUI classes in classes of the target language. This situation is ideal for application
development because the user can develop and debug both the GUI and application in one
language.

For Prolog, the situation is more complicated. Diversity of Prolog implementations and
target platforms, combined with a relatively small market share of the Prolog language make
it hard to realise the ideal situation sketched above. In addition, Prolog is not the most
suitable language for implementing fast and space-efficient low-level operations required in
a GUI.

The main issue addressed in this paper is how Prolog programmers can tap on the func-
tionality provided by object-oriented libraries without having to know the details of such
libraries. Work in this direction started in 1985 and progresses to today. Over these years
our understanding of making Prolog an allround programming environment has matured
from a basic interface between Prolog and object-oriented systems (section 5.3), through
introducing object-oriented programming techniques in Prolog (section 5.4), and finally to
make it possible to handle Prolog data transparently (section 5.5). These ideas have been
implemented in XPCE. Throughout this paper we will use examples based on XPCE and
discuss how these principles can be applied to other OO systems.

5.2 Approaches

We see several solutions for making OO systems available from Prolog. One is a rigid sep-
aration of the GUI, developed in an external GUI development environment, from the appli-
cation. A narrow bridge links the external system to Prolog. Various styles of ‘bridges’ are
used, some based on TCP/IP communication and others on local in-process communication.
ECLiPSe (Shen et al. 2002) defines a generic interface for exchanging messages between
ECLiPSe and external languages that exploits both in-process and remote communication.
Amzi! (Merritt 1995) defines a C++ class derived from a Prolog-vendor defined C++/Prolog
interface class that encapsulates the Prolog application in a set of C++ methods, after which
the GUI can be written as a C++ application.

Using a narrow bridge between data processing in Prolog and a GUI in some other lan-
guage provides modularity and full reuse of GUI development tools. Stream-based commu-
nication is limited by communication protocol bandwidth and latency. Whether or not using
streams, the final application consists of two programs, one in Prolog and one in an external
language between which a proper interface needs to be defined. For each new element in the
application the programmer needs to extend the Prolog program as well as the GUI program
and maintain the interface consistency.

For applications that require a wide interface between the application and GUI code we
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would like to be able to write the application and GUI both in Prolog. Here we see two
approaches. One is to write a Prolog layer around the (possibly extended) API of an existing
GUI system (Kim 1993; SICS 1998). This option is unattractive as GUI systems contain
a large number of primitives and data types, which makes development and maintenance
of the interface costly. An alternative is to go for a minimal interface based on the OO

message passing (control) principles. For this, we consider OO systems where methods can
be called from the C-language1 based on their name. The ability to access methods by name
is available in many (OO) GUI toolkits as part of their reflexion capabilities. Fully compiled
languages such as traditional C++ lack this facility, but the availability of many compiler
extensions and libraries to add reflexion to C++ indicate that the limited form of reflexion
that we demand is widely available. In the remainder of this article we concentrate on OO

systems that can call methods by name.

5.3 Basic Prolog to OO System Interface

The simplest view on an OO system is that it provides a set of methods (functions) that can be
applied to objects. This uniformity of representation (objects) and functionality (methods)
makes it possible to define a small interface between Prolog and an OO system. All that is
required to communicate is to represent an object by a unique identifier in Prolog, translate
Prolog data to types (objects) of the OO system, invoke a method and translate the result
back to Prolog. This model is illustrated in figure 5.1. We first describe how objects are
manipulated from Prolog (‘Activate’), then how we can represent Prolog as an object (‘Call
back’) and finally we discuss portability and limitations of this model.

Prolog OO
System

‘Call-Back’

‘Activate’

Figure 5.1: A simple view on Prolog to OO interface

Object Manipulation from Prolog We added four predicates to Prolog to manipulate
objects in the OO system:

new(?Reference, +Class(...Arg...))
Create an object as an instance of Class using the given arguments to initialise the
object. Make the resulting instance known as Reference from Prolog. If Arg is atomic,
convert it to a natural counterpart in XPCE (integer, float, atom). If it is compound,

1Or another language Prolog can communicate with. C is the de-facto interface language for many high-level
languages.
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create an instance using the functor as the class name and the arguments as initialising
arguments. Unbound variables have no sensible counterpart in XPCE and therefore
raise an exception. The example below creates a box (graphical rectangle) with
specified width and height.

?- new(X, box(100,100)).

X = @459337

send(+Reference, +Method(...Arg...))
Given a reference to an object, invoke the named method with the given arguments.
The arguments are translated as with new/2, supporting the functional notation
shown in the code below. XPCE uses send/2 for methods returning either no value
or a boolean success/failure indication. The example creates a picture (graphics
window) and displays a box at a given location.

?- new(P, picture),
send(P, display(box(100,50), point(20,20))).

get(+Reference, +Method(...Arg...), -Result)
Used for methods that return their result as an object or primitive data type. If the
returned value is primitive, it is converted to a Prolog integer, float or atom. In all
other cases an object reference is returned. The following code gets the left-edge of
the visible part of a graphics window (picture). Visible is a instance of class area that
describes the visual part and defines get-methods x,y,w,h to obtain the dimensions of
the area object.

?- new(P, picture),
get(P, visible, Visible),
get(Visible, x, X).

P = @1072825
Visible = @957733
X = 0

free(+Reference)
Destroy the referenced object.

Minimalists may claim that three of these four primitives are redundant. Generating an
instance of a class is an operation of the class and can thus be performed by a method of the
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class if classes can be manipulated as objects. In XPCE, new/2 can be defined as get(Class,
instance(...Arg...), Reference). Destroying an object is an operation on the object itself:
send(Reference, free). Most object systems do not distinguish ‘send’ and ‘get’: methods
that do not need to return a value return either boolean truth or the object to which the method
was sent. Send and get are distinguished in the design of XPCE as well as in the interface
because we perceive the distinction between telling an object to perform an action without
interest for the result (e.g., move to a location) and asking an object to compute or create
something, improves readability.

Object systems define rules that describe the lifetime of objects. These rules can be based
on scoping, membership of a ‘container’ or garbage collection. This ‘life-time’ of the object
is totally unrelated to the life-time of the Prolog reference and the user must be aware of the
object life-time rules of the object system to avoid using references to deleted objects. XPCE

defines scoping rules and provides a reference-based garbage collector. This takes care of
the objects, but the programmer must be careful not to use Prolog object-references to access
objects that have been deleted by XPCE. The SWI-Prolog Java interface JPL2 represents Java
objects as unique Prolog atoms and exploits a hook into the SWI-Prolog atom garbage col-
lector to inform the interface about Java objects that are no longer referenced by Prolog. The
XPCE route is lightweight but dangerous. The JPL route is safe, but atom garbage collection
is a costly operation and Java objects often live much longer than needed.

Prolog as an Object The four predicates above suffice to invoke behaviour in the OO

system from Prolog. Notable OO systems for GUI programming generally define events such
as clicking, typing or resizing a window that require Prolog to take action. This can be solved
by defining a class in the OO system that encapsulates Prolog and define a method call that
takes a predicate name and a list of OO arguments as input. These arguments are translated to
Prolog in the same way as the return value of get/3 and the method is executed by calling
the predicate.

In XPCE, class prolog has a single instance with a public reference (@prolog). GUI

classes that generate events, such as a push button, can be associated with a message object.
A message is a dormant method invocation that is activated on an event. For example, the
creation arguments for a push button are the label and a message object that specifies an
action when the user clicks the button. Together with the introduction of @prolog, we can
now create a push button that writes Hello World in the Prolog console when clicked
with the code below.

?- new(B, button(hello,
message(@prolog, call,

writeln, ’Hello World’))).

2http://www.swi-prolog.org/packages/jpl/
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Portability The above has been defined and implemented around 1985 for the first
XPCE/Prolog system. It can be realised for any OO system that provides runtime invoca-
tion of methods by name and the ability to query and construct primitive data types.

Limitations The basic OO interface is simple to implement and use. Unfortunately it also
has some drawbacks as it does not take advantage of some fundamental aspects of object-
oriented programming: specialisation through sub-classing and the ability to create abstrac-
tions in new classes. These drawbacks become apparent in the context of creating interactive
graphical applications.

Normally, application GUI-objects are created by sub-classing a base class of the toolkit
and refining methods such as OnDraw and OnClick to perform the appropriate application
actions. Using the interface described above, this means we need to program the OO system,
which implies The programmer has to work in Prolog and the OO language at the same
time. In section 5.2 we discussed scenarios that required programming in two languages
and resulted in two applications that communicated with a narrow bridge, providing good
modularity. If we create a system where classes can be created transparently from Prolog
we can achieve a much more productive development environment. This is especially true
if the OO system does not allow for (re-)compilation in a running application, but Prolog
can provide for this functionality. Unfortunately this environment no longer forces a clean
modular separation between GUI and application, but it still allows for it.

5.4 Extending Object-Oriented Systems from Prolog

If we can extend the OO system from Prolog with new classes and methods that are executed
in Prolog we have realised two major improvements. We gain access to functionality of the
OO system that can only be realised by refining methods and, with everything running in
Prolog, we can develop the entire application in Prolog and profit from the good interactive
development facilities provided by Prolog. This can be realised in a portable manner using
the following steps, as illustrated in figure 5.2:

• Defining a Prolog syntax for classes and methods, where the executable part of the
method is expressed in Prolog.

• Create the OO system’s classes from this specification and define the OO system’s
methods as wrappers that call the Prolog implementation.

A concrete example is given in figure 5.3, which creates a derived class my box from the
base class box (a rectangular graphical). The derived class redefines the method event, which
is called from the window in which the box appears if the mouse-pointer hovers over the box.
The method receives a single argument, an instance of class event that holds details of the
GUI event such as type, coordinates and time. In this example we ensure the box is filled
solid red if the mouse is inside the box and transparent (filled with nothing: @nil) otherwise,
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c1

c11 c12

pl-c111

:- pce_begin_class(’pl-c111’, c11)

hello(This, Arg...) :->
        format(’Hello World~n’, []).

:- pce_end_class(’pl-c111’).

pl-c111::hello()

Prolog OO System

Generates

Calls

Figure 5.2: Creating sub-classes from Prolog

by redefining the method that specifies what happens if the mouse enters or leaves the box. In
all other cases, the default behaviour of the super class is activated using send super/2.

:- pce_begin_class(my_box, box).

event(Box, Event:event) :->
( send(Event, is_a(area_enter))
-> send(Box, fill_pattern(colour(red)))
; send(Event, is_a(area_exit))
-> send(Box, fill_pattern(@nil))
; send_super(Box, event(Event))
).

:- pce_end_class(my_box).

Figure 5.3: Defining a class from Prolog

XPCE is a ‘soft typed’ language. Method arguments may have type specifiers (:event)
and if they do the system performs runtime checks on these. The method above requires the
first argument to be an instance of the class event.

Implementation In XPCE, classes and methods are primary objects that can be manipu-
lated using the API described in section 5.3. A method object consists of a name, argument
type definition and a handle to the implementation. The implementation is either built into
XPCE itself as a C-function, or it is provided by the XPCE/Prolog as an object (X) created by
the interface. If an implementation defined by the interface is called, XPCE calls the interface
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with the receiving object, type-checked arguments and provided implementation object X .
The meaning of the object X is defined by the interface; XPCE just distinguishes built-in
methods and methods defined by the interface.

We now describe how classes defined in Prolog are realised in XPCE. We do this in two
steps. First, we describe a naive translation that creates XPCE classes and methods while the
Prolog file is being compiled. Next, we describe how the actual implementation differs from
this naive translation by introducing just-in-time creation of XPCE classes and methods.

The code from figure 5.3 is translated using Prolog’s term expansion/2 based
macro-facility. The begin class(my box, box) is expanded into a new/2 call that cre-
ates class my class as a subclass of box. The method definition is translated into a clause
(figure 5.4) and API calls that create a method object with appropriate name, types and im-
plementation object and associate this with the new class.

pce_principal:send_implementation(’my_box->event’, event(A), B) :-
user:
( ( send(A, is_a(area_enter))

-> send(B, fill_pattern(colour(red)))
; send(A, is_a(area_exit))
-> send(B, fill_pattern(@nil))
; send_class(B, box, event(A))
)

).

Figure 5.4: Clause that provides implementation for a method

Each send-method is translated into a single clause for the multifile predicate
pce principal:send implementation/3, an example of which is shown in figure 5.4. The atom
’my_box->event’ is the unique handle to the implementation that is stored with the im-
plementation object (X above) for the method. Prolog’s first argument indexing ensures fast
access, even if there are many methods.

Just-in-time creation of methods and classes Creating classes and methods while com-
piling the XPCE classes does not cooperate easily with Prolog’s support for compiling files
into object files or generating saved states. In addition, startup time is harmed by ma-
terialising all classes and methods immediately at load-time. Therefore, the actual im-
plementation uses term expansion to compile the class declarations into the clause for
pce principal:send implementation/3 as described and creates a number of Prolog facts that
describe the classes and methods. XPCE provides a hook that is called if an undefined class
or method is addressed. The Prolog implementation of this hook materialises classes and
methods just-in-time. As the result of compiling an XPCE class is a set of Prolog clauses, all
normal compilation and saved state infrastructure can be used without change.
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Portability Our implementation is based on XPCE’s ability to refine class method, such
that the implementation can be handled by a new entity (the Prolog interface) based on a
handle provided by this interface (the atom ’my_box->event’ in the example). Not
all object systems have this ability, but we can achieve the same result with virtually any
OO system by defining a small wrapper-method in the OO language that calls the Prolog
interface. Ideally, we are able to create this method on demand through the OO system’s
interface. In the least attractive scenario we generate a source-file for all required wrapper
classes and methods and compile the result using the target OO system’s compiler. Even
in this setting, we can still debug and reload the method implementation using the normal
Prolog interactive debugging cycle, but we can only extend or modify the class and method
signatures by running the class-compiler and restarting the application.

Experience The first version of XPCE where classes could be created from Prolog was
developed around 1992. Over the years we have improved performance and the ability to
generate compact and fast starting saved states. Initially the user community was reluctant,
possibly due to lack of clear documentation and examples. The system proved valuable
for us, making more high-level functionality available to the XPCE user using the uniform
class-based framework.

We improved the usability of creating classes from Prolog by making the Prolog devel-
opment environment aware of classes and methods (section 5.7). We united listing, setting
spy-points, locating sources and cross-referencing. Support requests indicate that nowadays
a large share of experienced XPCE users define classes. Problems are rarely related to the
class definition system itself. User problems concentrate on how to find and combine classes
and methods of the base system that fulfil their requirements. XPCE shares this problem with
other large GUI libraries.

With the acceptance of XPCE/Prolog classes, a new style of application development
emerged. In this style, classes became the dominant structuring factor for interactive ap-
plications. Persistent storage and destructive assignment make XPCE data representation a
viable alternative to Prolog’s poor support of these features based on assert/retract.

5.5 Transparent exchange of Prolog data

In the above scenario, control always passes through XPCE when calling a method, regardless
of whether the method is built-in or implemented in Prolog. As long as the XPCE/Prolog
classes only extend XPCE it is natural that data passed to the method is restricted to XPCE

data. If XPCE classes are used for implementing more application-oriented code we need a
way to process native Prolog data in XPCE. We distinguish two cases: passing Prolog terms
as arguments and storing Prolog terms in XPCE instance variables. Below is a description of
both problems, each of which is followed by a solution section, after which we present and
an example in section 5.5.3.

• Passing Prolog data to a method
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Seen from Prolog, XPCE consists of three predicates that pass arguments: new/2,
send/2 and get/3. New/2 calls the constructor method, called initialise
in XPCE while send/2 and get/3 specify the method called. We consider the
case where the method that is called is implemented in Prolog using the mechanism
described in section 5.4 and the caller wishes to pass an arbitrary Prolog term to the
method implementation. In this scenario the life-time of the term is limited to the
execution of the method and therefore the term can be passed as a reference to the
Prolog stacks.

• Storing Prolog data in an XPCE instance variable
If methods can pass Prolog data, it also becomes useful to store Prolog data inside
objects as the value of an instance variable. In this case the term needs to be stored on
the Prolog permanent heap using a mechanism similar to assert/1 or recorda/3
and the instance variable needs to be filled with a handle to retrieve the stored Prolog
term.

5.5.1 Passing Prolog data to a method

When a Prolog term is passed to a method, it is passed as a term handle as defined by the
Prolog-to-C interface. The passed term needs not be ground and can be (further) instantiated
by the implementation of the method called. Figure 5.5 provides an example, where a parse-
tree is represented by a Prolog term of the form node(Content, Children) and is passed as a
whole to initialise an instance of the Prolog-defined class parse tree.

:- pce_begin_class(parse_tree, tree).

initialise(Tree, From:prolog) :->
    ...

:- pce_end_class(parse_tree).

?- new(T, parse_tree(node(sentence,
                                                 [ node(noun, ...),
                                                   ....
                                                 ]))).

parse_tree::initialise()

Prolog OO System

prolog_term

term_t: 3747472

Stacks

Figure 5.5: Passing Prolog terms across the OO system to other Prolog methods. The
term is passed ‘by reference’. It can contain unbound variables that are instantiated by
the receiving method.

For the technical realisation we introduced class host data providing XPCE with an
opaque handle to data of the host, the term XPCE uses for the language(s) that are con-
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nected to it. The XPCE/Prolog interface sub-classes this type to prolog term (figure 5.5).
Prolog data is opaque from XPCE’s perspective.

When preparing an XPCE method invocation, we check whether a method argument is
of type prolog, a type that refers to prolog term as well as primitive data. If the argument
is not primitive (integer, float or atom), the interface creates an instance of prolog term and
stores the term t term reference in this object. Whenever an instance of prolog term is
passed from XPCE to Prolog, the interface extracts the term reference from the instance and
passes it to Prolog.

5.5.2 Storing Prolog data in an XPCE instance variable

In the case where Prolog data is to be stored in instance variables, we cannot use the above
described prolog term with a reference to a Prolog term on the stack because the lifetime of
the term needs to be linked to the object and existence of a term on the stack is not guaranteed
after execution of a method completes. Instead, we need to use Prolog dynamic predicates
or the recorded database and store a handle to the Prolog data in the XPCE instance variable.
For the storage mechanism we opt for functions PL record(), PL recorded() and PL erase()
defined in the SWI-Prolog foreign interface. These functions copy terms between the stacks
and permanent heap. A term on the permanent heap is represented by a handle of type
record t.

At the moment a method is called, the interface cannot know whether or not the term will
be used to fill an instance variable and therefore a Prolog term is initially always wrapped
into an instance of the XPCE class prolog term. We identified two alternatives to create a
persistent version of this term that is transparent to the user:

• In addtion host data, Introduce another subclass of host data that uses the
PL record()/PL erase() mechanism to store the Prolog term. This can be made trans-
parent to the Prolog user by rewriting instance variable declarations of type prolog
to use this new class as type and define an automatic conversion between prolog term
and this new class.

• Introduce two internal representations for prolog term: (1) the original based on
term t and (2) a new one based on record t. Initially the object represents the
Prolog term using the term t reference. It is converted into the record t represen-
tation by new/2, send/2 or get/3 if the prolog term instance is referenced after
completion of the method. We can detect that an object is referenced because XPCE

has a reference-count-based garbage collector. Details are in the 3 steps described
below.

1. For each prolog-typed argument, create a prolog term instance and keep an array
of created instances.

2. Run the method implementation.
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3. Check the reference count for each created prolog term instance. If zero, the
instance can be destroyed. If > 0, it is referenced from some object and we
transform the instance to its recorded database form. Figure 5.6 shows the situ-
ation after setting an instance variable.

We opted for the second alternative, mainly because it is easier to implement given the
design of XPCE and its Prolog interface.

Window 21

data:record_t = 0x2636536

?- get(Window_21, data, X)

X = sentence([hello, world]).

Prolog OO System

Permanent heap

Figure 5.6: Storing Prolog data in external objects. The object contains a reference to a
copy of the term maintained in the Prolog permanent heap.

5.5.3 An example: create a graphical from a Prolog tree

Figure 5.7 defines a class that creates a graphical tree where each node has a permanent
payload of Prolog data associated. The hierarchy is created directly from a complex Prolog
data structure. After creating a hierarchy this way, the Prolog tree as a whole is always
passed by reference as illustrated in figure 5.5. Each node contains a permanent copy of the
associated pay load as illustrated in figure 5.6.

5.5.4 Non-deterministic methods

If a Prolog-defined method is called from Prolog, it is desirable to be able to preserve pos-
sible non-determinism of the method. In the approach above, where activating a Prolog-
defined method is always initiated from inside XPCE, this is not feasible. We can realise
this desired feature by splitting method-invocation from Prolog into two steps. The first
step resolves the methods, checks and possibly translates arguments as before. Now, instead
of invoking the implementation, it returns a continuation (= goal). If the method is imple-
mented in C, the implementation is called and the continuation is true. If the method is
implemented in Prolog, the continuation is a call to the implementation for which we gave
an example in figure 5.4. This implementation of send/2 is illustrated by the code below
and preserves both non-determinism and last-call optimisation.
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:- pce_begin_class(my_node, node).

variable(data, prolog, both, "Associated data").

initialise(Node, Tree:prolog) :->
Tree = node(Name, Data, Sons),
send_super(Node, initialise(text(Name))),
send(Node, data(Data)),
forall(member(Son, Sons),

send(Node, son(my_node(Son)))).

:- pce_end_class(my_node).

?- new(Tree, my_node(node(root, type(nounphrase),
[ node(dog, type(noun), []),
...

]))).

Figure 5.7: Class my node creates a node and its children from a Prolog term, where each
node carries a payload, also represented as a Prolog term. Bottom part shows an example
invocation.

send(Object, Message) :-
resolve_implementation(Object, Message, Continuation),
call(Continuation).

We have not yet included this mechanism for preserving non-determinism because too much
existing code relies on the implicit cut that now follows the implementation of each method.
A possible solution is to add a declaration that specifies that the implementation is non-
deterministic.

In this section we described passing Prolog data to methods implemented in Prolog, storing
Prolog data in instance variables of the OO system and finally introduce non-determinism
into methods defined in Prolog. We conclude with a brief analysis of portability and experi-
ence, where we omit non-determinism as this has not been implemented.
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Portability Garbage collection in many object systems is not (only) based on reference
counts and therefore the reference-count transparent change of status from term reference to
a copy on the permanent heap is often not feasible. In that case one must opt for the first
alternative as described in section 5.5.2. An interface as defined by PL record()/PL erase()
is not commonly available in Prolog systems, but can be implemented easily in any system.
Even without access to the source it is always possible to revert to an assert/retract-based
implementation.

Experience The possibility to pass Prolog data around is used frequently, clearly simplify-
ing and improving efficiency of methods that have to deal with application data that is already
represented in Prolog, such as the parse tree generated by the SWI-Prolog SGML/XML parser
(see section 7.2).

5.6 Performance evaluation

XPCE/Prolog message passing implies data conversion and foreign code invocation, slowing
down execution. However, XPCE provides high-level (graphical) operations that limit the
number of messages passed. Computation inside the Prolog application runs in native Pro-
log and is thus not harmed. For example, bottlenecks appear when manipulating bitmapped
images at the pixel-level or when using Prolog-defined classes for fine-grained OO program-
ming where good performance is a requirement.

Table 5.1 illustrates the performance on some typical method invocations through Prolog
send/2. The first two rows call a C-defined built-in class involving no significant ‘work’.
We implemented class bench in Prolog, where the implementation of the method is a call
to true/0. The first row represents the time to make a call to C and resolve the method
implementation. The second adds checking of an integer argument while the last row adds
the time to create and destroy the prolog term instance. Finally, we add timing for Prolog
calling Prolog and Prolog calling a C-defined built-in.

Accessing external functionality inside XPCE involves 5 times the overhead of adding
C-defined predicates to Prolog. In return, we get object orientation, runtime type checking
of arguments and optional arguments. Defining methods in Prolog doubles the overhead and
is 10 times slower than direct Prolog-to-Prolog calls. Most XPCE methods realise significant
functionality and the overhead is rarely a bottleneck.

5.7 Events and Debugging

An important advantage of the described interface is that all application-code is executed in
Prolog and can therefore be debugged and developed using Prolog’s native debugger and,
with some restrictions described in section 5.4, Prolog’s incremental compilation to update
the environment while the application is running.



MAKING OBJECT-ORIENTED SYSTEMS AVAILABLE FROM PROLOG 81

Goal Class Time (µS)
Prolog calling XPCE a built-in method

send(@426445, normalise) area 0.24
send(@426445, x(1)) area 0.31

Prolog calling XPCE Prolog-defined method
send(@426891, noarg) bench 0.54
send(@426891, intarg(1)) bench 0.69
send(@426891, termarg(hello(world))) bench 0.65

Prolog calling Prolog
direct(@253535, hello(world)) – 0.05

Prolog calling C
compound(hello(world)) – 0.06

Table 5.1: Message passing performance, measured on an Intel X6800@2.93Ghz, SWI-
Prolog 5.7.2 compiled with gcc 4.3 -O2

The Prolog debugger is faced with phenomena uncommon to the traditional Prolog
world. The event-driven nature of GUI systems causes ‘spontaneous’ calls. Many user-
interactions consist of a sequence of actions each causing their own events and Prolog call-
backs. User interaction with the debugger may be difficult or impossible during such se-
quences. For example, call-backs resulting from dragging an object in the interface with
the mouse cannot easily be debugged on the same console. The design also involves deeply
nested control switches between foreign code and Prolog. The SWI-Prolog debugger is aware
of the possibilities of interleaved control and provides hooks for presenting method-calls in
a user-friendly fashion. Break-points in addition to the traditional spy-points make it eas-
ier to trap the debugger at interesting points during user-interaction. Figure 5.8 shows the
source-level debugger in action on XPCE/Prolog code.

5.8 Related Work

To our best knowledge, there are no systems with a similar approach providing GUI to Prolog.
Other approaches for accessing foreign GUI systems have been explored in section 5.2.

Started as a mechanism to provide a GUI, our approach has developed into a generic
design to integrate Prolog seamlessly with an external OO programming language. The
integrated system also functions as an object extension to Prolog and should therefore be
compared to other approaches for representing objects in Prolog. Given the great diversity
of such systems (Moura 2008), we consider this beyond the scope of this discussion.
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Figure 5.8: SWI-Prolog source-level debugger showing break-point and interleaved for-
eign/Prolog stack context.

5.9 Conclusions and discussion

We have presented an architecture for integrating an external Object Oriented system with
minimal reflexive capabilities (i.e., calling a method by name) with Prolog. In most of the
document we described the architecture of XPCE/SWI-Prolog and commented portability
aspects when replacing XPCE with another OO system. The design allows for extending
many existing OO systems naturally from Prolog. Using this interface the user can add new
classes to the OO system entirely from Prolog which can be used to extend the OO system,
but also for object-oriented programming in Prolog. Programming requires knowledge of
the OO system’s classes and methods, but requires no knowledge of the OO system’s control
primitives and syntax.

Using dynamically typed OO systems where classes and methods can be created at run-
time through the interface without generating a source file, a quick and natural development
cycle is achieved. If however, less of the OO system is accessible at runtime, development
becomes more cumbersome because more changes to the code will require the user to restart
the application.
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Creating derived classes is often required to make effective use of an existing OO system,
for example for refining behaviour of GUI controls. Our mechanism satisfies this require-
ment and allows for a tight integration between Prolog and the GUI classes. The ability to
create derived classes from Prolog provides a uniform interface to the core of the OO system
and extensions realised in Prolog libraries. Classes defined in Prolog form an appropriate
organisation mechanism for the GUI part of applications.

The proposed solution can be less ideal for general purpose OO programming in Prolog
for two reasons. First, the OO features of the OO platform dictate the OO features of our
hybrid environment. For example, XPCE does not provide multiple inheritance nor poly-
morphism on argument types and therefore these features are lacking from XPCE/Prolog
programs. Multiple inheritance can be attractive for data modelling. Second, the message
passing overhead is relatively high. This is acceptable for course-grain organisation of appli-
cations and many user interface tasks, but it might be unacceptable for general purpose OO

programming in Prolog. However, introducing an OO system for application programming
next to interfacing to an external OO system as described in this paper is likely to confuse
programmers. The discussion on supporting graphics from Prolog is continued in the overall
conclusions of this thesis, section 11.3.1.
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Chapter 6

Native Preemptive Threads in SWI-Prolog

About this chapter This chapter was published at the ICLP-03 (Wielemaker
2003a). It describes adding multi-threading to Prolog, a requirement for creat-
ing scalable web services and therefore part of research question 2. Threads also
play a vital role in the mediator-based MVC design that we used to implement
Triple20 (chapter 2, Wielemaker et al. 2005). The SWI-Prolog implementation
is the basis for the ISO standard for adding threads to Prolog (Moura et al. 2008)
and has already been implemented by two major Open Source Prolog systems
(YAP and XSB). Section 6.6.1 has been updated to reflect enhancements made
since this paper was published.

Abstract Concurrency is an attractive property of a language to exploit multi-
CPU hardware or perform multiple tasks concurrently. In recent years we see
Prolog systems experimenting with multiple threads only sharing the database.
Such systems are relatively easy to build and remain close to standard Prolog
while providing valuable extra functionality. This article describes the introduc-
tion of multiple threads in SWI-Prolog exploiting OS-native support for threads.
We discuss the extra primitives available to the Prolog programmer as well as
implementation issues. We explored speedup on multi-processor hardware and
speed degradation when executing a single task.

6.1 Introduction

There are two approaches to concurrency in the Prolog community, implicit fine-grained par-
allelism where tasks share Prolog variables and implementations (see section 6.7) in which
Prolog engines only share the database (clauses) and run otherwise completely independent.
We call the first class parallel logic programming systems and the latter multi-threaded sys-
tems. Writing programs for multi-threaded Prolog is close to normal Prolog programming,
which makes multi-threading attractive for applications that benefit from course grained con-
currency. Below are some typical use-cases.
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• Network servers/agents
Network servers must be able to pay attention to multiple clients. Threading allows
multiple, generally almost independent, tasks to make progress at the same time. This
can improve overall performance by exploiting multiple CPUs (SMP) or by better util-
ising a single CPU if (some) tasks are I/O bound. Section 6.4.1 provides an example.

• Embedding in multi-threaded servers
Concurrent network-service infrastructures such as CORBA or .NET that embed a sin-
gle threaded Prolog engine must serialise access to Prolog. If Prolog is responsible
for a significant amount of the computation Prolog becomes a bottleneck. Using a
multi-threaded Prolog engine the overall concurrent behaviour of the application can
be preserved.

• Background processing in interactive systems
Responsiveness and usefulness of interactive applications can be improved if back-
ground processing deals with tasks such as maintaining mediators (section 2.4), spell-
checking and syntax-highlighting. Implementation as a foreground process either
harms response-time or is complicated by interaction with the GUI event-handling.

• CPU-intensive tasks
On SMP systems CPU-intensive tasks that can easily be split into independent subtasks
can profit from a multi-threaded implementation. Section 6.6.2 describes an experi-
ment.

This article is organised as follows: in section 6.2 we establish requirements for multi-
threaded Prolog that satisfy the above use cases. In subsequent sections we motivate choices
in the design and API. Section 6.5 provides an overview of the implementation effort needed
to introduce threads in a single threaded Prolog implementation, where we pay attention to
atom garbage collection. We perform two performance analysis: the first explores the perfor-
mance loss when running single-threaded applications on a multi-threaded system while the
second explores speedup when running a CPU-intensive job on multi-CPU hardware. Finally
we present related work and draw our conclusions.

6.2 Requirements

Combining the use-cases from the introduction with the need to preserve features of interac-
tive program development in Prolog such as aborting execution and incremental recompila-
tion during debugging, we formulate the following requirements:

• Smooth cooperation with (threaded) foreign code
Prolog applications operating in the real world often require substantial amounts of
‘foreign’ code for interaction with the outside world: window-system interface, inter-
faces to dedicated devices and networks. Prolog threads must be able to call arbitrary
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foreign code without blocking the other (Prolog-)threads and foreign code must be
able to create, use and destroy Prolog engines.

• Simple for the Prolog programmer
We want to introduce few and easy to use primitives to the Prolog programmer.

• Robust during development
We want to be as robust as feasible during interactive use and the test-edit-reload
development cycle. In particular this implies the use of synchronisation elements that
will not easily create deadlocks when used incorrectly.

• Portable implementation
We want to be able to run our multi-threaded Prolog with minimal changes on all
major hardware and operating systems.

Notably the first and last requirement suggests to base Prolog threads on the POSIX thread
API (Butenhof 1997). This API offers preemptive scheduling that cooperates well with all
(blocking) operating system calls. It is well supported on all modern POSIX-based systems.
On MS-Windows we use a mixture of pthread-win321 for portability and the native Win32
thread-API where performance is critical.

6.3 What is a Prolog thread?

A Prolog thread is an OS-native thread running a Prolog engine, consisting of a set of stacks
and the required state to accommodate the engine. After being started from a goal it proves
this goal just like a normal Prolog implementation by running predicates from a shared
program space. Figure 6.1 illustrates the architecture. As each engine has its own stacks,
Prolog terms can only be transferred between threads by copying. Both dynamic predicates
and FIFO queues of Prolog terms can be used to transfer Prolog terms between threads.

6.3.1 Predicates

By default, all predicates, both static and dynamic, are shared between all threads. Changes
to static predicates only influence the test-edit-reload cycle, which is discussed in section 6.5.
For dynamic predicates we kept the ‘logical update semantics’ as defined by the ISO standard
(Deransart et al. 1996). This implies that a goal uses the predicate with the clause-set as
found when the goal was started, regardless of whether clauses are asserted or retracted by
the calling thread or another thread. The implementation ensures consistency of the predicate
as seen from Prolog’s perspective. Consistency as required by the application such as clause
order and consistency with other dynamic predicates must be ensured using synchronisation
as discussed in section 6.3.2.

1http://sources.redhat.com/pthreads-win32/
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Shared Data

Predicates, clauses, atoms, records, streams

Stacks
Flags
System-stream-aliases
Thread-local clauses

Thread-1

Stacks
Flags
System-stream-aliases
Thread-local clauses

Thread-N

Fifo Queue

Figure 6.1: Multiple Prolog engines sharing the same database. Flags and the system-
defined stream aliases such as user input are copied from the creating thread. Clauses
are normally shared, except for thread-local clauses discussed below in section 6.3.1.

In contrast, Thread-local predicates are dynamic predicates that have a different set of
clauses in each thread. Modifications to such predicates using assert/1 or retract/1
are only visible from the thread that performs the modification. In addition, such predicates
start with an empty clause set and clauses remaining when the thread dies are automati-
cally removed. Like the related POSIX thread-specific data primitive, thread-local predicates
simplifies making code designed for single-threaded use thread-safe.

6.3.2 Synchronisation

The most difficult aspect of multi-threaded programming is the need to synchronise the con-
currently executing threads: ensure they use proper protocols to exchange data and maintain
invariants of shared-data in dynamic predicates. Given the existence of the POSIX thread
standard and our decision to base our thread implementation on this standard for portabil-
ity reasons, we must consider modelling the Prolog API after it. POSIX threads offer two
mechanisms to organise thread synchronisation:

• A mutex
is a Mutual Exclusive device. At most one thread can ‘hold’ a mutex. By associating
a mutex to data it can be assured only one thread has access to this data at one time,
allowing it to maintain the invariants.

• A condition variable
is an object that can be used to wait for a certain condition. For example, if data is not
in a state where a thread can start using it, a thread can wait on a condition variable
associated with this data. If another thread updates the data it signals the condition
variable, telling the waiting thread something has changed and it may re-examine the
condition.
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As Butenhof (1997) explains in chapter 4, the commonly used thread cooperating tech-
niques can be realised using the above two primitives. However, these primitives are not
suitable for the Prolog user because great care is required to use them in the proper order
and to complete all steps of the protocol. Failure to do so may lead to data corruption or
to a deadlock where all threads are waiting for an event to happen that never will. Non-
determinism, exceptions and the interactive development-cycle supported by Prolog compli-
cate this further.

Examining other systems (section 6.7), we find a more promising synchronisation primi-
tive in the form of a FIFO (first-in-first-out) queue of Prolog terms. Queues (also called chan-
nels or ports) are well understood, easy to understand by non-experts in multi-threading, can
safely handle abnormal execution paths (backtracking and exceptions) and can naturally rep-
resent serialised flow of data (pipeline). Next to the FIFO queues we support goals guarded
by a mutex by means of with mutex(Mutex, Goal) as defined in section 6.4.2.

6.3.3 I/O and debugging

Support for multi-threaded I/O is rather primitive. I/O streams are global objects that may be
created, accessed and closed from any thread knowing their handle. All I/O predicates lock
a mutex associated with the stream, providing elementary consistency, but the programmer
is responsible for proper closing the stream and ensuring streams are not accessed by any
thread after closing them.

Stream alias names for the system streams (e.g., user input) are thread-specific,
where a new thread starts with the current bindings in its creator. Local system stream aliases
allow us to re-bind the user streams and provide separate interaction consoles for each thread
as implemented by attach console/0. The console is realised using a clone of the nor-
mal SWI-Prolog console on Windows or an instance of the xterm application in Unix. The
predicate interactor/0 creates a thread, attaches a console and runs the Prolog toplevel.

Using thread signal/2 to execute attach console/0 and trace/0 in an-
other thread, the user can attach a console to any thread and start the debugger in any thread
as illustrated in figure 6.2.

6.4 Managing threads from Prolog

An important requirement is to make threads easy for the programmer, especially for the
task we are primarily targeting at, interacting with the outside world. First we start with an
example, followed by a partial description of the Prolog API and the consequences for the
foreign language interface.

6.4.1 A short example

Before describing the details, we present the implementation of a simple network service in
figure 6.3. We will not discuss the details of all built-in and library predicates used in this
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Figure 6.2: Attach a console and start the debugger in another thread.

example. The thread-related predicates are discussed in more detail in section 6.4.2 while
all details can be found in the SWI-Prolog reference manual (Wielemaker 2008). Our ser-
vice handles a single TCP/IP request per connection, using a specified number of ‘worker
threads’ and a single ‘accept-thread’. The accept-thread executes acceptor/2, accept-
ing connection requests and adding them to the queue for the workers. The workers exe-
cute worker/1, getting the accepted socket from the queue, read the request and execute
process/2 to compute a reply and write this to the output stream. After this, the worker
returns to the queue for the next request.

The advantages of this implementation over a traditional single-threaded Prolog imple-
mentation are evident. Our server exploits SMP hardware and will show much more pre-
dictable response times, especially if there is a large distribution in the time required by
process/1. In addition, we can easily improve on it with more monitoring components.
For example, acceptor/2 could immediately respond with an estimated reply time, and
commands can be provided to examine and control activity of the workers. Using multi-
threaded code, such improvements do not affect the implementation of process/2, keep-
ing this simple and reusable.

6.4.2 Prolog primitives

This section discusses the main features of built-in predicates we have added to Prolog to
facilitate threads. A full description is in the SWI-Prolog reference manual (Wielemaker
2008).

thread create(:Goal, -Id, +Options)
Create a thread which starts executing Goal. Id is unified with the thread-identifier. In
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:- use module(library(socket)).

make server(Port, Workers) :-
create socket(Port, S),
message queue create(Q),
forall(between(1, Workers, ),

thread create(worker(Q), ,
[])),

thread create(acceptor(S, Q), , []).

create socket(Port, Socket) :-
tcp socket(Socket),
tcp bind(Socket, Port),
tcp listen(Socket, 5).

acceptor(Socket, Q) :-
tcp accept(Socket, Client, Peer),
thread send message(Q, Client),
acceptor(Socket, Q).

worker(Q) :-
thread get message(Q, Client),
tcp open socket(Client, In, Out),
read(In, Command),
close(In),
process(Command, Out),
close(Out),
worker(Q).

process(hello, Out) :-
format(Out, ’Hello world!˜n’, []).

Figure 6.3: Implementation of a multi-threaded server. Threading primitives are set in
bold. The left column builds the server. The top-right runs the acceptor thread, while the
bottom-right contains the code for a worker of the crew.

the calling thread, thread create/3 returns immediately. The new Prolog engine
runs independently. Threads can be created in two modes: attached and detached.
Completion of Attached threads must be followed by a call to thread join/2
to retrieve the result-status and reclaim all resources. Detached threads vanish
automatically after completion of Goal. If Goal terminated with failure or an
exception, a message is printed to the console. Options is an ISO option list providing
the mode, a possible alias name and runtime parameters such as desired stack limits.

thread join(+Id, -Result)
Wait for the thread Id to finish and unify Result with the completion status, which is
one of true, false or exception(Term).

message queue create(-Queue, +Options)
Create a FIFO message queue (channel). Message queues can be read from multiple
threads. Each thread has a message queue (port) attached as it is created. Options
allows naming the queue and define a maximum size. If the queue is full, writers are
suspended.

thread send message(+QueueOrThread, +Term)
Add a copy of term to the given queue or default queue of the thread. Suspends the
caller if the queue is full.
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thread get message([+Queue], ?Term)
Get a message from the given queue (channel) or default queue if Queue is omitted
(port). The first message that unifies with Term is removed from the queue and
returned. If multiple threads are waiting, only one will be given the term. If the queue
has no matching terms, execution of the calling thread is suspended.

with mutex(+Name, :Goal)
Execute Goal as once/1 while holding the named mutex. Name is an atom. Explicit
use of mutex objects is used to serialise access to code that is not designed for
multi-threaded operation as well as coordinate access to shared dynamic predicates.
The example below updates address/2. Without a mutex another thread may see
no address for Id if it executes just between the retractall/1 and assert/1.

set_address(Id, Address) :-
with_mutex(address, (retractall(address(Id, _)),

assert(address(Id, Address)))).

thread signal(+Thread, :Goal)
Make Thread execute Goal on the first opportunity, i.e., run Goal in Thread as an
interrupt. If Goal raises an exception, this exception is propagated to the receiving
thread. This ability to raise an exception in another thread can be used to abort threads.
See below. Long running and blocking foreign code may call PL handle signals()
to execute pending signals and return control back to Prolog if PL handle signals()
indicates that the handler raised an exception by returning -1.

Signalling threads is used for debugging purposes (figure 6.2) and ‘manager’ threads
to control their ‘work-crew’. Figure 6.4 shows the code of both the worker and man-
ager needed to make a worker stop processing the current job and obtain a new job
from a queue. Figure 6.6 shows the work-crew design pattern to which this use case
applies.

Worker Manager
worker(Queue) :-

thread get message(Queue,
Work),

catch(do work(Work), stop, cleanup),
worker(Queue).

. . .
thread signal(Worker, throw(stop)),
. . .

Figure 6.4: Stopping a worker using thread signal/2. Bold fragments show the rele-
vant parts of the code.
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6.4.3 Accessing Prolog threads from C

Integration with foreign (C-)code has always been one of the main design goals of SWI-
Prolog. With Prolog threads, flexible embedding in multi-threaded environments becomes
feasible. We identify three use cases. Some applications in which we want to embed Prolog
use few threads that live long, while others frequently created and destroy threads and finally,
there are applications with large numbers of threads.

Compared to POSIX threads in C, Prolog threads use relatively much memory resources
and creating and destroying a Prolog thread is relatively expensive. The first class of appli-
cations can associate a Prolog thread (engine) with every thread that requires Prolog access
(1-to-1-design, see below), but for the other two scenarios this is not desirable and we devel-
oped an N -to-M -design:

• 1-to-1-design
The API PL thread attach engine() creates a Prolog engine and makes it available
to the thread for running queries. The engine may be destroyed explicitely using
PL thread destroy engine() or it will be destroyed automatically when the underlying
POSIX thread terminates.

• N -to-M -design
The API PL create engine() creates a Prolog engine that is not associated to any thread.
Multiple calls can be used to create a pool of M engines. Threads that require access
to Prolog claim and release an engine using PL set engine(). Claiming and releasing
an engine is a fast operation and the system can realise a suitable pool of engines
to balance concurrency and memory requirements. A demo implementation is avail-
able.2

6.5 Implementation issues

We tried to minimise the changes required to turn the single-engine and single-threaded
SWI-Prolog system into a multi-threaded version. For the first implementation we split all
global data into three sets: data that is initialised when Prolog is initialised and never changes
afterwards, data that is used for shared data-structures, such as atoms, predicates, modules,
etc. and finally data that is only used by a single engine such as the stacks and virtual machine
registers. Each set is stored in a single C-structure, using thread-specific data (section 6.3.2)
to access the engine data in the multi-threaded version. Update to shared data was serialised
using mutexes.

A prototype using this straight-forward transition was realised in only two weeks, but it
ran slowly due to too heavy use of pthread getspecific() and too many mutex synchronisation
points. In the second phase, fetching the current engine using pthread getspecific() was
reduced by caching this information inside functions that use it multiple times and passing

2http://gollem.science.uva.nl/twiki/pl/bin/view/Development/MultiThreadEmbed
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it as an extra variable to commonly used small functions as identified using the gprof
(Graham et al. 1982) profiling tool. Mutex contention was analysed and reduced from some
critical places:3

• All predicates used reference counting to clean up deleted clauses after retract/1
for dynamic or (re-)consult/1 for static code. Dynamic clauses require synchronisa-
tion to make changes visible and cleanup erased clauses, but static code can do without
this. Reclaiming dead clauses from static code as a result of the test-edit-recompile cy-
cle is left to a garbage collector that operates similarly to the atom garbage collection
described in section 6.5.1.

• Permanent heap allocation uses a pool of free memory chunks associated with the
thread’s engine. This allows threads to allocate and free permanent memory without
synchronisation.

6.5.1 Garbage collection

Stack garbage collection is not affected by threading and continues concurrently. This allows
for threads under real-time constraints by writing them such that they do not perform garbage
collections, while other threads can use garbage collection.

Atom garbage collection is more complicated because atoms are shared global resources.
Atoms referenced from global data such as clauses and records use reference counting, while
atoms reachable from the stacks are marked during the marking phase of the atom garbage
collector. With multiple threads this implies that all threads have to mark their atoms before
the collector can reclaim unused atoms. The pseudo code below illustrates the signal-based
implementation used on Unix systems.

atom_gc()
{ mark_atoms_on_stacks(); // mark my own atoms

foreach(thread except self) // ask the other threads
{ pthread_kill(thread, SIG_ATOM_GC);

signalled++;
}
while(signalled-- > 0) // wait until all is done

sem_wait(atom_semaphore);
collect_unmarked_atoms();

}

A thread receiving SIG ATOM GC calls mark atoms on stacks() and signals the
atom semaphore semaphore when done. The mark atoms on stacks() function is de-
signed such that it is safe to call it asynchronously. Uninitialised variables on the Prolog
stacks may be interpreted incorrectly as an atom, but such mistakes are infrequent and can
be corrected in a later run of the garbage collector. The atom garbage collector holds the

3See Update at the end of section 6.6 for additional places were we reduced contention.
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atom mutex, preventing threads to create atoms or change the reference count. The marking
phase is executed in parallel.

Windows does not provides asynchronous signals and synchronous (cooperative) mark-
ing of referenced atoms is not acceptable because the invoking thread as well as any thread
that wishes to create an atom must block until atom GC has completed. Therefore the thread
that runs the atom garbage collector uses SuspendThread() and ResumeThread() to stop and
restart each thread in turn while it marks the atoms of the suspended thread.

Atom-GC and GC interaction SWI-Prolog uses a sliding garbage collector (Appleby et al.
1988). During the execution of GC, it is hard to mark atoms. Therefore during atom-GC, GC

cannot start. Because atom-GC is such a harmful activity, we should avoid it being blocked
by a normal GC. Therefore the system keeps track of the number of threads executing GC. If
GC is running in some thread, atom-GC is delayed until no thread executes GC.

6.5.2 Message queues

Message queues are implemented using POSIX condition variables using the recorded
database for storing Prolog terms in the queue. Initially the implementation used the
pthreads-win32 emulation on Windows. In the current implementation this emulation is
replaced by a native Windows alternative (Schmidt and Pyarali 2008) which does not com-
ply fully to the POSIX semantics for condition variables, but provides an approximately 250
times better throughput of messages. The incorrectness has no implications for our purposes.

The SWI-Prolog recorded database cooperates with the atom garbage collector using
atom reference counts: recording a term increments the reference count of each atom that
appears in it and erasing the record decrements the reference counts. In both message queues
and findall/3, recorded terms fulfil the role of temporary storage and the need to syn-
chronise twice for every atom in a term has proven to be a major performance bottleneck. In
the current implementation, atoms in temporary recorded terms are no longer registered and
unregistered. Instead, atom garbage collection marks atoms that appear in queued records
and the solution store of findall/3. See also the update paragraph at the end of sec-
tion 6.6.

6.6 Performance evaluation

Our aim was to use the multi-threaded version as default release version, something which
is only acceptable if its performance running a normal non-threaded program is close to
the performance of the single-threaded version, which is investigated in section 6.6.1. In
section 6.6.2 we studied the speedup on SMP systems by splitting a large task into subtasks
that are distributed over a pool of threads.
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6.6.1 Comparing multi-threaded to single threaded version

We used the benchmark suite by Fernando Pereira4 for comparing the single threaded to the
multi threaded version. The Pereira benchmark set consists of 34 tests, each of which tests
a specific aspect of a Prolog implementation. The tests themselves are small and iterated
many times to run for a measurable time. We normalised the iterations of each test to make
it run for approximately one second on our base case: single-threaded SWI-Prolog on Linux.
We ran the benchmarks in five scenarios on the same hardware, a machine with an 550Mhz
Crusoe CPU running SuSE Linux 7.3 and Windows 2000 in dual-boot mode.

Bar Threading OS Comments
1 Single Linux Our base-case.
2 Single Linux With extra variable. See description.
3 Multi Linux Normal release version.
4 Single Windows Compiled for these tests.
5 Multi Windows Normal release version.

Figure 6.5: Performance comparison between single and multi-threaded versions. The Y-
axis shows the time to complete the benchmark in seconds. The legend above summarises
the test setting represented by each bar. The rightmost 5 bars show the average.

Figure 6.5 shows the results. First, we note there is no significant difference on any
of the tests between the single- and multi-threaded version on Windows 2000 (bars 4&5).
The figure does show a significant difference for Linux running on the same hardware (bars
1&3). Poor performance of Linux on ‘assert unit’, ‘access unit’ and the setof/bagof tests in-
dicates a poor implementation of mutexes that are used for synchronising access to dynamic
predicates and protecting atoms in records used for storing the setof/bagof results.

The slow-down on the other tests cannot be explained by synchronisation primitives as
they need no synchronisation. The state of the virtual machine in the single threaded version
is stored in a global structure, while it is accessible through a pointer passed between func-
tions in the multi threaded version. To explain the differences on Linux we first compiled a

4http://www-2.cs.cmu.edu/afs/cs/project/ai-repository/ai/lang/prolog/code/bench/pereira.txt
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version that passes a pointer to the virtual machine state but is otherwise identical to the sin-
gle threaded version. This version (2nd bar) exhibits behaviour similar to the multi-threaded
(3th bar) version on many of the tests, except for the tests that require heavy synchronisation.
We conclude that the extra variable and argument in many functions is responsible for the
difference. This difference does not show up in the Windows version. We see two possible
explanations for that. First, Unix shared object management relies on position independent
code, for which it uses a base register (EBX on IA32 CPUs), while Windows uses relocation
of DLLs. This implies that Unix systems have one register less for application code, a signif-
icant price on a CPU with few registers. Second, because overall performance of the single
threaded version is better on Linux, it is possible that overall optimisation of gcc 2.95 is bet-
ter than MSVC 5 or to put in differently, Windows could have been faster in single threaded
mode if the optimisation of MSVC 5 would have been better.

Finally, we give the average result (last column of figure 6.5) comparing the single-
threaded with the multi-threaded version (cases 1 and 3 in figure 6.5) for a few other plat-
forms and compilers. Dual AMD-Athlon, SuSE 8.1, gcc 3.1: -19%; Single UtraSPARC,
Solaris 5.7, gcc 2.95: -7%; Single Intel PIII, SuSE 8.2, gcc 3.2: -19%. Solaris performs
better on the mutex-intensive tests.

Update We re-ran the Linux comparison on modern hardware: AMD Athlon X2 5400+
dual core CPU running Linux 2.6.22, glibc 2.6.1 and gcc 4.2.1. Both single and multi-
threaded versions where compiled for the AMD64 (x86 64) architecture, which provides 16
instead of 8 general purpose registers. Since publication of this paper we changed the im-
plementation of findall/3 to use the variant of recorded terms described in section 6.5.2
to avoid the need for synchronisation in the all-solution predicates.

The average performance loss over the 34 tests is now only 4%. This is for a large
part caused by the dynamic predicate tests (assert unit and access unit; -20% and -29%).
Because findall/3 and friends no longer require significant synchronisation, the multi-
threaded version performs practically equal to the single-threaded version on the last four
tests of figure 6.5 (setof . . . bagof).

6.6.2 A case study: Speedup on SMP systems

This section describes the results of multi-threading the Inductive Logic Programming sys-
tem Aleph (Srinivasan 2003), developed by Ashwin Srinivasan at the Oxford University
Computing Laboratory. Inductive Logic Programming (ILP) is a branch of machine learning
that synthesises logic programs using other logic programs as input.

The main algorithm in Aleph relies on searching a space of possible general clauses for
the one that scores best with respect to the input logic programs. Given any one example
from the input, a lattice of plausible single-clauses ordered by generality is bound from above
by the clause with true as the body (>), and bound from below by a long (up to hundreds
of literals) clause known as the most-specific-clause (or bottom, ⊥) (Muggleton 1995).
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Many strategies are possible for searching this often huge lattice. Randomised local
search (Železný et al. 2003) is one form implemented in Aleph. Here a node in the lattice is
selected at random as a starting location to (re)-start the search. A finite number of moves
(e.g., radially from the starting node) are made from the start node. The best scoring node is
recorded, and another node is selected at random to restart the search. The best scoring node
from all restarts is returned.

As each restart in a randomised local search of the lattice is independent, the search
can be multi-threaded in a straight forward manner using the worker-crew model, with each
worker handling moves from a random start point and returning the best clauses as depicted
in figure 6.6. We exploited the thread-local predicates described section 6.3.1 to make the
working memory of the search kept in dynamic predicates local to each worker.

Fifo Queue

Fifo Queue

Manager Worker-1

Worker-N

Start-locations

Best clauses

Figure 6.6: Concurrent Aleph. A manager schedules start points for a crew of workers.
Each worker computes the best clause from the neighbourhood of the start point, delivers
it to the manager and continues with the next start-point.

6.6.2.1 Experimental results and discussion

An exploratory study was performed to study the speedup resulting from using multiple
threads on an SMP machine. We realised a work-crew model implementation for randomised
local search in Aleph version 4. As the task is completely CPU bound we expected optimal
results if the number of threads equals the number of utilised processors.5 The task consisted
of 16 random restarts, each making 10 moves using the carcinogenesis (King and Srinivasan
1996) data set.6 This task was carried out using a work-crew of 1, 2, 4, 8 and 16 workers
scheduled on an equal number of CPUs. Figure 6.7 shows that speedup is nearly optimal
upto about 8 CPUs. Above 8, synchronisation overhead prevents further speedup. Note that
later enhancements to messages queues as described in section 6.5.2 were not available for
these tests.

The above uses one thread per CPU, the optimal scenario for purely CPU bound tasks.
We also assessed the performance when using many threads per CPU using Aleph. These
results indicate the penalty of converting a single-threaded design into a multi-threaded one.

5We forgot to reserve a CPU for the manager. As it has little work to do we do not expect results with an additional
CPU for the manager to differ significantly from our results.

6ftp://ftp.comlab.ox.ac.uk/pub/Packages/ILP/Datasets/carcinogenesis/progol/carcinogenesis.tar.Z
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Figure 6.7: Speedup with an increasing number of CPUs defined as elapsed time using
one CPU divided by elapsed time using N CPUs. The task consisted of 16 restarts of 10
moves. The values are averaged over 30 runs. The study was performed on a Sun Fire
6800 with 24 UtraSPARC III 900 MHz Processors, 48 GB of shared memory, utilising up
to 16 processors.

Figure 6.8 shows the results. The X-axis show the number of used threads with the same
meaning as used in the above experiment. The Y-axis shows both the (user) CPU time and
the elapsed time. The top-two graphs show that on single CPU hardware there is no handicap
upto 8 threads. With 16 and 32 threads, overhead starts to grow quickly. On dual-CPU

hardware (bottom-two graphs), the situation is slightly different. The point for 1 thread (left)
illustrate the difference in CPU speed between our single-CPU platform and SMP platform.
With two threads, CPU time remains almost the same and elapsed time is reduced to almost
50%. As more threads are used, both CPU and elapsed time increase much faster than in the
single-CPU scenario.
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Figure 6.8: CPU- and elapsed time running Aleph concurrent on two architectures. The
top two graphs are executed on a single CPU Intel PIII/733 Mhz, SuSE 8.2. The bottom
two graphs are executed on a dual Athlon 1600+, SuSE 8.1. The X and triangle marked
graps represent elapsed time.
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6.7 Related Work

This section provides an incomplete overview of other Prolog implementations providing
multi-threading where threads only share the database. Many implementations use message
queues (called port if the queue is an integral part of the thread or channel if they can be
used by multiple threads).

SICStus-MT(Eskilson and Carlsson 1998) describes a prototype implementation of a
multi-threaded version of SICStus Prolog based on the idea to have multiple Prolog engines
only sharing the database. They used a proprietary preemptive scheduler for the prototype
and therefore cannot support SMP hardware and have trouble with clean handling of blocking
system-calls. The programmer interface is similar to ours, but they do not provide queues
(channels) with multiple readers, nor additional synchronisation primitives.

CIAO Prolog7 (Carro and Hermenegildo 1999) provides preemptive threading based on
POSIX threads. The referenced article also gives a good overview of concurrency approaches
in Prolog and related languages. Their design objectives are similar, though they stress the
ability to backtrack between threads as well as Linda-like (Carriero and Gelernter 1989)
blackboard architectures. Threads that succeed non-deterministically can be restarted to
produce an alternative solution and instead of queues they use ‘concurrent’ predicates where
execution suspends if there is no alternative clause and is resumed after another thread asserts
a new clause.

Qu-Prolog8 provides threads using its own scheduler. Thread creation is similar in na-
ture to the interface described in this article. Thread communication is, like ours, based on
exchanging terms through a queue attached to each thread. For atomic operations it provides
thread atomic goal/1 which freezes all threads. This operation is nearly impossi-
ble to realise on POSIX threads. Qu-Prolog supports thread signal/2 under the name
thread push goal/2. For synchronisation it provides thread wait/1 to wait for
arbitrary changes to the database.

Multi-Prolog(de Bosschere and Jacquet 1993) is logic programming instantiation of
the Linda blackboard architecture. It adds primitives to ‘put’ and ‘get’ both passive Prolog
literals and active Prolog atoms (threads) to the blackboard. It is beyond the scope of this
article to discuss the merits of message queues vs. a blackboard.

6.8 Discussion and conclusions

We have demonstrated the feasibility of supporting preemptive multi-threading using
portable POSIX thread primitives in an existing Prolog system developed for single-
threading. Built on the POSIX thread API, the system has been confirmed to run unmodified
on six Unix dialects. The MacOS X version requires special attention due to incomplete
support for POSIX semaphores. The Windows version requires a fundamentally different
implementation of atom garbage collection due to the lack of asynchronous signals. The

7http://clip.dia.fi.upm.es/Software/Ciao/
8http://www.svrc.uq.edu.au/Software/QuPrologHome.html
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pthreads-win32 emulation needed replacements using the native Windows API at various
places to achieve good performance.

Concurrently running static Prolog code performs comparable to the single-threaded ver-
sion and scales well on SMP hardware, provided that the threads need little synchronisation.
Synchronisation issues appear in:

• Dynamic predicates
Dynamic predicates require mutex synchronisation on assert, retract, entry and exit.
Heavy use of dynamic code can harm efficiency significantly. The current system
associates a unique mutex to each dynamic predicate. Thread-local code only syn-
chronises on entry to retrieve the clause list that belongs to the calling thread. In the
future, we will consider using lock-free primitives (Gidenstam and Papatriantafilou
2007) for synchronising dynamic code, in particular thread-local code.

• Atoms
Creating an atom, creating a reference to an atom from assert/1 or recorda/1
as well as erasing records and clauses referencing atoms require locking the atom
table. Worse, atom garbage collection affects all running threads, harming threads un-
der tight real-time constraints. Multi-threaded applications may consider using SWI-
Prolog’s non-standard packed strings to represent text concisely without locking.

• Meta-calling
Meta-calling requires synchronised mapping from module and functor to predicate.
The current system uses one mutex per module.

• Passing messages over a queue
Despite the enhancements described in section 6.5.2, passing messages between
threads requires copying them twice and locking the queue by both the sender and
receiver.

POSIX mutexes are stand-alone entities and thus not related to the data they protect
through any formal mechanism. This also holds for our Prolog-level mutexes. Alterna-
tively a lock could be attached to the object it protects (e.g., a dynamic predicate). We have
not adopted this model as we regard the use of explicit mutex objects restricted to rare cases
and the current model using stand-alone mutexes is more flexible.

The interface presented here does, except for the introduction of message queues,
not abstract much from the POSIX primitives. Since the original publication of this pa-
per we added higher level abstractions implemented as library predicates. The predicate
concurrent(N,Goals,Options) runs M goals using N threads and stops if all work is
done or a thread signalled failure or an error, while first solution(X,Goals,Options)
tries alternative strategies to find a value for X, stopping after the first solution. The latter
is useful if there are different strategies to find an answer (e.g., literal ordering or breath
vs. depth first search) and no way of knowing the best. We integrated threads into the de-
velopment tools, providing source-level debugging for threads and a graphical monitor that
displays status and resource utilisation of threads.
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Manipulation of Prolog engines from foreign code (section 6.4.3) is used by the bundled
Java interface (JPL) contributed by Paul Singleton as well as the C#9 interface contributed
by Uwe Lesta.

Multi-thread support has proved essential in the development of Triple20 (chapter 2,
Wielemaker et al. 2005) where it provides a responsive GUI application and ClioPatria (chap-
ter 10, Wielemaker et al. 2008), where it provides scalability to the web server. Recently, we
see a slowdown in the paste with which individual cores10 become faster. Instead, recent pro-
cessors quickly accommodate more cores on one chip. This development demands support
for multiple cores. The approach we presented allows for exploiting such hardware with-
out much change to common practice in Prolog programming for the presented use-cases.
In particular, Prolog hosted web-services profit maximally with almost no consequences to
the programmer. Exploiting multiple cores for CPU-intensive tasks may require significant
redesign of the algorithm. This situation is unfortunate, but shared with most today’s pro-
gramming languages.
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Chapter 7

SWI-Prolog and the Web

About this chapter This chapter is published in Theory and Practice of Logic
Programming (Wielemaker et al. 2008). Written as a journal paper that pro-
vides an overview of using SWI-Prolog for web related tasks, it has some over-
lap with the previous chapters. The original paper has been extended with ma-
terial from (Wielemaker et al. 2007): dispatching and session management in
section 7.4.2 and the entire section 7.5.

Section 7.8 was contributed by the coauthor Zhisheng Huang and section 7.9
by Lourens van der Meij, both from the VU, Amsterdam.

Abstract Prolog is an excellent tool for representing and manipulating data
written in formal languages as well as natural language. Its safe semantics and
automatic memory management make it a prime candidate for programming
robust Web services.

Where Prolog is commonly seen as a component in a Web application that is
either embedded or communicates using a proprietary protocol, we propose an
architecture where Prolog communicates to other components in a Web appli-
cation using the standard HTTP protocol. By avoiding embedding in an external
Web server, development and deployment become much easier. To support this
architecture, in addition to the HTTP transfer protocol, we must support parsing,
representing and generating the key Web document types such as HTML, XML

and RDF.

This paper motivates the design decisions in the libraries and extensions to Pro-
log for handling Web documents and protocols. The design has been guided by
the requirement to handle large documents efficiently.

The benefits of using Prolog for Web related tasks is illustrated using three case
studies.
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7.1 Introduction

The Web is an exciting place offering new opportunities to artificial intelligence, natural
language processing and Logic Programming. Information extraction from the Web, reason-
ing in Web applications and the Semantic Web are just a few examples. We have deployed
Prolog in Web related tasks over a long period. As most of the development on SWI-Prolog
takes place in the context of projects that require new features, the system and its libraries
provide extensive support for Web programming.

There are two views on deploying Prolog for Web related tasks. In the most commonly
used view, Prolog acts as an embedded component in a general Web processing environment.
In this role it generally provides reasoning tasks such as searching or configuration within
constraints. Alternatively, Prolog itself can act as a stand-alone HTTP server as also proposed
by ECLiPSe (Leth et al. 1996). In this view it is a component that can be part of any of the
layers of the popular three-tier architecture for Web applications. Components generally
exchange XML if used as part of the backend or middleware services and HTML if used in
the presentation layer.

The latter view is in our vision more attractive. Using HTTP and XML over HTTP, the
service is cleanly isolated using standard protocols rather than proprietary communication.
Running as a stand-alone application, the interactive development nature of Prolog can be
maintained much more easily than embedded in a C, C++, Java or C# application. Using
HTTP, automatic testing of the Prolog components can be done using any Web oriented
test framework. HTTP allows Prolog to be deployed in any part of the service architecture,
including the realisation of complete Web applications in one or more Prolog processes.

When deploying Prolog in a Web application using HTTP, we must not only implement
the HTTP transfer protocol, but also support parsing, representing and generating the impor-
tant document types used on the Web, especially HTML, XML and RDF. Note that, being
widely used open standards, supporting these document types is also valuable outside the
context of Web applications.

This paper gives an overview of the Web infrastructure we have realised. Given the range
of libraries and Prolog extensions that facilitate Web applications we cannot describe them in
detail. Details on the library interfaces can be found in the manuals available from the SWI-
Prolog Web site.1 Details on the implementation are available in the source distribution.
The aim of this paper is to give an overview of the required infrastructure to use Prolog
for realising Web applications where we concentrate on scalability and performance. We
describe our decisions for representing Web documents in Prolog and outline the interfaces
provided by our libraries.

This paper illustrates the benefits of using Prolog for Web related tasks in three case stud-
ies: 1) SeRQL, an RDF query language for meta data management, retrieval and reasoning; 2)
XDIG, an eXtended Description Logic interface, which provides ontology management and
reasoning by processing DIG XML documents and communicating to external DL reasoners;
and 3) A faceted browser on Semantic Web databases integrating meta-data from multiple

1http://www.swi-prolog.org
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collections of art-works. This case study serves as a complete Semantic Web application
serving the end-user. Part II of this thesis contains two additional examples of applying the
infrastructure described in this paper: PlDoc (chapter 8), an environment to support liter-
ate programming in Prolog and ClioPatria (chapter 10), a web-server for thesaurus-based
annotation and search.

This paper is organised as follows. Section 7.2 to section 7.3 describe reading, writing
and representation of Web related documents. Section 7.4 describes our HTTP client and
server libraries. Supporting AJAX and CSS, which form the basis of modern interactive web
pages, is the subject of section 7.5. Section 7.6 describes extensions to the Prolog language
that facilitate use in Web applications. Section 7.7 to section 7.9 describe the case studies.

7.2 XML and HTML documents

The core of the Web is formed by document standards and exchange protocols. This section
discusses the processing of tree-structured documents transferred as SGML or XML. HTML,
an SGML application, is the most commonly used document format on the Web. HTML

represents documents as a tree using a fixed set of elements (tags), where the SGML DTD

(Document Type Declaration) puts constraints on how elements can be nested. Each node
in the hierarchy has a name (the element-name), a set of name-value pairs known as its
attributes and content, a sequence of sub-elements and text (data).

XML is a rationalisation of SGML using the same tree-model, but removing many rarely
used features as well as abbreviations that were introduced in SGML to make the markup
easier to type and read by humans. XML documents are used to represent text using custom
application-oriented tags as well as a serialisation format for arbitrary data exchange between
computers. XHTML is HTML based on XML rather than SGML.

In this section we discuss parsing, representing and generating SGML/XML documents.
Finally (section 7.2.3) we compare our work with PiLLoW (Gras and Hermenegildo 2001).

7.2.1 Parsing and representing XML and HTML documents

The first SGML parser for SWI-Prolog was created by Anjo Anjewierden based on the SP
parser.2 A stable Prolog term-representation for SGML/XML trees plays a similar role as
the DOM (Document Object Model) representation in use in the object-oriented world. The
term-structure we use is described in figure 7.1.

Below, we motivate some of the key aspects of the representation of figure 7.1.

• Representation of text by a Prolog atom is biased by the use of SWI-Prolog which has
no length-limit on atoms and atoms that can represent UNICODE text as motivated in
section 7.6.2. At the same time SWI-Prolog stacks are limited to 128MB each on 32-
bit machines. Using atoms, only the structure of the tree is represented on the stack
while the bulk of the data is stored on the unlimited heap. Using lists of character

2http://www.jclark.com/sp/
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〈document〉 ::= list-of 〈content〉
〈content〉 ::= 〈element〉 | 〈pi〉 | 〈cdata〉 | 〈sdata〉 | 〈ndata〉
〈element〉 ::= element(〈tag〉, list-of 〈attribute〉, list-of 〈content〉)
〈attribute〉 ::= 〈name〉 = 〈value〉
〈pi〉 ::= pi(〈atom〉)
〈sdata〉 ::= sdata(〈atom〉)
〈ndata〉 ::= ndata(〈atom〉)
〈cdata〉, 〈name〉 ::= 〈atom〉
〈value〉 ::= 〈svalue〉 | list-of 〈svalue〉
〈svalue〉 ::= 〈atom〉 | 〈number〉

Figure 7.1: SGML/XML tree representation in Prolog. The notation list-of 〈x〉 describes a
Prolog list of terms of type 〈x〉.

codes is another possibility adopted by both PiLLoW (Gras and Hermenegildo 2001)
and ECLiPSe (Leth et al. 1996). Two observations make lists less attractive: lists
use two stack cells per character while practical experience shows text is frequently
processed as a unit only. For (HTML) text-documents we profit from the compact
representation of atoms. For XML documents representing serialised data-structures
we profit from frequent repetition of the same value represented by a single handle to
a shared atom.

• The value of an attribute that is declared in the DTD as multi-valued (e.g., NAMES) is
returned as a Prolog list. This implies the DTD must be available to get unambiguous
results. With SGML this is always true, but not with XML. Attribute-values are always
returned as a single atom if no type information is provided by the DTD.

• Optionally, attribute-values of type NUMBER or NUMBERS are mapped to Prolog a
prolog number or list of Prolog numbers. In addition to the DTD issues mentioned
above, this conversion also suffers from possible loss of information. Leading zeros
and different floating point number notations used are lost after conversion. Prolog
systems with bounded arithmetic may also not be able to represent all values. Still,
automatic conversion is useful in many applications, especially those involving seri-
alised data-structures.

• Attribute values are represented as Name=Value. Using Name(Value) is an alternative.
The Name=Value representation was chosen for its similarity to the SGML notation and
because it avoids the need for univ (=..) for processing argument-lists.

Implementation The SWI-Prolog SGML/XML parser is implemented as a C-library that
has been built from scratch to create a lightweight parser. Total source is 11,835 lines.
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The parser provides two interfaces. Most natural to Prolog is load structure(+Src, -
DOM, +Options) which parses a Prolog stream into a term as described above. Alternatively,
sgml parse/2 provides an event-based parser making call-backs on Prolog for the SGML

events. The call-back mode can process unbounded documents in streaming mode. It can be
mixed with the term-creation mode, where the handler for begin calls the parser to create a
term-representation for the content of the element. This feature is used to process large files
with a repetitive record structure in limited memory. Section 7.3.1 describes how this is used
to process RDF documents.

When we decided to implement a lightweight parser the only alternative available was
the SP3 system. Lack of flexibility of the API and the size of SP (15× larger than ours)
caused us to implement our own parser. Currently, there are other lightweight XML and
HTML libraries available, some of which may satisfy our requirements.

Full documentation is available from the SWI-Prolog website.4 The SWI-Prolog SGML

parser has been adopted by XSB Prolog.

7.2.2 Generating Web documents

There are many approaches to generating Web pages from programs in general and Prolog
in particular. Below we present some use-cases, requirements and alternatives that must be
considered.

• How much of the document is generated from dynamic data and how much is static?
Pages that are static except for a few strings are best generated from a template using
variable substitution. Pages that consist of a table generated from dynamic data are
best entirely generated from the program.

• For program generated pages we can choose between direct printing and generating
using a language-native syntax (Prolog), for example format(’<b>bold</b>’)
or print_html(b(bold)). The second approach can guarantee well-formed out-
put, but requires the programmer to learn the mapping between Prolog syntax and
HTML syntax. Direct printing requires hardly any knowledge beyond the HTML syn-
tax.

• Documents that contain a significant static part are best represented in the markup lan-
guage where special constructs insert program-generated parts. A popular approach
implemented by PHP5 and ASP6 is to add a reserved element such as 〈script〉 or use
the SGML/XML programming instruction written as <?...?>. The obvious name
PSP (Prolog Server Pages) is in use by various projects taking this approach.7 An-

3http://www.jclark.com/sp/
4http://www.swi-prolog.org/packages/sgml2pl.html
5www.php.net
6www.microsoft.com
7http://www.prologonlinereference.org/psp.psp,

http://www.benjaminjohnston.com.au/template.prolog?t=psp,
http://www.ifcomputer.com/inap/inap2001/program/inap bartenstein.ps
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other approach is PWP8 (Prolog Well-formed Pages). It is based on the principle that
the input is well-formed XML that interacts with Prolog through additional attributes.
Output is guaranteed to be well-formed XML. Because we did not yet encounter a
real need for any of these approaches in projects, our current infrastructure does not
include any of them.

• Page transformation is realised by parsing the original document into its tree repre-
sentation, managing the tree and writing a new document from the tree. Managing
the source-text directly is not reliable because due to alternative character encodings,
entity usage and different use of SGML abbreviations there are many different source-
texts that represent the same tree. The load structure/3 predicate described in
section 7.2 together with output primitives from the library sgml_write.pl pro-
vide this functionality. The XDIG case study described in section 7.8 follows this
approach.

7.2.2.1 Generating documents using DCG

The traditional method for creating Web documents is using print routines such as write/1
or format/2. Although simple and easily explained to novices, the approach has serious
drawbacks from a software engineering point of view. In particular the user is responsible for
HTML quoting, character encoding issues and proper nesting of HTML elements. Automated
validation is virtually impossible using this approach.

Alternatively, we can produce a DOM term as described in section 7.2 and use the library
sgml_write.pl to create the HTML or XML document. Such documents are guaranteed
to use proper nesting of elements, escape sequences and character encoding. The terms how-
ever are big, deeply nested and hard to read and write. Prolog allows them to be built from
skeletons containing variables. In our opinion, the result is not optimal due to the unnatural
order of statements and the introduction of potentially many extra variables as illustrated in
figure 7.2. In this figure we first generate a small table using mkthumbnail/3, which is
then inserted at the right location into the skeleton page using the variable ThumbNail. As
the number of partial DOM structures that must be created grows, this style of programming
quickly becomes unreadable.

We decided to design a two-step process. The first step is formed by the DCG rule
html//1,9 which translates a Prolog term into a list of high-level HTML/XML commands
that are handed to html print/1 to realise proper quoting, character encoding and layout.
The intermediate format is of no concern to the user. Generated from a Prolog term with
the same nesting as the target HTML document, consistent opening and closing of elements
is guaranteed. In addition to variable substitution which is provided by Prolog we allow
calling rules. Rules are invoked by a term \Rule embedded in the argument of html//1.
Figure 7.3 illustrates our approach, producing the same document as figure 7.2 in a more

8http://www.cs.otago.ac.nz/staffpriv/ok/pwp.pl
9The notation 〈name〉//〈arity〉 refers to the grammar rule 〈name〉 with the given 〈arity〉, and consequently the

predicate 〈name〉 with arity 〈arity〉+2.
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...,
mkthumbnail(URL, Caption, ThumbNail),
output_html([ h1(’Photo gallery’),

ThumbNail
]).

mkthumbnail(URL, Caption, Term) :-
Term = table([ tr(td([halign=center],

img([src=URL],[]))),
tr(td([halign=center],

Caption))
])

Figure 7.2: Building a complex DOM tree from smaller components by using Prolog
variables (ThumbNail in this figure).

readable fashion. Any reusable part of the page generation can be translated into a DCG

rule. Using the \Rule syntax it is clear which parts of the argument of html//1 is directly
translated into HTML elements and which part is expanded in a rule.

...,
html([ h1(’Photo gallery’),

\thumbnail(URL, Caption)
]).

thumbnail(URL, Caption) -->
html(table([ tr(td([halign=center], img([src=URL],[]))),

tr(td([halign=center], Caption))
]).

Figure 7.3: Defining reusable fragments (thumbnail//2) using library html write.pl

In our current implementation rules are called using meta-calling from html//1. Using
term expansion/2 it is straightforward to move the rule invocation out of the term,
using variable substitution similar to PiLLoW. It is also possible to recursively expand the
generated tree and validate it to the HTML DTD at compile-time and even insert omitted tags
at compile-time to generate valid XHMTL from an incomplete specification. An overview
of the argument to html//1 is given in figure 7.4.
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〈html〉 ::= list-of 〈content〉 | 〈content〉
〈content〉 ::= 〈atom〉

| 〈tag〉(list-of 〈attribute〉, 〈html〉)
| 〈tag〉(〈html〉)
| \〈rule〉

〈attribute〉 ::= 〈name〉(〈value〉)
〈tag〉, 〈entity〉 ::= 〈atom〉
〈value〉 ::= 〈atom〉 | 〈number〉
〈rule〉 ::= 〈callable〉

Figure 7.4: The html//1 argument specification

7.2.3 Comparison with PiLLoW

The PiLLoW library (Gras and Hermenegildo 2001) is a well established framework for
Web programming based on Prolog. PiLLoW defines html2terms/2, converting between
an HTML string and a document represented as a Herbrand term. There are fundamental
differences between PiLLoW and the primitives described here.

• PiLLoW creates an HTML document from a Herbrand term that is passed to
html2terms/2. Complex terms are composed of partial terms passed as Prolog
variables, a technique we described in the second paragraph of section 7.2.2.1. Fre-
quently used HTML constructs are supported using reserved terms using dedicated
processing. This realises a form of macro expansion using a predefined and fixed set
of macros. We use DCGs and the \Rule construct, which makes it evident which terms
directly refer to HTML elements and which function as a macro. In addition, the user
can define application-specific reusable fragments in a uniform way.

• The PiLLoW parser does not create the SGML document tree. It does not insert omit-
ted tags, default attributes, etcetera. As a result, HTML documents that differ only in
omitted tags and whether or not default attributes are included in the source, produce
different terms. In our approach the term representation is equivalent, regardless of
the input document. This is illustrated in figure 7.5. Having a canonical DOM repre-
sentation greatly simplifies processing parsed HTML documents.

7.3 RDF documents

Where the datamodel of both HTML and XML is a tree-structure with attributes, the data-
model of the Semantic Web (SW) language RDF10 consists of {Subject, Predicate, Object}
triples. Both Subject and Predicate are URIs.11 Object is either a URI or a Literal. As the

10http://www.w3.org/RDF/
11 URI: Uniform Resource Identifier is like a URL, but need not refer to an existing resource on the Web.
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[env(table, [], [tr$[], td$[], "Hello"])]

[element(table, [],
[ element(tbody, [],

[ element(tr, [],
[ element(td, [ rowspan=’1’,

colspan=’1’
],

[’Hello’])])])])]

Figure 7.5: Term representations for <table><tr><td>Hello</table> in
PiLLoW (top) and our parser (bottom). Our parser completes the tr and td environ-
ments, inserts the omitted tbody element and inserts the defaults for the rowspan and
colspan attributes

Object of one triple can be the Subject of another, a set of triples forms a graph, where each
edge is labelled with a URI (the Predicate) and each vertex is either a URI or a literal. Literals
have no out-going edges. Figure 7.6 illustrates this.

Logic Programming
and the Web

TPLP

Special Issue Journal

rdf:type

issue_in

rdf:type

Massimo
Marchiori dc:editor

"Massimo Marchiori"

rdf:label

Figure 7.6: Sample RDF graph. Ellipses are vertices representing URIs. Quoted text is a
literal. Edges are labelled with URIs.

A number of languages are layered on top of the RDF triple model. RDFS provides a
frame-based representation. The OWL-dialects12 provide three increasingly complex Web
ontology languages. SWRL13 is a proposal for a rule language. The W3C standard for ex-
changing these triple models is an XML application known as RDF/XML.

As there are multiple XML tree representations for the same triple-set, RDF documents
cannot be processed at the level of the XML-DOM as described in section 7.2. A triple-

12http://www.w3.org/2004/OWL/
13http://www.w3.org/Submission/SWRL/
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or graph-based structure is the most natural choice for representating an RDF document
in Prolog. The nodes of this graph are formed by URIs and literals. Because a URI is a
string and the only operation defined on URIs by SW languages is testing equivalence, a
Prolog atom is the most obvious candidate to represent a URI. One may consider using a
term 〈namespace〉:〈localname〉, but given that decomposing a URI into its namespace and
localname is only relevant during I/O we consider this an inferior choice. Writing the of-
ten long URIs as a quoted atom in Prolog source code harms readability and complicates
changing namespaces. Therefore, the RDF library comes with a compile-time rewrite mech-
anism based on goal expansion/2 that allows for writing resources in Prolog source as
〈ns〉:〈local〉. Literals are expressed as literal(Value), where Value represents the value
of the literal. The full Prolog representation of RDF elements is given in figure 7.7.

〈subject〉, 〈predicate〉 ::= 〈URI〉
〈object〉 ::= 〈URI〉

| literal(〈lit value〉)
〈lit value〉 ::= 〈text〉

| lang(〈langid〉, 〈text〉)
| type(〈URI〉, 〈text〉)

〈URI〉, 〈text〉 ::= 〈atom〉
〈langid〉 ::= 〈atom〉 (ISO639)

Figure 7.7: RDF types in Prolog.

The typical SW use-scenario is to ‘harvest’ triples from multiple sources and collect
them in a database before reasoning with them. Prolog can represent data as a Herbrand
term on the stack or as predicates in the database. Given the relatively static nature of
the RDF data as well as desired access from multiple threads, using the Prolog database is
the most obvious choice. Here we have two options. One is the predicate rdf(Subject,
Predicate, Object) using the argument types described above. The alternative is to map each
RDF predicate on a Prolog predicate Predicate(Subject, Object). We have chosen for rdf/3
because it supports queries with uninstantiated predicates better and a single predicate is
easier to manage than an unbounded set of predicates with unknown names.

7.3.1 Input and output of RDF documents

The RDF/XML parser is realised as a Prolog library on top of the XML parser described in
section 7.2. Similar to the XML parser it has two interfaces. The predicate load rdf(+Src,
-Triples, +Options) parses a document and returns a Prolog list of rdf(S,P,O) triples. Note
that despite harvesting to the database is the typical use-case scenario, the parser delivers
a list of triples for maximal flexibility. The predicate process rdf(+Src, :Action, +Op-
tions) exploits the mixed call-back/convert mode of the XML parser to process the RDF file
one description (record) at a time, calling Action with a list of triples extracted from the
description. Figure 7.8 illustrates how this is used by the storage module to load unbounded
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files with limited stack usage. Source location as 〈file〉:〈line〉 is passed to the Src argument
of assert triples/2.

load_triples(File, Options) :-
process_rdf(File, assert_triples, Options).

assert_triples([], _).
assert_triples([rdf(S,P,O)|T], Src) :-

rdf_assert(S, P, O, Src),
assert_triples(T, Src).

Figure 7.8: Loading triples using process rdf/3

In addition to named URIs, RDF resources can be blank-nodes. A blank-node (short
bnode) is an anonymous resource that is created from an in-lined description. Figure 7.9
describes the dimensions of a painting as a compound instance of class Dimension with
width and height properties. The Dimension instance has no URI. Our parser generates an
identifier that starts with a double underscore, followed by the source and a number. The
double underscore is used to identify bnodes. Source and number are needed to guarantee
the bnode is unique.

<Painting rdf:about="...">
<dimension>

<Dimension width="45" height="50"/>
</dimension>

</Painting>

Figure 7.9: Blank node to express the compound dimension property

The parser from XML to RDF triples covers the full RDF specification, including UNI-
CODE handling, RDF datatypes and RDF language tags. The Prolog source is 1,788 lines. It
processes approximately 9,000 triples per second on an AMD 1600+ based computer. Imple-
mentation details and evaluation of the parser are described in chapter 3 (Wielemaker et al.
2003b).

We have two libraries for writing RDF/XML. One, rdf write xml(+Stream,
+Triples), provides the inverse of load rdf/2, writing an XML document from a list
of rdf(S,P,O) terms. The other, called rdf save/2 is part of the RDF storage mod-
ule described in section 7.3.2 and writes a database directly to a file or stream. The first
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(rdf write xml/2) is used to exchange computed graphs to external programs using net-
work communication, while the second (rdf save/2) is used to save modified graphs back
to file. The resulting code duplication is unfortunate, but unavoidable. Creating a temporary
graph in a database requires potentially much memory, and harms concurrency, while graphs
fetched from the database into a list may not fit in the Prolog stacks and is also considerably
slower than a direct write.

7.3.2 Storing and indexing RDF triples

If we collect RDF triples in a database we must provided an API to query the RDF graph.
Obviously, the natural primary API to query an RDF graph is a pure non-deterministic pred-
icate rdf(?S,?P,?O). Considering that RDF graphs tend to be large (see below), indexing
the RDF database is crucial for good performance. Table 7.1 illustrates the calling pattern
from a real-world application counting 4 million triples. When designing the implementa-
tion rdf(?S,?P,?O) we can exploit the restricted set of Prolog datatypes used in RDF graphs
as described by figure 7.7. The RDF store was developed in the context of projects (see
section 9.3) which formulated the following requirements.

• Upto at least 10 million triples on 32-bit hardware.14

• Fast graph traversal using any instantiation pattern.

• Case-insensitive search on literals.

• Prefix search on literals for completion in the User Interface.

• Searching for words that appear in literals.

• Multi-threaded access allowing for concurrent readers.

• Transaction management and persistent store.

• Maintain source information, so we can update, save or remove data based on its
source.

• Fast load/save of current state.

Our first version of the database used the Prolog database with secondary tables to im-
prove indexing. As requirements pushed us against the limits of what is achievable in a
32-bit address-space we decided to implement the low level store in C. Profiting from the
known uniform structure of the data we realised about two times more compact storage with
better indexing than using a pure Prolog approach. We took the following design decisions
for the C-based storage module:

• The RDF predicates are represented as unique entities and organised according to the
rdfs:subPropertyOf relation in multiple hierarchies. Each cloud of connected
properties is equipped with a reachability matrix. See section 3.4.1.1 for details.

14our current aim is 300 million on 64-bit with 64 Gb memory
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Index pattern Calls
- - - 58
+ - - 253,554
- + - 62
+ + - 23,292,353
- - + 633,733
- + + 7,807,846
+ + + 26,969,003

Table 7.1: Call-statistics on a real-world system

• Literals are kept in an AVL tree, sorted case-insensitive and case-preserving (e.g.,
AaBb. . . ). Numeric literals preceed all non-numeric and are kept sorted on their nu-
meric value. Storing literals in a separate sorted table avoids the need to store dupli-
cates and allows for indexed search for prefixes and numeric values. It also allows
for monitoring creation and destruction of literals to maintain derived tables such as
stemming or double metaphone (Philips 2000) based on rdf monitor/3 described
below. The space overhead of maintaining the table is roughly cancelled by avoiding
duplicates. Experience on real data ranges between -5% and +10%.

• Resources are represented by Prolog atom-handles. The hash is computed from the
handle-value. Note that avoiding the translation between Prolog atom and text avoids
both duplication of data and table-lookup. We consider this a crucial aspect.

• Each triple is represented by the atom-handle for the subject, predicate-pointer, atom-
handle or literal pointer for object, a pointer to the source, a line number, a general bit-
flag field and 6 ‘hash-next’ pointers covering all indexing patterns except for +,+,+ and
+,-,+. Queries using the pattern +,-,+ are rare. Fully instantiated queries internally use
the pattern +,+,-, assuming few values on the same property. Considering experience
with real data we will probably add a +,+,+ index in the future. The un-indexed table
is a simple linked list. The others are hash-tables that are automatically resized if they
become too populated.

The store itself does not allow for writes while there are active reads in progress. If an-
other thread is reading, the write operation will stall until all threads have finished reading.
If the thread itself has an open choicepoint a permission error exception is raised. To arrive
at meaningful update semantics we introduced transactions. The thread starting a transac-
tion obtains a write-lock, initially allowing readers to proceed. During the transaction all
changes are recorded in a linked list of actions. If the transaction is ready for commit, the
thread denies access to new readers and waits for all readers to vanish before updating the
database. Transactions are realised by rdf transaction(:Goal). If Goal succeeds, its
choicepoints are discarded and the transaction is committed. If Goal fails or raises an excep-
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tion the transaction is discarded and rdf transaction/1 returns failure or exception.
Transactions can be nested. Nesting a transaction places a transaction-mark in the list of
actions of the current transaction. Committing implies removing this mark from the list.
Discarding removes all action cells following the mark as well as the mark itself.

It is possible to monitor the database using rdf monitor(:Goal, +Events). Whenever
one of the monitored events happens Goal is called. Modifying actions inside a transaction
are called during the commit. Modifications by the monitors are collected in a new trans-
action which is committed immediately after completing the preceeding commit. Monitor
events are assert, retract, update, new literal, old literal, transaction begin/end and file-load.
Goal is called in the modifying thread. As this thread is holding the database write lock, all
invocations of monitor calls are fully serialised.

Although the 9,000 triples per second of the RDF/XML parser ranks it among the fast
parsers, loading 10 million triples takes nearly 20 minutes. For this reason we developed a
binary format. The format is described in chapter 3 (Wielemaker et al. 2003b) and loads
approximately 20 times faster than RDF/XML, while using about the same space. The format
is independent from byte-order and word-length, supporting both 32- and 64-bit hardware.

Persistency is achieved through the library rdf_persistency.pl, which uses
rdf monitor/3 to maintain a set of files in a directory. Each source known to the database
is represented by two files, one file representing the initial state using the quick-load binary
format and one file containing Prolog terms representing changes, called the journal.

7.3.3 Reasoning with RDF documents

We have identified two approaches for defining an API that supports reasoning based on
Semantic Web languages such as RDFS and OWL. Both languages define an abstract syntax
that defines their semantics in terms of conceptual entities on which the language is based.
Both languages are also defined by triples that can be deduced from the set of explicitely
provided triples, the deductive closure of the explicitely provided triples under the language.
The extra triples that can be derived are called entailed triples. Each of these views on the
language can be used to define an API:

• Abstract syntax based API

The abstract syntax introduces concepts that form the basis of the language, such
as class, individual or restriction. If this approach is applied to RDFS, the
API provides predicates such as rdfs individual of(?Resource, ?Class) and
rdfs subclass of(?Sub, ?Super). The SWI-Prolog library rdfs.pl and the
ClioPatria (chapter 10) module owl.pl provide an API based on the abstract syn-
tax.

• Entailment reasoning based API

Semantic web query languages such as SeRQL provide access to the deductions by
querying the full deductive closure instead of only the explicitely provided RDF state-
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ments. Because the deductive closure is also a set of triples, this technique requires
no additional API.

We use this technique in our implementation of the SeRQL (and SPARQL) query lan-
guages, as illustrated in figure 7.19. In this scenario the module rdfs exports an
alternative definition of rdf/3 that is true for any triple in the deductive closure. The
implementation uses backward reasoning.

Figure 7.10 illustrates the two approaches. Triples lists the explicit triples. Both APIs
return the explicit fact that mary is a woman as well as the derived (using the semantics of
RDFS) fact that mary is a human. Both interfaces provide the same semantics. Both inter-
faces can be implemented using backward reasoning or forward reasoning. If the entailment
interface is implemented as a backward reasoner, it needs to use different rulesets depending
on the RDF predicate (second argument of the triple). Implemented as a forward reasoner,
the derived triples are added to the database. This simplifies querying, but makes it harder
to have multiple reasoners available to the application programmer at the same time. An
API based on the abstract syntax and using backward reasoning can easily allow for multiple
reasoners in the same application and makes it explicit what type of reasoning is used. This
adds to the conceptual clarity of programs that use this API. An API based on entailment
reasoning can switch between reasoners for the whole application without any change to the
application code.

Triples Entailment API Abstract syntax API

mary type woman . ?- rdf(mary, type, X). ?- rdfs individual of(mary, X).
woman type Class . X = woman ; X = woman ;
woman subClassOf human . X = human ; X = human ;
human type Class . false. false.

Figure 7.10: Different APIs for RDFS

7.4 Supporting HTTP

HTTP, or HyperText Transfer Protocol, is the key W3C standard protocol for exchanging Web
documents. All browsers and Web servers implement it. The initial version of the protocol
was simple. The client request consists of a single line of the format 〈action〉 〈path〉, the
server replies with the requested document and closes the connection. Version 1.1 of the
protocol is more complicated, providing additional name-value pairs in the request as well
as the reply, features to request status such as modification time, transfer partial documents,
etcetera.

Adding HTTP support in Prolog, we must consider both the client- and server-side. In
both cases our choice is between doing it in Prolog or re-using an existing application or



118 SWI-PROLOG AND THE WEB

library by providing an interface for it. We compare our work with PiLLoW (Gras and
Hermenegildo 2001) and the ECLiPSe HTTP services (Leth et al. 1996).

Given a basic TCP/IP socket library, writing an HTTP client is trivial (our client counts
just 505 lines of code). Both PiLLoW and ECLiPSe include a client written in Prolog. The
choice between embedding Prolog in an existing server framework and providing a pure
Prolog-based server implementation is more complicated:

• The server is much more complex, which implies there is more to gain by re-using
external code. Initially, the core server library counted 1,784 lines; the current server
architecture counts over 9,000 lines.

• A single computer can only host one server at port 80 used by default for public HTTP.
Using an alternate port for middleware and storage tier components is no problem, but
use as a public server often conflicts with firewall or proxy settings. This can be solved
using a proxy server such as the Apache mod proxy.15

• Servers almost by definition introduce security risks. Administrators are reluctant to
see non-proven software in the role of a public server. Using a proxy as above also
reduces this risk because it blocks (some) malformed requests.

Despite these observations, we consider, like the ECLiPSe team, a pure Prolog-based
server worthwhile. As argued in section 7.6.1, many Prolog Web applications profit from
using state stored in the server. Large resources such as WordNet (Miller 1995) cause long
startup times. In such cases the use of CGI (Common Gateway Interface) is not appropriate
as a new copy of the application is started for each request. PiLLoW resolves this issue by
using Active Modules, where a small CGI application talks to a continuously running Prolog
server using a private protocol. Using a Prolog HTTP server and optionally a proxy has the
same benefits, but based on a standard protocol, it is much more flexible.

Another approach is embedding Prolog in another server framework such as the Java-
based Tomcat server. Although feasible, embedding non-Java-based Prolog systems in Java
is complicated. Embedding through jni introduces platform and Java version dependent
problems. Connecting Prolog and Java concurrency models and garbage collection is diffi-
cult and the resulting system is much harder to manage by the user than a pure Prolog-based
application.

In the following sections we describe our HTTP client and server libraries. An overall
overview of the modules and their dependencies is given in figure 7.11. The modules in this
figure are described in the subsequent sections.

7.4.1 HTTP client libraries

We support two clients. The first (http_open.pl) is a lightweight client that only sup-
ports the HTTP GET method by means of http open(+URL, -Stream, +Options). Options

15http://httpd.apache.org/docs/1.3/mod/mod proxy.html
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http_header.pl

http_wrapper.plhttp_client.plhttp_open.pl

thread_http.pl

inetd_http.pl

xpce_http.pl

Application
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http_dispatch.pl

http_mime_plugin.pl

http_sgml_plugin.pl

http_json.pl

http_parameters.pl http_session.pl

Client

Serialisation plugins

Figure 7.11: Module dependencies of the HTTP library. The modules are described in
section 7.4.1 and section 7.4.2.

allows for setting a timeout or proxy as well as getting information from the reply-header
such as the size of the document. The http open/3 predicate internally handles HTTP

3XX (redirect) replies. Other not-ok replies are mapped to a Prolog exception. After read-
ing the document the user must close the returned stream-handle using the standard Prolog
close/1 predicate. This predicate makes accessing an HTTP resource as simple as access-
ing a local file. The second library, called http_client.pl, provides support for HTTP

POST and a plugin interface that allows for installing handlers for documents of specified
MIME-types. It shares http_header.pl with the server libraries for DCG-based creation
and parsing of HTTP headers. Currently provided plugins include http_mime_plugin.
pl to handle multipart MIME messages and http_sgml_plugin.pl for automatically
parsing HTML, XML and SGML documents. Figure 7.12 shows the code for fetching a URL

and parsing the returned HTML document it into a Prolog term as described in section 7.2.

Both the PiLLoW and ECLiPSe approach return the document’s content as a string. Using
an intermediate string is often a waste of memory resources and limits the maximum size of
documents that can be processed. In contrast, our interface is stream-based (http open/3).
The http get/3 and http post/4 interfaces allows for plugin-based processing of the
input stream. Stream-based processing avoids potentially large intermediate data structures
and allows for processing unbounded documents.
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?- use_module(library(’http/http_client’)).
?- use_module(library(’http/http_sgml_plugin’)).

?- http_get(’http://www.swi-prolog.org/’, DOM, []).
DOM = [ element(html,

[ version = ’-//W3C//DTD HTML 4.0 Transitional//EN’
],
[ element(head, [],

[ element(title, [],
[ ’SWI-Prolog\’s Home’]), ...

Figure 7.12: Fetching an HTML document

7.4.2 The HTTP server library

Both to simplify re-use of application code and to make it possible to use the server with-
out committing to a large infrastructure we adopted the reply-strategy of the CGI protocol,
where the handler writes a page consisting of an HTTP header followed by the document
content. Figure 7.13 provides a simple example that returns the request-data to the client.
By importing thread_http.pl we implicitly selected the multi-threaded server model.
Other models provided are inetd_http, causing the (Unix) inet daemon to start a server
for each request and xpce_http which uses I/O multiplexing realising multiple clients
without using Prolog threads. The logic of handling a single HTTP request given a predicate
realising the handler, an input and output stream is implemented by http_wrapper.

:- use_module(
library(’http/thread_httpd’)).

start_server(Port) :-
http_server(reply, [port(Port)]).

reply(Request) :-
format(’Content-type: text/plain˜n˜n’),
writeln(Request).

Figure 7.13: A simple HTTP server. The right window shows the client and the format of
the parsed request.

Replies other than “200 OK” are generated using a Prolog exception. Recognised replies
are defined by the predicate http reply(+Reply, +Stream, +Header). For example to
indicate that the user has no access to a page we must use the following call.
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throw(http_reply(forbidden(URL))).

Failure of the handler raises a “404 existence error” reply, while exceptions other than the
ones described above raise a “500 Server error” reply.

7.4.2.1 The HTTP dispatching code

The core HTTP library handles all requests through a single predicate specified by
http server/2. Normally this predicate is defined ‘multifile’ to split the source of the
server over multiple files. This approach proved inadequate for a larger server with multiple
developers for the following reasons:

• There is no way to distinguish between non-existence of an HTTP location and failure
of the predicate due to a programming error. This is an omission in itself, but with a
larger project and multiple developers it becomes more serious.

• There is no easy way to tell where the specific clause is that handles an HTTP location.

• As the order of clauses in a multi-file predicate that come from different files is ill
defined, it is not easy to reliably redefine the sevice behind a given HTTP location.
Redefinition is desirable for re-use as well as for experiments during development.

To overcome these limitations we introduced a new library http_dispatch.pl
that defines the directive :- http handler(Location, Predicate, Options). The directive
is handled by term expansion/2 and is mapped to a multi-file predicate. This predicate
in turn is used to build a Prolog term stored in a global variable that provides fast search for
locations. Modifications to the multi-file predicate cause recomputation of the Prolog term
on the next HTTP request. Options can be used to specify access rights, a priority to allow
overruling existing definitions and assignment of the request to a new thread (spawn). Typi-
cally, each location is handled by a dedicated predicate. Based on the handler definitions, we
can easily distinguish failure from non-existence as well as find, edit and debug the predicate
implementing an HTTP location.

7.4.2.2 Form parameters

The library http_parameters.pl defines http parameters(+Request, ?Parame-
ters) to fetch and type-check parameters transparently for both GET and POST requests.
Figure 7.14 illustrates the functionality. Parameter values are returned as atoms. If
large documents are transferred using a POST request the user may wish to revert to
http read data(+Request, -Data, +Options) underlying http get/3 to process ar-
guments using plugins.
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reply(Request) :-
http_parameters(Request,

[ title(Title, [optional(true)]),
name(Name, [length >= 2]),
age(Age, [integer])

]), ...

Figure 7.14: Fetching HTTP form data

7.4.2.3 Session management

The library http_session.pl provides session management over the otherwise stateless
HTTP protocol. It does so by adding a cookie using a randomly generated code if no valid
session id is found in the current request. The interface to the user consists of a predicate
to set options (timeout, cookie-name and path) and a set of wrappers around assert/1
and retract/1, the most important of which are http session assert(+Data),
http session retract(?Data) and http session data(?Data). In the current
version the data associated with sessions that have timed out is simply discarded. Session-
data does not survive the server.

Note that a session generally consists of a number of HTTP requests and replies. Each
request is scheduled over the available worker threads and requests belonging to the same
session are therefore normally not handled by the same thread. This implies no session state
can be stored in global variables or in the control-structure of a thread. If such style of
programming is wanted the user must create a thread that represents the session and setup
communication from the HTTP-worker thread to the session thread. Figure 7.15 illustrates
the idea.

7.4.2.4 Evaluation

The presented server infrastructure is currently used by many internal and external projects.
Coding a server is similar to writing CGI handlers and running in the interactive Prolog pro-
cess is much easier to debug. As Prolog is capable of reloading source files in the running
system, handlers can be updated while the server is running. Handlers running during the
update are likely to die on an exception though. We plan to resolve this issue by introduc-
ing read/write locks. The protocol overhead of the multi-threaded server is illustrated in
table 7.2.

7.5 Supporting AJAX: JSON and CSS

Recent web-technology is moving towards extensive use of CSS (Cascading Style Sheets)
and JavaScript. The use of JavaScript has evolved from short code snippets adding visual
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reply(Request) :- % HTTP worker
( http_session_data(thread(Thread))
-> true
; thread_create(session_loop([]), Thread,

[detached(true)]),
http_session_assert(thread(Thread))

),
current_output(CGIOut),
thread_self(Me),
thread_send_message(Thread,

handle(Request, Me, CGIOut)),
thread_get_message(_Done).

session_loop(State) :- % Session thread
thread_get_message(handle(Request, Sender, CGIOut)),
next_state(Request, State, NewState, CGIOut).
thread_send_message(Sender, done).

Figure 7.15: Managing a session in a thread. The reply/1 predicate is part of the HTTP
worker pool, while session loop/1 is executed in the thread handling the session.
We omitted error handling for readability of the example.

Connection Elapsed Server CPU Client CPU
Close 20.84 11.70 7.48
Keep-Alive 16.23 8.69 6.73

Table 7.2: HTTP performance executing a trivial query 10,000 times. Times are in sec-
onds. Localhost, dual AMD 1600+ running SuSE Linux 10.0

effects through small libraries for presenting menus, etc. to extensive widget libraries such as
YUI16. Considering the classical three-tier web application model (storage, application logic
and presentation), the presentation tier is gradually migrated from the server towards the
client. Typical examples are Google Maps and Google Calendar. Modern web applications
consist of JavaScript libraries with some glue code that accesses one or more web-servers
through an API that provides the content represented using the JSON serialisation format.17.

This is an attractive development for deploying Prolog as a web-server. Although we
16http://developer.yahoo.com/yui/
17http://www.json.org/
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have seen that Prolog can be deployed in any of the three tiers, its support for the presentation
layer is weak due to the lack of ready-to-use resources. If the presentation layer is moved to
the client we can reuse the presentation resources from the JavaScript community.

An AJAX-based web application is an HTML page that links in JavaScript widget li-
braries, other JavaScript web applications, application specific libraries and glue code as
well as a number of CSS files, some of which belong to the loaded libraries while others
provide the customisation. This design requires special attention in two areas. First, using
a naive approach with declarations that load the required resources is hard to maintain and
breaks our DCG-based reusability model because the requirements must be specified in the
HTML 〈head〉 element. Second, most AJAX libraries use JSON (JavaScript Object Notation)
as serialisation format for data. The subsequent two sections describe how we deal with each
of these.

7.5.1 Producing HTML head material

Modern HTML+CSS and AJAX-based web-pages require links to scripts and style files in the
HTML 〈head〉 element. XHTML documents that use RDFa (Adida and Birbeck 2007) or other
embedded XML that requires additional namespaces, require XML namespace declarations,
preferably also in the HTML 〈head〉. One of the advantages of HTML generation as described
is that pages can be composed in a modular way by calling the HTML-generating DCG rules.
This modularity can only be maintained if the DCG rule produces both the HTML and causes
the HTML 〈head〉 to be expanded with the CSS, JavaScript and XML namespaces on which
the generated HTML depends.

We resolved this issue by introducing a mail system into the HTML generator. The gram-
mar rule html receive(+MailBox, :Goal) opens a mailbox at the place in the HTML to-
ken sequence where it appears. The grammar rule html post(+MailBox, +Content) posts
HTML content embedded with calls to other grammar rules to MailBox. A post processing
phase collects all posts to a mailbox into a list and runs Goal on list to produce the final set
of HTML tokens. This can be used for a variety of tasks where rules need to emit HTML at
certain places in the document. Figure 7.16 gives an example dealing with footnotes at the
bottom of a page.

The mail system is also used by the library html_head.pl to deal with JavaScript
and CSS resources that are needed by an HTML page. The library provides a mailbox
called head. The directive html resource(+Resource, +Attributes) allows for mak-
ing declarations on dependencies between resources such as JavaScript and CSS files. The
rule html requires(+Resource) specifies that we need a particular CSS or JavaScript
file, as well as all other resource files that are needed by that file according to the
html resource/2 declarations. The html receive//2 emit wrapper that is inserted
by html_head.pl performs the following steps:

1. Remove all duplicates from the requested resources.

2. Add implied requirements that are not yet requested.
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:- use_module(library(http/html_write)).

footnote_demo :-
reply_html_page(

title(’Footnote demo’),
body([ \generate_body,

\html_receive(footnotes, emit_footnotes)
])).

:- dynamic current_fn/1.

generate_body -->
{ assert(current_fn(1)) },
html([ h1(’Footnote demo’),

p([ ’We use JavaScript’,
\footnote(’Despite the name, JavaScript is \

essentially unrelated to the Java \
programming language.’), ’ for ...’

])
]).

footnote(Content) -->
{ retract(current_fn(I)),
I2 is I + 1,
assert(current_fn(I2))

},
html(sup(class(footnote_ref), a(href(’#fn’+I2), I))),
html_post(footnotes, \emit_footnote(I, Content)).

%% emit_footnotes(+List)// is det.
%
% Emit the footnotes, Called delayed from html_receive/2.

emit_footnotes([]) -->
[]. % no footnotes

emit_footnotes(List) -->
html(div(class(footnotes),

List)).

emit_footnote(I, Content) -->
html(div(class(footnote),

[ span(class(footnote_index),
a(name(fn+I), I)),

\html(Content)
])).

Figure 7.16: Using the HTML mail system to generate footnotes
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3. Try to apply aggregate scripts (see below).

4. Do a topological sort based on the dependencies, placing all requirements before the
scripts that require them.

5. Emit HTML code for the sorted final set of resources.

Step 3 was inspired by the YUI framework which, in addition to the core JavaScript
files, provides a number of aggregate files that combine a number of associated script files
into a single file without redundant white space and comments to reduce HTTP traffic and
enhance loading performance. If more than half of the scripts in a defined aggregate are
required, the scripts are replaced by the aggregate. The 50% proportion is suggested in the
YUI documentation, but not validated. The current implementation uses manually created
and declared aggregates. The library has all information to create and maintain aggregates
automatically based on usage patterns. This would provide maximal freedom distributing
JavaScript and CSS over files for maximal modularity and conceptual clarity with optimal
performance.

Figure 7.17 shows a rule from ClioPatria (chapter 10, Wielemaker et al. 2008). The
rule is a reusable definition for displaying a single result found by the ClioPatria search
engine. Visualisation of a single result is defined in CSS. Calling this rule generates the
required HTML, and at the same time ensures that the CSS declarations (path.css) are
loaded from the HTML 〈head〉. This mechanism provides simple reusability of rules that
produce HTML fragments together with the CSS and JavaScript resources that provide the
styling and interactive behaviour.

result_with_path(Result, Path) -->
html_requires(css(’path.css’)),
html(span(class(result),

[ Result,
span(class(path), \html_path(Path))

])).

Figure 7.17: A single rules produces HTML and ensures that the required CSS is loaded.

7.5.2 Representing and converting between JSON and Prolog

JSON is a simple format that defines objects as a list of name/value pairs, arrays as an un-
bounded sequence of values and a few primitive datatypes: strings, numbers, boolean (true
and false) and the constant null. For example, a point in a two-dimensional plane can be
represented in JSON as {"x":10, "y":20}. If explicit typing is desired, one might use
{"type":"point", "x":10, "y":20}. The JSON syntax is a subset of the SWI-
Prolog syntax,18 but the resulting term is very unnatural from Prolog’s perspective: attribute

18Not of the ISO Prolog syntax because JSON is UNICODE (UTF-8) based and allows for the \uXXXX syntax to
express UNICODE code points.



SWI-PROLOG AND THE WEB 127

names map to strings instead of atoms, wasting space and making lookup unnecessarily
slow. The {...} notation is for Prolog’s grammar rules and unnatural to process. Instead,
the natural Prolog representation of a point object is a term point(10,20).

This section describes how JSON can be integrated into Prolog. To facilitate JSON han-
dling from Prolog we created two libraries. The first, json.pl reads and writes JSON

terms from/to a Prolog stream in an unambiguous format that covers the full JSON specifica-
tion. The generic format is defined as in figure 7.18. For example, the point object above is
represented as json([x=10,y=20]).

Object ::= json([]) | json([Pair, ...])
Pair ::= Name = Value
Name ::= 〈atom〉
Array ::= [] | [Value, ...]
Value ::= 〈atom〉 | 〈number〉 | Object | Array

| @(true) |@(false) |@(null)

Figure 7.18: Unambiguous representation of a JSON term, using the same BNF structure
as the JSON specification.

The second, json_convert.pl supports type checking and conversion to a ‘natu-
ral’ Prolog term. Complex types are defined by the name/arity of a Prolog compound term.
Primitive types are atom, integer, etc. JSON interface types are declared using the direc-
tive json object(+Specification), which we introduce through the example below. The
example defines two types. The first specifies the type person/2 with arguments name
and address. In turn, address is defined by the street, house-number and city, all of which
are covered by Prolog primitive types.

:- json_object
person(name:atom, address:address),
address(street:atom, number:integer, city:atom).

With these declarations, prolog to json(+Prolog, -JSON) converts a term such as
person(mary, address(kerkstraat, 42, amsterdam)) into the unambiguous JSON represen-
tation json([mary, json([kerkstraat, 42, amsterdam]). The inverse operation is performed
by json to prolog(+JSON, -Prolog). The library enforces the type declarations.

7.6 Enabling extensions to the Prolog language

SWI-Prolog has been developed in the context of projects, many of which focused on man-
aging Web documents and protocols. In the previous sections we have described our Web
enabling libraries. In this section we describe extensions to the ISO-Prolog standard (Der-
ansart et al. 1996) we consider crucial for scalable and comfortable deployment of Prolog
as an agent in a Web centred world.
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7.6.1 Multi-threading

Concurrency is necessary for applications for the following reasons:

• Network delays may cause communication of a single transaction to take long. It is not
acceptable if such incidents block access for other clients. This can be achieved using
multiplexed I/O, multiple processes handling requests in a pool or multiple threads.

• CPU-intensive services must be able to deploy multiple CPUs. This can be achieved
using multiple instances of the service and load-balancing or a single server running
on multi-processor hardware or a combination of the two.

As indicated, none of the requirements above require multi-threading support in Prolog.
Nevertheless, we added multi-threading (chapter 6, Wielemaker 2003a) because it resolves
delays and exploiting multi-CPU hardware for medium-scale applications while greatly sim-
plifying deployment and debugging in a platform independent way. A multi-threaded server
also allows maintaining state for a specific session or even state shared between multiple ses-
sions simply in the Prolog database. The advantages of this are described in (Szeredi et al.
1996), using the or-parallel Aurora to serve multiple clients. This is particularly interesting
for accessing the RDF database described in section 7.3.2.

7.6.2 Atoms and UNICODE support

UNICODE19 is a character encoding system that assigns unique integers (code-points) to all
characters of almost all scripts known in the world. In UNICODE 4.0, the code-points range
from 1 to 0x10FFFF. UNICODE can handle documents in different scripts (e.g., Latin and
Hebrew) as well as documents that contain text from multiple scripts. This feature greatly
simplifies applications that must be able to deal with multiple scripts, such as web appli-
cations serving a world-wide audience. Traditional HTML applications commonly insert
special symbols through entities such as the copyright ( c©) sign, Greek and mathematical
symbols, etcetera. Using UNICODE we can represent all entity values uniformely as plain
text. UTF-8, an encoding of UNICODE as a sequence of bytes, is at the heart of XML and the
Semantic Web.

HTML documents can be represented using Prolog strings because Prolog integers can
represent all UNICODE code-points. As we have claimed in section 7.2 however, using Pro-
log strings is not the most obvious choice. XML attribute names and values can contain
arbitrary UNICODE characters, which requires the unnatural use of strings for these as well.
If we consider RDF, IRIs can have arbitrary UNICODE characters20 and we want to repre-
sent IRIs as atoms to exploit compact storage as well as fast equivalence testing. Without
UNICODE support in atoms we would have to encode UNICODE in the atom using escape
sequences. All this patchwork can be avoided if we demand the properties below for Prolog
atoms.

19http://www.Unicode.org/
20http://www.w3.org/TR/rdf-concepts/#section-Graph-URIref
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• Atoms represent text in UNICODE

• Atoms have no limit on their length

• The Prolog implementation allows for a large number of atoms, both to represent
URIs and to represent text in HTML/XML documents. SWI-Prolog’s maximum number
of atoms is 225 (32 million) on 32-bit hardware.

• Continuously running servers cannot allow memory leaks and therefore processing
dynamic data using atoms requires atom garbage collection.

7.7 Case study — A Semantic Web Query Language

In this case-study we describe the SWI-Prolog SeRQL implementation, currently distributed
as an integral part of ClioPatria chapter 10 (Wielemaker et al. 2008). SeRQL is an RDF

query language developed as part of the Sesame project21 (Broekstra et al. 2002). SeRQL

uses HTTP as its access protocol. Sesame consists of an implementation of the server as a
Java servlet and a Java client-library. By implementing a compatible framework we made
our Prolog-based RDF storage and reasoning engine available to Java clients. The Prolog
SeRQL implementation uses all of the described SWI-Prolog infrastructure and building it
has contributed significantly to the development of the infrastructure. Figure 7.19 lists the
main components of the server.

Login & user
Management

SeRQL parserQuery Optimiser

RDF Entailment RDFS Entailment

RDF-Library

User Frontend
SeRQL

HTTP API

Network

HTTP Server Library

XML/RDF
over

HTTP

HTML
over
HTTP

RDF I/O

Figure 7.19: Module dependencies of the SeRQL system. Arrows denote ‘imports from’ relations.

The entailment modules are plugins that implement the entailment approach to RDF rea-
soning described in section 7.3.3. They implement rdf/3 as a pure predicate, adding im-
plicit triples to the raw triples loaded from RDF/XML documents. Figure 7.20 shows the
somewhat simplified entailment module for RDF. The negations avoid duplicate results. This

21http://www.openrdf.org
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is not strictly necessary, but if the test is cheap we expect that the extra cost will generally be
returned in subsequent processing steps. The multifile rule serql:entailment/2 registers the
module as entailment module for the SeRQL system. New modules can be loaded dynam-
ically into the platform, providing support for other SW languages or application-specific
server-side reasoning.

:- module(rdf_entailment, [rdf/3]).

rdf(S, P, O) :-
rdf_db:rdf(S, P, O).

rdf(S, rdf:type, rdf:’Property’) :-
rdf_db:rdf(_, S, _),
\+ rdf_db:rdf(S, rdf:type, rdf:’Property’).

rdf(S, rdf:type, rdfs:’Resource’) :-
rdf_db:rdf_subject(S),
\+ rdf_db:rdf(S, rdf:type, rdfs:’Resource’).

:- multifile serql:entailment/2.

serql:entailment(rdf, rdf_entailment).

Figure 7.20: RDF entailment module

The SeRQL parser is a DCG-based parser that translates a SeRQL query text into a com-
pound goal calling rdf/3 and predicates from the SeRQL runtime library which provide
comparison and functions built into the SeRQL language. The resulting control-structure
is passed to the query optimiser chapter 4 (Wielemaker 2005) which uses statistics main-
tained by the RDF database to reorder the pure rdf/3 calls for best performance. The
optimiser uses a generate-and-evaluate approach to find the optimal order. Considering the
frequently long conjunctions of rdf/3 calls, the conjunction is split into independent parts.
Figure 7.21 illustrates this in a simple example.

HTTP access consists of two parts. The human-centred portal consists of HTML pages
with forms to manage the server as well as view statistics, load and unload documents and
run SeRQL queries interactively presenting the result as an HTML table. Dynamic pages are
generated using the html_write.pl library described in section 7.2.2.1. Static pages are
served from HTML files by the Prolog server. Machines use HTTP POST requests to provide
query data and get a reply in XML or RDF/XML.

The system knows about various RDF input and output formats. To reach modularity the
kernel exchanges RDF graphs as lists of terms rdf(S,P,O) and result-tables as lists of terms
using the functor row and arity equal to the number of columns in the table. The system
calls a multifile predicate using the format identifier and data to produce the results in the
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...
rdf(Paper, author, Author),
rdf(Author, name, Name),
rdf(Author, affiliation, Affil),
...

Figure 7.21: Split rdf conjunctions. After executing the first rdf/3 query Author is
bound and the two subsequent queries become independent. This is also true for other
orderings, so we only need to evaluate 3 alternatives instead of 3! (6).

requested output format. The HTML output format uses html_write.pl. The RDF/XML

format uses rdf write xml/2 described in section 7.3.1. Both rdf write xml/2 and
the other XML output format use straight calls format/3 to write the document, where
quoting values is realised by quoting primitives provided by the SGML/XML parser described
in section 7.2. Using direct writing instead of techniques described in section 7.2.2.1 avoids
potentially large intermediate datastructures and is not complicated given the often simple
structure of the documents.

Evaluation

Development of the SeRQL server and the SWI-Prolog web libraries is too closely integrated
to use it as an evaluation of the functionality provided by the Web enabling libraries. We
compared our server to Sesame, written in Java. The source code of the Prolog-based server
is 6,700 lines, compared to 86,000 for Sesame. As both systems have very different cov-
erage in functionality and can re-use libraries at different levels it is hard to judge these
figures. Both answer trivial queries in approximately 5ms on a dual AMD 1600+ PC running
Linux 2.6. On complex queries the two systems perform very differently. Sesame’s for-
ward reasoning makes it handle some RDFS queries much faster. Sesame does not contain a
query optimiser which causes order-dependent and sometimes very long response times on
conjunctions.

The power of LP where programs can be handled as data is exploited by parsing the
SeRQL query into a program and optimising this program by manipulating it as data, after
which we can simply call it to answer the query. The non-deterministic nature of rdf/3
allows for a trivial translation of the query to a non-deterministic program that produces the
answers on backtracking.

The server only depends on the standard SWI-Prolog distribution and therefore runs un-
modified on all systems supporting SWI-Prolog. It has been tested on Windows, Linux and
MacOS X.

All infrastructure described is used in the server. We use format/3, exploiting XML

quoting primitives provided by the Prolog XML library to print highly repetitive XML files



132 SWI-PROLOG AND THE WEB

such as the SeRQL result-table. Alternatively we could have created the corresponding DOM

term and call xml write/2 from the library sgml_write.pl.

7.8 Case study — XDIG

In section 7.7 we have discussed the case study how SWI-Prolog is used for a RDF query
system, i.e., a meta-data management and reasoning system. In this section we describe
a Prolog-powered system for ontology management and reasoning based on Description
Logics (DL). DL has greatly influenced the design of the W3C ontology language OWL.
The DL community, called DIG (DL Implementation Group) have developed a standard for
accessing DL reasoning engines called the DIG description logic interface22 (Bechhofer et al.
2003), DIG interface for short. Many DL reasoners like Racer (Haarslev and Möller 2001)
and FACT (Horrocks 1999) support the DIG interface, allowing for the construction of highly
portable and reusable DL components or extensions.

In this case study, we describe XDIG, an eXtended DIG Description Logic interface,
which has been implemented on top of the SWI-Prolog Web libraries. XDIG is a platform
that provides a DIG proxy in which application specific transformations and extensions can be
realised. The DIG interface uses an XML-based messaging protocol on top of HTTP. Clients
of a DL reasoner communicate by means of HTTP POST requests. The body of the request
is an XML encoded message which corresponds to the DL concept language. Where OWL

is based on the triple model described in section 7.3, DIG statements are grounded directly
in XML. Figure 7.22 shows a DIG statement which defines the concept MadCow as a cow
which eats brains, part of sheep.

<equalc>
<catom name=’mad+cow’/>
<and>
<catom name=’cow’/>
<some>

<ratom name=’eats’/>
<and>

<catom name=’brain’/>
<some>
<ratom name=’part+of’/>
<catom name=’sheep’/>

</some></and></some></and></equalc>

Figure 7.22: a DIG statement on MadCow

22http://dl.kr.org/dig/
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7.8.1 Architecture of XDIG

The XDIG libraries form a framework to build DL reasoners that have additional reasoning
capabilities. XDIG serves as a regular DL reasoner via its corresponding DIG interface. An
intermediate XDIG server can make systems independent from application specific charac-
teristics. A highly decoupled infrastructure significantly improves the reusability and appli-
cability of software components.

Application/
GUI

XDIG
Server

DIG
Client

Main Control Component

External
Reasoner

Ontology
Repository

Figure 7.23: Architecture of XDIG

The general architecture of XDIG is shown in figure 7.23. It consists of the following
components:

XDIG Server The XDIG server deals with requests from ontology applications. It sup-
ports our extended DIG interface: in addition to the standard DIG/DL requests, like
’tell’ and ’ask’ it supports requests such as changing system settings. The library
dig_server.pl implements the XDIG protocol on top of the Prolog HTTP server
described in section 7.4.2. The predicate dig server(+Request) is called from the
HTTP server to process a client’s Request as illustrated in figure 7.13. XDIG server
developers have to define the predicate my dig server processing(+Data, -
Answer, +Options), where Data is the parsed DIG XML requests and Answer is term
answer(-Header, -Reply). Reply is the XML-DOM term representing the answer to
the query.

DIG Client XDIG is designed to rely on an external DL reasoner. It implements a regu-
lar DIG interface client and calls the external DL reasoner to access the standard DL

reasoning capabilities. The predicate dig post(+Data, -Reply, +Options) posts the
data to the external DIG server. The predicates are defined in terms of the predicate
http post/4 and others in the HTTP and XML libraries.

Main Control Component The library dig_process.pl provides facilities to analyse
DIG statements such as finding concepts, individuals and roles, but also decide on sat-
isfiability of concepts and consistency. Some of this processing is done by analysing
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the XML-DOM representation of DIG statements in the local repository, while sat-
isfiability and consistency checking is achieved by accessing external DL reasoners
through the DIG client module.

Ontology Repository The Ontology Repository serves as an internal knowledge base (KB),
which is used to store multiple ontologies locally. These ontology statements are used
for further processing when the reasoner receives an ‘ask’ request. The main control
component usually selects parts from the ontologies to post them to an external DL

reasoner and obtain the corresponding answers. This internal KB is also used to store
system settings.

As DIG statements are XML-based, XDIG stores statements in the local repository using
the XML-DOM representation described in section 7.2. The tree model of XDIG data has been
proved to be convenient for DIG data management.

Figure 7.24 shows a piece of code from the XDIG defining the predicate
direct concept relevant(+DOM, ?Concept) which checks if a set of Statements is
directly relevant to a Concept, namely the Concept appears in the body of a statement in the
list. The predicate direct concept relevant/2 has been used to develop PION for
reasoning with inconsistent ontologies, and DION for inconsistent ontology debugging.

direct_concept_relevant(element(catom, Atts, _), Concept) :-
memberchk(name=Concept, Atts).

direct_concept_relevant(element(_, _, Content), Concept) :-
direct_concept_relevant(Content, Concept).

direct_concept_relevant([H|T], Concept) :-
( direct_concept_relevant(H, Concept)
; direct_concept_relevant(T, Concept)
).

Figure 7.24: direct concept relevant checks that a concept is referenced by a DIG statement

7.8.2 Application

XDIG has been used to develop several DL reasoning services. PION is a reasoning system
that deals with inconsistent ontologies23 (Huang and Visser 2004; Huang et al. 2005), MORE

is a reasoner24 (Huang and Stuckenschmidt 2005) that supports multiple versions of the same
ontology and DION is a debugger of inconsistent ontologies25(Schlobach and Huang 2005).

23http://wasp.cs.vu.nl/sekt/pion
24http://wasp.cs.vu.nl/sekt/more
25http://wasp.cs.vu.nl/sekt/dion
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With the support of an external DL reasoner like Racer (Haarslev and Möller 2001), DION

can serve as an inconsistent ontology debugger using a bottom-up approach.

7.9 Case study — Faceted browser on Semantic Web database inte-
grating multiple collections

In this case study we describe a pilot for the STITCH-project26 that aims at finding solutions
for the problem of integrating controlled vocabularies such as thesauri and classification sys-
tems in the Cultural Heritage domain. The pilot consists of the integration of two collections
– the Medieval Illuminations of the Dutch National Library (Koninklijke Bibliotheek) and
the Masterpieces collection from the Rijksmuseum – and development of a user interface
for browsing the merged collections. One requirement within the pilot is to use “standard
Semantic Web techniques” during all stages, so as to be able to evaluate their added value.
An explicit research goal was to evaluate existing “ontology mapping” tools. The problem
could be split into three main tasks:

• Gathering data, i.e., collecting records of the collections and controlled vocabularies
they use and transforming these into RDF.

• Establishing semantic links between the vocabularies using off-the-shelf ontology
mapping tools.

• Building a prototype User Interface (UI) to access (search and browse) the integrated
collections and experiment with different ways to access them using a Web server.

SWI-Prolog has been used to realise all three tasks. To illustrate our use of the SWI-
Prolog Web libraries we focus on their application in the prototype user interface because it
is the largest subsystem using these libraries.

7.9.1 Multi-Faceted Browser

Multi-Faceted Browsing is a search and browse paradigm where a collection is accessed by
refining multiple (preferably) structured aspects (called facets) of its elements. For the user
interface and user interaction we have been influenced by the approach of Flamenco (Hearst
et al. 2002). The Multi-Faceted Browser is implemented in SWI-Prolog. All data is stored in
an RDF database, which can be either an external SeRQL repository or an in-memory SWI-
Prolog RDF database. The system consists of three components, RDF-interaction, which
deals with RDF-database storage and access, HTML-code generation, for the creation of Web
pages and the Web server component, implementing the HTTP server. They are discussed in
the following sections.

26http://stitch.cs.vu.nl
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7.9.1.1 RDF-interaction

We first describe the content of the RDF database before explaining how to access it. The
RDF database contains:

• 750 records from the Rijksmuseum, and 1000 from the Koninklijke Bibliotheek.

• An RDF representation of hierarchically structured facets. Hierarchical structuring is
defined using SKOS27, an RDF schema to represent controlled vocabularies.

• Mappings between SKOS Concept Schemes used in the different collections.

• Portal-specific information as “Site Configuration Objects” (SCO), identified by URIs
with properties defining what collections are part of the setup, what facets are shown,
and also values for the constant text in the Web page presentation and other User
Interface configuration properties. Multiple SCOs may be defined in a repository.

The in-memory RDF store contains, depending on the number of mappings and struc-
tured vocabularies that are stored in the database, about 300,000 RDF triples. The Sesame
store contains more triples (520,000) as its RDFS-entailment implementation implies gener-
ation of derived triples (see section 7.7).

RDF database access Querying the RDF store for compound results such as a list
of artworks where each artwork is enriched with information on how it must be dis-
played (e.g., title, thumbnail, collection) based on HTTP query arguments consists of three
steps: 1) building SeRQL queries from the HTTP query arguments, 2) passing them on
to the SeRQL-engine, gathering the result rows and 3) finally post-processing the output,
e.g., counting elements and sorting them. Figure 7.25 shows an example of a gener-
ated SeRQL query. Finding matching records involves finding records annotated by the
facet value or by a value that is a hierarchical descendant of facet value. We imple-
mented this by interpreting records as instances of SKOS concepts and using the tran-
sitive and reflexive properties of the rdfs:subClassOf property. This explains for exam-
ple {Rec} rdf:type {<http://www.telin.nl/rdf/topia#Paintings>}
in figure 7.25.

The SeRQL-query interface contains timing and debugging facilities for single queries;
for flexibility it provides access to an external SeRQL server28 for which we used Sesame29,
but also to the in-memory store of the SWI-Prolog SeRQL implementation described in sec-
tion 7.7.

27http://www.w3.org/2004/02/skos/
28We used the sesame_client.pl library that provides an interface to external SeRQL servers, packaged with

the SWI-Prolog SeRQL library
29http://www.openrdf.org
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SELECT Rec, RecTitle, RecThumb, CollSpec
FROM {SiteId} rdfs:label {"ARIATOPS-NONE"};

mfs:collection-spec {CollSpec} mfs:record-type {RT};
mfs:shorttitle-prop {TitleProp};
mfs:thumbnail-prop {ThumbProp},

{Rec} rdf:type {RT}; TitleProp {RecTitle};
ThumbProp {RecThumb},

{Rec} rdf:type {<http://www.telin.nl/rdf/topia#AnimalPieces>},
{Rec} rdf:type {<http://www.telin.nl/rdf/topia#Paintings>}
USING NAMESPACE skos = <http://www.w3.org/2004/02/skos/core#>,
mfs = <http://www.cs.vu.nl/STITCH/pp/mf-schema#><br>

Figure 7.25: An example of a SeRQL query, which returns details of records matching
two facet values (AnimalPieces and Paintings)

7.9.1.2 HTML-code generation

We used the SWI-Prolog html_write.pl library described in section 7.2.2.1 for our
HTML-code generation. There are three distinct kinds of Web pages the multi-faceted
browser generates, the portal access page, the refinement page and the single collection-
item page. The DCG approach to generating HTML code made it easy to share HTML-code
generating procedures such as common headers and HTML code for refinement of choices.
The HTML-code generation component contains some 140 DCG rules (1200 lines of Prolog
code of which 800 lines are DCG rules), part of which are simple list-traversing rules such as
the example of Figure 7.26.

7.9.1.3 Web Server

The Web server is implemented using the HTTP server library described in section 7.4.2. The
Web server component itself is small. It follows the skeleton code described in Figure 7.13.
In our case the reply/1 predicate extracts the URL root and parameters from the URL. The
Site Configuration Object, which is introduced in section 7.9.1.1, is returned by the RDF-
interaction component based on the URL root. It is passed on to the HTML-code generation
component which generates Web content.

7.9.2 Evaluation

This case study shows that SWI-Prolog is effective for building applications in the context
of the Semantic Web. In a single month a fully functional prototype portal has been cre-
ated providing structured access to multiple collections. The independence of any external
libraries and the full support of all libraries on different platforms made it easy to develop
and install in different operating systems. All case study software has been tested to install
and run transparently both on Linux and on Microsoft Windows.
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objectstr([],_O, _Cols,_Args) --> [].
objectstr([RowObjs|ObjectsList], Offset, Cols, Args) -->

{ Perc is 100/Cols },
html(tr(valign(top),

\objectstd(RowObjs, Offset, Perc, Args))),
{ Offset1 is Offset + Cols },
objectstr(ObjectsList, Offset1, Cols, Args).

objectstd([], _, _, _) --> [].
objectstd([Url|RowObjects], Index, Percentage, Args) -->

{ ..
construct_href_index(..., HRef),
missing_picture_txt(Url, MP)

},
html(td(width(Percentage),

a(href(HRef),img([src(Url),alt(MP)])))),
{ Index1 is Index + 1 },
objectstd(RowObjects, Index1, Percentage, Args).

Figure 7.26: Part of the html code generation for displaying all the images of a query
result in an HTML table

At the start of the pilot project we briefly evaluated existing environments for creating
multi-faceted browsing portals: We considered the software available from the Flamenco
Project (Hearst et al. 2002) and the OntoViews Semantic Portal Creation Tool (Mäkelä et al.
2004). The Flamenco software would require developing a translation from RDF to the
Flamenco data representation. OntoViews heavily uses Semantic Web techniques, but the
software was unnecessarily complex for our pilot, requiring a number of external libraries.
This together with our need for flexible experiments with various setups made us decide to
build our own prototype.

The prototype allowed us to easily experiment with and develop various interesting ways
of providing users access to integrated heterogeneous collections (van Gendt et al. 2006).

7.10 Conclusion

We have presented an overview of the libraries and Prolog language extensions we have
implemented and which we provide to the Prolog community as Open Source resources.
The following components have been identified as vital for using Prolog in (semantic) web
related tasks:
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• HTTP client and server support
Instead of using proprietary protocols between Prolog and other components in a web
server architecture, we propose the use of the web HTTP protocol. Based on HTTP,
Prolog can be deployed anywhere in the server architecture.

• Web document support
In addition to the transfer protocol, standardisation of document formats is what makes
the web work. We propose a representation of XML/SGML, HTML, RDF and JSON doc-
uments as Prolog terms. Standardisation of these Prolog terms is a first requirement
to enable portable libraries processing web documents. We presented a modular and
extensible mechanism to generate HTML documents. The infrastructure automatically
includes CSS and JavaScript on which the document depends.

• RDF storage and querying
RDF is naturally represented by a Prolog predicate rdf(Subject, Predicate, Object).
We implemented rdf/3 as a foreign extension to Prolog because this allows us to
optimise the representation by exploiting the restrictions and use patterns provided by
the Semantic Web languages.

Proper support of the above components is not possible without extending Prolog with
at least the following features:

• Threading
Availability of multi-CPU hardware and requirements for responsive and scalable
web services demands concurrency. This is particularly true when representing large
amounts of knowledge as Prolog rules. Multiple threads provide scalable reasoning
with this knowledge without duplication.

• Atom handling
Atoms are the obvious representation for IRIs in RDF as well as element and attribute
names in XML. This requires UNICODE atoms as well and large numbers of atoms. In
addition, atoms can be used to represent attribute values and (textual) content in XML,
which requires atoms of unbounded length and atom garbage collection.

Considering the three tier model for implementing web services, the middleware, dealing
with the application logic, is the most obvious tier for exploiting Prolog. Flexibility provided
by using HTTP for communication does not limit Prolog to the middleware. In the case stud-
ies presented in this paper we have seen Prolog active as storage component (section 7.7),
middleware (section 7.8) and in the presentation tier (section 7.9). In chapter 10, the Pro-
log server (ClioPatria) initially handled all three tiers. Later, part of the presentation was
moved to JavaScript running in the web-browser to improve dynamic behaviour and exploit
reusable JavaScript libraries. ClioPatria uses all infrastructure described in this chapter.

Figure 7.27 shows the ‘Semantic Web layer cake’ that illustrates the architecture of the
Semantic Web and which parts of the cake are covered by the infrastructure described in this
chapter.
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Figure 7.27: The Semantic Web layer cake by Tim Burners Lee. The dark grey boxes
are fully covered. For light grey areas, ontologies are covered by standard languages but
our coverage of the standard is partial while the other layers are not covered by clear
standards, but Prolog is a promising language to explore them.

Development in the near future is expected to concentrate on Semantic Web reasoning,
such as the translation of SWRL rules to logic programs. Such translations will benefit from
tabling to realise more predictable response-times and allow for more declarative programs.
We plan to add more support for OWL reasoning, possibly supporting vital relations for
ontology mapping such as owl:sameAs in the low-level store. We also plan to add PSP or
PWP-like (see section 7.2.2) page-generation facilities.
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Chapter 8

PlDoc: Wiki style literate Programming for
Prolog

About this chapter This chapter has been presented at 17th Workshop on
Logic-based methods in Programming Environments, Porto (WLPE 2007,
Wielemaker and Anjewierden 2007). It is a concrete example of using the in-
frastructure described in part I for realising a web application. At the same time
it is part of the SWI-Prolog development tools (Wielemaker 2003b). The web
front end can be merged into web applications, creating a self documenting web
server. This feature has been used in ClioPatria, described in chapter 10.

Notes on a LATEX backend in the future work section of the original paper have
been replaced by a new section 8.7. Section 8.5 was contributed by the co-
author Anjo Anjewierden, University of Twente.

Abstract This document introduces PlDoc, a literate programming system for
Prolog. Starting point for PlDoc was minimal distraction from the programming
task and maximal immediate reward, attempting to seduce the programmer to
use the system. Minimal distraction is achieved using structured comments that
are as closely as possible related to common Prolog documentation practices.
Immediate reward is provided by a web interface powered from the Prolog de-
velopment environment that integrates searching and browsing application and
system documentation. When accessed from localhost, it is possible to go from
documentation shown in a browser to the source code displayed in the user’s
editor of choice.

8.1 Introduction

Combining source and documentation in the same file, generally named literate program-
ming, is an old idea. Classical examples are the TEX source (Knuth 1984) and the self
documenting editor GNU-Emacs (Stallman 1981). Where the aim of the TEX source is first
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of all documenting the program, for GNU-Emacs the aim is to support primarily the end
user.

There is an overwhelming amount of articles on literate programming, most of which
describe an implementation or qualitative experience using a literate programming system
(Ramsey and Marceau 1991). Shum and Cook (1994) describe a controlled experiment on
the effect of literate programming in education. Using literate programming produces more
comments in general. More convincingly, it produced ‘how documentation’ and examples
where, without literate programming, no examples were produced at all. Nevertheless, the
subjects participating in the above experiment considered literate programming using the
AOPS (Shum and Cook 1993) system confusing and harming debugging. This could have
been caused by AOPS which, like TEX’s weave and tangle, uses an additional prepro-
cessing step to generate the documentation and a valid program for the compiler.

Recent developments in programming environments and methodologies make a case for
re-introducing literate programming (Pieterse et al. 2004). The success of systems such as
JavaDoc1 and Doxygen (van Heesch 2007) is evident. Both systems are based on struc-
tured comments in the source code. Structured comments use the comment syntax of the
programming language (e.g., %...\n or /*...*/ in Prolog) and define additional syn-
tax that make the comment recognisable as being ‘structured’ (e.g., start /** in JavaDoc)
and provides layout directives (e.g., HTML in JavaDoc). This approach makes the literate
programming document a valid document for the programming language. Using a source
document that is valid for the programming language ensures smooth integration with any
tool designed for the language.

Note that these developments are different from what Knuth intended: “The literate pro-
grammer can be regarded as an essayist that explains the solution to a human by crisply
defining the components and delicately weaving them together into a complete artistic cre-
ation” (Knuth 1984). Embedding documentation in source code comments merely produces
an API Reference Manual.

In the Prolog world we see lpdoc (Hermenegildo 2000), documentation support in the
Logtalk (Moura 2003) language and the ECLiPSe Document Generation Tools2 system. All
these approaches use Prolog directives making additional statements about the code that
feed the documentation system. In 2006 a commercial user in the UK whose products are
developed using a range of technologies (including C++ using Doxygen for documentation)
approached us to come up with an alternative literate programming system for Prolog, aim-
ing at a documentation system as non-intrusive as possible to their programmers’ current
practice in the hope this will improve the documentation standards for their Prolog-based
work.

This document is structured as follows. First we outline the different options available
to a literate programming environment and motivate our choices. Next we introduce PlDoc
using and example, followed by a more detailed overview of the system. Section 8.5 tells
the story of introducing PlDoc in a large open source program, after which we compare our

1http://java.sun.com/j2se/javadoc/
2http://eclipse.crosscoreop.com/doc/userman/umsroot088.html
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work to related projects in section 8.6.

Figure 8.1: Documentation of library base64.pl. The example is described in section 8.3.
The syntax 〈name〉(〈arg〉...)// and 〈name〉//〈arity〉 define and reference grammar rules
(DCG). Accessed from ‘localhost’, PlDoc provides edit (rightmost) and and reload (left-
most) buttons that integrate it with the development environment.

8.2 An attractive literate programming environment

Most programmers do not like documenting code and Prolog programmers are definitely no
exception to this rule. Most can only be ‘persuaded’ by the organisation they work for, using
a grading system in education that values documentation (Shum and Cook 1994) or by the
desire to produce code that is accepted in the Open Source community. In our view, we
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must seduce the programmer to produce API documentation and internal documentation by
creating a rewarding environment. In this section we present the available dimensions and
motivate our primary choices in this design-space based on our aim for minimal impact and
reward.

For the design of a literate programming system we must make decisions on the input:
the language in which we write the documentation and how this language is merged with
the programming language (Prolog) into a single source file. Traditionally the documenta-
tion language was TEX-based (including Texinfo). Recent systems (e.g., JavaDoc) also use
HTML. In Prolog, we have two options for merging documentation in the Prolog text such
that the combined text is a valid Prolog document. The first is using Prolog comments and
the second is to write the documentation in directives and define (possibly dummy) predi-
cates that handle these directives.

In addition we have to make a decision on the output format. In backend systems we
see a shift from TEX (paper) and plain-text (online) formats towards HTML, XML+XSLT

and (X)HTML+CSS which are widely supported in todays development environments. Web
documents provide both comfortable online browsing and reasonable quality printing.

Figure 8.2: Searching for “base64”

In this design space we aim at a system with little overhead for the programmer and a
short learning curve that immediately rewards the programmer with a better overview and
integrated web-based search over both the application documentation and the Prolog manual.
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Minimal impact Minimising the impact on the task of the programmer is important. Pro-
gramming itself is a demanding task and it is important to reduce the mental load to the
minimum, only keeping that what is essential for the result. Whereas object oriented lan-
guages can extract some basics from the class hierarchy and type system, there is little API

information that can be extracted automatically from a Prolog program, especially if it does
not use modules. Most information for an API reference must be provided explicitly and
additionally to the program.

Minimising impact as well as maximising portability made us decide against the ap-
proach of lpdoc, ECLiPSe and Logtalk (see section 8.6) which provide the documentation
in language extensions by means of directives and in favour of using structured comments
based on layout and structuring conventions around in the Prolog community. Structured
comments start with %% (similar to Postscript document structuring comments) or /** and
use simple plain text markup that has been in use for a long time in email, usenet as well
as for commenting source code. Wikis (Leuf and Cunningham 2001) have introduced sim-
ilar markup for editing web-pages online. The popularity of wikis as well as the success in
translating simple text markup into proper layout suggest this as a promising approach.

Immediate and maximal reward to the programmer A documentation system is likely
to be more appreciated by the programmer if it provides immediate benefits during devel-
opment instead of merely satisfying long term documentation needs for the organisation. If
we can provide fully up-to-date searchable documentation that is linked directly to the un-
derlying source code, the programmer is likely to appreciate the documentation system for
browsing the system under development. This has been achieved by adding the documen-
tation system as an optional library to the Prolog development environment. With PlDoc
loaded into Prolog, the compiler processes the structured comments and maintains a Prolog
documentation database as described in section 8.8.1. This database is made available to the
developer through a web server running in a separate thread (section 8.4.2). The SWI-Prolog
make/0 command updates the running Prolog system to the latest version of the loaded
sources and updates the web site at the same time.

In addition, we merge the documentation of the loaded Prolog code with the Prolog
manuals in a consistent view presented from the embedded web server. This relieves the
programmer from making separate searches in the manuals and other parts of system under
development.

8.3 An example

Before going into detail we show the documentation process and access for the SWI-Prolog
library base64.pl. base64.pl provides a DCG rule for base64 encoding and decod-
ing as well as a conversion predicate for atoms. Part of the library code relevant for the
documentation is in figure 8.3 (described below). Figure 8.1 shows the documentation in a
browser and figure 8.2 shows the search interface.

In figure 8.3, we see a number of documentation constructs in the comments:
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/** <module> Base64 encoding and decoding

Prolog-based base64 encoding using DCG rules. Encoding according to
rfc2045. For example:

==
1 ?- base64(’Hello World’, X).
X = ’SGVsbG8gV29ybGQ=’

2 ?- base64(H, ’SGVsbG8gV29ybGQ=’).
H = ’Hello World’
==

@tbd Stream I/O
@tbd White-space introduction and parsing
@author Jan Wielemaker
*/

%% base64(+Plain, -Encoded) is det.
%% base64(-Plain, +Encoded) is det.
%
% Translates between plaintext and base64 encoded atom
% or string. See also base64//1.

base64(Plain, Encoded) :- ...

%% base64(+PlainText)// is det.
%% base64(-PlainText)// is det.
%
% Encode/decode list of character codes using _base64_.
% See also base64/2.

base64(Input) --> ...

Figure 8.3: Commented source code of library base64.pl

• The /** <module> Title comment introduces overall documentation of the
module. Inside, the == delimited lines mark a source code block. The @keyword sec-
tion provides JavaDoc inspired keywords from a fixed and well defined set described
at the end of section 8.4.1.

• The %% comments start with one or more %% lines that contain the predicate name,
argument names with optional mode, type and determinism information. Multiple
modes and predicates can be covered by the same comment block. The predicates
declarations must obey a formal syntax that is defined in figure 8.4. The formal part
is followed by plain text using wiki structuring, processed using the same rules that
apply to the module comment. Like JavaDoc, the first sentence of the comment body
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is considered a summary. Keyword search processes both the formal description and
the summary. This type of search has a long history, for example in the Unix man
command.

8.4 Description of PlDoc

8.4.1 The PlDoc syntax

PlDoc processes structured comments. Structured comments are Prolog comments starting
with %% or /**. The former is more in line with the Prolog tradition for commenting
predicates while the second is typically used for commenting the overall module structure.
The system does not enforce this. Java programmers may prefer using the second form for
predicate comments as well.

Comments consist of a formal header, a wiki body and JavaDoc inspired keywords.
When using %% style comments, the formal header ends with the first line that starts with
a single %. Using /** style comments, the formal header is ended by a blank line. There
are two types of formal headers. The formal header for a predicate consists of one or more
type and mode declarations. The formal header that comments a module is a line holding
“〈module〉 Title”. The 〈tag〉-style syntax can be extended in future versions of PlDoc to
accommodate other documentation elements (e.g., sections).

The type and mode declaration header consists of one or more Prolog terms. Each term
describes a mode of a predicate. The syntax is described in figure 8.4.

〈modedef〉 ::= 〈head〉[’//’] [’is’ 〈determinism〉]
〈determinism〉 ::= ’det’

| ’semidet’
| ’nondet’
| ’multi’

〈head〉 ::= 〈functor〉’(’〈argspec〉 {’,’ 〈argspec〉}’)’
| 〈atom〉

〈argspec〉 ::= [〈mode〉]〈argname〉[’:’〈type〉]
〈mode〉 ::= ’+’ | ’-’ | ’?’ | ’:’ | ’@’ | ’!’
〈type〉 ::= 〈term〉

Figure 8.4: BNF for predicate header

The optional //-postfix indicates that 〈head〉 is a grammar rule (DCG). The determinism
values originate from Mercury (Jeffery et al. 2000). Predicates marked as det must succeed
exactly once and leave no choice points. The semidet indicator is used for predicates
that either fail or succeed deterministically. The nondet indicator is the most general one
and implies there are no constraints on the number of times the predicate succeeds and
whether or not it leaves choice points on the last success. Finally, multi is as nondet, but
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demands the predicate to succeed at least one time. Informally, det is used for deterministic
transformations (e.g., arithmetic), semidet for tests, nondet and multi for generators.

The mode patterns are given in figure 8.5. Originating from DEC-10 Prolog were the
mode indicators (+,-,?) had a formal meaning. The ISO standard (Deransart et al. 1996)
adds ‘@’, meaning “the argument shall remain unaltered”. Quintus added ‘:’, meaning the
argument is module sensitive. Richard O’Keefe proposes3 ‘=’ for “remains unaltered” and
adds ‘*’ (ground) and ‘>’ “thought of as output but might be nonvar”.

+ Argument must be fully instantiated to a term that satisfies the type.
- Argument must be unbound on entry.
? Argument must be bound to a partial term of the indicated type. Note that

a variable is a partial term for any type.
: Argument is a meta argument. Implies +.

@ Argument is not further instantiated.
! Argument contains a mutable structure that may be modified using

setarg/3 or nb setarg/3.

Figure 8.5: Defined modes

The body of a description is given to a Prolog defined wiki parser based on Twiki4 using
extensions from the Prolog community. In addition we made the following changes.

• List indentation is not fixed, the only requirement is that all items are indented to the
same column.

• Font changing commands such as *bold* only work if the content is a single word.
In other cases we demand *|bold text|*. This proved necessary due to frequent
use of punctuation characters in comments that make single font-switching punctua-
tion characters too ambiguous.

• We added == around code blocks (see figure 8.3) as code blocks are frequent and not
easily supported by the core Twiki syntax.

• We added automatic links for 〈name〉/〈arity〉, 〈name〉//〈arity〉, 〈file〉.pl, 〈file〉.txt (in-
terpreted as wiki text) and image files using image extensions. If a file reference or
predicate indicator is enclosed in double square brackets (e.g., [[file.png]], the con-
tents is included at this place. This mechanism can be used to include images in files
or include the documentation of a predicate into a README file without duplicating
the description (see section 8.7).

• Capitalised words appearing in the running text that match exactly one of the argu-
ments are typeset in italics.

3http://gollem.science.uva.nl/SWI-Prolog/mailinglist/archive/2006/q1/0267.html
4http://www.twiki.org
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• We do not process embedded HTML. One of the reasons is that we want the option
for other target languages (see section 8.7). Opening up the path to unlimited use of
HTML complicates this. In addition, passing <, > and & unmodified to the target HTML

easily produces invalid HTML.

The ‘@’ keyword section of a comment block is heavily based on JavaDoc. We give a
summary of the changes and additions below.

• @return is dropped for obvious reasons.

• @error Error is added as a shorthand for @throws error(Error, Context)

• @since and @serial are not (yet) supported

• @compat is added to describe compatibility of libraries

• @copyright and @license are added

• @bug and @tbd are added for issue tracking

A full definition of the Wiki notation and keywords is in the PlDoc manual.5.

8.4.2 Publishing the documentation

PlDoc realises a web application using the SWI-Prolog HTTP infrastructure (chapter 7, Wiele-
maker et al. 2008). Running in a separate thread, the normal interactive Prolog toplevel is
not affected. The documentation server can also be used from an embedded Prolog system.
By default access is granted to ‘localhost’ only and the web interface provides links to the
development environment as shown in figure 8.1.

Using additional options to doc server(+Port, +Options), access can be granted
to a wider public. Since September 15 2006, we host a public server run-
ning the latest SWI-Prolog release with all standard libraries and packages loaded
from http://gollem.science.uva.nl/SWI-Prolog/pldoc/. Currently (June
2008), the server handles approximately 1,000 search requests (15,000 page views) per day.
This setup can also be used for an intranet that supports a development team. Running a
Prolog server with all libraries that are available to the team loaded, it provides an up-to-date
and searchable central documentation source.

8.4.3 IDE integration and documentation maintenance cycle

When accessed from ‘localhost’, PlDoc by default provides an option to edit a documented
predicate. Clicking this option activates an HTTP request through JavaScript similar to AJAX

(Paulson 2005), calling edit(+PredicateIndicator) on the development system. This hook-
able predicate locates the predicate and runs the user’s editor of choice on the given location.

5http://www.swi-prolog.org/packages/pldoc.html
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Figure 8.6: PlDoc displaying a directory index with files and their public predicates ac-
cessed from ‘localhost’. Each predicate has an ‘edit’ button and each file a pretty print
button (blue circle, see section 8.4.4)

In addition the browser interface shows a ‘reload’ button to run make/0 and refreshes the
current page, reflecting the edited documentation.

Initially, PlDoc is targeted to the working directory. In the directory view it displays the
content of the README file (if present) and all Prolog files with a summary listing of the
public predicates as illustrated in figure 8.6.

As a simple quality control measure PlDoc lists predicates that are exported from a
module but not documented in red at the bottom of the page. See figure 8.7.

We used the above to provide elementary support through PlDoc for most of the SWI-
Prolog library and package sources (approx. 80,000 lines). First we used a simple sed script
to change the first line of a % comment that comments a predicate to use the %% notation.
Next we fixed syntax errors in the formal part of the documentation header. Some of these
where caused by comments that should not have been turned into structured comments.
PlDoc’s enforcement that argument names are proper variable names and types are proper
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Prolog terms formed the biggest source of errors. Finally, directory indices and part of the
individual files were reviewed, documentation was completed and fixed at some points. The
enterprise is certainly not complete, but an effort of three days made a big difference in the
accessibility of the libraries.

8.4.4 Presentation options

By default, PlDoc only shows public predicates when displaying a file or directory index.
This can be changed using the ‘zoom’ button displayed with every page. Showing documen-
tation on internal predicates proves helpful for better understanding of a module and helps
finding opportunities for code reuse. Searching shows hits from both public and private
predicates, where private predicates are presented in grey using a yellowish background.

Every file entry has a ‘source’ button that shows the source file. Structured comments
are converted into HTML using the Wiki parser. The actual code is coloured based on in-
formation from the SWI-Prolog cross referencer using code shared with PceEmacs.6 The
colouring engine uses read term/3 with options ‘subterm positions’ to get the term lay-
out compatible to Quintus Prolog (SICS 1997) and ‘comments’ to get comments and their
positions in the source file.

8.5 User experiences

tOKo (Anjewierden et al. 2004) is an open source tool for text analysis, ontology develop-
ment and social science research (e.g., analysis of Web 2.0 documents). tOKo is written in
SWI-Prolog. The user base is very diverse and ranges from Semantic Web researchers who
need direct access to the underlying code for their experiments, system developers who use
an HTTP interface to integrate a specific set of tOKo functionality into their systems, to social
scientists who only use the interactive user interface.

The source code of tOKo, 135,000 lines (excluding dictionaries) distributed over 321
modules provides access to dictionaries, the internal representation of the text corpus, natural
language processing and statistical NLP algorithms, (pattern) search algorithms, conversion
predicates and the XPCE7 code for the user interface.

Before the introduction of the PlDoc package only part of the user interface was doc-
umented on the tOKo homepage. Researchers and system developers who needed access
to the predicates had to rely on the source code proper which, given the sheer size, is far
from trivial. In practice, most researchers simply contacted the development team to get a
handle on “where to start”. This example shows that when open source software has non-
trivial or very large interfaces it is necessary to complement the source code with proper
documentation of at least the primary API predicates.

After the introduction of PlDoc all new tOKo functionality is being documented using
the PlDoc style of literate programming. The main advantages have already been mentioned,

6http://www.swi-prolog.org/emacs.html
7http://www.swi-prolog.org/packages/xpce/
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Figure 8.7: Undocumented public predicates are added at the bottom. When accessed
from ‘localhost’, the developer can click the edit icon, add or fix documentation and click
the reload icon at the top of the page to view the updated documentation.

in particular the immediate reward for the programmer. The intuitive notation of PlDoc also
makes it relatively easy to add the documentation. The Emacs Prolog mode developed for
SWI-Prolog8 automatically reformats the documentation, such that mixing code and docu-
mentation becomes natural after a short learning curve.

One of the biggest advantages of writing documentation at all is that it reinforces a pro-
grammer to think about the names and arguments of predicates. For many of the predicates
in tOKo the form is operation(Output, Options) or operation(Input, Output, Op-
tions). Using an option list, also common in the ISO standard predicates and the SWI-Prolog
libraries, avoids an explosion of predicates. For example, misspellings corpus/2,

8http://turing.ubishops.ca/home/bruda/emacs-prolog
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which finds misspellings in a corpus of documents, has options for the algorithm to
use, the minimum word length and so forth: misspellings corpus(Output, [min-
imum length(5), edit distance(1), dictionary(known)]). Without documentation, once the
right predicate is found, the programmer still has to check and understand the source code
to determine which options are to be used. Writing documentation forces the developer to
think about determining a consistent set of names of predicates and names of option type
arguments.

A problem that the PlDoc approach only solves indirectly is when complex data types
are used. In tOKo this for example happens for the representation of the corpus as a list
of tokens. In a predicate one can state that its first argument is a list of tokens, but a list
of tokens itself has no predicate and the documentation of what a token list looks like is
non-trivial to create a link to. Partial solutions are to point to a predicate where the type is
defined, possibly from a @see keyword or point to a .txt file where the type is defined.

Completing the PlDoc style documentation for tOKo is still a daunting task. The benefits
for the developer are, however, too attractive not to do it.

8.6 Related work

The lpdoc system (Hermenegildo 2000) is the most widely known literate programming sys-
tem in the Logic Programming world. It uses a rich annotation format represented as Prolog
directives and converts these into Texinfo (Chassell and Stallman 1999). Texinfo has a long
history, but in our view it is less equipped for supporting interactive literate programming
for Logic Programming in a portable environment. The language lacks the primitives and
notational conventions used in the Logic Programming domain and is not easily extended.
The required TEX-based infrastructure and way of thinking is not readily available to any
Prolog programmer.

In Logtalk (Moura 2003), documentation supporting declarations are part of the lan-
guage. The intermediate format is XML, relying on XML translation tools and style sheets
for rendering in browsers and on paper. At the same time the structure information embedded
in the XML can be used by other tools to reason about Logtalk programs.

The ECLiPSe9 documentation tools use a single comment/1 directive containing an
attribute-value list of information for the documentation system. The Prolog-based tools
render this as HTML or plain text.

PrologDoc10 is a Prolog version of JavaDoc. It stays close to JavaDoc, heavily relying
on ‘@’-keywords and using HTML for additional markup. Figure 8.8 gives an example.

Outside the Logic Programming domain there is a large set of literate programming
tools. A good example is Doxygen (van Heesch 2007). The Doxygen website11 provides an
overview of related systems. Most of the referenced systems use structured comments.

9http://eclipse.crosscoreop.com/doc/userman/umsroot088.html
10http://prologdoc.sourceforge.net/
11http://www.doxygen.org
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/**
@form member(Value,List)
@constraints
@ground Value
@unrestricted List
@constraints

@unrestricted Value
@ground List

@descr True if Value is a member of List

*/

Figure 8.8: An example using PrologDoc

8.7 The PlDoc LATEX backend

Although the embedded HTTP server backend is our primary target, PlDoc is capable of
producing LATEX files from both Prolog files and plain text files using Wiki style markup as
described in section 8.4.1. The LATEX backend can be used to create a standalone LATEX doc-
ument from a Prolog file. Currently however, it is primarily used to generate (sub-)sections
of the documentation, where the main structure of the documentation is managed directly in
LATEX and the generated fragments are included using LATEX \input or \include state-
ments. This approach provides flexibility by distributing documentation source at will over
pure LATEX, PlDoc Wiki and literate programming in the Prolog source while producing uni-
form output. Notably the [[. . . ]] syntax (section 8.4.1) can be used to make Wiki files include
each other and import predicate descriptions at appropriate locations in the text.

We describe a simple scenario in which we produce a user guide section on Prolog list
processing. Because it concerns a user guide, we do not simply want to include the full
API of the lists.pl library, but we do want to include descriptions of predicates from
this library. We decide to write the section using the plain text conventions and create a file
lists.txt using the content below.

---+ Prolog classical list processing predicates

List membership and list concatenation are the two
classical Prolog list processing predicates.

* [[member/2]]

* [[append/3]]

This text is processed into a LATEX file lists.tex where the outermost section level is
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\subsection using the sequence of Prolog commands below. The LATEX output is shown
in figure 8.9.

?- doc_collect(true). % start collecting comments
?- [library(lists)]. % load the predicates with comments
?- doc_latex(’lists.txt’, ’lists.tex’,

[ stand_alone(false),
section_level(subsection)

]).

% This LaTeX document was generated using the LaTeX backend of
% PlDoc, The SWI-Prolog documentation system

\subsection{Prolog classical list processing predicates}

List membership and list concatenation are the two classical Prolog
list processing predicates.

\begin{description}
\predicate{member}{2}{?Elem, ?List}

True if \arg{Elem} is a member of \arg{List}

\predicate{append}{3}{?List1, ?List2, ?List1AndList2}
\arg{List1AndList2} is the concatination of \arg{List1} and
\arg{List2}
\end{description}

Figure 8.9: LATEX output from lists.tex

8.8 Implementation issues

In section 8.2, we claimed that a tight integration into the environment that makes the docu-
mentation immediately available to the programmer is an important asset. SWI-Prolog aims
at providing a modular Integrated Development Environment (IDE) that allows the user to
replace modules (in particular the editor) with a program of choice. We also try to minimise
installation dependencies. Combined, these two constraints ask for a modular Prolog-based
implementation. This implementation has the following main components:

• Collect documentation

• Parse documentation



158 PLDOC: WIKI STYLE LITERATE PROGRAMMING FOR PROLOG

• Rendering comments as HTML or LATEX

• Publish using a web-server

8.8.1 Collecting documentation

Collecting the documentation must be an integral part of the development cycle to ensure
that the running program is consistent with the presented documentation. An obvious choice
is to make the compiler collect comments. This is achieved using a hook, which is called by
the compiler called as:

prolog:comment hook(+Comments, +TermPos, +Term).

Here, Comments is a list of Pos-Comment terms representing comments encountered
from where read term/3 started reading upto the end of Term that started at TermPos.
The calling pattern allows for processing any comment and distinguishes comments outside
Prolog terms from comments inside the term.

The hook installed by the documentation server extracts structured comments by check-
ing for %% or /**. For structured comments, it extracts the formal comment header and the
first line of the comment body which serves, like JavaDoc, as a summary. The formal part is
processed and the entire structured comment is stored unparsed, but indexed using the parsed
formal header and summary that link the comment to a predicate. The stored information is
available through the public Prolog API of PlDoc and can be used, together with the cross
referencer Prolog API, as the basis for additional development tools.

8.8.2 Parsing and rendering comments

If a structured comment has to be presented through the web-interface or converted into
LATEX, it is first handed to a Prolog grammar that identifies the overall structure of the text
as paragraphs, lists and tables. Then, the text is enriched by recognising hyperlinks (e.g.,
print/2) and font changes (e.g., _italic_). These two phases produce a Prolog term
that represents the structure in the comment. The final step uses the HTML output infrastruc-
ture described in section 7.2.2.1 or a similarly designed layer to produce LATEX.

8.8.3 Porting PlDoc

PlDoc is Open Source and may be used as the basis for other Prolog implementations. The
required comment processing hooks can be implemented easily in any Prolog system. The
comment gathering and processing code requires a Quintus style module system. The current
implementation uses SWI-Prolog’s nonstandard (but not uncommon) packed string datatype
for representing comments. Avoiding packed strings is possible, but increases memory usage
on most systems.

The web server relies on the SWI-Prolog HTTP package, which in turn relies on the socket
library and multi-threading support. Given the standardisation effort on thread support in
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Prolog (Moura et al. 2008), portability may become feasible. In many situations it may be
acceptable and feasible to use the SWI-Prolog hosted PlDoc system while actual development
is done in another Prolog implementation.

8.9 Conclusions

In literate programming systems there are choices on the integration between documentation
and language, the language used for the documentation and the backend format(s). Getting
programmers to document their code is already hard enough, which provided us with the
motivation to go for minimal work and maximal and immediate reward for the program-
mer. PlDoc uses structured comments using Wiki-style documentation syntax extended with
plain-text conventions from the Prolog community. The primary backend is HTML+CSS,
served from an HTTP server embedded in Prolog. The web application provides a unified
search and view for the application code, Prolog libraries and Prolog reference manual.
PlDoc can be integrated in web applications, creating a self-documenting web server. We
use this in ClioPatria (chapter 10). The secondaty backend is LATEX, which can be used to
include documentation extracted from Prolog source files into LATEX documents.

PlDoc exploits some key features of the infrastructure of part I and the Prolog language to
arrive at an interactive documentation system that is tightly integrated with the development
cycle and easily deployed. Prominent is of course the web-server infrastructure described in
chapter 7 which provides the HTTP server and HTML generation library. Threading (chap-
ter 6) ensures that the documentation server does not interfere with the interactive toplevel.
Reflexiveness and incremental compilation are properties of the Prolog language that allow
for a simple to maintain link between source and documentation and access to up-to-date
documentation during interactive development.

Currently, PlDoc cannot be called knowledge-intensive. In part, this was a deliber-
ate choice to keep the footprint of PlDoc small. In the future we may consider more ad-
vanced search features that could be based on vocabularies from computer science such as
FOLDOC12 to facilitate finding material without knowledge of the particular jargon used for
describing it. It is also possible to exploit relations that can be retrieved from the program,
such as the modular organisation and dependency graphs. This thesis describes all compo-
nents needed to extend PlDoc with support for knowledge-based search in the system and
application documentation.
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Chapter 9

Semantic annotation and search

About this chapter The material presented in this chapter is composed from
two articles about the ICES-KIS project “Multimedia Information Analysis”
(MIA). Schreiber, Dubbeldam, Wielemaker, and Wielinga (2001) (section 9.1)
appeared in IEEE Intelligent systems and Wielemaker, Schreiber, and Wielinga
(2003a) appeared as a book chapter in the series Frontiers in Artificial Intelli-
gence and Applications.

Both papers study the use of ontologies for image annotation. The annotation
and search prototypes were built in SWI-Prolog, using XPCE (chapter 5, Wiele-
maker and Anjewierden 2002) for the GUI. The knowledge representation is
based on RDF, using a pure Prolog-based RDF store which provided the expe-
rience for chapter 3 (Wielemaker et al. 2003b). This chapter describes early
work in applying emerging technology from the Semantic Web community to
annotating multi media objects. It has been included in this thesis as motivation
and background for chapters 2 to 4 and 10. The lessons learned are described
in section 9.3 at the end of this chapter. The search and user evaluation sections
of section 9.1 have been removed because they are considered irrelevant to this
thesis.

9.1 Ontology-Based Photo Annotation

Guus Schreiber, Barbara Dubbeldam, Jan Wielemaker and Bob Wielinga
IEEE intelligent systems, 2001

9.1.1 Introduction

For magazine editors and others, finding suitable photographs for a particular purpose is in-
creasingly problematic. Advances in storage media along with the Web enable us to store and
distribute photographic images worldwide. While large databases containing photographic
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images exist, the tools and methods for searching and selecting an image are limited. Typi-
cally, the databases have a semistructured indexing scheme that allows a keyword search but
not much more to help the user find the desired photograph.

Currently, researchers promote the use of explicit background knowledge as a way out
of the search problems encountered on the Internet and in multimedia databases. The se-
mantic Web (Berners-Lee 1999) and emerging standards (such as the resource description
framework (RDF, Brickley and Guha 2000) make creating a syntactic format specifying
background knowledge for information resources possible.

In this article, we explore the use of background knowledge contained in ontologies to
index and search collections of photographs. We developed an annotation strategy and tool
to help formulate annotations and search for specific images. The article concludes with
observations regarding the standards and tools we used in this annotation study.

9.1.2 Our approach

Companies offering photographic images for sale often provide CDs containing samples of
the images in reduced jpeg format. Magazine editors and others typically search these CDs
to find an illustration for an article. To simulate this process, we obtained three CDs with
collections of animal photo samples with about 3,000 photos.

Figure 9.1 shows the general architecture of our annotation tool. We specified all ontolo-
gies in RDF Schema (RDFS, Brickley and Guha 2000) using the Protégé-2000 (Fridman Noy
et al. 2000) ontology editor (version 1.4). This editor supports the construction of ontologies
in a frame-like fashion with classes and slots. Protégé can save the ontology definitions in
RDFS. The SWI-Prolog RDF parser (chapter 3, Wielemaker et al. 2003b) reads the result-
ing RDFS file into the annotation tool, which subsequently generates an annotation interface
based on the RDFS specification. The tool supports reading in photographs, creating annota-
tions, and storing annotations in an RDF file. A query tool with a similar interface can read
RDF files and search for suitable photographs in terms of the ontology.

The architecture shown in figure 9.1 is in the same spirit as the one described in Lafon
and Bos 2000. However, we place more emphasis on the nature of the ontologies, the subject
matter description, and the explicit link to a domain ontology.

9.1.3 Developing ontologies

To define semantic annotations for ape photographs, we needed at least two groups of defi-
nitions:

• Structure of a photo annotation. We defined a photo annotation ontology that speci-
fies an annotation’s structure independent of the particular subject matter domain (in
our case, apes). This ontology provides the description template for annotation con-
struction.

• Subject matter vocabulary. We also constructed a domain-specific ontology for the an-
imal domain that provides the vocabulary and background knowledge for describing
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Figure 9.1: Overview of the approach used in this study. We used the Protégé ontology
editor to construct ontologies and store them in RDFS format.

features of the photo’s subject matter. In this case, the ontology consisted of defini-
tions of the phylum hierarchy of ape species with the corresponding species’ attributes
and constraints.

9.1.3.1 Photo annotation ontology

The first decision was whether we could use an existing annotation template as a starting
point. After evaluating metadata standards such as Dublin Core, (Dublin Core Metadata
Initiative 1999) it was clear that they were developed for another purpose and weren’t well
suited for extensive content-oriented annotations. Because ontology-based annotation is rel-
atively new, we decided to set the existing annotation standards aside and define the annota-
tion ontology based on our own analysis.

When looking at a photo, what kind of things do we want to state about it? We distin-
guished three viewpoints:

• What does the photo depict? We call this the photo’s subject matter feature. For
example, a photo depicts a gorilla eating a banana. This part of the photo annotation
ontology links to the domain ontology.

• How, when, and why was the photo made? We call this the photograph feature. Here,
we specify metadata about the circumstances related to the photo such as the photog-
rapher or the vantage point (for example, a close-up or an aerial view).

• How is the photo stored? We call such photo characteristics the medium feature. This
represents metadata such as the storage format (such as jpeg) or photo resolution.

In this study, we focused mainly on the subject matter description. In Dublin Core, the
single element subject represents this aspect.
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Figure 9.2 gives an overview of the annotation ontology represented as a UML class
diagram. A photo annotation contains at least one subject matter description and an arbitrary
number of photograph features and medium features. The subject matter description has
an internal structure. The actual photograph and medium features are subclasses of the
abstract feature concepts. The subclasses, shown in gray, represent just a sample collection
of features. The annotation tool only makes a number of minimal assumptions about the
annotation ontology. This lets us add new features to the ontology.

Figure 9.2: Structure of the photo annotation ontology represented as a UML class diagram.

When constructing an ontology, we often needed to incorporate definitions already avail-
able in other corpora. For example, to define a colour feature, we don’t want to type in all
the possible values for “colour.” A resource such as WordNet (Miller 1995) already con-
tains this information. In this study, we used the WordNet plug-in for Protégé. It provides a
cut-and-paste method for importing sections of WordNet into an ontology.

9.1.3.2 Structure of the subject matter description

From the content perspective, the subject matter description is the most interesting part of
the ontology. For this, we used the notion of structured annotation described in Tam and
Leung 2001. They propose a description template consisting of four elements:

1. An agent, for example, “an ape.” An agent can have modifiers such as “colour =
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orange.”

2. An action, for example, “eating.”

3. An object, for example, “a banana.” Objects can also have modifiers (colour =
“green”).

4. A setting, for example, “in a forest at dawn.”

We used this general scheme to define two description templates that we found useful in
our example domain:

1. A passive agent is a restricted form of the scheme with a single agent, any number of
agent modifiers, and a setting.

2. An active agent is the complete template with a single agent, agent modifiers, an
action, optionally an object, and a setting.

The setting is typically restricted to two context dimensions, namely relative time (for
example, time of day or season) and relative location (for example, terrain type). Here we
copied parts of the WordNet vocabulary.

9.1.3.3 The subject matter ontology

The subject matter ontology describes the vocabulary and background knowledge of the
photo’s subject domain. For this study, we developed a domain ontology based on the phy-
lum hierarchy of animal species. Phylum is a metaclass with a number of properties (slots
in the Protégé terminology). Table 9.1 shows the properties we currently use.

A particular species represents a class that is an instance of metaclass phylum. This
organisation of the ontology lets us define instance-type features of species—for example,
that an orangutan has an “orange” colour and has as geographical range “Indonesia,” while
still being able to treat a species as a class. This sloppy class-instance distinction is a feature
of Protégé-2000 that makes it well suited for complex metamodeling.

We specified the phylum hierarchy through subclass relations between species classes.
For example, an orangutan is a “great ape,” a subclass of “ape,” a subclass of “primate,” and
so forth. Features that are characteristic of apes in general are specified at the hierarchy’s
appropriate level and are inherited by the species subclasses.

Figure 9.3 shows a snapshot of the Protégé-2000 ontology editor with the species hier-
archy (left) and some characteristics defined for an “orangutan” (right). Sometimes, char-
acteristics are inherited from classes higher up in the hierarchy (for example, the life-stage
terms).

9.1.3.4 General terminology

Both the annotation ontology and the domain ontology use general terminology. Instead
of defining this ourselves, we used parts of WordNet (Miller 1995) and IconClass (van der
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Species feature Description
Geographical range The geographical area where the animal typically lives;

for example, “Africa,” “Indonesia.”
Typical habitats The terrain where the animal usually lives; for example,

“rain forest,” “savanna.”
Life-stage terminology Terms used to talk about life stages of animals; for ex-

ample, “lamb,” “cub.”
Gender terminology Terms used to talk about male and female animals; for

example, “lioness.”
Group terminology Terms used to talk about a group of these animals; for

example, “troop,” “herd.”
Colour features Description of general colours (“orange”) or colour pat-

terns (“striped”).
Other characteristics A catch-all category for characteristics such as “captive

animal” and “domestic animal.”

Table 9.1: Features of animal species defined in the domain ontology.

Figure 9.3: Snapshot of the Protégé-2000 ontology editor showing part of the domain ontology.
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Waal 1985) —for example, WordNet includes a collection of vantage points (a photograph
feature). In other cases, WordNet provides a partial value set for a feature value—for exam-
ple, when we want to describe an ape’s colour aspects, we want to use both general colours
(“orange”) as well as animal-specific colour terms (“striped”). Therefore, we can expect
that in general we might want to include definitions from many different sources in the on-
tologies required for annotations. To take another domain, if we want to annotate pictures
of art objects, we would like to use the Art and Architecture Thesaurus (AAT) thesaurus,
IconClass, and possibly many other sources. This means we need a structured approach for
linking domain vocabularies.

Figure 9.4 shows a graphical overview of the ontologies and vocabularies using the
UML package notation. The links represent UML dependencies: “〈source〉 depends on
〈destination〉.” Due to technical limitations we were forced to realise ‘depends on’ by phys-
ically importing ontologies due to two problems. First, the Protégé tool does not support on-
tology modularisation—we can import an ontology by copying, but cannot create a separate
module for it. Second, RDFS versions of most vocabularies do not exist. It seems reasonable
to expect that such a version of WordNet will become available in the near future, but it is
not known whether domain-specific vocabularies (such as AAT) will. The alternative is to
write dedicated access routines for vocabularies. In the European GRASP project (“Global
Retrieval, Access and information System for Property items”), a CORBA-based ontology
server directly links descriptions of art objects to elements of the AAT.

Figure 9.4: Import relations between the ontologies for animal photograph annotations
using the UML package notation.
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9.1.3.5 Linking the annotation ontology with the domain ontology

To keep the annotation ontology and the subject matter ontology separate, we defined an ex-
plicit mapping between the subject matter description in the former ontology to the phylum
hierarchy in the later ontology. Figure 9.5 shows part of this mapping. This figure contains
a snapshot of the RDFS browser part of the tool we developed. In the figure, we see the
description of the RDFS class passive agent, a subclass of subject matter description. The
class has three properties: the setting property links to a resource of type setting descrip-
tion (which in turn consists of relative time and relative location properties); the property
agent modifier links a passive agent description to an animal characteristic.; and the prop-
erty agent indicates that the agent should be some species. The classes species and animal
characteristic both belong to the domain ontology.

Figure 9.5: Snapshot of the tool’s RDFS browser. Two properties of the subject matter
description link to the animal domain ontology (agent → species; agent modifier →
animal characteristic).

Although our mappings are simple, we expect other mappings will be more complex,
especially in cases where there is no simple one-to-one mapping. Research on ontology
mapping and merging (McGuinness et al. 2000) is required.

9.1.4 Annotating photographs using our multimedia information analysis
tool

The tool we developed reads an RDFS file containing ontology specifications. The RDFS

produced by Protégé conforms to the W3C standard, (Brickley and Guha 2000) except for
the range definition of properties. RDFS only allows a single type for a range constraint; this
is too limited for Protégé. We handled this inconsistency by simply allowing multiple range
constraints. The RDFS specification document indicates that we should specify a superclass
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for multiple range classes, but this syntactic solution is not desirable from an ontological-
engineering perspective because it breaks modular design: the new class is conceptually
not part of the original concept hierarchy or hierarchies but belongs to the RDFS annotation
template.

From the RDFS specifications, the tool generates a user interface for annotating photos.
Figure 9.6 shows a snapshot of the annotation interface. There are three tabs for the three
groups of features: subject matter, photograph, and medium. The figure shows the passive
agent template for a subject matter description. In the example, the annotation says the agent
is a chimpanzee with two modifiers, namely “life stage = young” and “posture = scratching-
the-head.”

Figure 9.6: A snapshot of the annotation interface. The user has selected “chimpanzee”
as the animal species. Two agent modifiers are defined: “life stage” and “posture.” At the
lower right, the part of the domain ontology is shown containing fillers for the “posture”
feature.

The user can enter terms in two ways. He or she can type in a term and use a completion
mechanism to see whether it matches a term in the ontology (the typed text becomes bold
when matched). Alternatively, the user can click on the magnifier icon to browse the relevant
part of the ontology to select a term. The pop-up window at the lower right shows this for
the agent modifier posture. The window lets the user select a term from the hierarchy under
the class posture. The hierarchy of terms comes from WordNet and IconClass. The tool also
supports administrative tasks such as reading in new photos, storing photo annotations, and
loading existing photo annotations.

The user interface generator can be defined almost independently of the ontology. The
generator reads the RDFS representing an annotation schema. For each property of this



170 SEMANTIC ANNOTATION AND SEARCH

schema that represents another compound schema, it generates a tab or sentence item. If a
property refers to an ontological term, it generates an item providing completion, search, and
hierarchical browsing. Finally, for properties defined as RDF-literal, it generates a simple text
item. Schemas entered as a “sentence” require an additional declaration to tell the generator
the order in which the properties appear in the sentence.

Such a generic interface also has some drawbacks. The RDFS’s structure maps directly
to the interface, but grouping based on ontological motivations is not necessarily the best
choice for the UI, and properties in RDF provide no ordering information. Also, the interface
uses abstract terms such as agent that might not be intuitive for users. For practical appli-
cations, the user must provide additional grouping, ordering and label information to the UI
generator.

9.1.5 Discussion

This study has only scratched the surface of the problems encountered when trying out a
content-oriented approach to annotate and search for photos.

9.1.5.1 What do ontologies offer over keywords?

In photo collections indexed with keywords, a small subset of the controlled keyword set is
associated with an image. The keywords themselves are unrelated atoms. If we consider the
terms of the ontology to be our controlled keyword list, using an ontology and a structured
description based on this ontology changes the annotation and querying process in a number
of ways:

• It guides the annotation process using restrictions and default information.

• It makes the relation between property values and agents explicit, telling which prop-
erty value is connected using which property to which element of the subject matter
or the photo itself. Consider “chimpanzee under large tree.” Reduced to keywords,
“large” can refer to the chimpanzee, the tree, or even the photo.

• The ontology provides relations between the terms; in our case, default information
(“orangutans live in Indonesia”) and inheritance. Inheritance provides a controlled
means to widen or constrain a query.

In our view, there is enough evidence to warrant further research, but there is a long way
to go to actually prove that ontology-based search is better (in some respects) than keyword
search.

9.1.5.2 Architecture feasibility

The architecture presented in this article provides a Semantic Web standard-conforming
framework for representing ontologies and photo annotations. The tool makes two limit-
ing assumptions. First, it assumes the annotated object is an image. Second, it assumes an
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RDF Schema defining a set of classes with properties that represent an annotation. Each class
either has atomic attributes or has attributes for which a sentence schema is defined.

Currently, the tools represent the RDF data as triples in the Prolog database. The triple
database includes three modules: one for the ontological data, one for the annotations, and
one for the queries. Neither this representation nor the used RDF query algorithm will scale to
large databases (greater than 100,000 triples). Scalability of RDF storage and query systems
is an active research topic (see the RDF mailing list, rdf-interest@w3c.org).

9.1.5.3 Guidelines for using Web standards

During this study, we used RDFS, RDF, XML, and XML-DTD. We started using the latter to
define the photo annotation structure until we realised we were using a language intended
for defining syntactical structure for the specification of semantical structure. At that point,
we decided to treat a photo annotation as a semantic unit described in RDF and to define its
structure as an RDFS.

Likewise, an ontology can be expressed in RDF (the OpenDirectory project1), but this
approach loses the frame semantics of RDFS. Ontological class definitions typically require
constrained properties and inheritance. This means that RDFS is a much more suitable for-
malism than plain RDF. If one limits the formalism to pure RDF, the ontology itself is
machine-readable, but not machine-understandable.

We extended RDFS by refining class to add additional knowledge to the model, such
as default values for properties. OIL (Fensel et al. 2000) uses the same mechanism to ex-
tend the semantics of RDFS. Unfortunately, these extensions are not generally machine-
understandable. RDFS can only grow by the acceptance of OIL and OIL-like extensions as
additional standards.2

9.1.5.4 The link with Dublin Core

In this article, we focused on annotations about the content of a photograph. In terms of the
Dublin Core element set, (Dublin Core Metadata Initiative 1999) our structured subject mat-
ter description is an elaborate refinement of the subject element. For some of the photograph
features and medium features, the link with Dublin Core is more straightforward. Table 9.2
shows the mapping between features in our annotation ontology and Dublin Core elements.
Assuming an official RDFS specification of Dublin Core becomes available, we can redefine
these features as subproperties of the corresponding Dublin Core elements. (Currently, there
is only an unofficial one in Appendix B of the RDFS document mainly intended as an exam-
ple of the use of RDFS.) In this case study, the Dublin Core type element will always have
the value image (following the DCMI type vocabulary). In this way, we can ensure that the
resulting photo annotations comply with Dublin Core’s dumb-down principle, which states

1http://www.dmoz.org/
2This role is played by OWL (Dean et al. 2004), the Semantic Web language that is in part based on DAML and

OIL.
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that refinements of the element set are allowed provided it is still possible to access the
annotation through the basic element set.

Annotation ontology Feature type Dublin Core element (qualifier)
Copyright holder Photo feature Rights
Photographer Photo feature Creator
Exact time Photo feature Coverage (temporal)
Exact location Photo feature Coverage (spatial)
Format Medium feature Format
Resolution Medium feature Format
Size Medium feature Format (extent)
Photograph colour medium feature Format

Table 9.2: Correspondence between features of the annotation ontology and Dublin Core element.

9.1.5.5 Support tools

Support tools are crucial for making the architecture sketched in figure 9.1 work. The
Protégé-2000 tool proved useful for our study. The RDFS generated by Protégé conformed
to the W3C standard, with the exception of range constraints. The main problems we had
with Protégé was that it does not support multiple ontologies with import relations and it
was incapable of loading large ontologies such as WordNet. Lack of modularity clutters the
ontology definitions. Once multiple ontologies can be handled, it is likely that tool require-
ments will come up with respect to ontology-mapping mechanisms (for example, defining
the link between the subject matter description and the domain ontology).

9.1.5.6 Preprocessing existing annotations

Most photos in existing collections are annotated. This was also true for the photos we used
in our study. The nature of the annotation varied considerably—one CD contained free-text
annotations and another used keywords. Depending on the amount of useful information in
the existing annotation, it might be worthwhile to consider the construction of a preprocessor
to generate a (partial) semantic annotation from the existing annotation. Natural language
analysis techniques are likely to be required for such preprocessing.
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9.2 Supporting Semantic Image Annotation and Search

Jan Wielemaker, Guus Schreiber and Bob Wielinga
Frontiers in Artificial Intelligence and Applications, 2003

Abstract In this article we discuss an application scenario for semantic annota-
tion and search in a collection of art images. This application shows that back-
ground knowledge in the form of ontologies can be used to support indexing
and search in image collections. The underlying ontologies are represented in
RDF Schema and are based on existing data standards and knowledge corpora,
such as the VRA Core Categories 3.0, the Art and Architecture Thesaurus and
WordNet. This work is intended to provide a “proof of concept” for indexing
and search in a Semantic Web.

9.2.1 Introduction

In this article we are exploring the possibilities of using background knowledge for indexing
and querying an image collection. Many of such collections currently exist and users are
increasingly faced with problems of finding a suitable (set of) image(s) for a particular pur-
pose. Each collection usually has its own (semi-)structured indexing scheme that typically
supports a keyword-type search. However, finding the right image is often still problematic.

In this work we investigate an alternative approach. We explore the question whether
ontologies can support the indexing and querying process in any significant way. This work
should be seen as a “proof of concept”. At the moment, the use of explicit background
knowledge is often-mentioned as a way out of the search problems such as currently arise
on the Internet and in multimedia databases. This new research area is part of the “Seman-
tic Web” (Berners-Lee 1999). Emerging web standards such as RDF (Lassila and Swick
1999) are providing a syntactic format for explicating background knowledge of informa-
tion resources. However, the added value of such semantic annotations still has to be proven.
Within the scope of this work we have not done any detailed evaluation studies of the ap-
proach presented. Our sole aim is to see whether we can find sufficient evidence that this is
a plausible approach worth further investigation.

9.2.2 Approach

Figure 9.7 shows the general architecture we used within this study. All ontologies were
represented in RDFS Schema (Brickley and Guha 2000). The resulting RDF Schema files
are read into the tool with help of the SWI-Prolog RDF parser (chapter 3, Wielemaker et al.
2003b, Parsia 2001). The annotation tool subsequently generates a user interface for anno-
tation and search based on the RDF Schema specification. The tool supports loading images
and image collections, creating annotations, storing annotations in a RDF file, and two types
of image search facilities.
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Figure 9.7: Overview of the approach in this study. The RDF Schema specifications of
the ontologies and of the annotation template are parsed by the RDF/RDFS parser into the
tool. The tool generates an annotation and search interface from these specifications. This
interface is used to annotate and query images. The annotations are stored in an RDF file.

The architecture shown in figure 9.7 is in the same spirit as the one described by Lafon
and Bos 2000. The main difference lies in the fact that we place more emphasis on the nature
of the ontologies. In the rest of this paper the architecture depicted in figure 9.7 is described
in more detail. The background knowledge is discussed in section 9.2.3. The annotation
and query aspects of the tool are discussed in, section 9.2.4 in the form of an application
scenario. section 9.2.5 discusses the experiences gained.

This work is a sequel to earlier work on semantic annotation and search of a collection
of photographs of apes (section 9.1, Schreiber et al. 2001). As the sample domain for the
present work we used 200 images of paintings.

9.2.3 Background Knowledge

9.2.3.1 Ontologies

For this study we used three thesauri, which are relevant for the art-image domain:

1. The Art and Architecture Thesaurus (AAT, Peterson 1994) is a large thesaurus con-
taining some 120,000 terms relevant for the art domain.

2. WordNet (Miller 1995) is a large lexical database. WordNet concepts (“synsets”) are
typically used to describe the content of the image, e.g., “woman sitting on bed”

3. IconClass (van der Waal 1985; van den Berg 1995) is an iconographic classification
system, providing a hierarchically organised set of concepts for describing the content
of visual resources.
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AAT, WordNet and IconClass were translated into the RDF Schema notation. In a prior
publication (Wielinga et al. 2001) one can find a discussion on issues arising when repre-
senting AAT in RDF Schema.

These sources share a significant number of terms. This could be used to design a new
ontology by merging them. In the context of the Semantic Web however, it is important to re-
use existing work rather than modifying it. Therefore we have added equivalence relations
between terms appearing in multiple ontologies that refer to the same entity in the world.
For example, the IconClass concept king is linked to the AAT concept kings (people), making
all IconClass subterms of king valid subterms of AAT kings (people) and visa-versa.

9.2.3.2 Annotation template

For annotation purposes the tool provides the user with an annotation template derived from
the VRA 3.0 Core Categories (Visual Resources Association Standards Committee 2000).
The VRA template provides a specialisation of the Dublin Core set of metadata elements,
tailored to the needs of art images. The VRA Core Categories follow the “dumb-down”
principle (i.e., a tool can interpret the VRA data elements as Dublin Core data elements).

The 17 VRA data elements (i.e., properties of an art image) were for visualisation pur-
poses grouped into three sets:

1. Production-related descriptors such as creator (“maker”), style/period, technique and,
culture

2. Physical descriptors such as measurements and colour

3. Administrative descriptors such as collection ID, rights and current location

In figure 9.8 one can see a tab with the set of production-related descriptors. The other
VRA descriptors can be found on two other tabs.

In addition, we needed to provide ways for describing the subject matter of the painting.
VRA provides a subject element, but we were interested in providing more structured content
descriptions. For this purpose we used a simple “sentence structure” which was developed
for a previous experiment (section 9.1, Schreiber et al. 2001):

<agent> <action> <object> <setting>

Each content-description sentence should contain at least one agent or object. Agents and
objects may have attributes (“modifiers”), such as colour, cardinality and position. The
“setting” can be described with relative time (e.g., ‘”sunset”) and relative place (e.g., “a
forest”). In addition, the scene as a whole can be characterised. The application scenario in
the next section gives an example of the use of this template. Multiple sentences can be used
to describe a single scene.
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9.2.3.3 Linking the annotation template to the ontologies

Where possible, a slot in the annotation template is bound to one or more subtrees of the
ontologies. For example, the VRA slot style/period is bound to two subtrees in AAT containing
the appropriate style and period concepts (see also figure 9.9). Four VRA data elements are
currently linked to parts of AAT: technique, style/period, culture and material. Most parts of
the subject-matter description are also linked to subtrees of the ontologies. Here, heavy use
is made of WordNet and IconClass. The latter is in particular useful for describing scenes as
a whole.

Figure 9.8: Snapshot of a semantic annotation and search tool for art images. The figure
shows a fragment of the annotation window showing one tab with VRA data elements for
describing the image, here the production-related descriptors. The slots associated with
a “binoculars” button are linked to one or more subparts of the underlying ontologies,
which provide the concepts for this part of the annotation.
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Figure 9.9: Browser window for values of style/period. The concept baroque has been
selected as a value for this slot. The top-level concepts of the AAT subtrees from which we
can select a value for style/period are shown with an underlined bold font (i.e., <styles
and periods by general era> and <styles and periods by region>). The browser
shows that there are three more specific concepts that could have been used (e.g., high
baroque)

9.2.4 An Application Scenario

9.2.4.1 Annotating an image

Figure 9.8 shows a screen shot of the annotation interface. In this scenario the user is an-
notating an image representing a baroque Italian painting, depicting a mythological scene
featuring Venus, Cupid and Bacchus. The figure shows the tab for production-related data
elements. The three elements with a “binoculars” icon are linked to subtrees in the ontolo-
gies, in this case AAT. For example, if we would click on the “binoculars” for style/period
the window shown in figure 9.9 would pop up, showing the place in the hierarchy of the
concept baroque. We see that it is a concept from AAT. The top-level concepts of the AAT

subtrees from which we can select a value for style/period are shown with an underlined
bold font (i.e., <styles and periods by general era> and <styles and periods by region>). The
ontology makes it easier for people to select the correct concept. For example, seeing that
baroque contains three specialisations the user might want to use one of these terms, e.g.,
high baroque.

The user interface provides some support for finding the right concept. For example,
the user can type in a few characters of a term and then invoke a completion mechanism
(by typing a space). This will provide a popup list of concepts matching the input string.
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In the browser window, more advanced concept search options can be selected, including
substrings and use of synonyms.

The domain knowledge can be extended to cover more slots. For example, the creator
slot could take values from the Getty thesaurus ULAN (Union List of Artist Names, Getty
2000).3

Figure 9.10: Description of the subject matter. Here, the content is described with the
sentence “Venus (agent) lying (action) bed (object)”. Multiple content descriptions can
be entered for an image

For annotation purposes the ontologies serve two purposes. Firstly, the user is immedi-
ately provided with the right context for finding an adequate index term. This ensures quicker
and more precise indexing. Also, the hierarchical presentation helps to disambiguate terms.
An example of this is shown in figure 9.10. Here, the user is describing the subject matter of
the painting. Suppose she wants to say that “Venus is lying on a bed”. The template on the
right-hand side implements the content template as described in section 9.2.3.2, in this case:

Agent: Venus
Action: lying
Object: bed

3Including ULAN exceeded the scalability of our prototype. ClioPatria, as described in chapter 10 can easily deal
with this scale of background information.
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When the user types in the term “bed” as the object in a content-description template, the
tool will indicate that this an ambiguous term. In the user interface the term itself gets a
green colour to indicate this and the status bar near the bottom shows the number of hits in
the ontologies. If one clicks on the binocular button, the tool will provide the user with a
choice of concepts in AAT and WordNet that are associated with this term (piece of furniture,
land depression, etc.). Figure 9.11 shows two of the concepts associated with “bed”. From
the placement of the terms in the respective hierarchies, it is usually immediately clear to the
indexer which meaning of the term is the intended one.

Figure 9.11: Disambiguating the term “bed”. This window shows two of the concepts
associated with bed. From the placement of the terms in the respective hierarchies, it is
usually immediately clear to the indexer which meaning of the term is the intended one.

Term disambiguation is a frequent occurrence in this type of application. For example,
the term “Venus” may be associated with the Roman deity or with the planet.4

9.2.4.2 Searching for an image

The tool provides two types of semantic search. With the first search option the user can
search for concepts at a random place in the image annotation. Figure 9.12 shows an example
of this. Suppose the user wants to search for images associated with the concept Aphrodite.
Because the ontologies contain an equivalence relation between Venus (as a Roman deity,

4In the “Venus lying bed” example, this disambiguation of “Venus” is not required, because the planet is not
considered a legal value for an “agent” (this is debatable, by the way). However, general search for “Venus” (see the
next subsection) will require disambiguation
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not the planet nor the tennis player) and Aphrodite, the search tool is able to retrieve images
for which there is no syntactic match. For example, if we would look at the annotation of
the first hit in the right-hand part of figure 9.12, we would find “Venus” in the title (“Birth of
Venus” by Botticelli) and in the subject-matter description (Venus (a Roman deity) standing
seashell). The word “Venus” in the title can only be used for syntactic marches (we do
not have an ontology for titles), but the concept in the content description can be used for
semantic matches, thus satisfying the “Aphrodite” query.

Figure 9.12: Example of concept search. The query “Aphrodite” will retrieve all images
for which we can derive a semantic match with the concept Aphrodite. This includes all
images annotated with the concept Venus (as a Roman deity). Only a small fragment of
the search results is depicted

General concept search retrieves images which match the query in some part of the
annotation. The second search option allows the user to exploit the annotation template for
search proposes. An example of this is shown in figure 9.13. Here, the user is searching for
images in which the slot culture matches Netherlandish. This query retrieves all images with
a semantic match for this slot. This includes images of Dutch and Flemish paintings, as these
are sub concepts of Netherlandish.

9.2.5 Discussion

This article gives some indication on how a Semantic Web for images might work. Semantic
annotation allows us to make use of concept search instead of pure syntactic search. It paves
also the way for more advanced search strategies. For example, users may be specialising or
generalising a query with the help of the concept hierarchy when too many or too few hits
are found.
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Figure 9.13: Search using the annotation template. The query “Netherlandish” for the
slot culture retrieve all images with a semantic match for this slot. This includes images
of Dutch and Flemish paintings, as these are sub concepts of Netherlandish

In a previous study on a collection of ape photographs (section 9, Schreiber et al. 2001)
we did some qualitative analysis on the added value with respect to keyword search. The
provisional conclusion was that for some queries (e.g., “ape”) keyword search does reason-
ably well, but for other sightly different queries (e.g., “great ape”) the results are suddenly
poor. This is exactly where semantic annotation could help.

Although our approach relies to some extent on manual annotation (as we did in this
study), it should be possible to generate partial semantic annotations from existing annota-
tions (which vary from free text to structured database entries). This would speed up the
annotation process considerably. We are currently starting a follow-up study with a collec-
tion of 4,000 images of paintings for which we want to extract data such as title, creator,
year and location from the existing annotation.

Our experiences with RDF Schema were generally positive. We made heavy use of the
metamodeling facilities of RDF Schema (which allows one to treat classes as instances of
other classes) for defining and manipulating the meta models of the different thesauri. In our
experience this feature is in particular needed in cases where one has to work with existing
representations of large ontologies. This is a typical feature of a Semantic Web: you have to
work with existing ontologies to get anywhere (we’re not going to rebuild AAT), even if one
disagrees with some of the design principles of the ontology.
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For our purposes RDF Schema has some limitations in expressivity. We especially
needed a notion of property cardinality and of equivalence between resources (classes, in-
stances, properties). For this reason we plan to move at some near point in the future to
OWL, the Web Ontology Language currently under development at W3C (W3C Web Ontol-
ogy Working Group 2001).

A major challenge from a knowledge-engineering perspective is to provide principled
methods for adding ontology “glue”. The equivalence relations mentioned in section 9.2.3.1
are one example of this. In many cases existing ontologies can be augmented with additional
background knowledge. For example, if we know the creator is André Derain (an artist in
ULAN), we could suggest that the style of the painting is “Fauve” (a style in AAT). But for
this to work, we need to add knowledge linking ULAN and AAT. In this area much more
work needs to be done to see what is feasible and what is not,

9.3 Lessons learned

This chapter describes an application developed before the material described in part I of
this thesis (except for chapter 5) was available. The overall aim of this research was to
test the hypothesis that using background knowledge in the form of ontologies improves the
annotation and search process for multi-media objects (images) compared to using simple
keywords. We used software prototype development to explore architectural opportunities
provided by the emerging Semantic Web. In particular, based on our experience from Shel-
ley and the CommonKADS Workbench (see chapter 1), using the RDF triple model as the core
storage formalism for applications was expected to be a good design. Exploiting the dynamic
nature of XPCE/Prolog and in particular its automatic layout capabilities, we generated the
user interface as much as possible from the RDF-Schema for an annotation. The schema pro-
vides the attributes, their hierarchical organisation (modelled as rdfs:subPropertyOf
and mapped to tabs) and a value set (rdfs:range of a property) that can be used for
menus (small sets) or autocompletion (large sets). The annotation ontology thus provided all
information for the GUI, except for ordering of tabs and properties. Intuitive ordering was
defined with additional (Prolog) rules.

In our first experiment (section 9.1) we used small hand crafted ontologies and could
afford to store the RDF simply as a dynamic predicate rdf(Subject, Predicate, Object).
The second experiment (section 9.2) used much larger triple sets from existing background
knowledge which also introduced the problems of integrating these ontologies into a co-
herent metadata vocabulary, which was resolved using rdfs:subPropertyOf mapping
rules. The scalability was improved by introducing a formal API for modifying the triple
set that managed additional indexing tables, still providing the core query API as rdf/3.
(Parsia 2001).

Based on this experience and considering our future research plans which involved an-
notation using terms from large existing ontologies, we decided to invest in a new generation
infrastructure to fulfil our requirements:
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• Scalability and expressivity
We anticipated on the need to store up to 10 million triples in main memory on com-
modity hardware in the near future. As we intended to map different annotation vo-
cabularies using rdfs:subPropertyOf, we required efficient support reasoning
with these mapping relations. These two requirements triggered the development of
RDF-DB (chapter 3, Wielemaker et al. 2003b).

• Modular handling of ontologies
When using externally provided large ontologies, it is of course desirable to keep these
separated. Still, the developer of mapping relations and (small) additional ontologies
wants an integrated overview of all ontologies. Protégé was not capable to deal with
modular ontologies, nor with the scale of data we anticipated. This triggered the
design of Triple20 (chapter 2, Wielemaker et al. 2005).

• Reusable GUI framework
Still planning for a local GUI implementation for the next generation of search a an-
notation tools, we assembled Triple20 from reusable components (see section 2.4.1).
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Chapter 10

Thesaurus-based search in large
heterogeneous collections

About this chapter This chapter is published at ISWC 2008 (Wielemaker et al.
2008), were it received an honorary mention. We claim that standard Seman-
tic Web reasoning such as Description Logics (OWL-DL) and graph patterns
(SPARQL) are insufficient for an important category of Semantic Web applica-
tions and that the infrastructure described in part I of this thesis is an adequate
platform for prototyping novel techniques to explore RDF graphs. Because web
infrastructure support for interactive applications is improving quickly and to
enable wider deployment we have chosen to use a web-based interface for this
annotation and search prototype rather than the local GUI interface as described
in chapter 9.

Our toolset ClioPatria requires all infrastructure of part I, although GUI pro-
gramming is only used for the development environment features. Michiel
Hildebrand, Jacco van Ossenbruggen and Guus Schreiber contributed to this
papers as co-authors.

Abstract In cultural heritage, large virtual collections are coming into exis-
tence. Such collections contain heterogeneous sets of metadata and vocabulary
concepts, originating from multiple sources. In the context of the E-Culture
demonstrator we have shown earlier that such virtual collections can be effec-
tively explored with keyword search and semantic clustering. In this paper we
describe the design rationale of ClioPatria, the E-Culture open-source software
which provides APIs for scalable semantic graph search. The use of ClioPatria’s
search strategies is illustrated with a realistic use case: searching for ”Picasso”.
We discuss details of scalable graph search, the required OWL reasoning func-
tionalities and show why SPARQL queries are insufficient for solving the search
problem.
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10.1 Introduction

Traditionally, cultural heritage, image and video collections use proprietary database systems
and often their own thesauri and controlled vocabularies to index their collection. Many
institutions have made or are making (parts of) their collections available online. Once on
the web, each institution, typically, provides access to their own collection. The cultural
heritage community now has the ambition to integrate these isolated collections and create
a potential source for many new inter-collection relationships. New relations may emerge
between objects from different collections, through shared metadata or through relations
between the thesauri.

The MultimediaN E-culture project1 explores the usability of Semantic Web technology
to integrate and access museum data in a way that is similar in spirit to the MuseumFinland
project (Hyvönen et al. 2005). We focus on providing two types of end-user functionality
on top of heterogeneous data with weak domain semantics. First, keyword-based search, as
it has become the de-facto standard to access data on the web. Secondly, thesaurus-based
annotation for professionals as well as amateurs.

In this paper we formulate the requirements for an infrastructure to provide search and
annotation facilities on heterogenous data. We developed ClioPatria2 as an infrastructure to
prototype thesaurus-based search and annotation facilities. We provide the lessons learned
in the development of this infrastructure and the construction of end-user prototypes.

This document is organised as follows. In section 10.2 we first take a closer look at our
data and describe our requirements by means of a use case. In section section 10.3 we take a
closer look at search and what components are required to realise keyword search in a large
RDF graph. The ClioPatria infrastructure is described in section section 10.4, together with
some illustrations on how ClioPatria can be used. We conclude the paper with a discussion
where we position our work in the Semantic Web community.

10.2 Materials and use cases

10.2.1 Metadata and vocabularies

In our case study we collected descriptions of 200,000 objects from six collections annotated
with six established thesauri and several proprietary controlled keyword lists, which adds up
to 20 million triples. We assume this material is representative for the described domain.
Using Semantic Web technology it is possible to unify the data while preserving its richness.
The procedure is described elsewhere (Tordai et al. 2007) and summarised here.3

The MultimediaN E-Culture demonstrator harvests metadata and vocabularies, but as-
sumes the collection owner provides a link to the actual data object, typically an image
of a work such as a painting, a sculpture or a book. When integrating a new collection

1http://e-culture.multimedian.nl
2Open source from http://e-culture.multimedian.nl/software.html
3The software can be found at http://sourceforge.net/projects/annocultor
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into the demonstrator we typically receive one or more XML/database dumps containing the
metadata and vocabularies of the collection. Thesauri are translated into RDF/OWL, where
appropriate with the help of the W3C SKOS format for publishing vocabularies (Miles and
Becchofer 2008). The metadata is transformed in a merely syntactic fashion to RDF/OWL

triples, thus preserving the original structure and terminology. Next, the metadata schema
is mapped to VRA4, a specialisation of Dublin Core for visual resources. This mapping
is realised using the ‘dumb-down’ principle by means of rdfs:subPropertyOf and
rdfs:subClassOf relations. Subsequently, the metadata goes through an enrichment
process in which we process plain-text metadata fields to find matching concepts from the-
sauri already in the knowledge base. For example, if the dc:creator field contains the
string Pablo Picasso, than we will add the concept ulan:500009666 from ULAN5 to the
metadata. Most enrichment concerns named entities (people, places) and materials. Finally,
the thesauri are aligned using owl:sameAs and skos:exactMatch relations. For ex-
ample, the art style Edo from a local ethnographic collection was mapped to the same art
style in AAT6 (see the use cases for an example why such mappings are useful). Our cur-
rent database (April 2008) contains 38,508 owl:sameAs and 9,635 skos:exactMatch
triples and these numbers are growing rapidly.

After this harvesting process we have a graph representing a connected network of
works and thesaurus lemmas that provide background knowledge. VRA and SKOS provide
—weak— structure and semantics. Underneath, the richness of the original data is still
preserved. The data contains many relations that are not covered by VRA or SKOS, such
as relations between artists (e.g., ULAN teacherOf relations) and between artists and art
styles (e.g., relations between AAT art styles and ULAN artists; de Boer et al. 2007). These
relations are covered by their original schema. Their diversity and lack of defined semantics
make it hard to map them to existing ontologies and provide reasoning based on this map-
ping. As mentioned, the vocabularies and metadata are harvested onto a single server. This
is a natural choice when starting from bulk-conversion of database dumps received from the
participating institutes. Furthermore, a single repository allows for exploration of the search
and annotation problem without the complexities connected to distributed data. We plan to
explore distribution of metadata in future projects.

10.2.2 Use cases

Assume a user is typing in the query “picasso”. Despite the fact that the name Picasso is
reasonably unique in the art world, the user may still have many different intentions with this
simple query: a painting by Picasso, a painting of Picasso or the styles Picasso has worked
in. Without an elaborate disambiguation process it is impossible to tell in advance.

Figure 10.1 shows part of the results of this query in the MultimediaN demonstrator.
We see several clusters of search results. The first cluster contains works from the Picasso

4Visual Resource Association, http://www.vraweb.org/projects/vracore4/
5Union List of Artist Names is a thesaurus of the Getty foundation
6Art & Architecture Thesaurus, another Getty thesaurus
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Figure 10.1: Subset of clusters of semantically related search results for query “picasso”:
works located in the Picasso Museum; works created by Pablo Picasso; works from
the art styles used by Pablo Picasso (Cubist, Surrealist, for space reasons only head-
ing shown); works by professional relations of Pablo Picasso (George Braque, colleague
Cubist painter).

Museum, the second cluster contains works by Pablo Picasso (only first five hits shown;
clicking on the arrow allows the user to inspect all results); clusters of surrealist and cubist
paintings (styles that Picasso worked in; not shown for space reasons), and works by George
Braque (a prominent fellow Cubist painter, but the works shown are not necessarily cubist).
Other clusters include works made from picasso marble and works with Picasso in the title
(including two self portraits). The basic idea is that we are aiming to create clusters of
related objects such that the user can afterwards focus on a topic. We have found that even
in relatively small collections of 100K objects, users discover interesting results they did
not expect. We have termed this type of search tentatively ‘post-query disambiguation’: in
response to a simple keyword query the user gets (in contrast to, for example, Google image
search) semantically-grouped results that enable further detailing of the query. It should be
pointed out that the knowledge richness of the cultural heritage domain allows this approach
to work. Notably typed resources linked to a concept hierarchy and a hierarchy of relations
give meaning to the path linking a literal to a target object and allow to abstract this path to
arrive at a meaningful number of clusters. Without abstraction, each path is unique and there
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is no opportunity for clustering.

Figure 10.2: A user searches for “tokugawa”. The Japanese painting in the top right
matches this query, but is indexed with a thesaurus that does not contain the synonym
“Tokugawa” for this Japanese style. Through a “same-as” link with another thesaurus
that does contain this label, the semantic match can be made.

Another typical use case for search concerns the exploitation of vocabulary alignments.
The Holy Grail of the unified cultural-heritage thesaurus does not exist and many collection
owners have their own home-grown variants. Consider the situation in figure 10.2, which is
based on real-life data. A user is searching for “tokugawa”. This Japanese term has actually
two major meanings in the heritage domain: it is the name of a 19th century shogun and
it is a synonym for the Edo style period. Assume for a moment that the user is interested
in finding works of the latter type. The Dutch ethnographic museum in Leiden actually has
works in this style in its digital collection, such as the work shown in the top-right corner.
However, the Dutch ethnographic thesaurus SVCN, which is being used by the museum
for indexing purposes, only contains the label “Edo” for this style. Fortunately, another
thesaurus in our collection, the aforementioned AAT, does contain the same concept with
the alternative label “Tokugawa”. In the harvesting process we learned this equivalence
link (quite straightforward: both are Japanese styles with matching preferred labels). The
objective of our graph search is to enable to make such matches.

Although this is actually an almost trivial alignment, it is still extremely useful. The
cultural-heritage world (like any knowledge rich domain) is full of such small local termi-
nology differences. Multilingual differences should also be taken into consideration here.
If semantic-web technologies can help making such matches, there is a definite added value
for users.
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10.3 Required methods and components

In this section we study the methods and components we need to realise the keyword search
described above. Our experiments indicate that meaningful matches between keyword and
target often involve chains of up to about five relations. At this distance there is a potentially
huge set of possible targets. The targets can be organised by rating based on semantics or
statistics and by clustering based on the graph pattern linking a literal to the target. We
discuss three possible approaches: querying using a fixed set of graph patterns, completely
unconstrained graph search and best-first exploration of the graph.

10.3.1 Using a set of fixed queries

A cluster as shown in figure 10.1 is naturally represented as a graph pattern as found in
many Semantic Web query languages. If we can enumerate all possible meaningful patterns
of properties that link literals to targets we reduce the search process to finding instances
of all these graph patterns. This would be a typical approach in Semantic Web applications
such as DBin (Tummarello et al. 2006). This approach is, however, not feasible for highly
heterogenous data sets. Our current data contains over 600 properties, most of which do not
have a well defined meaning (e.g., detailOf, cooperatedWith, usesStyle). If we
combine this with our observation that is it quite common to find valuable results at 4 or
even 5 steps from the initial keywords, we have to evaluate a very large number of possible
patterns. To a domain expert, it is obvious that the combination of cooperatedWith
and hasStyle can be meaningful while the combination bornIn and diedIn (i.e., A
is related to B because A died in P , where B was born) is generally meaningless, but the
set of possible combinations to consider is too large for a human. Automatic rating of this
type of relation pattern is, as far as we know, not feasible. Even if the above is possible, new
collections and vocabularies often come with new properties, which must all be considered
in combination to the already created patterns.

10.3.2 Using graph exploration

Another approach is to explore the graph, looking for targets that have, often indi-
rectly, a property with matching literal. This implies we search the graph from Object
to Subject over arbitrary properties, including triples entailed by owl:inverseOf and
owl:SymmetricProperty. We examine the scalability issues using unconstrained
graph patterns, after which we examine an iterative approach.

Considering a triple store that provides reasoning over owl:inverseOf and
owl:SymmetricProperty it is easy to express an arbitrary path from a literal to a target
object with a fixed length. The total result set can be expressed as a union of all patterns of
fixed length up to (say) distance 5. Table 10.1 provides the statistics for some typical key-
words at distances 3 and 5. The table shows total visited and unique results for both visited
nodes and targets found which indicates that the graph contains a large number of alternative
paths and the implementation must deal with these during the graph exploration to reduce the
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amount of work. Even without considering the required post-processing to rank and cluster
the results it is clear that we cannot obtain interactive response times for many queries using
blind graph exploration.

Keyword Dist. Literals Nodes Targets Time
Visited Unique Visited Unique (sec.)

tokugawa 3 21 1,346 1,228 913 898 0.02
steen 3 1,070 21,974 7,897 11,305 3,658 0.59
picasso 3 85 9,703 2,399 2,626 464 0.26
rembrandt 3 720 189,611 9,501 141,929 4,292 3.83
impressionism 3 45 7,142 2,573 3,003 1,047 0.13
amsterdam 3 6,853 1,327,797 421,304 681,055 142,723 39.77
tokugawa 5 21 11,382 2,432 7,407 995 0.42
steen 5 1,070 1,068,045 54,355 645,779 32,418 19.42
picasso 5 85 919,231 34,060 228,019 6,911 18.76
rembrandt 5 720 16,644,356 65,508 12,433,448 34,941 261.39
impressionism 5 45 868,941 50,208 256,587 11,668 18.50
amsterdam 5 6,853 37,578,731 512,027 23,817,630 164,763 620.82

Table 10.1: Statistics for exploring the search graph for exactly Distance steps (triples)
from a set of literals matching Keyword. Literals is the number of literals holding a word
with the same stem as Keyword; Nodes is the number of nodes explored and Targets is
the number of target objects found. Time is measured on an Intel Core duo X6800.

Fortunately, a query system that aims at human users only needs to produce the most
promising results. This can be achieved by introducing a distance measure and doing best-
first search until our resources are exhausted (anytime algorithm) or we have a sufficient
number of results. The details of the distance measure are still subject of research (Rocha
et al. 2004), but not considered vital to the architectural arguments in this article. The
complete search and clustering algorithm is given in figure 10.3. In our experience, the
main loop requires about 1,000 iterations to obtain a reasonable set of results, which leads
to acceptable performance when the loop is pushed down to the triple store layer.

10.3.3 Term search

The combination of best-first graph exploration with semantic clustering, as described in fig-
ure 10.3, works well for ’post-query’ disambiguation of results in exploratory search tasks.
It is, however, less suited for quickly selecting a known thesaurus term. The latter is often
needed in semantic annotation and ‘pre-query’ disambiguation search tasks. For such tasks
we rely on the proven autocompletion technique, which allows us to quickly find resources
related to the prefix of a label or a word inside a label, organise the results (e.g., organise
cities by country) and provide sufficient context (e.g., date of birth and death of a person).



192 THESAURUS-BASED SEARCH IN LARGE HETEROGENEOUS COLLECTIONS

1. Find literals that contain the same stem as the keywords, rate them on minimal edit distance (short literal) or
frequency (long literal) and sort them on the rating to form the initial agenda

2. Until satisfied or empty agenda, do

(a) Take highest ranked value from agenda as O. Find rdf(S,P,O) terms. Rank the found S on the ranking
of O, depending on P . If P is a subProperty of owl:sameAs, the ranking of S is the same as O. If
S is already in the result set, combine their values using R = 1− ((1−R1)× (1−R2)). If S is
new, insert it into agenda, else reschedule it in the agenda.

(b) If S is a target, add it to the targets. Note that we must consider rdf(O,IP,S) if there is an
inverseOf(P,IP) or P is symmetric.

3. Prune resulting graph from branches that do not end in a target.
4. Smush resources linked by owl:sameAs, keeping the resource with the highest number of links.
5. Cluster the results

(a) Abstract all properties to their VRA or SKOS root property (if possible).
(b) Abstract resources to their class, except for instances of skos:Concept and the top-10 ranked in-

stances.
(c) Place all triples in the abstract graph. Form (RDF) Bags of resources that match to an abstracted resource

and use the lowest common ancestor for multiple properties linking two bags of resources.

6. Complete the nodes in the graph with label information for proper presentation.

Figure 10.3: Best first graph search and clustering algorithm

Often results can be limited to a sub-hierarchy of a thesaurus, expressed as an extra con-
straint using the transitive skos:broader property. Although the exact technique differs,
the technical requirements to realise this type of search are similar to the keyword search
described above.

10.3.4 Literal matching

Similar to document retrieval, we start our search from a rated list of literals that contain
words with the same stem as the searched keyword. Unlike document retrieval systems such
as Swoogle (Ding et al. 2004) or Sindice (Tummarello et al. 2007), we are not primarily
interested in which RDF documents the matching literals occur, but which semantically re-
lated target concepts are connected to them. Note that term search (section 10.3.3) requires
finding literals from the prefix of a contained word that is sufficiently fast to be usable in
autocompletion interfaces (see also Bast and Weber 2007). RDF literal indexing is described
in section 7.3.2.

10.3.5 Using SPARQL

If possible, we would like our search software to connect to an arbitrary SPARQL endpoint.
Considering the fixed query approach, each pattern is naturally mapped onto a SPARQL graph
pattern. Unconstrained graph search is easily expressed too. Expressed as a CONSTRUCT

query, the query engine can return a minimal graph without duplicate paths.
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Unfortunately, both approaches proved to be infeasible implementation strategies. The
best-first graph exploration requires one (trivial) SPARQL query to find the neighbours of the
next node in the agenda for each iteration to update the agenda and to decide on the next
node to explore. Latency and volume of data transfer make this infeasible when using a
remote triple store.

The reasoning for clustering based on the property hierarchy cannot be expressed in
SPARQL, but given the size and stability of the property hierarchy we can transfer the entire
hierarchy to the client and use local reasoning. After obtaining the clustered results, the
results need to be enriched with domain specific key information (title and creator) before
they can be presented to the user. Requesting the same information from a large collection
of resources can be realised using a rather inelegant query as illustrated in figure 10.4.

SELECT ?l1 ?l2 ...
WHERE { { ulan:artists1 rdfs:label ?l1 } UNION

{ ulan:artists2 rdfs:label ?l2 } UNION
...

}

Figure 10.4: Query the labels of many resources

We conclude that SPARQL is inadequate for adaptive graph exploration algorithms, inca-
pable of expressing lowest common parent problems and impractical for enriching computed
result sets. Finally, regular expression literal matching cannot support match on stem. Prefix
and case insensitive search for contained word can be expressed. Ignoring diacritic marks
during matching is generally required when dealing with text from multiple languages using
multiple scripts, but is not supported by the SPARQL regular expression syntax.7

10.3.6 Summary of requirements for search

• Obtain rated list of literals from stem and prefix of contained words.

• The OWL primitives owl:inverseOf and owl:SymmetricProperty are used
to specify which relations are searched in both directions.

• Entailment over owl:TransitiveProperty is used to limit results to a particular
hierarchy in a SKOS thesaurus.

• Entailment over owl:sameAs for term search.

• The best-first graph exploration must be tightly connected to the triple store to enable
fast exploration of the graph.

7Some regex variations support diacritic mark matching. For example CQP
http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/
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• Reasoning with types as well as the class, concept and property hierarchy. This in-
cludes finding the lowest common parent of a set of resources in these hierarchies.
Note that none of these form strict trees (i.e., the relations form cycles and nodes have
multiple parents).

10.4 The ClioPatria search and annotation toolkit

We have realised the functionality described in the previous section on top of the SWI-
Prolog8 web and Semantic Web libraries (chapter 7, Wielemaker et al. 2008; Wielemaker
et al. 2007) that are distributed as standard packages of SWI-Prolog. This platform provides
a scalable in-core RDF triple store (chapter 3, Wielemaker et al. 2003b) and a multi-threaded
HTTP server library (section 7.4). ClioPatria is the name of the reusable core of the E-culture
demonstrator, the architecture of which is illustrated in figure 10.5. First, we summarise
some of the main features of ClioPatria.

Prolog C

RDF-DB

OWLRDFS

Reasoning

HTTP Server

SeRQL/SPARQL

Browser
(HTML+CSS, AJAX, YUI Widgets)

HTTP

Client

ClioPatria

SWI-Prolog
&

(Semantic) Web
libraries

API
Comp 1 Comp N

Comp I

Application 1

....
...

Programs

JSON/XML

HTML,CSS,Javascript

Figure 10.5: Overall architecture of the ClioPatria server

• Running on a Intel core duo X6800@2.93GHz, 8Gb, 64-bit Linux it takes 120 seconds
elapsed time to load the 20 million triples. The server requires 4.3Gb memory for 20
million triples (2.3Gb in 32-bit mode). Time and space requirements grow practically
linear in the amount of triples.

• The store provides safe persistency and maintenance of provenance and change history
based on a (documented) proprietary file format.

8http://www.swi-prolog.org
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• Different operations require a different amount of entailment reasoning. Notably
deleting and modifying triples complicates maintenance of the pre-computed entail-
ment. Therefore, reasoning is as much as possible based on backward chaining, a
paradigm that fits naturally with Prolog’s search driven programming.

10.4.1 Client-server architecture

In contrast to client-only architectures such as Simile’s Exhibit (Huynh et al. 2007), ClioPa-
tria has a client-server architecture. The core functionality is provided as HTTP APIs by the
server. The results are served as presentation neutral data objects and can thus be combined
with different presentation and interaction strategies. Within ClioPatria, the APIs are used by
its web applications. In addition, the APIs can be used by third party applications to create
mashups.

The ClioPatria toolkit contains web applications for search and annotation. The end-
user applications are a combination of server side generated HTML and client side JavaScript
interface widgets. The generated HTML contains the layout of the application page including
place markers for the interface widgets. The interface widgets are loaded into the page on
the client side and populate themselves by requesting data through one of the APIs.

The reusability of the design is demonstrated by a variety of applications that use ClioPa-
tria, either as central server or as service within a larger application. Besides for the Multi-
mediaN E-Culture demonstrator9 for which ClioPatria was developed, it is currently in use
by the following projects. The K-Space European Network of Excellence is using ClioPatria
to search news.10 At the time of writing Europeana11 is setting up ClioPatria as a demon-
strator to provide multilingual access to a large collection of very divers cultural heritage
data. The ClioPatria API provided by the E-Culture Project is also used by the CATCH/CHIP

project Tour Wizard that won the 3rd prize at the Semantic Web Challenge of 2007. For the
semantic search functionality CHIP uses the web services provided by the ClioPatria API.

10.4.2 Output formats

The server provides two types of presentation oriented output routines. Components are
Prolog grammar rules that define reusable parts of a page. A component produces HTML

and optionally posts requirements for CSS and JavaScript. For example, the component
localview emits an HTML div and requests the JavaScript code that realises the detailed
view of a single resource using an AJAX widget. Components can embed each other. Appli-
cations produce an entire HTML page that largely consists of configured components. HTML

pages, and therefore applications, cannot be nested. The HTML libraries define a resource in-
frastructure that tracks requests for CSS and JavaScript resources and uses this together with
declarations on CSS and JavaScript dependencies to complete the HTML head information,
turning components into clean modular entities.

9http://e-culture.multimedian.nl/demo/search
10http://newsml.cwi.nl/explore/search
11http://www.europeana.eu/
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Client side presentation and interaction is realised by JavaScript interface widgets. The
widgets are built on top of the YAHOO! User Interface (YUI) library.12 ClioPatria contains
widgets for autocompletion, a search result viewer, a detailed view on a single resource,
and widgets for semantic annotation fields. The result viewer can visualise data in thumb-
nail clusters, a geographical map, Simile Exhibit, Simile Timeline and a Graphviz13 graph
visualisation.

The traditional language of choice for exchanging data over the network is XML. How-
ever, for web applications based on AJAX interaction an obvious alternative is provided by
JSON (JavaScript Object Notation14), as this is processed natively by JavaScript capable
browsers. JSON targets at object serialisation rather than document serialisation and is fully
based on UNICODE. James Clark, author of the SP SGML parser and involved in many
SGML and XML related developments acknowledges the value of JSON.15 JSON is easy to
generate and parse, which is illustrated by the fact that the Prolog JSON library, providing
bi-directional translation between Prolog terms and JSON text counts only 792 lines. In addi-
tion the community is developing standard representations, such as the SPARQL result format
(Clark et al. 2007).

10.4.3 Web services provided by ClioPatria (API)

ClioPatria provides programmatic access to the RDF data via several web services16. The
query API provides standardised access to the data via the SeRQL and SPARQL. As we have
shown in section 10.3 such a standard query API is not sufficient to provide the intended
keyword search functionality. Therefore, ClioPatria provides an additional search API for
keyword-based access to the RDF data. In addition, ClioPatria provides APIs to get resource-
specific information, update the triple store and cache media items. In this paper we only
discuss the query and search API in more detail.

10.4.3.1 Query API

The SeRQL/SPARQL library provides a Semantic Web query interface that is compatible with
Sesame (Broekstra et al. 2002) and provides open and standardised access to the RDF data
stored in ClioPatria.

Both SeRQL and SPARQL are translated into a Prolog query that relies on the rdf(S,P,O)
predicate provided by SWI-Prolog’s RDF library and on auxiliary predicates that realise func-
tions and filters defined by SeRQL and SPARQL. Conjunctions of rdf/3 statements and
filter expressions are optimised through reordering based on statistical information provided
by the RDF library chapter 4 (Wielemaker 2005). Finally, the query is executed and the result

12http://developer.yahoo.com/yui/
13http://www.graphviz.org/
14http://www.json.org/
15http://blog.jclark.com/2007/04/xml-and-json.html
16http://e-culture.multimedian.nl/demo/doc/
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is handed to an output routine that emits tables and graphs in various formats specified by
both SeRQL and SPARQL.

10.4.3.2 Search API

The search API provides services for graph search (figure 10.3) and term search (sec-
tion 10.3.3). Both services return their result as a JSON object (using the serialisation for
SPARQL SELECT queries, Clark et al. 2007). Both services can be configured with several
parameters. General search API parameters are:

• query(string | URI): the search query.

• filter(false |Filter): constrains the results to match a combination of Filter prim-
itives, typically OWL class descriptions that limit the results to instances that satisfy
these descriptions. Additional syntax restricts results to resources used as values of
properties of instances of a specific class.

• groupBy(false |path |Property): if path, cluster results by the abstracted path
linking query to target. If a property is given, group the result by the value on the
given property.

• sort(path length |score |Property): Sort the results on path-length, semantic
distance or the value of Property.

• info(false |PropertyList): augment the result with the given properties and their
values. Examples are skos:prefLabel, foaf:depicts and dc:creator.

• sameas(Boolean): smushes equivalent resources, as defined by owl:sameAs or
skos:exactMatch into a single resource.

Consider the use case discussed in section 10.2.2. Clustered results that are semanti-
cally related to keyword “picasso” can be retrieved through the graph search API with the
HTTP request below. The vra:Work filter limits the results to museum objects. The ex-
pression view=thumbnail is a shorthand for info = ["image":"thumbnail",
"title":"vra:creator", "subtitle":"dc:creator"].

/api/search?query=picasso&filter=vra:Work&groupBy=path&view=thumbnail

Parameters specific to the graph search API are:

• view(thumbnail |map |timeline |graph |exhibit): shorthands for specific
property lists of the info parameter.

• abstract(Boolean): enables the abstraction of the graph search paths over
rdfs:subClassOf and rdfs:subPropertyOf, reducing the number of clus-
ters.
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• bagify(Boolean): puts (abstracted) resources of the same class with the same (ab-
stracted) relations to the rest of the graph in an RDF bag. For example, convert a set of
triples linking a painter over various sub properties of dc:creator to multiple in-
stances of vra:Work into an RDF bag of works and a single triple linking the painter
as dc:creator to this bag.

• steps(Integer): limits the graph exploration to expand no more than Integer nodes.

• threshold(0.0..1.0): cuts off the graph exploration at the given semantic distance (1.0:
close; 0.0 infinitely far).

For annotation we can use the term search API to suggest terms for a particular annotation
field. For example, suppose a user has typed the prefix “pari” in a location annotation field
that only allows European locations. We can request matching suggestions by using the
URI below, filtering the results to resources that can be reached from tgn:Europe using
skos:broader transitively:

/api/autocomplete?query=pari&match=prefix&sort=rdfs:label&
filter={"reachable":{"relation":"skos:broader","value":"tgn:Europe"}}

Parameters specific to the term search API are:

• match(prefix |stem |exact): defines how the syntactic matching of literals is
performed. Autocompletion, for example, requires prefix match.

• property(Property, 0.0..1.0): is a list of RDF property-score pairs which define the
values that are used for literal matching. The score indicates preference of the used
literal in case a URI is found by multiple labels. Typically preferred labels are chosen
before alternative labels.

• preferred(skos:inScheme, URI): in case URIs are smushed the information of the
URI from the preferred thesaurus is used for augmentation and organisation.

• compound(Boolean): if true, filter results to those where the query matches the
information returned by the info parameter. For example, a compound query paris,
texas can be matched in two parts against a) the label of the place Paris and b) the
label of the state in which Paris is located.

10.5 Discussion and conclusion

In this paper we analysed the requirements for searching in large, heterogeneous collections
with many relations, many of which have no formal semantics. We presented the ClioPatria
software architecture we used to explore this topic. Three characteristics of ClioPatria have
proved to be a frequent source of discussion: the non-standard API, the central main memory
store model and the lack of full OWL/DL support.
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10.5.0.3 API standardisation

First, ClioPatria’s architecture is based on various client-side JavaScript Web applications
around a server-side Prolog-based reasoning engine and triple store. As discussed in this
paper, the server functionality required by the Web clients can not be provided by an off-the-
shelf SPARQL endpoint. This makes it hard for Semantic Web developers of other projects to
deploy our Web applications on top of their own SPARQL-based triple stores. We acknowl-
edge the need for standardised APIs in this area. We hope that the requirements discussed
in this paper provide a good starting point to develop the next generation Semantic Web
APIs that go beyond the traditional database-like query functionality currently supported by
SPARQL.

10.5.0.4 Central, main memory storage model

From a data-storage perspective, the current ClioPatria architecture assumes images and
other annotated resources to reside on the Web. All metadata being searched, however, is
assumed to reside in main memory in a central, server-side triple store. We are currently
using this setup with a 20M triples dataset, and are confident that our current approach will
easily scale up to 300M triples on modern hardware (64Gb main memory). Our central
main memory model will not scale, however, to the multi-billion triple sets supported by
other state-of-the-art triple stores. For future work, we are planning to investigate to what
extent we can move to disk-based or, given the distributed nature of the organisations in our
domain, distributed storage strategies without giving up the key search functionalities of our
current implementation. Distribution of the entire RDF graph is non-trivial. For example,
in the keyword search, the paths in the RDF graph from the matching literals to the target
resources tend to be unpredictable, varying highly with the types of the resources associated
with the matching literals and the type of the target resources. Implementing a fast, semi-
random graph walk in a distributed fashion will likely be a significant challenge. As another
example, interface components such as a Web-based autocompletion Widget are based on
the assumption that a client Web-application may request autocompletion suggestions from
a single server, with response times in the 200ms range. Realising sufficiently fast responses
from this server without the server having a local index of all literals that are potential sug-
gestion candidates will also be challenging. Distributing carefully selected parts of the RDF

graph, however, could be a more promising option. In our current datasets for example,
the subgraphs with geographical information are both huge and connected to the rest of the
graph in a limited and predictable fashion. Shipping such graphs to dedicated servers might
be doable with only minor modifications to the search algorithms performed by the main
server. This is a topic we need to address in future work.

10.5.0.5 Partial OWL reasoning

From a reasoning perspective, ClioPatria does not provide traditional OWL-DL support. First
of all, the heterogeneous and open nature of our metadata repositories ensures that even
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when the individual data files loaded are in OWL-DL, their combination will most likely not
be. Typical DL violations in this domain are properties being used as a data property with
name strings in one collection, and as an object property with URIs pointing to a biographical
thesaurus such as ULAN in the other; or rdfs:label properties being used as an anno-
tation property in the schema of one collection and as a data property on the instances of
another collection. We believe that OWL-DL is a powerful and expressive subset of OWL for
closed domains where all data is controlled by a single organisation. It has proved, however,
to be unrealistic to use OWL DL for our open, heterogenous Semantic Web application where
multiple organisations can independently contribute to the data set.

Secondly, our application requires the triple store to be able to flexibly turn on and off
certain types of OWL reasoning on a per-query basis. For example, there are multiple URIs in
our dataset, from different data sources, representing the Dutch painter Rembrandt van Rijn.
Ideally, our vocabulary mapping tools have detected this and have all these URIs mapped
to one another using owl:sameAs. For an end-user interested in viewing all information
available on Rembrandt, it is likely beneficial to have the system perform owl:sameAs
reasoning and present all information related to Rembrandt in a single interface, smushing
all different URIs onto one. For an expert end-user annotating an artwork being painted
by Rembrandt the situation is different. When selecting the corresponding entry from a
biographical thesaurus, the expert is probably interested into which vocabulary source the
URI is pointing, and how entries in other vocabularies differ from the selected one. This
requires the system to largely ignore the traditional owl:sameAs semantics, present all
triples associated with the different URIs separately, along with the associated provenance
information. This type of ad-hoc turning on and off of specific OWL reasoning is, to our
knowledge, not supported by any off-the-shelf SPARQL endpoint, but crucial in all realistic
multi-thesauri Semantic Web applications.

Thirdly, we found that our application requirements seldomly rely on extensive sub-
sumption or other typical OWL reasoning. In the weighted graph exploration we ba-
sically only consider the graph structure and ignore most of the underlying semantics,
with only a few notable exceptions. Results are improved by assigning equivalence re-
lations such as owl:sameAs and skos:exactMatch the highest weight of 1.0. We
search the graph in only one direction, the exception being properties being declared as an
owl:SymmetricProperty. In case of properties having an owl:inverseOf, we tra-
verse the graph as we would have if all “virtual” inverse triples were materialised. Finally,
we use a simple form of subsumption reasoning over the property and class hierarchy when
presenting results to abstract from the many small differences in the schemas underlying the
different search results.

10.5.0.6 Conclusion

Our conclusion is that knowledge rich domains such as cultural heritage fit well with Se-
mantic Web technology. This is because of a) the clear practical needs this domain has for
integrating information from heterogeneous sources, and b) its long tradition with semantic
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annotations using controlled vocabularies and thesauri. We strongly feel that studying the
real application needs of users working in such domains in terms of their search and reason-
ing requirements will move ahead the state of the art in Semantic Web research significantly.

Experience using the Prolog web infrastructure ClioPatria evolved from the SeRQL

server described in chapter 4. The SeRQL server contained the RDF database (chapter 3)
and the multi-threaded HTTP server (section 7.4.2) with basic administrative facilities such
as user management and viewing server statistics. The infrastructure proved a good basis
for the rapid development of a prototype annotation and search engine. Rules were im-
plemented based on Prolog and rdf/3. Presentation used the HTML generation library
(section 7.2.2.1). The prototype annotation tool used HTML forms and Java applets for nav-
igating the concept hierarchy. As the project evolved, this design has been refined:

• RDF storage
Literal indexing has been refined to include full text search (section 3.4.1.1). Support
for reliable updates to the RDF store as required by annotation has been added. See
section 3.4.2 and section 3.4.3.

• User interface
The initial user interface based on classical HTML and Java applets was not satis-
factory. Java applets integrate poorly in the HTML page and the development cycle is
rather clumsy and error prone. It was first replaced by in-house JavaScript using AJAX

technology. Poor browser compatibility and the desire to reuse presentation compo-
nents made us switch to an externally developed AJAX widget library (YUI). This
approach changes the server from producing HTML for presentation towards returning
results as JSON data objects. This approach has two clear advantages: it enables inter-
activity required for e.g., autocompletion and it reuses externally developed widgets,
such as an image carrousel for scrolling through a set of thumbnails.

The current approach also has drawbacks. It implies programming in two languages
which makes it much harder to track the exact location of code that produces a page.
AJAX-based pages cooperate poorly with native browser history navigation and link-
ing to a page.

• Modularity
A growing number of HTTP paths served, resource dependencies between JavaScript
and CSS files as well as multiple developers asked for better modularisation of the
server. This resulted in the HTTP dispatch library (section 7.4.2.1) and tracking web
page resource dependencies as described in section 7.5.1.

The current infrastructure supports semantic annotation and search as described in this
paper satisfactory. We identified scalability aspects that will need to be addressed soon. First,
identity mapping (owl:sameAs) requires low-level support in the RDF database to speed up
and simplify application code that needs identity reasoning. As described in section 10.5.0.5,
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we want to enable or disable owl:sameAs reasoning on a per-query basis and therefore
smushing identical URIs to a single URI is not an option. Second, restoring the persistent
database will soon become a bottleneck, notably for development. We will consider two
approaches to solve that. One is to exploit multiple cores for reloading, which currently
scales poorly due to frequent synchronisation in the RDF store and Prolog atom table. As
an alternative, we will consider managing part of the Prolog/RDF database in a dedicated
memory area that can be mapped to a file. This technique can realise short startup times,
but the implementation is more complicated and vulnerable to changes in the program that
make old states unusable. Combining both approaches can provide good results. Third, the
read-write lock based mechanism to update the RDF database (section 3.4.2) might prove
unusable for interactive annotation because continuous read access delays write requests too
much. A more fine-grained locking mechanism can fix this as well as improve concurrency
when restoring the persistent RDF database.



Chapter 11

Conclusions

Part I of this thesis describes language extensions and libraries for Prolog to deal with
knowledge-intensive interactive (web) applications, while part II describes a selection of
applications that use this infrastructure.

The libraries and extensions themselves are a mixture of novel and established ideas
from other Prolog implementations or other programming environments, integrated in a co-
herent environment. XPCE and especially the way XPCE is connected to Prolog was novel.
We implemented the basic interface in the mid-80’s when there was no related work avail-
able. Achieving dedicated support for RDF in Prolog using a main-memory store that pushed
the scalability by exploiting RDF-specific features was also a novel development. The same
holds for query optimisation for main-memory-based RDF stores. Although the related
problems of literal reordering and database join optimisation are well described in the liter-
ature, the long conjunctions that result from the primitive RDF model posed new problems.
When we started implementing concurrency, a lot of research had been done in adding
concurrency to Prolog. However, few systems provided a usable implementation of multi-
threading and those that did were lacking facilities on which we depended, such as XPCE

and our RDF library. We proposed a practical API, described solutions to complications such
as atom garbage collection and demonstrated that multi-threading can be added to Prolog
with limited effort and acceptable loss of performance. Adding support for web services by
means of supporting HTTP and the web document formats makes well established standards
available in Prolog. No single part of this process itself is particularly complicated, how-
ever the value of our work in this area is in presenting an integrated infrastructure for web
services and showing that it works as demonstrated by ClioPatria.

Where (especially academic) language and library design often uses a technology push
model, we use a model where this activity is closely embedded in the design and implemen-
tation of prototypes that serve a research goal that is not primarily related to infrastructure.
For example, the primary goal of the MIA project described in chapter 9 was to study an-
notation of the subject of multi-media objects (photos, paintings, etc.). The secondary goal
was to study the applicability of the emerging Semantic Web standards (RDF and RDFS) for
annotation and search and finally, the ternary goal was to examine how we could deploy RDF
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for knowledge representation inside an application and what implications that has for inter-
active graphical applications. Reasoning and interactivity based on the RDF triple model is
the basis of chapter 2 about Triple20.

In these conclusions we first revisit the research questions, followed by an evaluation of
the overall infrastructure based on our current experience. We conclude with challenges for
the near future.

11.1 The research questions revisited

How to represent knowledge for interactive applications in Prolog? Frame-based
knowledge representations are popular if knowledge has to be examined and manipulated
using a graphical interface. Frame languages provide natural graphical representations and
the MVC design pattern provides proven technology to interact with the knowledge. Before
the existence of RDF we used a variety of proprietary representations for the knowledge rep-
resentation. RDF provides us with a widely accepted standard model that fits naturally on
the Prolog relational model, where RDF graph expressions map directly to conjunctions of
rdf/3 literals. The RDF standard comes with a serialisation format (RDF/XML) for storing
and exchanging knowledge with other RDF-aware applications.

If RDF, with the languages and schemas defined on top of it (e.g., RDFS, OWL, Dublin
Core, SKOS), is used for storing knowledge inside the application it provides a standard-
ised interpretation of the knowledge. The RDF mapping relations (e.g., owl:sameAs,
rdfs:subPropertyOf) can be used to integrate knowledge. Again, this feature is both
valuable for exchange with other applications and for integrating heterogeneous knowledge
inside one application. This approach has been applied first in chapter 9, then in chapter 2
where we provide further motivation and finally in chapter 10.

In section 9.3 we formulated the requirement to handle up to 10 million RDF triples. The
demonstrator described in chapter 10 contains 20M triples. This scale is enough to store
sufficiently rich background knowledge and sufficiently large collections for realistic ex-
periments with search and annotation. Section 3.4 describes a state-of-the-art main-memory
store that is capable of supporting this scale (section 3.6). In fact, the store currently supports
upto 300 million triples using 64Gb memory.

Query languages such as SPARQL, but also reasoning inside ClioPatria needs to solve
conjunctions of RDF literals. Done naively, this can result in poor performance. Section 4.7
shows how these conjunctions can be ordered optimally at low cost. This is used as a query
optimiser in the SeRQL/SPARQL server and for dynamic optimisation of Prolog conjunctions
of rdf/3 literals inside ClioPatria.

In section 10.3 we formulate requirements for search in heterogeneous collections of
meta-data and collections. In section 10.3.3 we describe best-first graph exploration and
semantic clustering as a possible solution for search in this type of data.

How to support web applications in Prolog? Chapter 7 discusses the representation of
RDF, HTML and XML documents in Prolog, as well as how the HTTP protocol can be sup-
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ported. We have described the representation of HTML and XML as a Prolog term. The
representation of an XML document as a Prolog term can only be simple and compact if
the Prolog implementation supports UNICODE, atoms of unlimited length and atom garbage
collection (section 7.6.2).

We have described how standard compliant HTML can be generated from Prolog using
a generative grammar (section 7.2.2.1). This approach guarantees compliant HTML start-
ing from Prolog data structures, including proper element structuring and escape sequences
dealing with special characters. Our approach supports modular generation of HTML pages.
This modularity is realised using embedded calls to rules from a document term, automatic
management of resources needed by an HTML page such as JavaScript and CSS files and al-
lowing for non-determinism in the generator. Non-determinism allows for alternative output
controlled by conditions embedded at natural places in the code instead of being forced to
evaluate conditions before emitting HTML.

Web services run on a server and need to serve many clients. Applications based on
our main memory RDF store need a significant startup time and use considerable memory
resources. This, together with the availability of multi-core hardware demands the support
for multi-threading in Prolog. Chapter 6 describes a pragmatic API for adding threads to
Prolog that has become the starting point for an ISO standard (Moura et al. 2008). Particu-
larly considering web services, the thread API performs well and has hardly any noticeable
implications for the programmer.

How to support graphical applications in Prolog? Chapter 5 proposes a mechanism
to access and extend an object oriented system from Prolog, which has been implemented
with XPCE. XPCE has been the enabling factor in many applications developed in SWI-
Prolog. In this thesis we described the MIA tool (chapter 9) and the Triple20 ontology editor
(chapter 2). The approach followed to connect Prolog to XPCE realises a small interface to
object oriented systems that have minimal reflexive capabilities (section 5.3) and a portable
mechanism that supports object oriented programming in Prolog that extends the core OO

system (section 5.4). This architecture, together with section 2.4.1 which describes rule-
based specification of appearance and behaviour is our answer to research questions 3a and
3b.

Recently the use of a web-browser for the GUI comes into view. This approach has
become feasible since to the introduction of JavaScript widget libraries such as YUI based
on ‘AJAX’ technology. We use this technology in ClioPatria after extending the web service
support with JSON (section 7.5). JavaScript libraries for vector graphics are available and
used by ClioPatria to display search results as a graph. JavaScript libraries for interactive
vector graphics are emerging.

The discussion on providing graphics to Prolog applications is continued in the discus-
sion (section 11.3.1).

Connecting knowledge to the GUI is the subject of research question 3c and, because
we use RDF for knowledge representation, can be translated into the question how RDF can
be connected to the GUI. The RDF model is often of too low level to apply the MVC model
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directly for connecting the knowledge to the interface objects. This problem can be solved
using mediators (section 2.4). Mediators play the same role as a high-level knowledge repre-
sentation that is based on the tasks and structure used in the interface. Interface components
can independently design mediators to support their specific task and visualisation. In other
words, mediators do not harm the well understood and stable semantics of the RDF knowl-
edge base, while they realise the required high-level view on the knowledge. Chapter 2
shows that this design can be used to browse and edit large RDF models efficiently.

11.2 Architectures

We have produced two architectures that bring the infrastructure together. Section 2.4 de-
scribe the Triple20 architecture that resulted from the lessons learned from the MIA project
(section 9.3). The architecture of Triple20 was designed for our next generation of inter-
active tools for ontology management, search and annotation. Project focus and improving
web infrastructure for interactive applications made us switch from highly interactive local
GUI applications to a less interactive web-based application for annotation and search. As a
result, the Triple20 architecture has not been evaluated in a second prototype.

Figure 10.5 presents our architecture for supporting web applications, a subset of which
has also been used for the Prolog literate programming environment PlDoc (chapter 8).
ClioPatria has been used in a number of projects (section 10.4.1). Despite the rather im-
mature state of many parts of the ClioPatria code base, the toolkit has proven to be a pro-
ductive platform that is fairly easy to master. An important reason for this is that the toolkit
has a sound basis in the RDF infrastructure, the HTTP services and the modular generation
of HTML with AJAX components. Or, to put it differently, it is based on sound and well
understood standards.

On top of this stable infrastructure are libraries that provide semantic search facilities
and interface components with a varying level of maturity. Because of the modular nature of
interface components and because HTTP locations (paths) make it easy to support different
versions of services in the same web-server, new applications and components can be devel-
oped using the ‘bazaar’-model,1 in which multiple developers can cooperate without much
coordination.

11.3 Discussion: evaluation of our infrastructure

Some of the material presented in this section results from discussions, face-to-face, by
private E-mail, in the SWI-Prolog mailinglist or on the comp.lang.prolog usenet group
and has no immediate backup in this thesis. Where the body of this thesis presents isolated
issues organised by chapter, this discussion section allows us to present an overall picture
and introduce experience that is not described elsewhere in this thesis.

1http://www.catb.org/Stildeesr/writings/cathedral-bazaar/cathedral-bazaar/
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This discussion starts with dimensions that apply to language and library design in a
practical world where one has to accept history and historical mistakes, ‘fashion’ in lan-
guage evolution as well as consider the ‘learning curve’ for programmers. These dimension
expresses some of the experience we gained while developing our infrastructure. After in-
troducing these dimensions we discuss the major decisions taken in the design of the SWI-
Prolog-based infrastructure in section 11.3.1. Ideally, we should score our decisions on these
dimensions, but that would require a level of detail that is unsuitable for this discussion.

1. Compatibility
Although Prolog implementations are often incompatible when leaving the sublan-
guage defined by the ISO standard for Prolog, it is considered good practice to see
whether there is an established solution for a problem and use this faithfully. If there
is no acceptable existing API, the new API must be designed such that the naming is
not confusing to programmers that know about an existing API and future standardis-
ation is not made unnecessarily complex. An important implication is that one must
try to avoid giving different semantics to (predicate) names used elsewhere.

2. The learning curve
This is a difficult and fuzzy aspect of language and library design. Short learning
curves can be obtained by reusing concepts from other popular systems as much
as possible. Because Logic Programming provides concepts unknown outside the
paradigm (e.g., logical variables and non-determinism), reusing concepts from other
paradigms may result in inferior Prolog programs. For example, accessing RDF triples
in an imperative language is generally achieved using a pattern language and a some
primitive to iterating over matches. In Prolog we can use logical variables for pattern
matching and non-determinism for iteration, providing a natural API where Prolog
conjunctions represent graph patterns as defined in RDF query languages.

3. Performance and scalability
Performance and scalability to large datasets is of utmost importance. We distinguish
two aspects: the interface and the implementation. Interfaces must be designed to
allow for optimised implementations. For example, interfaces that allow for lazy ex-
ecution can be used to reduce startup time and if an interface allows for processing
large batches of requests it may be possible to enhance the implementation by adding
planning and concurrency.

4. Standard compliance and code sharing
Especially where standard document formats (e.g., XML, RDF, JPEG) and protocols
(e.g., HTTP, SSL) come into view there is a choice between implementing the interface
from the specification of the standard or using an external library. The choice depends
on stability of the standard, stability of API of an externally developed library and
estimate on the implementation effort.
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11.3.1 Key decisions about the infrastructure

This section summarises the original motivation for key decisions we took in designing the
infrastructure and reconsiders some of these decisions based on our current knowledge and
expectations for the future.

Graphics XPCE (chapter 5) resulted from the need to create graphical interactive appli-
cations for the KADS project in the mid-80s. For a long time, XPCE was our primary asset
because it combines the power of Prolog with communication to the outside world in general
and graphics in particular. The system was commercialised under the name ProWindows
by Quintus. The design is, for a windowing environment, lightweight and fast; important
properties with 4Mb main memory we had available when the core of XPCE was designed.
Combined with a language with incremental (re-)compilation, it allows changing the code
in a running application. Avoiding having to restart an interactive application and recre-
ate the state where development happens greatly speeds up the implementation process of
interactive applications.

Described in chapter 5 and evaluated in section 2 and section 9, we have realised an
architecture that satisfies the aims expressed in research question 3. This architecture has
proven to be a productive prototyping environment for the (few) programmers that mas-
ter it. We attribute this primarily to the learning curve. There are two factors that make
XPCE/Prolog hard to master.

• The size of a GUI library. For XPCE, this situation is even worse than for widely
accepted GUI libraries because its terminology (naming of classes and methods) and
organisation (functionality provided by the classes) is still based on forgotten GUI

libraries such as SunView,2 which harms the transfer of experience with other GUI

libraries (cf. first dimension above). This is not a fundamental flaw of the design, but
the result of a lack of resources.

• As already mentioned in section 5.9, the way XPCE classes can be created from Prolog
is required to exploit functionality of the object system that must be achieved through
subclassing. XPCE brings OO programming to Prolog, where the OO paradigm is op-
timised for deterministic side-effects required for (graphical) I/O. These are not the
right choices if we wish to represent knowledge in a Prolog based OO paradigm, a task
that is much better realised using an OO system designed for and implemented in Pro-
log such as Logtalk (Moura 2003). To put it differently, programming XPCE/Prolog
is done in Prolog syntax, but it requires the programmer to think in another paradigm.
Another example causing confusion are datatypes. Many Prolog data types have their
counterpart in XPCE. For example, a Prolog list is similar to an XPCE chain. How-
ever, an XPCE chain is manipulated through destructive operations that have different
syntax and semantics than Prolog list operations.

2http://en.wikipedia.org/wiki/SunView
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There is no obvious way to remedie this situation. Replacing the graphics library under-
lying XPCE with a modern one fixes the first item at the cost of significant implementation
work and loss of backward compatibility. This would not fix the second issue and it is not
clear how this can be remedied. One option is to use a pure Prolog OO system and wrap
that around a GUI library. However, Prolog is poorly equipped to deal with the low-level
operations and side-effects required in GUI programming.

As stated in section 11.1 and realised in chapter 10, using a web-browser for GUI starts
to become a viable alternative to native graphics. Currently, the state of widget libraries,
support for interactive graphics and the development environment for JavaScript in a web-
browser is still inferior to native graphics. As we have experienced during the development
of ClioPatria, this situation is improving fast.

Using a web-browser for GUI programming will always involve programming in two
languages and using a well defined interface in between. This is good for development
in a production environment where the GUI and middleware are generally developed by
different people anyway. It still harms productivity for single-developer prototyping though.
Currently, we see no clear solution that provides a productive prototyping environment for
Prolog-based interactive applications that fits well with Prolog and is capable of convincing
the logic programming community.

XML/SGML support XML and SGML/HTML are often considered the standard document
and data serialisation languages, especially in the web community. Supporting this family
of languages is a first requirement for Prolog programming for the web.

The XML/SGML tree model maps naturally to a (ground) Prolog term, where we choose
for element(Tag, Attributes, Content), the details of which are described in section 7.2.
To exploit Prolog pattern matching, it is important to make the data canonical. In partic-
ular re-adding omitted tags to SGML/HTML documents and expanding entities simplifies
processing the data. The representation is satisfactory for conversion purposes such as
RDF/XML. Querying the model to select specific elements with generic Prolog predicates
(e.g., member/2, sub term/2) is possible, but sometimes cumbersome. Unification
alone does not provide suitable pattern matching for XML terms. We have an experimen-
tal implementation of an XPath3 inspired Prolog syntax that allows for non-deterministic
querying of XML terms and which we have used for scraping information from HTML pages.
The presented infrastructure is not a replacement for XML databases, but provides the basis
for extracting information from XML documents in Prolog.

We opted for a more compact representation for generating HTML, mainly to enhance
readability. A term b(’Hello world’) is much easier to read and write than element(b, [],
[’Hello world’]), but canonical terms of the from element(Tag, Attributes, Content) can be
matched more easily in Prolog. The dual representation is unfortunate, but does not appear
to cause significant confusion.

3http://www.w3.org/TR/xpath
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RDF support The need for storing and querying RDF was formulated in the MIA project
described in chapter 9. Mapping the RDF triple model to a predicate rdf(Subject, Predicate,
Object) is obvious. Quickly growing scalability requirements changed the implementation
from native Prolog to a dedicated C-library. The evaluation in section 3.6 shows that our
RDF store is a state-of-the-art main memory store. Together with the neat fit between RDF

and Prolog this has been an important enabling factor for building Triple20 and ClioPatria.

When we developed our RDF/XML parser, there were no satisfactory alternative. As we
have shown in section 3.2, our technology allowed us to develop a parser from the specifi-
cations with little effort. Right now, our parser is significantly slower than the Raptor RDF

parser. While the specification of RDF/XML and other RDF serialisations (e.g., Turtle) is sub-
ject to change, the API for an RDF parser is stable as it is based on a single task: read text
into RDF triples.

A significant amount of effort is spent worldwide on implementing RDF stores with
varying degrees of reasoning and reusing a third-party store allows us to concentrate on
other aspects of the Semantic Web. Are there any candidates? We distinguish two types
of stores: those with considerable reasoning capacity (e.g., OWLIM using the TTREE rule
engine, Kiryakov et al. 2005) and those with limited reasoning capabilities (e.g., Redland,
Beckett 2002). A store that provides few reasoning capabilities must allow for representing
RDF resources as Prolog atoms because translating between text and atom at the interface
level loses too much performance. Considering our evaluation of low-level stores, there is no
obvious candidate to replace ours. A store that provides rule-based reasoning is not desirable
because Prolog itself is a viable rule language. A store that only provides SPARQL-like graph
queries is not desirable because Prolog performs graph pattern matching naturally itself and
putting some layer in between only complicates usage (cf., relational database interfaces for
Prolog, Jarke et al. 1984).

It is not clear where the balance is if support for more expressive languages such as OWL-
DL is required. Writing a complete and efficient DL reasoner in Prolog involves an extensive
amount of work. Reusing an external reasoner however, involves significant communication
overhead. On ‘batch’ operations such as deducing the concept hierarchy, using an external
reasoner is probably the best option. Answering specific questions (does class A subsume
B, does individual I belong to class C?) the communication overhead will probably quickly
become dominant and even a naive implementation in Prolog is likely to outperform an
external reasoner.

If disk-based storage of RDF is required to satisfy scalability and startup-time require-
ments, it is much more likely that reusing an externally developed store becomes profitable.
Disk-based stores are several orders of magnitude slower and because the relative costs of
data conversion decreases, the need for a store that is closely integrates into Prolog to obtain
maximal performance becomes less important.

Fortunately, the obvious and stable representation of the RDF model as rdf(Subject,
Predicate, Object) facilitates switching between alternative implementations of the triple
store without affecting application code.
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HTTP support and embedding There are two ways to connect Prolog to the web. One
option is to embed Prolog in an established HTTP server. For example, embed Prolog into
the Java-based Tomcat HTTP server by means of the JPL4 Prolog/Java interface. The second
option is to write an HTTP server in Prolog as we have done.

Especially the Tomcat+JPL route is, judged from issues raised on the SWI-Prolog mail-
inglist, popular. We can understand this from the perspective of the learning curve. The
question “we need a web-server serving pages with dynamic content?” quickly leads to
Tomcat. Next issue, “we want to do things Prolog is good at”, leads to embedding Prolog
into Tomcat. Judging from the same mailinglist however, the combination has many prob-
lems. This is not surprising. Both systems come with a virtual machine that is designed to
control the process, providing threads and garbage collection at different levels. Synchro-
nising object lifetime between the two systems is complicated and the basic assumptions on
control flow are so radically different that their combination in one process is cumbersome at
best. XPCE suffers from similar problems, but because XPCE was designed to cooperate with
Prolog (and Lisp) we have added hooks that facilitate cooperation in memory management.

Embedding Prolog into another language often looses the interactive and dynamic na-
ture of Prolog, seriously reducing development productivity. It is generally recommended
to connect well behaved and understood pieces of functionality to Prolog through its for-
eign interface or use the network to communicate. Network communication is particularly
recommended for connecting to large programming environments such as Java or Python.
Using separate processes, debugging and access to the respective development environments
remains simple. The downside is of course that the communication bandwidth is much more
limited, especially if latency is an issue.

Development, installation and deployment have been simplified considerably by provid-
ing a built-in web-server. Tools like PlDoc chapter 8 (Wielemaker and Anjewierden 2007)
would suffer from too complicated installation requirements to be practical without native
support for HTTP in Prolog.

Concurrency Adding multi-threading to Prolog is a requirement for the applications we
want to build: all applications described in the thesis, except for the MIA tool, use multiple
threads. Triple20 uses threads to update the mediators (see figure 2.2) in the background,
thus avoiding blocking the GUI. PlDoc uses threads to serve documentation to the user’s
browser without interference with the development environment and ClioPatria uses threads
to enhance its scalability as a web server. The API has proven to be adequate for applications
that consist of a limited number of threads serving specific roles in the overall application.

The current threading support is less suitable for applications that wish to spread a sin-
gle computation-intensive task over multiple cores because (1) thread creation is a relatively
heavyweight task, (2) Prolog terms need to be copied between engines and (3) proper han-
dling of exceptions inside a network of cooperating threads is complicated. Especially error
handling can be remedied by putting more high-level work-distribution primitives into a
library.

4http://www.swi-prolog.org/packages/jpl/
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Logic Programming Finally, we come back to the use of Logic Programming for inter-
active knowledge-intensive applications. In the introduction we specialised Logic Program-
ming to Prolog and we claim that the declarative reading of Prolog serves the representation
of knowledge while the imperative reading serves the interactivity. Reflexiveness and incre-
mental (re-)compilation add to the practical value of the language, notably for prototyping.
This thesis shows that Prolog, after extending it and adding suitable libraries, is a competitive
programming environment for knowledge-intensive (web) applications because

• Prolog is well suited for processing RDF. Thanks to its built-in resolution strategy and
its ability to handle goals as data implementing something with the power of today’s
RDF query languages is relatively trivial. Defining more expressive reasoning on top
of RDF using Prolog’s backward reasoning is more complicated because the program
will often not terminate. This can be resolved using forward reasoning at the cost
of additional loading time, additional memory and slower updates. The termination
problem can also be resolved using tabling (SLG resolution, Ramesh and Chen 1997)
is a known technique, originally implemented in XSB and currently also supported by
B-Prolog (Zhou et al. 2000), YAP (Rocha et al. 2001) and ALS-Prolog (Guo and Gupta
2001).

• Using Prolog for knowledge-intensive web-server tasks works surprisingly well, given
proper libraries for handling the document formats and HTTP protocol. We estab-
lished a stable infrastructure for generating (X)HTML pages in a modular way. The
infrastructure allows for interleaving HTML represented as Prolog terms with Prolog
generative grammar rules. Defining web-pages non-deterministically may seem odd
at first sight but it allows one to eagerly start a page or page fragment and fallback to
another page or fragment if some part cannot be generated without the need to check
all preconditions rigorously before starting. This enhances modularity, as conditions
can be embedded in the generating code.

11.4 Challenges

Declarative reasoning We have seen that Prolog itself is not suitable for declarative rea-
soning due to non-termination. Forward reasoning and tabling are possible solutions, each
with their own problems. In the near future we must realise tabling, where we must consider
the interaction with huge ground fact predicates implemented as a foreign extension (rdf/3).
Future research should investigate appropriate design patterns to handle expressive reasoning
with a proper mix of backward reasoning, forward reasoning, tabling and concurrency.

Scalability of the RDF store We claim that a main memory RDF store is a viable experi-
mentation platform as it allows for many lookups to answer a single query where disk-based
techniques require storing the result of (partial) forward reasoning to avoid slow repetitive
lookups. Short retrieval times make it is much easier to experiment with in-core techniques
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than with disk based techniques. From our experience in the E-culture project that resulted
in ClioPatria, we can store enough vocabulary and collection data for meaningful experi-
menting with and evaluation of prototypes where the main challenge is how we must reason
with our RDF data. See also section 10.5.0.4.

On the longer term, main memory techniques remain appropriate for relatively small
databases as well as for local reasoning after fetching related triples from external stores.
If we consider E-culture, a main memory store is capable of dealing with a large museum,
but not with the entire collection of all Dutch museums, let alone all cultural heritage data
available in Europe or the world. Using either large disk-based storage or a distributed net-
work of main-memory-based servers are the options for a truly integrated Semantic Web on
cultural heritage. Both pose challenges and the preferred approach depends highly on what
will be identified as the adequate reasoning model for this domain, as well as organisational
issues such as ownership of and control over the data.

Graphics The Prolog community needs a graphical interface toolkit that is appealing,
powerful and portable. The GUI must provide a high level of abstraction and allow for
reflexion to allow for generating interfaces from declarative specifications. XPCE is power-
ful, high-level, portable and reflexive. However, it cannot keep up with the developments
in the GUI world. The OO paradigm that it brings to Prolog is poorly suited for knowledge
representation, while the abundance of OO layers for Prolog indicate that there is a need for
OO structuring in Logic Programming. This issue needs to be reconsidered. Given available
GUI platforms, any solution is likely to involve the integration of Prolog with an external OO

system and our work on XPCE should be considered as part of the solution.

Dissemination With the presented SWI-Prolog libraries, we created a great toolkit for our
research. All described infrastructure is released as part of the Open Source SWI-Prolog
distribution, while ClioPatria is available for download as a separate Open Source project.
It is hard to judge how popular our RDF and web infrastructure is, but surely it is a minor
player in the Semantic Web field. To improve this, we need success stories like ClioPatria,
but preferably by third parties like DBtune5 to attract more people from the web community.
We also need porting the infrastructure to other Prolog systems to avoid fragmentation of
the community and attract a larger part of the logic programmers. This has worked for some
of the constraint libraries (e.g., CHR, clp(fd), clp(q)). Porting the infrastructure requires a
portable foreign language interface. This requires a significant amount of work, but so did
the introduction of extended unification that was required to implement constraint solvers.
We hope that this thesis will motivate people in the (Semantic) Web and logic programming
community to join their effort.

Logic programming is a powerful programming paradigm. We hope to have demon-

5http://dbtune.org/
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strated in this thesis that Logic Programming can be successfully applied in the interactive
distributed-systems world of the 21th century.
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Frühwirth, T. (1998, October). Theory and Practice of Constraint Handling Rules. In
P. Stuckey and K. Marriot (Eds.), Special Issue on Constraint Logic Programming
(1–3 ed.), Volume 37.

Getty (2000). ULAN: Union List of Artist Names.
http://www.getty.edu/research/tools/vocabulary/ulan/.

Gidenstam, A. and M. Papatriantafilou (2007). Lfthreads: A lock-free thread library. In
E. Tovar, P. Tsigas, and H. Fouchal (Eds.), OPODIS, Volume 4878 of Lecture Notes
in Computer Science, pp. 217–231. Springer.

Gil, Y., E. Motta, V. R. Benjamins, and M. A. Musen (Eds.) (2005). The Semantic Web
- ISWC 2005, 4th International Semantic Web Conference, ISWC 2005, Galway, Ire-
land, November 6-10, 2005, Proceedings, Volume 3729 of Lecture Notes in Computer
Science. Springer.

Googley, M. M. and B. W. WAH (1989). Efficient reordering of PROLOG programs.
IEEE Transactions on Knowledge and Data Engineering, 470–482.

Graham, S. L., P. B. Kessler, and M. K. McKusick (1982). gprof: a call graph execution
profiler. In SIGPLAN Symposium on Compiler Construction, pp. 120–126.

Gras, D. C. and M. V. Hermenegildo (2001). Distributed WWW programming using
(Ciao-)Prolog and the PiLLoW library. TPLP 1(3), 251–282.

Grosso, W. E., H. Eriksson, R. W. Fergerson, J. H. Gennari, S. W. Tu, and M. A. Musen
(1999). Knowledge modeling at the millennium: The design and evolution of Protégé-
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A. Valo, and K. Viljanen (2005, October). MuseumFinland — Finnish museums on
the semantic web. Journal of Web Semantics 3(2-3), 224–241.

Janik, M. and K. Kochut (2005). Brahms: A workbench rdf store and high performance
memory system for semantic association discovery. See Gil, Motta, Benjamins, and
Musen (2005), pp. 431–445.

Jarke, M., J. Clifford, and Y. Vassiliou (1984). An optimizing prolog front-end to a re-
lational query system. In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD



220 REFERENCES

international conference on Management of data, New York, NY, USA, pp. 296–306.
ACM.

Jeffery, D., F. Henderson, and Z. Somogyi (2000). Type classes in mercury. In ACSC, pp.
128–135. IEEE Computer Society.

Kim, T. (1993). XWIP Reference Manual, Version 0.6. UCLA Computer Science Depart-
ment. Technical Report CSD-880079.

King, R. and A. Srinivasan (1996). Prediction of rodent carcinogenicity bioassays from
molecular structure using inductive logic programming. Environmental Health Per-
spectives 104(5), 1031–1040.

Kiryakov, A., D. Ognyanov, and D. Manov (2005). Owlim - a pragmatic semantic reposi-
tory for owl. In M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Krishnaswamy, Z. Pan, and
Q. Z. Sheng (Eds.), WISE Workshops, Volume 3807 of Lecture Notes in Computer
Science, pp. 182–192. Springer.

Knuth, D. E. (1984). Literate programming. Comput. J. 27(2), 97–111.

Krasner, G. E. and S. T. Pope (1988). A cookbook for using the model-view controller
user interface paradigm in smalltalk-80. J. Object Oriented Program. 1(3), 26–49.

Lafon, Y. and B. Bos (2000, 28 September). Describing and retrieving photographs using
RDF and HTTP. Note, W3C Consortium. URL: http://www.w3.org/TR/2000/NOTE-
photo-rdf-20000928.

Lassila, O. and R. R. Swick (1999, 22 February). Resource description frame-
work (RDF) model and specification. Recommendation, W3C Consortium. URL:
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222.

Leth, L., P. Bonnet, S. Bressan, and B. Thomsen (1996). Towards ECLiPSe agents on
the internet. In Proceedings of the 1st Workshop on Logic Programming Tools for
INTERNET Applications, Bonn, Germany.

Leuf, B. and W. Cunningham (2001). The Wiki Way: Collaboration and Sharing on the
Internet. Addison-Wesley.
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Summary

Logic programming is the use of mathematical logic for computer programming. In its pure
form, a logic program is a declarative description of a solution that is completely separated
from the task of solving the problem, the procedural aspect. Lacking an efficient resolution
strategy for expressive logics and the difficulty of expressing problems that are by nature
procedural limit the usability of pure logic programs for building real-world applications.

An important step towards a usable language for logic programming was the invention of
the programming language ‘Prolog’. This language is based on a simplified form of first or-
der logic (Horn Clauses) and a simple resolution strategy (SLD resolution). Prolog programs
can, at the same time, be read as a declarative description of a solution and as a procedu-
ral strategy to find this solution. In other words, Prolog can describe both knowledge and
procedures. Interaction is a typical aspect of applications that have procedural aspects. The
combination of declarative and procedural aspects in one language (Prolog) is what makes
this language promising for the applications that are considered in this thesis: knowledge-
intensive interactive applications.

There are dozens of implementations of the Prolog language. Most concentrate on Pro-
log as a rule-based system and leave the interaction task to other programming environments.
This implies that an interactive application can only be built using a hybrid environment.
The required bridge between Prolog and the language used for the interactive aspects of the
application makes programming, and in particular prototyping of interactive applications,
complicated and can cause a significant performance degradation. In this thesis, we study
the requirements, design and implementation of an integrated Prolog-based environment that
can be used for developing knowledge-intensive interactive applications.

Building applications is important in this study. The primary goal of these applications
was not their architecture but, for example, tools to support knowledge-engineers with mod-
elling knowledge or explore how differently structured databases that contain collections
from different museums can be joined and searched together. The architecture of these appli-
cations was irrelevant to projects in which they were developed, but the search for adequate
building blocks for these applications forms the basis of this thesis. While developing these
applications we identified reusable components and added these to Prolog and its libraries. In
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subsequent implementations we tested these extensions and refined or, if necessary, replaced
them. Stable extensions have been described in scientific publications and are distributed as
Open Source. Feedback from the Open Source community provided suggestions for alterna-
tives or further refinement. In this study we particularly pay attention to the following three
problems:

• Knowledge representation
Although Prolog programs can be read as a declarative specification, the language is
limited. Many Prolog programs that are a correct declarative description of a problem
do not terminate or do not terminate within a reasonable time. In addition to the
termination and performance problem, logic-based languages are considered inferior
to frame-based languages (e.g., KL-ONE) for knowledge-representation that supports
interactive inspection and manipulation.

At the start of this century, the Semantic Web community proposed the RDF lan-
guage for knowledge-representation. This language provides a very simple data-
model: triples of the format {subject, predicate, value}. More expressive languages
such as RDFS and OWL are layered on top of this datamodel. The simple relational
model of RDF fits perfectly with Prolog and now forms the basis of our knowledge-
representation.

• Graphical applications
Most Prolog implementations do not provide graphics and use a bridge to a conven-
tional graphical environment. In our opinion this harms productivity too much, while
the declarative aspects of Prolog are useful for the description of interfaces and user-
interaction. Most graphical environments are structured as an object-oriented system.
We realised a generic bridge between Prolog and an external object-oriented system
and described the conditions to use this architecture with other object-oriented sys-
tems.

• Web applications
In the recent past the web developed from a web of documents to a web of interactive
applications. The use of knowledge in such applications is an active research topic.
The integration of museum data mentioned earlier is an example. Because RDF is
particularly suitable for integrating diverse knowledge-bases and RDF fits well with
Prolog, the use of Prolog for the knowledge-aspects of this research is promising.
If we embed Prolog in a traditional web-server and page-generation language (e.g.,
Apache with PHP), we loose many of Prolog’s advantages for fast interactive develop-
ment, i.e., we need a more ‘Prolog-friendly’ way to generate web-applications.

Our challenge is to extend Prolog and add libraries that make the language suitable for
building large and innovative applications entirely in Prolog. In this architecture, only well
understood primitives such as interfaces to the operating system, network and graphics are
written in other languages and made available as a Prolog library.
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Overview of this thesis Part I of this thesis describes extensions to Prolog and Prolog
libraries that allow for writing knowledge-intensive interactive applications entirely in Pro-
log. Were possible, we compare our components with approaches used for similar problems
in other (often Prolog) environments. Part II is a formative evaluation of these extensions:
the described case-studies show that the programming environment can support the applica-
tion, and at the same time both the development and evaluation of these applications have
contributed to the development or refinement of the extensions described in part I.

Part I Chapter 2 describes Triple20, a tool for browsing and limited editing of ontologies.
Triple20 is not part of Prolog and its libraries, which suggests it should not be in part I
of this thesis. Although Triple20 can be used as a Prolog library for RDF-based graphical
applications, the main reason to start this thesis with Triple20 is that this chapter describes
how knowledge is represented in the RDF model and how we can use the RDF triple model as
the foundation for an architecture to build interactive applications. This chapter describes an
extension of the model-view-controller reference model for interactive applications which is
necessary to bridge the large gap between the low-level knowledge-representation and the
interface efficiently. Concurrency (threads) is one of the necessary building blocks. The
design and implementation of Triple20 is based on requirements formulated by evaluating
the ‘MIA’ tools, described in chapter 9.

The remainder of part I describes extensions to Prolog and Prolog libraries that made,
for example, Triple20 possible: storage and query of RDF triples, creating execution plans
for complex queries on this data, connection to graphical libraries, concurrency and an in-
frastructure for building web-applications.

The RDF triple model fits perfectly on the relational model of Prolog. A triple-database
that is suitable for researching the aforementioned integration of museum collections con-
tains at least 10 million triples, must be accessible from multiple threads and allow for effi-
cient full-text search. RDF predicates are organised in one or more hierarchies, which must
be used for reasoning over integrated knowledge-bases. This type of entailment reasoning
must be supported with minimal overhead. The order in which individual RDF patterns are
matched to the knowledge-base is of utmost importance for executing compound search re-
quests (conjunctions). This optimisation problem, which can be compared to database ‘join’
optimisation, is the subject of chapter 4. It is based on metrics from the RDF database. Part
of the requirements on the RDF store are too specific to base the implementation on an opti-
mised version of the Prolog dynamic database. The implementation of the RDF store is the
subject of chapter 3.

Chapter 5 discusses the bridge between Prolog and graphical libraries. Almost all such
libraries are based on the object-oriented paradigm. First, we describe a compact interface to
manipulate objects from Prolog. New functionality in object-oriented systems is typically re-
alised by deriving new classes from the base-classes (sub-classing). This cannot be achieved
using the above mentioned simple interface, which would imply we still need to program
in both Prolog and the object-oriented language to realise an application. We can solve this
for most object-oriented systems by describing the class in Prolog and use this description
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to generate classes and wrappers that call the implementation in Prolog. The chapter con-
tinues with describing further integration of Prolog datatypes and non-determinism in the
object-oriented environment and concludes with a critical evaluation of this object system
for Prolog.

Chapter 6 discusses concurrency in Prolog. Traditionally, most research on concurrency
in Prolog aims at executing a single program using multiple CPUs. The declarative nature of
the language make people believe that Prolog is more suitable to automatic introduction of
concurrency than procedural languages. Still, this research did not convince many software
developers. We had more simple demands: background computations in graphical environ-
ments, scalability of web-servers and exploiting recent multi-core hardware for these tasks.
On this basis we created a simple model of cooperating Prolog engines, which has been
adopted by two other Prolog implementations and is the basis for standardisation within ISO

WG17. Chapter 6 describes the model, consequences for the Prolog implementation and two
performance evaluations.

Chapter 7 provides an overview of the developments that support web-applications. This
chapter gives a summary of the previous chapters about RDF and positions this material in
the wider context of web-applications. Parsing, representing and generating web-documents
is an important topic in this chapter. Where possible, we compare our approach to PiLLoW,
another infrastructure for web-programming in the Prolog community. We discuss a Prolog-
based web-server (HTTP), stressing code organisation and scalability aspects. Chapter 7 enu-
merates necessary features of a Prolog implementation for this type of applications: concur-
rency, unlimited atoms, atom garbage collection and support for the international UNICODE

character set.

Part II The second part discusses three applications that contributed to the development
and evaluation of the infrastructure described in the first part.

The first application (PlDoc, chapter 8) is also part of the SWI-Prolog infrastructure.
PlDoc is an environment for literate programming in Prolog. Its embedded web-server pro-
vides an interactive environment to consult and improve the documentation. PlDoc is part of
the development environment that is necessary to create a productive programming environ-
ment. Building the development tools has contributed significantly to testing and refinement
of the infrastructure, notably for graphical applications.

Chapter 9 describes two experiments using a prototype tool for annotation and search
of multimedia collections supported by background knowledge. This chapter also describes
the software architecture, which is based on XPCE (chapter 5). Apart from XPCE, the in-
frastructure described in part I did not yet exist. This was our first tool which used RDF

for exchanging knowledge and where the RDF model was central to the design of the tool.
This chapter was included for three reasons: description of the application context, stress
that tool-development and —in this case— research to the role of knowledge in annotations
are closely integrated and formulate requirements for the next generation of infrastructure
and tools. This work lead to the development of Triple20 and a scalable RDF store. It also
provided an additional motivation to introduce concurrency in Prolog.
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Part II of this thesis concludes with chapter 10 which describes the semantic search and
annotation toolkit called ClioPatria. This chapter motivates the architecture of ClioPatria,
which uses all technology described in part I.6 The use-case for ClioPatria is the development
of a prototype application that makes descriptions of works of art from museums, together
with available background information such as databases on artists, art vocabulary and ge-
ographical information, searchable. One of the challenges is the diversity in data formats,
schemas and terminology used by the museums. The structure of the integrated knowledge
is so complex that structured queries (e.g., SQL queries) cannot be realistically formulated.
We made this data searchable by exploring the RDF graph based on semantic distance, af-
ter which we cluster the results based on the semantic relation between search-term and the
works of art found. ClioPatria provides a modern web-based interactive interface based on
AJAX technology and Yahoo! (YUI). The server is a Prolog web-server that provides all
services.

Discussion The assumption in this thesis is that logic programming, and particularly Pro-
log, is suitable for the development of knowledge-intensive interactive software. The intro-
duction of RDF and RDF-based knowledge-representation languages has contributed to the
credibility of Prolog in this domain. Some properties of RDF models, such as their scale
and required inferences, make a pure Prolog implementation less suitable. However, RDF

models can be implemented as a library in another language (e.g., C), which acts as a nat-
ural extension to Prolog. The web has a large influence on the architecture of applications.
Prolog is, extended with suitable libraries, an adequate language for web-applications.

Next to further standardisation of the Prolog language, it is of vital importance that the
Prolog community establishes standards for representing and generation of (web-)documents
in XML and HTML. Such standards are needed to share resources for web-applications within
the Prolog community. The RDF model can play this role for knowledge-representation
because accessing the RDF model from Prolog leaves few options.

This thesis is a direct consequence of how the SWI department (now called HCS) has in-
tegrated software development with research, providing room for the software developers to
establish their own research agenda: software architecture. This approach has clear advan-
tages: (1) it provides an opportunity for scientifically motivated software developers to carry
out research into software architecture in the context of a concrete requirement for an appli-
cation and (2) development of the target application is based on direct involvement. Direct
involvement supports a short development and evaluation cycle, which is a fruitful process
model for a large class of applications. This certainly applies to academic demonstrators.

With SWI-Prolog we realised a productive environment for our own research. Wide ac-
ceptance of the Open Source philosophy has contributed to the popularity of SWI-Prolog,
through which we helped spreading the logic programming paradigm in academic and com-
mercial environments. At the same time, this user community motivates us and feeds us with
problems and solutions.

6The graphical interface is only used as part of the Prolog development environment.
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Samenvatting

Logisch programmeren gaat over het gebruik van mathematische logica voor het program-
meren van een computer. In haar pure zin betekent dit volledig ontkoppelen van de declara-
tieve beschrijving van de oplossing en de oplostaak, het procedurele aspect. Bij gebrek aan
efficiënte oplosstrategieën voor expressieve logicas en de moeilijkheid om inherent proce-
durele aspecten te beschrijven heeft deze pure vorm slechts een beperkt toepassingsgebied.

Een belangrijke stap naar een practisch bruikbare taal voor logisch programeren was de
uitvinding van de programmeertaal Prolog. Deze taal is gebaseerd op een vereenvoudigde lo-
gica (Horn clauses) en een eenvoudige bewijsstrategie (SLD resolution). Prolog programmas
kunnen gelezen worden als een declaratieve beschrijving van de oplossing en tegelijkertijd
als een procedurele strategie om deze oplossing af te leiden. Met andere woorden, Prolog is
in staat zowel kennis als procedures te beschrijven. Met name de beschrijving van interactie
heeft procedurele aspecten. Deze combinatie in één programmeertaal (Prolog) maakt deze
taal veelbelovend voor het type applicaties dat in dit proefschrift behandeld wordt: kennis-
intensieve interactieve applicaties.

Er bestaan enkele tientallen implementaties van de taal Prolog. Vrijwel allemaal con-
centreren deze zich op Prolog als regelgebaseerd systeem en laten zij interactie over aan
andere programmeeromgevingen. Dit impliceert dat voor het bouwen van interactieve ap-
plicaties een hybride omgeving gebruikt moet worden. De noodzakelijke brug tussen Prolog
en de taal die voor de interactieve aspecten gebruikt wordt maakt programmeren, en met na-
me prototyping van interactieve applicaties, ingewikkeld en kan daarnaast zorgen voor een
significant verlies aan performance. Dit proefschrift gaat over de vraag hoe een op Prolog
gebaseerde infrastructuur er moet uitzien om kennisintensieve interactieve applicaties in een
zoveel mogelijk geı̈ntegreerde omgeving te kunnen schrijven.

Om deze vraag te beantwoorden zijn een aantal applicaties gebouwd. Het primaire doel
van deze applicaties was niet hun architectuur, maar bijvoorbeeld onderzoek naar middelen
om kennistechnologen te ondersteunen in het modelleren van kennis of onderzoeken hoe
verschillende bestanden over museum collecties met elkaar geı̈ntegreerd en doorzoekbaar
gemaakt kunnen worden. De architectuur van deze applicaties was een secundaire doelstel-
ling in de projecten waarvoor ze zijn gebouwd, maar de zoektocht naar de bouwstenen van
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een geschikte architectuur staat aan de basis van dit proefschrift. Tijdens de bouw van deze
applicaties zijn naar behoefte herbruikbare uitbreidingen aan Prolog en zijn bibliotheken ge-
maakt. In opvolgende applicaties zijn deze uitbreidingen getest en daarna verfijnd of, indien
nodig, vervangen. Stabiele uitbreidingen zijn beschreven in wetenschappelijke publicaties
en gepubliceerd als Open Source. Terugkoppeling vanuit de Open Source gemeenschap le-
vert suggesties op voor alternatieven of verdere verfijning. In deze studie besteden we in het
bijzonder aandacht aan de volgende drie probleemgebieden:

• Kennisrepresentatie
Hoewel Prolog een declaratieve lezing kent, heeft de taal een aantal beperkingen.
Veel Prolog programmas die een correcte declaratieve representatie van het probleem
zijn termineren niet of niet binnen een redelijke tijd. Frame geörienteerde talen (b.v.,
KL-ONE) voorzien in een vorm van kennisrepresentatie die beter geschikt is voor in-
teractieve inspectie en manipulatie dan op logica gebaseerde talen.

Begin deze eeuw is de semantische web gemeenschap gekomen met de kennisrepre-
sentatietaal RDF. Deze taal heeft een zeer eenvoudig datamodel, bestaande uit triples
van de vorm {onderwerp, predikaat, waarde}. Daarbovenop zijn een aantal meer ex-
pressieve talen gedefiniëerd: RDFS en diverse dialecten van OWL. Het eenvoudige
relationele model van RDF past uitstekend op Prolog en vormt sindsdien de kern van
onze kennisrepresentatie.

• Grafische toepassingen
Veel Prolog systemen hebben geen voorzieningen voor grafische toepassingen en ge-
bruiken een brug naar een conventionele grafische omgeving. Wij zijn van mening dat
dit de productiviteit te veel schaadt, terwijl gebruik van de declaratieve aspecten van
Prolog die ook zinvol zijn voor het beschrijven van interfaces en gebruikerinteracties
bemoeilijkt wordt. Grafische omgevingen zijn doorgaans gestructureerd als object-
georiënteerde systemen. Daarom hebben wij een uniforme koppeling met een extern
object-georiënteerde systeem gerealiseerd en beschreven onder welke voorwaarden
dezelfde architectuur voor andere object-georiënteerde systemen gebruikt kan wor-
den.

• Web-applicaties
In de afgelopen jaren heeft het web zich ontwikkeld van een web van documenten naar
een web met interactieve applicaties. Er is onderzoek gaande hoe dit soort applicaties
door toevoegen van kennis bruikbaarder gemaakt kunnen worden. Bovengenoemde
integratie van museum bestanden is een voorbeeld. Mede doordat de voornoemde taal
RDF bij uitstek geschikt is voor het integreren van diverse zeer verschillende kennis-
bestanden is het gebruik van Prolog voor de kennisaspecten van dit onderzoek een
voor de hand liggende keuze. Als we Prolog echter inbedden in een architectuur die
gebaseerd is op een traditionele webserver en pagina generatietaal (b.v., Apache met
PHP) gaan veel van de voordelen voor snelle interactieve ontwikkeling verloren. Er is
behoefte aan een meer ‘Prolog-gezinde’ manier om web-applicaties te maken.
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Het is onze uitdaging om Prolog zodanig uit te breiden en van dusdanige bibliotheken
te voorzien dat de taal geschikt is om grote en innovatieve applicaties geheel in Prolog te
bouwen. In deze opzet worden alleen welbegrepen primitieven en benodigde interfaces naar
besturingssysteem, netwerk en grafische primitieven in andere talen geschreven en als bibli-
otheek voor Prolog beschikbaar gesteld.

Overzicht van dit proefschrift Deel I van die proefschrift beschrijft uitbreidingen aan
Prolog en bibliotheken voor Prolog die het mogelijk maken kennisintensieve interactieve
applicaties geheel in Prolog te schrijven. Deze componenten worden waar mogelijk vergele-
ken met de aanpak voor soortgelijke problemen in andere (doorgaans Prolog) omgevingen.
Deel II vormt een formatieve evaluatie van deze uitbreidingen: de beschreven cases tonen
aan dat de gemaakte programmeeromgeving in staat is dit soort applicaties te ondersteunen,
maar tegelijkertijd hebben zowel de bouw als de evaluatie van deze systemen geleid tot de
ontwikkeling of verfijning van de uitbreidingen beschreven in deel I.

Deel I Hoofdstuk 2 beschrijft Triple20, een tool om ontologieën te browsen en beperkt te
wijzigen. In strikte zin is Triple20 geen bouwsteen voor Prolog en hoort het dus niet thuis in
deel I van dit proefschrift. Triple20 kan gebruikt worden als een bibliotheek, maar de voor-
naamste reden om dit systeem eerst te behandelen is dat dit hoofdstuk een goed inzicht heeft
in de rol van kennis opgeslagen in het primitieve RDF model en hoe deze kennis gebruikt kan
worden als fundament voor de architectuur van een interactieve applicatie. Het hoofdstuk
behandelt een uitbreiding van het model-view-controller referentiemodel voor interactieve
applicaties dat nodig is om de grote afstand in representatie tussen de kennisopslag en de in-
terface efficiënt te overbruggen. Concurrency (threads; meerdere draden van executie) is hier
een van de noodzakelijke bouwstenen. Triple20 vloeit voort uit de ‘MIA’ tools, beschreven
in hoofdstuk 9.

De rest van deel I beschrijft de gerealiseerde uitbreiden aan Prolog en Prolog bibliothe-
ken om ondermeer Triple20 mogelijk te maken. Het opslaan en opvragen van RDF triples,
planning van complexe queries op deze database, koppelen van grafische bibliotheken, con-
currency en infrastructuur voor het bouwen van web applicaties.

Het RDF triple model past naadloos op het relationele model van Prolog. Een triple da-
tabase om onderzoek te doen naar eerder genoemde integratie van museum collecties dient
minstens 10 miljoen triples kunnen bevatten, gelijktijdig vanuit meerdere threads gelezen
kunnen worden en efficiënt kunnen zoeken naar tekst waarin sleutelwoorden voorkomen.
RDF predikaten zijn geörganiseerd in een of meerdere hierarchieën welke in acht genomen
dienen te worden om te kunnen redeneren over geı̈ntegreerde bestanden. Dit type entail-
ment reasoning dient ondersteund te worden met minimale overhead. Bij samengestelde
zoekopdrachten (conjuncties) is de volgorde waarin de individuele RDF patronen vergeleken
worden met de database van groot belang (vgl., database ‘join’ optimalisatie). Dit optima-
lisatieprobleem is het onderwerp van hoofdstuk 4 en is gebaseerd op metrieken van de RDF

database. Een deel van bovengenoemde eisen is te specifiek om door de standaard Prolog dy-
namische database met maximale efficiëntie te kunnen worden opgevangen. De uiteindelijke



236 SAMENVATTING

implementatie van de RDF database is onderwerp van hoofdstuk 3.
Hoofdstuk 5 gaat in op het koppelen van Prolog aan grafische bibliotheken. Zulke bibli-

otheken maken vrijwel zonder uitzondering gebruik van het object geörienteerde paradigma.
Dit hoofdstuk behandelt eerst een compacte interface die het mogelijk maakt objecten vanuit
Prolog te manipuleren. Binnen object geörienteerde omgevingen wordt nieuwe functionali-
teit vaak gecreëerd door middel van afgeleide klassen. Bovenstaande interface geeft ons daar
geen toegang toe vanuit Prolog, hetgeen zou betekenen dat het ontwikkelen van een grafisch
programma in twee talen moet gebeuren: Prolog en de object taal om nieuwe klassen te ma-
ken. Dit schaadt de gewenste transparante ontwikkeling vanuit Prolog. Dit kan voor vrijwel
alle object systemen opgelost worden door de nieuwe klasse in Prolog te beschrijven, waar-
bij de klasse declaraties gebruikt worden om een klasse binnen het object systeem te creëren
en wrappers te genereren die de implementatie aanroepen binnen Prolog. Dit hoofdstuk ver-
volgt met integratie van Prolog data en non-determinisme in het object systeem en eindigt
met een kritische evaluatie van dit object systeem voor Prolog.

Hoofdstuk 6 is een zijsprong naar concurrency binnen Prolog. Traditioneel is onderzoek
naar concurrency binnen Prolog veelal gericht op hoe een enkel programma geschreven in
Prolog door meerdere CPUs uitgevoerd kan worden. De declaratieve interpretatie van de taal
geeft aanleiding te verwachten dat dit beter gaat dan met meer procedurele talen. Helaas
heeft dit werk niet veel ontwikkelaars overtuigd. Onze eisen zijn meer bescheiden: achter-
grond berekeningen in grafische omgevingen, schaalbaarheid van web-servers en benutten
van recente multi-core hardware. Op deze basis is een eenvoudig model van samenwerkende
Prolog machines bedacht dat inmiddels door twee andere Prolog implementaties is overge-
nomen en de basis is voor standaardisatie binnen ISO WG17. Hoofdstuk 6 beschrijft het
model, de consequenties voor de implementatie van Prolog en twee performance evaluaties.

Hoofdstuk 7 geeft een overzicht van wat er binnen SWI-Prolog is gebeurd om het ma-
ken van web-applicaties mogelijk te maken. Dit hoofdstuk geeft een samenvatting van de
voorgaande hoofdstukken over RDF en plaatst dit materiaal in het bredere kader van web
applicaties. Speciale aandacht gaat uit naar het parseren en representeren van web docu-
menten (HTML, XML) en het genereren van zulke documenten vanuit Prolog. Waar moge-
lijk wordt onze infrastructuur vergeleken met PiLLoW, een andere infrastructuur voor web-
programeren binnen de Prolog gemeenschap. Ook wordt aandacht besteed aan web-servers
(HTTP), waarbij met name code organisatie en schaalbaarheidsaspecten aan de orde komen.
Hoofdstuk 7 benadrukt een aantal features die niet aan Prolog mogen ontbreken voor dit
type applicaties: concurrency, geen limieten aan atomen, garbage collection van atomen en
ondersteuning van de internationale UNICODE tekenset.

Deel II In het tweede deel worden een drietal applicaties besproken die hebben bijgedragen
aan de ontwikkeling en evaluatie van de infrastructuur beschreven in deel I.

De eerste applicatie (PlDoc, hoofdstuk 8) is tegelijkertijd ook een deel van de SWI-Prolog
infrastructuur. PlDoc is een omgeving voor literate programming in Prolog die, dankzij de
embedded web-server, een interactieve omgeving biedt om documentatie te raadplegen en te
verbeteren. PlDoc is onderdeel van de SWI-Prolog ontwikkeltools die noodzakelijk zijn voor
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de productiviteit van de programmeeromgeving. Het bouwen van veel van deze tools heeft
ook bijgedragen aan het testen en verfijnen van de infrastructuur, men name voor grafische
applicaties.

Hoofdstuk 9 beschrijft experimenten met en de software architectuur van een prototype
tool om annotatie en zoeken van multimediale bestanden met behulp van achtergrond kennis
te bestuderen. Behalve XPCE (hoofdstuk 5) voor de grafische aspecten gebruikt dit prototype
niets van de in deel I beschreven infrastructuur. Dit was de eerste tool waar RDF gebruikt
werd om kennis uit te wisselen en waar het RDF datamodel tot in het design van de tool was
doorgevoerd. In dit tool werd RDF opgeslagen in de Prolog dynamische database. Opname
van dit hoofdstuk dient drie doelen: beschrijving van de applicatiecontext waarin tools wor-
den ontwikkeld, benadrukken dat tool ontwikkeling en—in dit geval—onderzoek naar de rol
van kennis in annotaties nauw geı̈ntegreerd zijn en tot slot het formuleren van eisen voor
de volgende generatie infrastructuur en tools. Dit werk vormde de directe aanleiding tot de
ontwikkeling van Triple20 en een schaalbare RDF database, alsmede een extra motivatie om
concurrency te introduceren.

Hoofdstuk 10 sluit deel II van dit proefschrift af met een beschrijving van de semantische
zoek en annotatie toolkit ClioPatria. In dit hoofdstuk wordt de architectuur van ClioPatria,
waarin alle technologie uit deel I samen komt7 gemotiveerd vanuit een use case. De use case
is het bouwen van een prototype applicatie om beschrijvingen van kunstwerken die musea
hebben samen met beschikbare achtergrondinformatie zoals diverse databases van kunste-
naars, kunsttermen en geografische informatie doorzoekbaar te maken. De grote diversiteit
in dataformaten, dataschemas en teminologie die te vinden is in de diverse musea is een
van de uitdagingen. Een andere belangrijke uitdaging is om geschikete methoden te vinden
om deze data te doorzoeken. De struktuur van de geı̈ntegreerde data is zo divers dat ge-
structureerde vragen (vgl., SQL queries) vrijwel niet te formuleren zijn. Om deze data toch
doorzoekbaar te maken hebben we een algoritme ontwikkeld dat de data exploreert op ba-
sis van semantische afstand en de resultaten groepeert naar de semantische relatie tussen de
zoekterm en het gevonden kunstwerk. ClioPatria biedt een moderne web-gebaseerde inter-
actieve interface gebaseerd op AJAX technologie van Yahoo! (YUI). De server is een Prolog
web-server die alle services verzorgt.

Discussie De assumptie van dit proefschrift is dat logisch programmeren, en specifiek Pro-
log, geschikt is voor het maken van kennisintensieve en interactieve software. De opkomst
van RDF en daarop gebouwde kennisrepresentatietalen heeft de bruikbaarheid van Prolog
geloofwaardiger gemaakt. Eigenschappen van RDF modellen, zoals schaal en gewenste in-
ferenties, maken een implementatie in puur Prolog minder geschikt, maar implementatie
als bibliotheek in een andere taal (C) kan dienen als een natuurlijke uitbreiding van Pro-
log. De opkomst van het web heeft grote invloed op de architectuur van applicaties en past,
mits voorzien van de benodigde web-bibliotheken, uitstekend binnen het domein waarvoor
Prolog geschikt is.

7De grafische interface wordt alleen gebruikt als onderdeel van de Prolog ontwikkelomgeving.
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Naast verdere standaardisatie van Prolog is het mogelijk van nog groter belang dat de
Prolog gemeenschap standaarden vaststelt voor het representeren en genereren van (web-
)documenten in XML en HTML. Alleen met zulke standaarden wordt het mogelijk resources
voor het maken van web applicaties binnen de gemeenschap te delen. RDF kan deze rol van
nature op zich nemen voor de kenniskant omdat de manier waarop het RDF datamodel aan
Prolog gekoppeld dient te worden niet veel keuzes laat.

Dit proefschrift is een direct gevolg van de werkwijze t.a.v. software ontwikkeling bin-
nen de vakgroep SWI (nu HCS), waar software ontwikkeling voor onderzoek uitgevoerd
wordt door ontwikkelaars met een eigen onderzoeksdoelstelling: software architectuur. De-
ze werkwijze heeft duidelijke voordelen: (1) het biedt de mogelijkheid om wetenschappelijk
geı̈nteresseerde software ontwikkelaars te voorzien van uitdagingen op architectuur niveau
in het kader van een concrete vraag naar een applicatie en (2) ontwikkeling van de applicatie
die het oorspronkelijke onderzoeksdoel dient gebeurt vanuit een zeer directe betrokkenheid.
Korte lijnen en een korte ontwikkel- en evaluatiecyclus is voor een grote klasse van softwa-
reproducten een productieve werkwijze. Dit geldt zeker voor academische demonstrators.

Met SWI-Prolog hebben we een productieve omgeving gerealiseerd voor ons onderzoek.
Daarnaast hebben we, dankzij de brede acceptatie van de Open Source gedachte en getuige
de populariteit van SWI-Prolog, een bijdrage kunnen leveren aan het verspreiden van het
gedachtengoed van logisch programmeren in een veel grotere kring van academische en
commerciële gebruikers. Tegelijkertijd blijft deze gebruikersgemeenschap ons motiveren en
van problemen en oplossingen voorzien.
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