18.2 \[T \]

\{ \text{Precondition} \} \rightarrow \{ \text{Postcondition} \}

If the precondition holds at the beginning of the program, then the postcondition holds at the end of the program. This computes the product of \(x \) and \(y \) \((x \# y)\) by repeated sums.
\{ y \geq 20 \} \implies z = 0 \quad \text{or} \quad \{ z = x + y \}$$

(a) Why is \(\{ y \geq 20 \land 0 = x \cdot (y-y) \} \) is equivalent to \(\{ y \geq 20 \} \)?

\[\text{true, because any number multiplying by } \phi \text{ is } \phi \text{ and } y-y \text{ is zero for any value } y. \]

The condition \(\{ y \geq 20 \land 0 = x \cdot (y-y) \} \) may replace \(\{ y \geq 20 \} \) by precondition strengthening (precondition consequence rule).
(b) \[y \geq 20 \land o = x / (y - y) \]
assignment rule
\[z = 0 ; \]
sequence rule
\[n = y ; \]
\[y \geq 20 \land z = x \ (y - n) \land n \geq 20 \]

(c) \[t(\delta) \]

Let \(y, n, z, x \) stand for their respective values before the execution of the loop body.
Let \(y', n', z', x' \) stand for the values of \(y, n, z, x \) after execution of the loop body.

So: \(y' = y \), \(z' = z + x \), \(n' = n - 1 \), \(x' = x \)
In short, you need to show

\[A \cap T \Rightarrow T \]

\[
\begin{align*}
\{ \gamma \geq 0 \land n \geq 0 \land z = x(y - n) \land n \geq 0 \} & \Rightarrow \\
\{ \gamma' \geq 0 \land n' \geq 0 \land z' = x'(y' - n') \} & \Rightarrow \\
\gamma > 0 & \land n - 1 \geq 0 \equiv n \geq 1 \equiv (b/c \ n \ is \ integer) \equiv n \geq 0 \\
\gamma > 0 & \\
0.1 & \equiv x(y - n + 1) = x(y - n) + x.1
\end{align*}
\]

\[z = x(y - n) \]
(e) In short, $I \wedge \neg T \Rightarrow Post$

\[\{ y \geq 0 \land n \geq 0 \land z = x(y-n) \land \neg (n > 0) \} \Rightarrow z = x \# y \]

\[n = 0 \]

\[z = x(y-0) \Rightarrow z = x \# y \]