
Microsoft C#
Presentation

Team Members:
Jon Limpalair, David Rak, Casey Long

Relevant Paradigm and
Problem Domains

Paradigms:
*Imperative, Object Oriented, Event-Driven,

Type-Safe, Generic, Reflective
*Includes Functional programming abilities

>Library that adds Lambda expressions, extension methods, and anonymous types.

>Implemented type safety, garbage collection, and exception handling

*Used for Rapid Program Development
>Largely used for 'General' Programming and applications, though has implementation to

help with database management, XML parsing, searching, and more.
>.NET integration hinders it's portable, making it a Windows only solution, though.
>Heavy emphasis on actual programming logic and readability over repetitive boilerplate

code.

Context and Evolution

*Lead Designer: Anders Hejlsberg
>Anders was the lead designer of TurboPascal and Delphi
>Created .Net from C#, giving Microsoft a Virtual Machine implementation
>Starter a project called "Cool" (C-Like Object Oriented Language)
>"Cool" later became C#

*Aimed to create a first class modern
language for the "Curly-Brace Crowd"
>"Curly-Brace Crowd" = C++ and Java devs- largest "General Applications" programmers

*Obvious heavy influences from Java and
C++
>Less obvious influences from Delphi 5- of which C#'s principle designer also designed
>Since it's conception, Java and C# have greatly influenced one another's development

How It Evolved-
Where it is today

*Gained LINQ in 2007
>LINQ allowed for more functional-style programming

*Has gone through 5 major revisions
>Currently on C# 5.0, which is backwards compatible with all previous versions
>2.0 added generics, iterators, 3.0 added Lambda expressions, typed local variables,

4.0 added dynamic binding, 5.0 added asynchronous methods

*Gained popularity from XNA
>XNA is Microsoft Toolkit for Game Development made in 2004
>XNA gained mass popularity after Xbox 360's Xbox Live Arcade gave independent

developers a chance to release their games for profit easily

*In 2004, signed deal with Novel for Mono
>Mono is open source compiler for C# implementation.
>If the code is 'clean' of Windows only code, the C# can be compiled for GNU/Linux

Language Concepts

*Designed to be closest to Microsofts CLI
>Common Language Infrastructure (CLI) is an open specification by Microsoft

*Has no global variables/functions
>Can be substituted with Static members, however

*Syntactically similar to Java
>Not entirely identical, but close enough to transfer simple code between one to another

*Supports Operator Overloading
*Supports Inheritance

>Multiple inheritance not supported, but multiple interfaces are

*Supports libraries, methods, classes, etc.

Language Concepts

*Unified Type System
>Called Common Type System (CTS)

>All types, even primitives, use System.Object
>For example, this means all types inherit ToString()

*Supports generics
>Both syntactically and functionally identical to Java generics

*Implements "Boxing" and "Unboxing"
>Boxing is converting value-type object to generic object
>Unboxing is converting through explicit type casting a 'boxed' variable back
>int testingVar = 3001;
>object testingObj = testingVar;
>int testingVar2 = (int)testingObj;

Language Features

*XML based documentation system
>Generates documentation based on code, much like Javadoc

*Memory Address Pointer security
>C# does not use a virtual machine
>Memory pointers can only be used within 'unsafe' code blocks and need special

permission to be run
>CANNOT reference garbaged collected block or random memory block

*Supports the 'type' "Dynamic"
>Dynamic Language Runtime determines a type at runtime

*Garbage Collection
>Memory cannot be explicitly freed- it must instead be garbage collected

Usage Example (LINQ example)
using System;
using System.Linq;
namespace Kodecsharp.Example.Linq
{ class LinqIntro {
 [STAThread]
 public static void Main(string[] args)
 { int[] numbers = new int[10] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 var evenNumbers = from number in numbers where (number % 2) == 0 select number;
 Console.WriteLine("Even numbers: ");
 foreach (int number in evenNumbers)
 {Console.Write(number + " ");}
 var oddNumbers from number in numbers where (number % 2) != 0 select number;
 Console.WriteLine("");
 Console.WriteLine("Odd numbers: ");
 foreach (int number in oddNumbers)
 {
 Console.Write(number + " ");
 }
 }
 }
}

Prints out:
Even numbers:
2 4 6 8 10
Odd numbers:
1 3 5 7 9

Language Comparisons

*C# and Java
>Syntactically very similar to Java, although C# includes more robust tools

>C# does not naturally use a Virtual Machine (C# is not necessarily .NET)
>Java includes virtual methods, which C# does not have
>C# handles Generics much better than Java
>C# is generally faster than Java and generally uses less code. Does not rely on JITC.

*C# and VB.NET
>VB.NET doesn't rely on curly brackets or semi-colon

>VB.NET is much less robust than C#
>VB.NET compiles projects in the background (advantagous for small projects only)
>VB.NET has no document generator from code comments

