
University of Amsterdam
Human-Computer Studies (HCS, formerly

SWI)
Kruislaan 419, 1098 VA Amsterdam

The Netherlands
Tel. (+31) 20 8884671

SWI-Prolog 5.6
Reference Manual

Updated for version 5.6.19, September 2006

Jan Wielemaker
wielemak@science.uva.nl

http://www.swi-prolog.org

SWI-Prolog is a Prolog implementation based on a subset of the WAM (Warren Ab-
stract Machine). SWI-Prolog was developed as an open Prolog environment, providing
a powerful and bi-directional interface to C in an era this was unknown to other Prolog
implementations. This environment is required to deal with XPCE, an object-oriented
GUI system developed at SWI. XPCE is used at SWI for the development of knowledge-
intensive graphical applications.

As SWI-Prolog became more popular, a large user-community provided requirements
that guided its development. Compatibility, portability, scalability, stability and provid-
ing a powerful development environment have been the most important requirements.
Edinburgh, Quintus, SICStus and the ISO-standard guide the development of the SWI-
Prolog primitives.

This document gives an overview of the features, system limits and built-in predicates.

Copyright c© 1990–2006, University of Amsterdam

Contents

SWI-Prolog 5.6 Reference Manual

Introduction 1
1.1 SWI-Prolog

SWI-Prolog started back in 1986 with the requirement for a Prolog that could handle recursive inter-
action with the C-language: Prolog calling C and C calling Prolog recursively. Those days Prolog
systems were very aware of its environment and we needed such a system to support interactive
applications. Since then, SWI-Prolog’s development has been guided by requests from the user com-
munity, especially focussing on (in arbitrary order) interaction with the environment, scalability, (I/O)
performance, standard compliance, teaching and the program development environment.

SWI-Prolog is based on a very restricted form of the WAM (Warren Abstract Machine) described
in [Bowen & Byrd, 1983] which defines only 7 instructions. Prolog can easily be compiled into this
language and the abstract machine code is easily decompiled back into Prolog. As it is also possible
to wire a standard 4-port debugger in the WAM interpreter there is no need for a distinction between
compiled and interpreted code. Besides simplifying the design of the Prolog system itself this ap-
proach has advantages for program development: the compiler is simple and fast, the user does not
have to decide in advance whether debugging is required and the system only runs slightly slower
when in debug mode. The price we have to pay is some performance degradation (taking out the
debugger from the WAM interpreter improves performance by about 20%) and somewhat additional
memory usage to help the decompiler and debugger.

SWI-Prolog extends the minimal set of instructions described in [Bowen & Byrd, 1983] to im-
prove performance. While extending this set care has been taken to maintain the advantages of de-
compilation and tracing of compiled code. The extensions include specialised instructions for unifi-
cation, predicate invocation, some frequently used built-in predicates, arithmetic, and control (;/2,
|/2), if-then (->/2) and negation-by-failure (\+/1).

1.1.1 Books about Prolog

This manual does not describe the full syntax and semantics of Prolog, nor how one should write a pro-
gram in Prolog. These subjects have been described extensively in the literature. See [Bratko, 1986],
[Sterling & Shapiro, 1986], and [Clocksin & Melish, 1987]. For more advanced Prolog material see
[O’Keefe, 1990]. Syntax and standard operator declarations confirm to the ‘Edinburgh standard’.
Most built in predicates are compatible with those described in [Clocksin & Melish, 1987]. SWI-
Prolog also offers a number of primitive predicates compatible with Quintus Prolog1 [Qui, 1997] and
BIM Prolog2 [BIM, 1989].

ISO compliant predicates are based on “Prolog: The Standard”, [Deransart et al., 1996], validated
using [Hodgson, 1998].

1Quintus is a trademark of Quintus Computer Systems Inc., USA
2BIM is a trademark of BIM sa/nv., Belgium

SWI-Prolog 5.6 Reference Manual

4 CHAPTER 1. INTRODUCTION

1.2 Status

This manual describes version 5.6 of SWI-Prolog. SWI-Prolog has been used now for many years.
The application range includes Prolog course material, meta-interpreters, simulation of parallel Pro-
log, learning systems, natural language processing, complex interactive systems, web-server and web-
server components. Although we experienced rather obvious and critical bugs can remain unnoticed
for a remarkable long period, we assume the basic Prolog system is fairly stable. Bugs can be expected
in infrequently used built-in predicates.

Some bugs are known to the author. They are described as footnotes in this manual.

1.3 Compliance to the ISO standard

SWI-Prolog 3.3.0 implements all predicates described in “Prolog: The Standard”
[Deransart et al., 1996].

Exceptions and warning are still weak. Some SWI-Prolog predicates silently fail on conditions
where the ISO specification requires an exception (functor/3 for example). Some predicates print
warnings rather than raising an exception. All predicates where exceptions may be caused due to a
correct program operating in an imperfect world (I/O, arithmetic, resource overflows) should behave
according to the ISO standard. In other words: SWI-Prolog should be able to execute any program
conforming to [Deransart et al., 1996] that does not rely on exceptions generated by errors in the
program.

1.4 Should you be using SWI-Prolog?

There are a number of reasons why you better choose a commercial Prolog system, or another aca-
demic product:

• SWI-Prolog is not supported
Although I usually fix bugs shortly after a bug report arrives, I cannot promise anything. Now
that the sources are provided, you can always dig into them yourself.

• Memory requirements and performance are your first concerns
A number of commercial compilers are more keen on memory and performance than SWI-
Prolog. I do not wish to sacrifice some of the nice features of the system, nor its portability to
compete on raw performance.

• You need features not offered by SWI-Prolog
In this case you may wish to give me suggestions for extensions. If you have great plans, please
contact me (you might have to implement them yourself however).

On the other hand, SWI-Prolog offers some nice facilities:

• Nice environment
This includes ‘Do What I Mean’, automatic completion of atom names, history mechanism and
a tracer that operates on single key-strokes. Interfaces to some standard editors are provided
(and can be extended), as well as a facility to maintain programs (see make/0).

SWI-Prolog 5.6 Reference Manual

1.5. THE XPCE GUI SYSTEM FOR PROLOG 5

• Very fast compiler
Even very large applications can be loaded in seconds on most machines. If this is not enough,
there is a Quick Load Format that is slightly more compact and loading is almost always I/O
bound.

• Transparent compiled code
SWI-Prolog compiled code can be treated just as interpreted code: you can list it, trace it, etc.
This implies you do not have to decide beforehand whether a module should be loaded for
debugging or not. Also, performance is much better than the performance of most interpreters.

• Profiling
SWI-Prolog offers tools for performance analysis, which can be very useful to optimise pro-
grams. Unless you are very familiar with Prolog and Prolog performance considerations this
might be more helpful than a better compiler without these facilities.

• Flexibility
SWI-Prolog can easily be integrated with C, supporting non-determinism in Prolog calling C
as well as C calling Prolog (see section 9). It can also be embedded embedded in external
programs (see section 9.7). System predicates can be redefined locally to provide compatibility
with other Prolog systems.

• Integration with XPCE
SWI-Prolog offers a tight integration to the Object Oriented Package for User Interface De-
velopment, called XPCE [Anjewierden & Wielemaker, 1989]. XPCE allows you to implement
graphical user interfaces that are source-code compatible over Unix/X11, Win32 (Windows
95/98/ME and NT/2000/XP) and MacOS X (darwin).

1.5 The XPCE GUI system for Prolog

The XPCE GUI system for dynamically typed languages has been with SWI-Prolog for a long time.
It is developed by Anjo Anjewierden and Jan Wielemaker from the department of SWI, University of
Amsterdam. It aims at a high-productive development environment for graphical applications based
on Prolog.

Object oriented technology has proven to be a suitable model for implementing GUIs, which
typically deal with things Prolog is not very good at: event-driven control and global state. With
XPCE, we designed a system that has similar characteristics that make Prolog such a powerful tool:
dynamic typing, meta-programming and dynamic modification of the running system.

XPCE is an object-system written in the C-language. It provides for the implementation of meth-
ods in multiple languages. New XPCE classes may be defined from Prolog using a simple, natural
syntax. The body of the method is executed by Prolog itself, providing a natural interface between the
two systems. Below is a very simple class definition.

:- pce_begin_class(prolog_lister, frame,
"List Prolog predicates").

initialise(Self) :->
"As the C++ constructor"::
send_super(Self, initialise, ’Prolog Lister’),

SWI-Prolog 5.6 Reference Manual

6 CHAPTER 1. INTRODUCTION

send(Self, append, new(D, dialog)),
send(D, append,

text_item(predicate, message(Self, list, @arg1))),
send(new(view), below, D).

list(Self, From:name) :->
"List predicates from specification"::
(catch(term_to_atom(Term, From), _, fail)
-> get(Self, member, view, V),

current_output(Old),
pce_open(V, write, Fd),
set_output(Fd),
listing(Term),
close(Fd),
set_output(Old)

; send(Self, report, error, ’Syntax error’)
).

:- pce_end_class.

test :- send(new(prolog_lister), open).

Its 165 built-in classes deal with the meta-environment, data-representation and—of course—
graphics. The graphics classes concentrate on direct-manipulation of diagrammatic representations.

Availability. XPCE runs on most Unixtm platforms, Windows 95/98/ME, Windows NT/2000/XP
and MacOS X (using X11). In the past, versions for Quintus- and SICStus Prolog as well as some
Lisp dialects have existed. After discontinuing active Lisp development at SWI the Lisp versions
have died. Active development on the Quintus and SICStus versions has been stopped due to lack of
standardisation in the the Prolog community. If adequate standards emerge we are happy to actively
support other Prolog implementations.

Info. further information is available from http://www.swi-prolog.org/packages/xpce/
or by E-mail to info@www.swi-prolog.org.

1.6 Release Notes

Collected release-notes. This section only contains some highlights. Smaller changes to especially
older releases have been removed. For a complete log, see the file ChangeLog from the distribution.

1.6.1 Version 1.8 Release Notes

Version 1.8 offers a stack-shifter to provide dynamically expanding stacks on machines that do not
offer operating-system support for implementing dynamic stacks.

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 7

1.6.2 Version 1.9 Release Notes

Version 1.9 offers better portability including an MS-Windows 3.1 version. Changes to the Prolog
system include:

• Redefinition of system predicates
Redefinition of system predicates was allowed silently in older versions. Version 1.9 only allows
it if the new definition is headed by a :- redefine system predicate/1 directive.top-
level

• ‘Answer’ reuse
The top-level maintains a table of bindings returned by top-level goals and allows for reuse of
these bindings by prefixing the variables with the $ sign. See section 2.8.

• Better source code administration
Allows for proper updating of multifile predicates and finding the sources of individual clauses.

1.6.3 Version 2.0 Release Notes

New features offered:

• 32-bit Virtual Machine
Removes various limits and improves performance.

• Inline foreign functions
‘Simple’ foreign predicates no longer build a Prolog stack-frame, but are directly called from
the VM. Notably provides a speedup for the test predicates such as var/1, etc.

• Various compatibility improvements

• Stream based I/O library
All SWI-Prolog’s I/O is now handled by the stream-package defined in the foreign include
file SWI-Stream.h. Physical I/O of Prolog streams may be redefined through the foreign
language interface, facilitating much simpler integration in window environments.

1.6.4 Version 2.5 Release Notes

Version 2.5 is an intermediate release on the path from 2.1 to 3.0. All changes are to the foreign-
language interface, both to user- and system-predicates implemented in the C-language. The aim
is twofold. First of all to make garbage-collection and stack-expansion (stack-shifts) possible while
foreign code is active without the C-programmer having to worry about locking and unlocking C-
variables pointing to Prolog terms. The new approach is closely compatible to the Quintus and SIC-
Stus Prolog foreign interface using the +term argument specification (see their respective manuals).
This allows for writing foreign interfaces that are easily portable over these three Prolog platforms.

Apart from various bug fixes listed in the ChangeLog file, these are the main changes since 2.1.0:

• ISO compatibility
Many ISO compatibility features have been added: open/4, arithmetic functions, syntax, etc.

SWI-Prolog 5.6 Reference Manual

8 CHAPTER 1. INTRODUCTION

• Win32
Many fixes for the Win32 (NT, ’95 and win32s) platforms. Notably many problems related to
pathnames and a problem in the garbage collector.

• Performance
Many changes to the clause indexing system: added hash-tables, lazy computation of the index
information, etc.

• Portable saved-states
The predicate qsave program/[1,2] allows for the creating of machine independent
saved-states that load very quickly.

1.6.5 Version 2.6 Release Notes

Version 2.6 provides a stable implementation of the features added in the 2.5.x releases, but at the
same time implements a number of new features that may have impact on the system stability.

• 32-bit integer and double float arithmetic
The biggest change is the support for full 32-bit signed integers and raw machine-format double
precision floats. The internal data representation as well as the arithmetic instruction set and
interface to the arithmetic functions has been changed for this.

• Embedding for Win32 applications
The Win32 version has been reorganised. The Prolog kernel is now implemented as Win32 DLL
that may be embedded in C-applications. Two front ends are provided, one for window-based
operation and one to run as a Win32 console application.

• Creating stand-alone executables
Version 2.6.0 can create stand-alone executables by attaching the saved-state to the emulator.
See qsave program/2.

1.6.6 Version 2.7 Release Notes

Version 2.7 reorganises the entire data-representation of the Prolog data itself. The aim is to remove
most of the assumption on the machine’s memory layout to improve portability in general and enable
embedding on systems where the memory layout may depend on invocation or on how the executable
is linked. The latter is notably a problem on the Win32 platforms. Porting to 64-bit architectures is
feasible now.

Furthermore, 2.7 lifts the limits on arity of predicates and number of variables in a clause consid-
erably and allow for further expansion at minimal cost.

1.6.7 Version 2.8 Release Notes

With version 2.8, we declare the data-representation changes of 2.7.x stable. Version 2.8 exploits the
changes of 2.7 to support 64-bit processors like the DEC Alpha. As of version 2.8.5, the representation
of recorded terms has changed, and terms on the heap are now represented in a compiled format.
SWI-Prolog no longer limits the use of malloc() or uses assumptions on the addresses returned by this
function.

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 9

1.6.8 Version 2.9 Release Notes

Version 2.9 is the next step towards version 3.0, improving ISO compliance and introducing ISO com-
pliant exception handling. New are catch/3, throw/1, abolish/1, write term/[2,3],
write canonical/[1,2] and the C-functions PL exception() and PL throw(). The predicates
display/[1,2] and displayq/[1,2] have been moved to backcomp, so old code referring
to them will autoload them.

The interface to PL open query() has changed. The debug argument is replaced by a bitwise or’ed
flags argument. The values FALSE and TRUE have their familiar meaning, making old code using
these constants compatible. Non-zero values other than TRUE (1) will be interpreted different.

1.6.9 Version 3.0 Release Notes

Complete redesign of the saved-state mechanism, providing the possibility of ‘program resources’.
See resource/3, open resource/3, and qsave program/[1,2].

1.6.10 Version 3.1 Release Notes

Improvements on exception-handling. Allows relating software interrupts (signals) to exceptions,
handling signals in Prolog and C (see on signal/3 and PL signal()). Prolog stack overflows now
raise the resource error exception and thus can be handled in Prolog using catch/3.

1.6.11 Version 3.3 Release Notes

Version 3.3 is a major release, changing many things internally and externally. The highlights are a
complete redesign of the high-level I/O system, which is now based on explicit streams rather then
current input/output. The old Edinburgh predicates (see/1, tell/1, etc.) are now defined on top
of this layer instead of the other way around. This fixes various internal problems and removes Prolog
limits on the number of streams.

Much progress has been made to improve ISO compliance: handling strings as lists of one-
character atoms is now supported (next to character codes as integers). Many more exceptions have
been added and printing of exceptions and messages is rationalised using Quintus and SICStus Pro-
log compatible print message/2, message hook/3 and print message lines/3. All
predicates described in [Deransart et al., 1996] are now implemented.

As of version 3.3, SWI-Prolog adheres the ISO logical update view for dynamic predicates. See
section 4.13.1 for details.

SWI-Prolog 3.3 includes garbage collection on atoms, removing the last serious memory leak
especially in text-manipulation applications. See section 9.6.2. In addition, both the user-level and
foreign interface supports atoms holding 0-bytes.

Finally, an alpha version of a multi-threaded SWI-Prolog for Linux is added. This version is still
much slower than the single-threaded version due to frequent access to ‘thread-local-data’ as well as
some too detailed mutex locks. The basic thread API is ready for serious use and testing however. See
section 8.

Incompatible changes

A number of incompatible changes result from this upgrade. They are all easily fixed however.

SWI-Prolog 5.6 Reference Manual

10 CHAPTER 1. INTRODUCTION

• !/0, call/1
The cut now behaves according to the ISO standard. This implies it works in compound goals
passed to call/1 and is local to the condition part of if-then-else as well as the argument of
\+/1.

• atom chars/2
This predicate is now ISO compliant and thus generates a list of one-character atoms. The
behaviour of the old predicate is available in the —also ISO compliant— atom codes/2
predicate. Safest repair is a replacement of all atom chars into atom codes. If you do not
want to change any source-code, you might want to use

user:goal_expansion(atom_chars(A,B), atom_codes(A,B)).

• number chars/2
Same applies for number chars/2 and number codes/2.

• feature/2, set feature/2
These are replaced by the ISO compliant current prolog flag/2 and
set prolog flag/2. The library backcomp provides definitions for these predicates, so
no source must be updated.

• Accessing command-line arguments
This used to be provided by the undocumented ’$argv’/1 and Quintus compatible library
unix/1. Now there is also documented current prolog flag(argv, Argv).

• dup stream/2
Has been deleted. New stream-aliases can deal with most of the problems for which
dup stream/2 was designed and dup/2 from the clib package can with most others.

• op/3
Operators are now local to modules. This implies any modification of the operator-table does
not influence other modules. This is consistent with the proposed ISO behaviour and a necessity
to have any usable handling of operators in a multi-threaded environment.

• set prolog flag(character escapes, Bool)
This prolog flag is now an interface to changing attributes on the current source-module, effec-
tively making this flag module-local as well. This is required for consistent handling of sources
written with ISO (obligatory) character-escape sequences together with old Edinburgh code.

• current stream/3 and stream position
These predicates have been moved to quintus.

1.6.12 Version 3.4 Release Notes

The 3.4 release is a consolidation release. It consolidates the improvements and standard conformance
of the 3.3 releases. This version is closely compatible with the 3.3 version except for one important
change:

SWI-Prolog 5.6 Reference Manual

1.6. RELEASE NOTES 11

• Argument order in select/3
The list-processing predicate select/3 somehow got into a very early version of SWI-Prolog
with the wrong argument order. This has been fixed in 3.4.0. The correct order is select(?Elem,
?List, ?Rest).

As select/3 has no error conditions, runtime checking cannot be done. To simplify debug-
ging, the library module checkselect will print references to select/3 in your source
code and install a version of select that enters the debugger if select is called and the second
argument is not a list.

This library can be loaded explicitly or by calling check old select/0.

1.6.13 Version 4.0 Release Notes

As of version 4.0 the standard distribution of SWI-Prolog is bundled with a number of its popular
extension packages, among which the now open source XPCE GUI toolkit (see section 1.5). No
significant changes have been made to the basic SWI-Prolog engine.

Some useful tricks in the integrated environment:

• Register the GUI tracer
Using a call to guitracer/0, hooks are installed that replace the normal command-line
driven tracer with a graphical front-end.

• Register PceEmacs for editing files
From your initialisation file. you can load emacs/swi prolog that cause edit/1 to use
the built-in PceEmacs editor.

1.6.14 Version 5.0 Release Notes

Version 5.0 marks a breakpoint in the philosophy, where SWI-Prolog moves from a dual
GPL/proprietary to a uniform LGPL (Lesser GNU Public Licence) schema, providing a widely usable
Free Source Prolog implementation.

On the technical site the development environment, consisting of source-level debugger, integrated
editor and various analysis and navigation tools progress steadily towards a mature set of tools.

Many portability issues have been improved, including a port to MacOS X (Darwin).
For details, please visit the new website at http://www.swi-prolog.org

1.6.15 Version 5.1 Release Notes

Version 5.1 is a beta-serie introducing portable multi-threading. See chapter 8. In addition it intro-
duces many new facilities to support server applications, such as the new rlimit library to limit
system resources and the possibility to set timeouts on input streams.

1.6.16 Version 5.2 Release Notes

Version 5.2 consolidates the 5.1.x beta series that introduced threading and many related modifications
to the kernel.

SWI-Prolog 5.6 Reference Manual

12 CHAPTER 1. INTRODUCTION

1.6.17 Version 5.3 Release Notes

Version 5.3.x is a development series for adding coroutining, constraints, global variables, cyclic terms
(infinite trees) and other goodies to the kernel. The package JPL, providing a bidirectional Java/Prolog
interface is added to the common source-tree and common binary packages.

1.6.18 Version 5.4 Release Notes

Version 5.4 consolidates the 5.3.x beta series.

1.6.19 Version 5.5 Release Notes

Version 5.5.x provides support for wide characters with UTF-8 and UNICODE I/O (section 2.17.1).
On both 32 and 64-bit hardware Prolog integers are now at minimum 64-bit integers. If available,
SWI-Prolog arithmetic uses the GNU GMP library to provided unbounded integer arithmetic as well
as rational arithmetic. Adding GMP support is sponsored by Scientific Software and Systems Limited,
www.sss.co.nz. This version also incorporates clp(r) by Christian Holzbaur, brought to SWI-
Prolog by Tom Schrijvers and Leslie De Koninck (section A.14).

1.6.20 Version 5.6 Release Notes

Version 5.6 consolidates the 5.5.x beta series.

1.7 Donate to the SWI-Prolog project

If you are happy with SWI-Prolog, you care it to be around for much longer while it becomes faster,
more stable and with more features you should consider to donate to the SWI-Prolog foundation.
Please visit the page below.

http://www.swi-prolog.org/donate.html

1.8 Acknowledgements

Some small parts of the Prolog code of SWI-Prolog are modified versions of the corresponding Edin-
burgh C-Prolog code: grammar rule compilation and writef/2. Also some of the C-code originates
from C-Prolog: finding the path of the currently running executable and some of the code underlying
absolute file name/2. Ideas on programming style and techniques originate from C-Prolog
and Richard O’Keefe’s thief editor. An important source of inspiration are the programming tech-
niques introduced by Anjo Anjewierden in PCE version 1 and 2.

I also would like to thank those who had the fade of using the early versions of this system, sug-
gested extensions or reported bugs. Among them are Anjo Anjewierden, Huub Knops, Bob Wielinga,
Wouter Jansweijer, Luc Peerdeman, Eric Nombden, Frank van Harmelen, Bert Rengel.

Martin Jansche (jansche@novell1.gs.uni-heidelberg.de) has been so kind to reor-
ganise the sources for version 2.1.3 of this manual.

Horst von Brand has been so kind to fix many typos in the 2.7.14 manual. Thanks!
Bart Demoen and Tom Schrijvers have helped me adding coroutining, constraints, global variables

and support for cyclic terms to the kernel. Tom has provided the integer interval constraint solver, the
CHR compiler and some of the coroutining predicates.

SWI-Prolog 5.6 Reference Manual

1.8. ACKNOWLEDGEMENTS 13

Paul Singleton has integrated Fred Dushin’s Java-calls-Prolog side with his Prolog-calls-Java side
into the current bidirectional JPL interface package.

Richard O’Keefe is gratefully acknowledged for his efforts to educate beginners as well as valu-
able comments on proposed new developments.

Scientific Software and Systems Limited, www.sss.co.nz has sponsored the development if
the SSL library as well as unbounded integer and rational number arithmetic.

Leslie de Koninck has made clp(QR) available to SWI-Prolog.
Markus Triska has contributed to various libraries.
Paulo Moura’s great experience in maintaining Logtalk for many Prolog systems including SWI-

Prolog has helped in many places fixing compatibility issues. He also worked on the MacOS port and
fixed many typos in the 5.6.9 release of the documentation.

SWI-Prolog 5.6 Reference Manual

Overview 2
2.1 Getting started quickly

2.1.1 Starting SWI-Prolog

Starting SWI-Prolog on Unix

By default, SWI-Prolog is installed as ‘pl’, though some administrators call it ‘swipl’ or ‘swi-prolog’.
The command-line arguments of SWI-Prolog itself and its utility programs are documented using
standard Unix man pages. SWI-Prolog is normally operated as an interactive application simply by
starting the program:

machine% pl
Welcome to SWI-Prolog (Version 5.6.0)
Copyright (c) 1990-2005 University of Amsterdam.
SWI-Prolog comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to redistribute it under certain conditions.
Please visit http://www.swi-prolog.org for details.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?-

After starting Prolog, one normally loads a program into it using consult/1, which — for historical
reasons — may be abbreviated by putting the name of the program file between square brackets. The
following goal loads the file likes.pl containing clauses for the predicates likes/2:

?- [likes].
% likes compiled, 0.00 sec, 596 bytes.

Yes
?-

After this point, Unix and Windows users unite, so if you are using Unix please continue at sec-
tion 2.1.2.

Starting SWI-Prolog on Windows

After SWI-Prolog has been installed on a Windows system, the following important new things are
available to the user:

SWI-Prolog 5.6 Reference Manual

2.2. THE USER’S INITIALISATION FILE 15

• A folder (called directory in the remainder of this document) called pl containing the executa-
bles, libraries, etc. of the system. No files are installed outside this directory.

• A program plwin.exe, providing a window for interaction with Prolog. The program
plcon.exe is a version of SWI-Prolog that runs in a DOS-box.

• The file-extension .pl is associated with the program plwin.exe. Opening a .pl file will
cause plwin.exe to start, change directory to the directory in which the file-to-open resides
and load this file.

The normal way to start with the likes.pl file mentioned in section 2.1.1 is by simply double-
clicking this file in the Windows explorer.

2.1.2 Executing a query

After loading a program, one can ask Prolog queries about the program. The query below asks Prolog
what food ‘sam’ likes. The system responds with X = 〈value〉 if it can prove the goal for a certain X.
The user can type the semi-colon (;)1 if (s)he wants another solution, or RETURN if (s)he is satisfied,
after which Prolog will say Yes. If Prolog answers No, it indicates it cannot find any (more) answers
to the query. Finally, Prolog can answer using an error message to indicate the query or program
contains an error.

?- likes(sam, X).

X = dahl ;

X = tandoori ;

...

X = chips ;

No
?-

2.2 The user’s initialisation file

After the necessary system initialisation the system consults (see consult/1) the user’s startup file.
The base-name of this file follows conventions of the operating system. On MS-Windows, it is the
file pl.ini and on Unix systems .plrc. The file is searched using the file search path/2
clauses for user profile. The table below shows the default value for this search-path.

Unix Windows
local . .
home ˜ %HOME% or %HOMEDRIVE%\%HOMEPATH%
global SWI-Home directory or %WINDIR% or %SYSTEMROOT%

1On most installations, single-character commands are executed without waiting for the RETURN key.

SWI-Prolog 5.6 Reference Manual

16 CHAPTER 2. OVERVIEW

After the first startup file is found it is loaded and Prolog stops looking for further startup files. The
name of the startup file can be changed with the ‘-f file’ option. If File denotes an absolute path,
this file is loaded, otherwise the file is searched for using the same conventions as for the default
startup file. Finally, if file is none, no file is loaded.

2.3 Initialisation files and goals

Using command-line arguments (see section 2.4), SWI-Prolog can be forced to load files and execute
queries for initialisation purposes or non-interactive operation. The most commonly used options are
-f file or -s file to make Prolog load a file, -g goal to define an initialisation goal and
-t goal to define the top-level goal. The following is a typical example for starting an application
directly from the command-line.

machine% pl -s load.pl -g go -t halt

It tells SWI-Prolog to load load.pl, start the application using the entry-point go/0 and —instead
of entering the interactive top-level— exit after completing go/0. The -q may be used to suppress
all informational messages.

In MS-Windows, the same can be achieved using a short-cut with appropriately defined command-
line arguments. A typically seen alternative is to write a file run.plwith content as illustrated below.
Double-clicking run.pl will start the application.

:- [load]. % load program
:- go. % run it
:- halt. % and exit

Section 2.10.2 discusses further scripting options and chapter 10 discusses the generation of runtime
executables. Runtime executables are a mean to deliver executables that do not require the Prolog
system.

2.4 Command-line options

The full set of command-line options is given below:

-help
When given as the only option, it summarises the most important options.

-v
When given as the only option, it summarises the version and the architecture identifier.

-arch
When given as the only option, it prints the architecture identifier (see current prolog flag(arch,
Arch)) and exits. See also -dump-runtime-variables.

-dump-runtime-variables
When given as the only option, it prints a sequence of variable settings that can be used in shell-
scripts to deal with Prolog parameters. This feature is also used by plld (see section 9.7).
Below is a typical example of using this feature.

SWI-Prolog 5.6 Reference Manual

2.4. COMMAND-LINE OPTIONS 17

eval ‘pl -dump-runtime-variables‘
cc -I$PLBASE/include -L$PLBASE/runtime/$PLARCH ...

-q
Set the prolog-flag verbose to silent, suppressing informational and banner messages.

-Lsize[km]
Give local stack limit (2 Mbytes default). Note that there is no space between the size option
and its argument. By default, the argument is interpreted in Kbytes. Postfixing the argument
with m causes the argument to be interpreted in Mbytes. The following example specifies 32
Mbytes local stack.

% pl -L32m

A maximum is useful to stop buggy programs from claiming all memory resources. -L0 sets
the limit to the highest possible value. See section 2.18.

-Gsize[km]
Give global stack limit (4 Mbytes default). See -L for more details.

-Tsize[km]
Give trail stack limit (4 Mbytes default). This limit is relatively high because trail-stack over-
flows are not often caused by program bugs. See -L for more details.

-Asize[km]
Give argument stack limit (1 Mbytes default). The argument stack limits the maximum nesting
of terms that can be compiled and executed. SWI-Prolog does ‘last-argument optimisation’ to
avoid many deeply nested structure using this stack. Enlarging this limit is only necessary in
extreme cases. See -L for more details.

-c file . . .
Compile files into an ‘intermediate code file’. See section 2.10.

-o output
Used in combination with -c or -b to determine output file for compilation.

-O
Optimised compilation. See current prolog flag/2 flag optimise for details.

-nodebug
Disable debugging. See the current prolog flag/2 flag generate debug info for
details.

-s file
Use file as a script-file. The script file is loaded after the initialisation file specified with the
-f file option. Unlike -f file, using -s does not stop Prolog from loading the personal
initialisation file.

SWI-Prolog 5.6 Reference Manual

18 CHAPTER 2. OVERVIEW

-f file
Use file as initialisation file instead of the default .plrc (Unix) or pl.ini (Windows).
‘-f none’ stops SWI-Prolog from searching for a startup file. This option can be used as
an alternative to -s file that stops Prolog from loading the personal initialisation file. See
also section 2.2.

-F script
Selects a startup-script from the SWI-Prolog home directory. The script-file is named
〈script〉.rc. The default script name is deduced from the executable, taking the leading al-
phanumerical characters (letters, digits and underscore) from the program-name. -F none
stops looking for a script. Intended for simple management of slightly different versions.
One could for example write a script iso.rc and then select ISO compatibility mode using
pl -F iso or make a link from iso-pl to pl.

-g goal
Goal is executed just before entering the top level. Default is a predicate which prints the wel-
come message. The welcome message can thus be suppressed by giving -g true. goal can
be a complex term. In this case quotes are normally needed to protect it from being expanded
by the Unix shell.

-t goal
Use goal as interactive top-level instead of the default goal prolog/0. goal can be a complex
term. If the top-level goal succeeds SWI-Prolog exits with status 0. If it fails the exit status is
1. This flag also determines the goal started by break/0 and abort/0. If you want to stop
the user from entering interactive mode start the application with ‘-g goal’ and give ‘halt’ as
top-level.

-tty
Unix only. Switches controlling the terminal for allowing single-character commands to the
tracer and get single char/1. By default manipulating the terminal is enabled unless the
system detects it is not connected to a terminal or it is running as a GNU-Emacs inferior process.
This flag is sometimes required for smooth interaction with other applications.

-nosignals
Inhibit any signal handling by Prolog, a property that is sometimes desirable for embedded
applications. This option sets the flag signals to false. See section 9.6.20 for details.

-x bootfile
Boot from bootfile instead of the system’s default boot file. A bootfile is a file result-
ing from a Prolog compilation using the -b or -c option or a program saved using
qsave program/[1,2].

-p alias=path1[:path2 . . .]
Define a path alias for file search path. alias is the name of the alias, path1 ... is a list of
values for the alias. On Windows the list-separator is ;. On other systems it is :. A value
is either a term of the form alias(value) or pathname. The computed aliases are added to
file search path/2 using asserta/1, so they precede predefined values for the alias.
See file search path/2 for details on using this file-location mechanism.

SWI-Prolog 5.6 Reference Manual

2.5. GNU EMACS INTERFACE 19

--
Stops scanning for more arguments, so you can pass arguments for your application after this
one. See current prolog flag/2 using the flag argv for obtaining the command-line
arguments.

The following options are for system maintenance. They are given for reference only.

-b initfile . . .-c file . . .
Boot compilation. initfile . . . are compiled by the C-written bootstrap compiler, file . . . by the
normal Prolog compiler. System maintenance only.

-d level
Set debug level to level. Only has effect if the system is compiled with the -DO DEBUG flag.
System maintenance only.

2.5 GNU Emacs Interface

The default Prolog mode for GNU-Emacs can be activated by adding the following rules to your
Emacs initialisation file:

(setq auto-mode-alist
(append
’(("\\.pl" . prolog-mode))
auto-mode-alist))

(setq prolog-program-name "pl")
(setq prolog-consult-string "[user].\n")
;If you want this. Indentation is either poor or I don’t use
;it as intended.
;(setq prolog-indent-width 8)

Unfortunately the default Prolog mode of GNU-Emacs is not very good.
An alternative prolog.el file for GNU-Emacs 20 is available from
http://www.freesoft.cz/ pdm/software/emacs/prolog-mode/ and for GNU-
Emacs 19 from http://w1.858.telia.com/ u85810764/Prolog-mode/index.html

2.6 Online Help

Online help provides a fast lookup and browsing facility to this manual. The online manual can show
predicate definitions as well as entire sections of the manual.

The online help is displayed from the file ’MANUAL’. The file helpidx provides an index
into this file. ’MANUAL’ is created from the LATEX sources with a modified version of dvitty,
using overstrike for printing bold text and underlining for rendering italic text. XPCE is shipped
with swi help, presenting the information from the online help in a hypertext window. The prolog-
flag write help with overstrike controls whether or not help/1 writes its output using
overstrike to realise bold and underlined output or not. If this prolog-flag is not set it is initialised by
the help library to true if the TERM variable equals xterm and false otherwise. If this default
does not satisfy you, add the following line to your personal startup file (see section 2.2):

SWI-Prolog 5.6 Reference Manual

20 CHAPTER 2. OVERVIEW

:- set_prolog_flag(write_help_with_overstrike, true).

help
Equivalent to help(help/1).

help(+What)
Show specified part of the manual. What is one of:

〈Name〉/〈Arity〉 Give help on specified predicate
〈Name〉 Give help on named predicate with any arity or C interface

function with that name
〈Section〉 Display specified section. Section numbers are dash-

separated numbers: 2-3 refers to section 2.3 of the man-
ual. Section numbers are obtained using apropos/1.

Examples:

?- help(assert). Give help on predicate assert
?- help(3-4). Display section 3.4 of the manual
?- help(’PL retry’). Give help on interface function PL retry()

See also apropos/1, and the SWI-Prolog home page at
http://www.swi-prolog.org, which provides a FAQ, an HTML version of man-
ual for online browsing and HTML and PDF versions for downloading.

apropos(+Pattern)
Display all predicates, functions and sections that have Pattern in their name or summary de-
scription. Lowercase letters in Pattern also match a corresponding uppercase letter. Example:

?- apropos(file). Display predicates, functions and sections that have ‘file’
(or ‘File’, etc.) in their summary description.

explain(+ToExplain)
Give an explanation on the given ‘object’. The argument may be any Prolog data object. If the
argument is an atom, a term of the form Name/Arity or a term of the form Module:Name/Arity,
explain will try to explain the predicate as well as possible references to it.

explain(+ToExplain, -Explanation)
Unify Explanation with an explanation for ToExplain. Backtracking yields further explanations.

2.7 Command-line history

SWI-Prolog offers a query substitution mechanism called ‘history’. The availability of this feature
is controlled by set prolog flag/2, using the history prolog-flag. By default, history is
available if the prolog-flag readline is false. To enable this feature, remembering the last 50
commands, put the following into your startup file (see section 2.2):

:- set_prolog_flag(history, 50).

The history system allows the user to compose new queries from those typed before and remembered
by the system. The available history commands are shown in table 2.1. History expansion is not done
if these sequences appear in quoted atoms or strings.

SWI-Prolog 5.6 Reference Manual

2.8. REUSE OF TOP-LEVEL BINDINGS 21

!!. Repeat last query
!nr. Repeat query numbered 〈nr〉
!str. Repeat last query starting with 〈str〉
h. Show history of commands
!h. Show this list

Table 2.1: History commands

1 ?- maplist(plus(1), "hello", X).

X = [105,102,109,109,112]

Yes
2 ?- format(’˜s˜n’, [$X]).
ifmmp

Yes
3 ?-

Figure 2.1: Reusing top-level bindings

2.8 Reuse of top-level bindings

Bindings resulting from the successful execution of a top-level goal are asserted in a database. These
values may be reused in further top-level queries as $Var. Only the latest binding is available. Exam-
ple:

Note that variables may be set by executing =/2:

6 ?- X = statistics.

X = statistics

Yes
7 ?- $X.
28.00 seconds cpu time for 183,128 inferences
4,016 atoms, 1,904 functors, 2,042 predicates, 52 modules
55,915 byte codes; 11,239 external references

Limit Allocated In use
Heap : 624,820 Bytes
Local stack : 2,048,000 8,192 404 Bytes
Global stack : 4,096,000 16,384 968 Bytes
Trail stack : 4,096,000 8,192 432 Bytes

Yes
8 ?-

SWI-Prolog 5.6 Reference Manual

22 CHAPTER 2. OVERVIEW

1 ?- visible(+all), leash(-exit).

Yes
2 ?- trace, min([3, 2], X).
Call: (3) min([3, 2], G235) ? creep
Unify: (3) min([3, 2], G235)
Call: (4) min([2], G244) ? creep
Unify: (4) min([2], 2)
Exit: (4) min([2], 2)
Call: (4) min(3, 2, G235) ? creep
Unify: (4) min(3, 2, G235)
Call: (5) 3 < 2 ? creep
Fail: (5) 3 < 2 ? creep
Redo: (4) min(3, 2, G235) ? creep
Exit: (4) min(3, 2, 2)
Exit: (3) min([3, 2], 2)

Yes
[trace] 3 ?-

Figure 2.2: Example trace

2.9 Overview of the Debugger

SWI-Prolog has a 6-port tracer, extending the standard 4-port tracer [Clocksin & Melish, 1987] with
two additional ports. The optional unify port allows the user to inspect the result after unification of
the head. The exception port shows exceptions raised by throw/1 or one of the built-in predicates.
See section 4.9.

The standard ports are called call, exit, redo, fail and unify. The tracer is started by the
trace/0 command, when a spy point is reached and the system is in debugging mode (see spy/1
and debug/0) or when an exception is raised.

The interactive top-level goal trace/0 means “trace the next query”. The tracer shows
the port, displaying the port name, the current depth of the recursion and the goal. The goal
is printed using the Prolog predicate write term/2. The style is defined by the prolog-flag
debugger print options and can be modified using this flag or using the w, p and d com-
mands of the tracer.

On leashed ports (set with the predicate leash/1, default are call, exit, redo and fail)
the user is prompted for an action. All actions are single character commands which are executed
without waiting for a return, unless the command-line option -tty is active. Tracer options:

+ (Spy)
Set a spy point (see spy/1) on the current predicate.

- (No spy)
Remove the spy point (see nospy/1) from the current predicate.

/ (Find)

SWI-Prolog 5.6 Reference Manual

2.9. OVERVIEW OF THE DEBUGGER 23

Search for a port. After the ‘/’, the user can enter a line to specify the port to search for. This
line consists of a set of letters indicating the port type, followed by an optional term, that should
unify with the goal run by the port. If no term is specified it is taken as a variable, searching for
any port of the specified type. If an atom is given, any goal whose functor has a name equal to
that atom matches. Examples:

/f Search for any fail port
/fe solve Search for a fail or exit port of any goal with name

solve
/c solve(a,) Search for a call to solve/2 whose first argument

is a variable or the atom a
/a member(,) Search for any port on member/2. This is equiv-

alent to setting a spy point on member/2.

. (Repeat find)
Repeat the last find command (see ‘/’).

A (Alternatives)
Show all goals that have alternatives.

C (Context)
Toggle ‘Show Context’. If on the context module of the goal is displayed between square
brackets (see section 5). Default is off.

L (Listing)
List the current predicate with listing/1.

a (Abort)
Abort Prolog execution (see abort/0).

b (Break)
Enter a Prolog break environment (see break/0).

c (Creep)
Continue execution, stop at next port. (Also return, space).

d (Display)
Set the max depth(Depth) option of debugger print options, limiting the depth to
which terms are printed. See also the w and p options.

e (Exit)
Terminate Prolog (see halt/0).

f (Fail)
Force failure of the current goal.

g (Goals)
Show the list of parent goals (the execution stack). Note that due to tail recursion optimization
a number of parent goals might not exist any more.

SWI-Prolog 5.6 Reference Manual

24 CHAPTER 2. OVERVIEW

h (Help)
Show available options (also ‘?’).

i (Ignore)
Ignore the current goal, pretending it succeeded.

l (Leap)
Continue execution, stop at next spy point.

n (No debug)
Continue execution in ‘no debug’ mode.

p (Print)
Set the prolog-flag debugger print options to [quoted(true),
portray(true), max depth(10)]. This is the default.

r (Retry)
Undo all actions (except for database and i/o actions) back to the call port of the current goal
and resume execution at the call port.

s (Skip)
Continue execution, stop at the next port of this goal (thus skipping all calls to children of this
goal).

u (Up)
Continue execution, stop at the next port of the parent goal (thus skipping this goal and all
calls to children of this goal). This option is useful to stop tracing a failure driven loop.

w (Write)
Set the prolog-flag debugger print options to [quoted(true)], bypassing
portray/1, etc.

The ideal 4 port model as described in many Prolog books [Clocksin & Melish, 1987] is not vis-
ible in many Prolog implementations because code optimisation removes part of the choice- and
exit-points. Backtrack points are not shown if either the goal succeeded deterministically or its alter-
natives were removed using the cut. When running in debug mode (debug/0) choice points are only
destroyed when removed by the cut. In debug mode, tail recursion optimisation is switched off.2

Reference information to all predicates available for manipulating the debugger is in section 4.38.

2.10 Compilation

2.10.1 During program development

During program development, programs are normally loaded using consult/1, or the list abbre-
viation. It is common practice to organise a project as a collection of source files and a load-file, a
Prolog file containing only use module/[1,2] or ensure loaded/1 directives, possibly with
a definition of the entry-point of the program, the predicate that is normally used to start the program.
This file is often called load.pl. If the entry-point is called go, a typical session starts as:

2This implies the system can run out of local stack in debug mode, while no problems arise when running in non-debug
mode.

SWI-Prolog 5.6 Reference Manual

2.10. COMPILATION 25

% pl
<banner>

1 ?- [load].
<compilation messages>

Yes
2 ?- go.
<program interaction>

When using Windows, the user may open load.pl from the Windows explorer, which will cause
plwin.exe to be started in the directory holding load.pl. Prolog loads load.pl before entering
the top-level.

2.10.2 For running the result

There are various options if you want to make your program ready for real usage. The best choice
depends on whether the program is to be used only on machines holding the SWI-Prolog development
system, the size of the program and the operating system (Unix vs. Windows).

Using PrologScript

New in version 4.0.5 is the possibility to use a Prolog source file directly as a Unix script-file. the
same mechanism is useful to specify additional parameters for running a Prolog file on Windows.

If the first letter of a Prolog file is #, the first line is treated as comment.3 To create a Prolog script,
make the first line start like this:

#!/path/to/pl 〈options〉 -s

Prolog recognises this starting sequence and causes the interpreter to receive the following
argument-list:

/path/to/pl 〈options〉 -s 〈script〉 -- 〈ScriptArguments〉

Instead of -s, the user may use -f to stop Prolog from looking for a personal initialisation file.
Here is a simple script doing expression evaluation:

#!/usr/bin/pl -q -t main -f

eval :-
current_prolog_flag(argv, Argv),
append(_, [--|Args], Argv),
concat_atom(Args, ’ ’, SingleArg),
term_to_atom(Term, SingleArg),
Val is Term,
format(’˜w˜n’, [Val]).

3The #-sign can be the legal start of a normal Prolog clause. In the unlikely case this is required, leave the first line blank
or add a header-comment.

SWI-Prolog 5.6 Reference Manual

26 CHAPTER 2. OVERVIEW

main :-
catch(eval, E, (print_message(error, E), fail)),
halt.

main :-
halt(1).

And here are two example runs:

% eval 1+2
3
% eval foo
ERROR: Arithmetic: ‘foo/0’ is not a function
%

The Windows version supports the #! construct too, but here it serves a rather different role. The
Windows shell already allows the user to start Prolog source files directly through the Windows file-
type association. Windows however makes it rather complicated to provide additional parameters,
such as the required stack-size for an individual Prolog file. The #! line provides for this, providing a
more flexible approach then changing the global defaults. The following starts Prolog with unlimited
stack-size on the given source file:

#!/usr/bin/pl -L0 -T0 -G0 -s

....

Note the use of /usr/bin/pl, which specifies the interpreter. This argument is ignored in the
Windows version, but required to ensure best cross-platform compatibility.

Creating a shell-script

With the introduction of PrologScript (see section 2.10.2), using shell-scripts as explained in this
section has become redundant for most applications.

Especially on Unix systems and not-too-large applications, writing a shell-script that simply loads
your application and calls the entry-point is often a good choice. A skeleton for the script is given
below, followed by the Prolog code to obtain the program arguments.

#!/bin/sh

base=<absolute-path-to-source>
PL=pl

exec $PL -f none -g "load_files([’$base/load’],[silent(true)])" \
-t go -- $*

SWI-Prolog 5.6 Reference Manual

2.10. COMPILATION 27

go :-
current_prolog_flag(argv, Arguments),
append(_SytemArgs, [--|Args], Arguments), !,
go(Args).

go(Args) :-
...

On Windows systems, similar behaviour can be achieved by creating a shortcut to Prolog, passing the
proper options or writing a .bat file.

Creating a saved-state

For larger programs, as well as for programs that are required to run on systems that do not have the
SWI-Prolog development system installed, creating a saved state is the best solution. A saved state is
created using qsave program/[1,2] or using the linker plld(1). A saved state is a file containing
machine-independent intermediate code in a format dedicated for fast loading. Optionally, the emu-
lator may be integrated in the saved state, creating a single-file, but machine-dependent, executable.
This process is described in chapter 10.

Compilation using the -c command-line option

This mechanism loads a series of Prolog source files and then creates a saved-state as
qsave program/2 does. The command syntax is:

% pl [option ...] [-o output] -c file ...

The options argument are options to qsave program/2 written in the format below. The option-
names and their values are described with qsave program/2.

--option-name=option-value

For example, to create a stand-alone executable that starts by executing main/0 and for which
the source is loaded through load.pl, use the command

% pl --goal=main --stand_alone=true -o myprog -c load.pl

This performs exactly the same as executing

% pl
<banner>
?- [load].
?- qsave_program(myprog,

[goal(main),
stand_alone(true)

]).
?- halt.

SWI-Prolog 5.6 Reference Manual

28 CHAPTER 2. OVERVIEW

2.11 Environment Control (Prolog flags)

The predicates current prolog flag/2 and set prolog flag/2 allow the user to examine
and modify the execution environment. It provides access to whether optional features are available
on this version, operating system, foreign-code environment, command-line arguments, version, as
well as runtime flags to control the runtime behaviour of certain predicates to achieve compatibility
with other Prolog environments.

current prolog flag(?Key, -Value)

The predicate current prolog flag/2 defines an interface to installation features: op-
tions compiled in, version, home, etc. With both arguments unbound, it will generate all defined
prolog-flags. With the ‘Key’ instantiated it unify the value of the prolog-flag. Flag values are
typed. Flags marked as bool can have the values true and false. Some prolog flags are not
defined in all versions, which is normally indicated in the documentation below as “if present
and true”. A boolean prolog-flag is true iff the prolog-flag is present and the Value is the atom
true. Tests for such flags should be written as below.

(current_prolog_flag(windows, true)
-> <Do MS-Windows things>
; <Do normal things>
)

abort with exception (bool, changeable)
Determines how abort/0 is realised. See the description of abort/0 for details.

agc margin (integer, changeable)
If this amount of atoms has been created since the last atom-garbage collection, perform
atom garbage collection at the first opportunity. Initial value is 10,000. May be changed.
A value of 0 (zero) disables atom garbage collection. See also PL register atom().

allow variable name as functor (bool, changeable)
If true (default is false), Functor(arg) is read as if it was written ’Functor’(arg).
Some applications use the Prolog read/1 predicate for reading an application defined
script language. In these cases, it is often difficult to explain to non-Prolog users of the
application that constants and functions can only start with a lowercase letter. Variables
can be turned into atoms starting with an uppercase atom by calling read term/2 using
the option variable names and binding the variables to their name. Using this feature,
F(x) can be turned into valid syntax for such script languages. Suggested by Robert van
Engelen. SWI-Prolog specific.

argv (list)
List is a list of atoms representing the command-line arguments used to invoke SWI-
Prolog. Please note that all arguments are included in the list returned.

arch (atom)
Identifier for the hardware and operating system SWI-Prolog is running on. Used to select
foreign files for the right architecture. See also section 9.4 and file search path/2.

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 29

associate (atom, changeable)
On Windows systems, this is set to the filename-extension (e.g. pl or pro associated with
plwin.exe.

autoload (bool, changeable)
If true (default) autoloading of library functions is enabled. Note that autoloading only
works if the flag unknown is not set to fail. See section 2.13.

backquoted string (bool, changeable)
If true (default false), read translates text between backquotes into a string object (see
section 4.23). This flag is mainly for compatibility to LPA Prolog.

bounded (bool)
ISO prolog-flag. If true, integer representation is bound by min integer and
max integer. If false integers can be arbitrary large and the min integer and
max integer are not present. See section 4.26.2.

c cc (atom)
Name of the C-compiler used to compile SWI-Prolog. Normally either gcc or cc. See
section 9.7.

c ldflags (atom)
Special linker flags passed to link SWI-Prolog. See section 9.7.

c libs (atom)
Libraries passed to the C-linker when SWI-Prolog was linked. May be used to determine
the libraries needed to create statically linked extensions for SWI-Prolog. See section 9.7.

char conversion (bool, changeable)
Determines whether character-conversion takes place while reading terms. See also
char conversion/2.

character escapes (bool, changeable)
If true (default), read/1 interprets \ escape sequences in quoted atoms and strings.
May be changed. This flag is local to the module in which it is changed.

compiled at (atom)
Describes when the system has been compiled. Only available if the C-compiler used to
compile SWI-Prolog provides the DATE and TIME macros.

console menu (bool)
Set to true in plwin.exe to indicate the console supports menus. See also sec-
tion 4.34.2.

dde (bool)
Set to true if this instance of Prolog supports DDE as described in section 4.42.

debug (bool, changeable)
Switch debugging mode on/off. If debug mode is activated the system traps encountered
spy-points (see spy/1) and trace-points (see trace/1). In addition, tail-recursion op-
timisation is disabled and the system is more conservative in destroying choice-points to
simplify debugging.
Disabling these optimisations can cause the system to run out of memory on programs
that behave correctly if debug mode is off.

SWI-Prolog 5.6 Reference Manual

30 CHAPTER 2. OVERVIEW

debug on error (bool, changeable)
If true, start the tracer after an error is detected. Otherwise just continue execution. The
goal that raised the error will normally fail. See also fileerrors/2 and the prolog-flag
report error. May be changed. Default is true, except for the runtime version.

debugger print options (term, changeable)
This argument is given as option-list to write term/2 for printing goals by the
debugger. Modified by the ‘w’, ‘p’ and ‘〈N〉 d’ commands of the debugger. Default is
[quoted(true), portray(true), max depth(10), attributes(portray)].

debugger show context (bool, changeable)
If true, show the context module while printing a stack-frame in the tracer. Normally
controlled using the ‘C’ option of the tracer.

double quotes (codes,chars,atom,string, changeable)
This flag determines how double-quotes strings are read by Prolog and is —like charac-
ter escapes— maintained for each module. If codes (default), a list of character-codes
is returned, if chars a list of one-character atoms, if atom double quotes are the same
as single-quotes and finally, string reads the text into a Prolog string (see section 4.23).
See also atom chars/2 and atom codes/2.

dynamic stacks (bool)
If true, the system uses some form of ‘sparse-memory management’ to realise the stacks.
If false, malloc()/realloc() are used for the stacks. In earlier days this had consequences
for foreign code. As of version 2.5, this is no longer the case.
Systems using ‘sparse-memory management’ are a bit faster as there is no stack-shifter.
On most systems using sparse-memory management memory is actually returned to the
system after a garbage collection or call to trim stacks/0 (called by prolog/0 after
finishing a user-query).

editor (atom, changeable)
Determines the editor used by edit/1. See section 4.4 for details on selecting the editor
used.

emacs inferior process (bool)
If true, SWI-Prolog is running as an inferior process of (GNU/X-)Emacs. SWI-Prolog
assumes this is the case if the environment variable EMACS is t and INFERIOR is yes.

encoding (atom, changeable)
Default encoding used for opening files in text mode. The initial value is deduced from
the environment. See section 2.17.1 for details.

executable (atom)
Path-name of the running executable. Used by qsave program/2 as default emulator.

file name variables (bool, changeable)
If true (default false), expand $varname and ˜ in arguments of built-in predicates
that accept a file name (open/3, exists file/1, access file/2, etc.). The pred-
icate expand file name/2 should be used to expand environment variables and wild-
card patterns. This prolog-flag is intended for backward compatibility with older versions
of SWI-Prolog.

float format (atom, changeable)
C-library printf() format specification used by write/1 and friends to determine how

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 31

floating point numbers are printed. The default is %g. The specified value is passed to
printf() without further checking. For example, if you want more digits printed, %.12g
will print all floats using 12 digits instead of the default 6.
When using quoted-write, the output is guaranteed to contain a decimal dot or ex-
ponent, so read/1 reads a floating point number. See also format/[1,2],
write term/[2,3].

gc (bool, changeable)
If true (default), the garbage collector is active. If false, neither garbage-collection, nor
stack-shifts will take place, even not on explicit request. May be changed.

generate debug info (bool, changeable)
If true (default) generate code that can be debugged using trace/0, spy/1, etc. Can
be set to false using the -nodebug. The predicate load files/2 restores the value
of this flag after loading a file, causing modifications to be local to a source file. Many of
the libraries have :- set_prolog_flag(generate_debug_info, false) to
hide their details from a normal trace.4

gmp version (integer)
If Prolog is linked with GMP, this flag gives the major version of the GMP library used.
See also section 9.6.7.

gnu libpthread version (atom)
Linux systems only. Reports the version of the Linux thread library used. See section 8.2.1
for how it may affect you.

gui (bool)
Set to true if XPCE is around and can be used for graphics.

history (integer, changeable)
If integer > 0, support Unix csh(1) like history as described in section 2.7. Otherwise,
only support reusing commands through the command-line editor. The default is to set
this prolog-flag to 0 if a command-line editor is provided (see prolog-flag readline)
and 15 otherwise.

home (atom)
SWI-Prolog’s notion of the home-directory. SWI-Prolog uses its home directory to find its
startup file as 〈home〉/boot32.prc (32-bit machines) or 〈home〉/boot64.prc (64-
bit machines) and to find its library as 〈home〉/library.

hwnd (integer)
In plwin.exe, this refers to the MS-Windows window-handle of the console window.

integer rounding function (down,toward zero)
ISO prolog-flag describing rounding by // and rem arithmetic functions. Value depends
on the C-compiler used.

iso (bool, changeable)
Include some weird ISO compatibility that is incompatible to normal SWI-Prolog be-
haviour. Currently it has the following effect:

• The //2 (float division) always return a float, even if applied to integers that can be
divided.

4In the current implementation this only causes a flag to be set on the predicate that causes children to be hidden from
the debugger. The name anticipates on anticipated changes to the compiler.

SWI-Prolog 5.6 Reference Manual

32 CHAPTER 2. OVERVIEW

• In the standard order of terms (see section 4.6.1), all floats are before all integers.
• atom length/2 yields an instantiation error if the first argument is a number.
• clause/[2,3] raises a permission error when accessing static predicates.
• abolish/[1,2] raises a permission error when accessing static predicates.

large files (bool)
If present and true, SWI-Prolog has been compiled with large file support (LFS) and is
capable to access files larger than 2GB on 32-bit hardware. Large file-support is default
on installations built using configure that support it and may be switched off using the
configure option --disable-largefile.

max arity (unbounded)
ISO prolog-flag describing there is no maximum arity to compound terms.

max integer (integer)
Maximum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.26.2.

max tagged integer (integer)
Maximum integer value represented as a ‘tagged’ value. Tagged integers require 1 word
storage. Larger integers are represented as ‘indirect data’ and require significantly more
space.

min integer (integer)
Minimum integer value if integers are bounded. See also the flag bounded and sec-
tion 4.26.2.

min tagged integer (integer)
Start of the tagged-integer value range.

open shared object (bool)
If true, open shared object/2 and friends are implemented, providing access to
shared libraries (.so files) or dynamic link libraries (.DLL files).

optimise (bool, changeable)
If true, compile in optimised mode. The initial value is true if Prolog was started with
the -O command-line option.
Currently optimise compilation implies compilation of arithmetic, and deletion of redun-
dant true/0 that may result from expand goal/2.
Later versions might imply various other optimisations such as integrating small predi-
cates into their callers, eliminating constant expressions and other predictable constructs.
Source code optimisation is never applied to predicates that are declared dynamic (see
dynamic/1).

pid (int)
Process identifier of the running Prolog process. Existence of this flag is implementation
dependent.

pipe (bool, changeable)
If true, open(pipe(command), mode, Stream), etc. are supported. Can be
changed to disable the use of pipes in applications testing this feature. Not recommended.

prompt alternatives no bindings (bool, changeable)
If present and true, the top-level prints for alternatives if the query succeeded with pend-
ing choice-point, regardless of whether or not the query has variables. As there are no
variables to bind it prints the answer More?. Here is an example

SWI-Prolog 5.6 Reference Manual

2.11. ENVIRONMENT CONTROL (PROLOG FLAGS) 33

?- set_prolog_flag(prompt_alternatives_no_bindings, true).
?- (write(hello);write(world)).
hello
More? ;
world

readline (bool)
If true, SWI-Prolog is linked with the readline library. This is done by default if you have
this library installed on your system. It is also true for the Win32 plwin.exe version of
SWI-Prolog, which realises a subset of the readline functionality.

resource database (atom)
Set to the absolute-filename of the attached state. Typically this is the file boot32.prc,
the file specified with -x or the running executable. See also resource/3.

report error (bool, changeable)
If true, print error messages, otherwise suppress them. May be changed. See also the
debug on error prolog-flag. Default is true, except for the runtime version.

runtime (bool)
If present and true, SWI-Prolog is compiled with -DO RUNTIME, disabling various
useful development features (currently the tracer and profiler).

saved program (bool)
If present and true, Prolog is started from a state saved with qsave program/[1,2].

shared object extension (atom)
Extension used by the operating system for shared objects. .so for most Unix systems
and .dll for Windows. Used for locating files using the file type executable.
See also absolute file name/3.

signals (bool)
Determine whether Prolog is handling signals (software interrupts). This flag is
false if the hosting OS does not support signal handling or the command-line option
-nosignals is active. See section 9.6.20 for details.

system thread id (int)
On MT systems (section 8, refers to the thread-identifier used by the system for the calling
thread. See also thread self/1.

tail recursion optimisation (bool, changeable)
Determines whether or not tail-recursion optimisation is enabled. Normally the value of
this flag is equal to the debug flag. As programs may run out of stack if tail-recursion
optimisation is omitted, it is sometimes necessary to enable it during debugging.

timezone (integer)
Offset in seconds west of GMT of the current time-zone. Set at initialization time
from the timezone variable associated with the POSIX tzset() function. See also
convert time/2.

toplevel print anon (bool, changeable)
If true, top-level variables starting with an underscore () are printed normally. If false
they are hidden. This may be used to hide bindings in complex queries from the top-level.

SWI-Prolog 5.6 Reference Manual

34 CHAPTER 2. OVERVIEW

toplevel print options (term, changeable)
This argument is given as option-list to write term/2 for printing results of queries.
Default is [quoted(true), portray(true), max depth(10), attributes(portray)].

toplevel var size (int, changeable)
Maximum size counted in literals of a term returned as a binding for a variable in a top-
level query that is saved for re-use using the $ variable reference. See section 2.8.

trace gc (bool, changeable)
If true (false is the default), garbage collections and stack-shifts will be reported on the
terminal. May be changed.

tty control (bool)
Determines whether the terminal is switched to raw mode for get single char/1,
which also reads the user-actions for the trace. May be set. See also the +/-tty
command-line option.

unix (bool)
If present and true, the operating system is some version of Unix. Defined if the C-
compiler used to compile this version of SWI-Prolog either defines __unix__ or unix.
On other systems this flag is not available.

unknown (fail,warning,error, changeable)
Determines the behaviour if an undefined procedure is encountered. If fail, the pred-
icates fails silently. If warn, a warning is printed, and execution continues as if the
predicate was not defined and if error (default), an existence error exception is
raised. This flag is local to each module. Switching this flag to fail disables autoloading
and thus forces complete and consistent use of use module/[1,2] to load the required
libraries.

verbose (Atom, changeable)
This flags is used by print message/2. If its value is silent, messages of type
informational and banner are suppressed. The -q switches the value from the
initial normal to silent.

verbose autoload (bool, changeable)
If true the normal consult message will be printed if a library is autoloaded. By default
this message is suppressed. Intended to be used for debugging purposes.

verbose load (bool, changeable)
If false normal consult messages will be suppressed. Default is true. The value of this
flag is normally controlled by the option silent(Bool) privided by load files/2.

verbose file search (bool, changeable)
If true (default false), print messages indicating the progress of
absolute file name/[2,3] in locating files. Intended for debugging com-
plicated file-search paths. See also file search path/2.

version (integer)
The version identifier is an integer with value:

10000×Major + 100×Minor + Patch

Note that in releases up to 2.7.10 this prolog-flag yielded an atom holding the three
numbers separated by dots. The current representation is much easier for implementing
version-conditional statements.

SWI-Prolog 5.6 Reference Manual

2.12. AN OVERVIEW OF HOOK PREDICATES 35

windows (bool)
If present and true, the operating system is an implementation of Microsoft Windows
(NT/2000/XP, etc.). This flag is only available on MS-Windows based versions.

write attributes (atom, changeable)
Defines how write/1 an friends write attributed variables. The option values are de-
scribed with the attributes option of write term/3. Default is ignore.

write help with overstrike (bool)
Internal flag used by help/1 when writing to a terminal. If present and true it prints
bold and underlined text using overstrike.

xpce (bool)
Available and set to true if the XPCE graphics system is loaded.

xpce version (atom)
Available and set to the version of the loaded XPCE system.

set prolog flag(+Key, +Value)
Define a new prolog-flag or change its value. Key is an atom. If the flag is a system-
defined flag that is not marked changeable above, an attempt to modify the flag yields
a permission error. If the provided Value does not match the type of the flag, a
type error is raised.

In addition to ISO, SWI-Prolog allows for user-defined prolog flags. The type of the flag is
determined from the initial value and cannot be changed afterwards.

2.12 An overview of hook predicates

SWI-Prolog provides a large number of hooks, mainly to control handling messages, debugging,
startup, shut-down, macro-expansion, etc. Below is a summary of all defined hooks with an indication
of their portability.

• portray/1
Hook into write term/3 to alter the way terms are printed (ISO).

• message hook/3
Hook into print message/2 to alter the way system messages are printed (Quin-
tus/SICStus).

• library directory/1
Hook into absolute file name/3 to define new library directories. (most Prolog system).

• file search path/2
Hook into absolute file name/3 to define new search-paths (Quintus/SICStus).

• term expansion/2
Hook into load files/2 to modify read terms before they are compiled (macro-processing)
(most Prolog system).

• goal expansion/2
Same as term expansion/2 for individual goals (SICStus).

SWI-Prolog 5.6 Reference Manual

36 CHAPTER 2. OVERVIEW

• prolog load file/2
Hook into load files/2 to load other data-formats for Prolog sources from ‘non-file’ re-
sources. The load files/2 predicate is the ancestor of consult/1, use module/1,
etc.

• prolog edit:locate/3
Hook into edit/1 to locate objects (SWI).

• prolog edit:edit source/1
Hook into edit/1 to call some internal editor (SWI).

• prolog edit:edit command/2
Hook into edit/1 to define the external editor to use (SWI).

• prolog list goal/1
Hook into the tracer to list the code associated to a particular goal (SWI).

• prolog trace interception/4
Hook into the tracer to handle trace-events (SWI).

• prolog:debug control hook/1
Hook in spy/1, nospy/1, nospyall/0 and debugging/0 to extend these control-
predicates to higher-level libraries.

• prolog:help hook/1
Hook in help/0, help/1 and apropos/1 to extend the help-system.

• resource/3
Defines a new resource (not really a hook, but similar) (SWI).

• exception/3
Old attempt to a generic hook mechanism. Handles undefined predicates (SWI).

• attr unify hook/2
Unification hook for attributed variables. Can be defined in any module. See section 6.1 for
details.

2.13 Automatic loading of libraries

If —at runtime— an undefined predicate is trapped the system will first try to import the predicate
from the module’s default module. If this fails the auto loader is activated. On first activation an
index to all library files in all library directories is loaded in core (see library directory/1
and file search path/2). If the undefined predicate can be located in the one of the li-
braries that library file is automatically loaded and the call to the (previously undefined) predicate
is restarted. By default this mechanism loads the file silently. The current prolog flag/2
verbose autoload is provided to get verbose loading. The prolog-flag autoload can be used
to enable/disable the entire auto load system.

The auto-loader only works if the unknown flag (see unknown/2) is set to trace (default). A
more appropriate interaction with this flag should be considered.

SWI-Prolog 5.6 Reference Manual

2.13. AUTOMATIC LOADING OF LIBRARIES 37

Autoloading only handles (library) source files that use the module mechanism described in chap-
ter 5. The files are loaded with use module/2 and only the trapped undefined predicate will be
imported to the module where the undefined predicate was called. Each library directory must hold a
file INDEX.pl that contains an index to all library files in the directory. This file consists of lines of
the following format:

index(Name, Arity, Module, File).

The predicate make/0 updates the autoload index. It searches for all library directories
(see library directory/1 and file search path/2) holding the file MKINDEX.pl or
INDEX.pl. If the current user can write or create the file INDEX.pl and it does not exist or
is older than the directory or one of its files, the index for this directory is updated. If the file
MKINDEX.pl exists updating is achieved by loading this file, normally containing a directive calling
make library index/2. Otherwise make library index/1 is called, creating an index for
all *.pl files containing a module.

Below is an example creating a completely indexed library directory.

% mkdir ˜/lib/prolog
% cd !$
% pl -g true -t ’make_library_index(.)’

If there are more than one library files containing the desired predicate the following search schema
is followed:

1. If there is a library file that defines the module in which the undefined predicate is trapped, this
file is used.

2. Otherwise library files are considered in the order they appear in the library directory/1
predicate and within the directory alphabetically.

make library index(+Directory)
Create an index for this directory. The index is written to the file ’INDEX.pl’ in the specified
directory. Fails with a warning if the directory does not exist or is write protected.

make library index(+Directory, +ListOfPatterns)
Normally used in MKINDEX.pl, this predicate creates INDEX.pl for Directory, indexing all
files that match one of the file-patterns in ListOfPatterns.

Sometimes library packages consist of one public load file and a number of files used by this
load-file, exporting predicates that should not be used directly by the end-user. Such a library
can be placed in a sub-directory of the library and the files containing public functionality can
be added to the index of the library. As an example we give the XPCE library’s MKINDEX.pl,
including the public functionality of trace/browse.pl to the autoloadable predicates for
the XPCE package.

:- make_library_index(’.’,
[’*.pl’,
’trace/browse.pl’

]).

SWI-Prolog 5.6 Reference Manual

38 CHAPTER 2. OVERVIEW

reload library index
Force reloading the index after modifying the set of library directories by changing the rules for
library directory/1, file search path/2, adding or deleting INDEX.pl files.
This predicate does not update the INDEX.pl files. Check make library index/[1,2]
and make/0 for updating the index files.

Normally, the index is reloaded automatically if a predicate cannot be found in the index and
the set of library directories has changed. Using reload library index/0 is necessary if
directories are removed or the order of the library directories is changed.

2.14 Garbage Collection

SWI-Prolog provides garbage-collection, last-call optimization and atom garbage collection. These
features are controlled using prolog flags (see current prolog flag/2).

2.15 Syntax Notes

SWI-Prolog uses ISO-Prolog standard syntax, which is closely compatible to Edinburgh Prolog syn-
tax. A description of this syntax can be found in the Prolog books referenced in the introduction.
Below are some non-standard or non-common constructs that are accepted by SWI-Prolog:

• 0’〈char〉
This construct is not accepted by all Prolog systems that claim to have Edinburgh compatible
syntax. It describes the character code of 〈char〉. To test whether C is a lower case character one
can use between(0’a, 0’z, C). If character codes are enabled (default) 〈char〉 can use
\ escape sequences. The sequence 0’\t represents the TAB character using symbolic notation.

• /* .../* ...*/ ...*/
The /* ...*/ comment statement can be nested. This is useful if some code with /* ...*/
comment statements in it should be commented out.

2.15.1 ISO Syntax Support

SWI-Prolog offers ISO compatible extensions to the Edinburgh syntax.

Processor Character Set

The processor character set specifies the class of each character used for parsing Prolog source text.
Character classification is fixed to use UCS/Unicode as provided by the C-library wchar t based
primitives. See also section 2.17.

Character Escape Syntax

Within quoted atoms (using single quotes: ’〈atom〉’ special characters are represented using escape-
sequences. An escape sequence is lead in by the backslash (\) character. The list of escape sequences
is compatible with the ISO standard, but contains one extension and the interpretation of numerically
specified characters is slightly more flexible to improve compatibility.

SWI-Prolog 5.6 Reference Manual

2.15. SYNTAX NOTES 39

\a
Alert character. Normally the ASCII character 7 (beep).

\b
Backspace character.

\c
No output. All input characters up to but not including the first non-layout character are skipped.
This allows for the specification of pretty-looking long lines. For compatibility with Quintus
Prolog. Not supported by ISO. Example:

format(’This is a long line that would look better if it was \c
split across multiple physical lines in the input’)

\〈RETURN〉
No output. Skips input till the next non-layout character or to the end of the next line. Same
intention as \c but ISO compatible.

\f
Form-feed character.

\n
Next-line character.

\r
Carriage-return only (i.e. go back to the start of the line).

\t
Horizontal tab-character.

\v
Vertical tab-character (ASCII 11).

\xXX..\
Hexadecimal specification of a character. The closing \ is obligatory according to the ISO
standard, but optional in SWI-Prolog to enhance compatibility to the older Edinburgh standard.
The code \xa\3 emits the character 10 (hexadecimal ‘a’) followed by ‘3’. Characters specified
this way are interpreted as Unicode characters. See also \u.

\uXXXX
Unicode character specification where the character is specified using exactly 4 hexadecimal
digits. This is an extension to the ISO standard fixing two problems. First of all, where \x
defines a numeric character code, it doesn’t specify the character set in which the character
should be interpreted. Second, it is not needed to use the idiosyncratic closing \ ISO Prolog
syntax.

\UXXXXXXXX
Same as \uXXXX, but using 8 digits to cover the whole Unicode set.

SWI-Prolog 5.6 Reference Manual

40 CHAPTER 2. OVERVIEW

\40
Octal character specification. The rules and remarks for hexadecimal specifications apply to
octal specifications as well.

\〈character〉
Any character immediately preceded by a \ and not covered by the above escape sequences is
copied verbatim. Thus, ’\\’ is an atom consisting of a single \ and ’\’’ and ’’’’ both
describe the atom with a single ’.

Character escaping is only available if the current prolog flag(character escapes, true)
is active (default). See current prolog flag/2. Character escapes conflict with writef/2 in
two ways: \40 is interpreted as decimal 40 by writef/2, but character escapes handling by read
has already interpreted as 32 (40 octal). Also, \l is translated to a single ‘l’. It is advised to use the
more widely supported format/[2,3] predicate instead. If you insist upon using writef/2,
either switch character escapes to false, or use double \\, as in writef(’\\l’).

Syntax for non-decimal numbers

SWI-Prolog implements both Edinburgh and ISO representations for non-decimal numbers. Accord-
ing to Edinburgh syntax, such numbers are written as 〈radix〉’〈number〉, where 〈radix〉 is a number
between 2 and 36. ISO defines binary, octal and hexadecimal numbers using 0[bxo]〈number〉. For
example: A is 0b100 \/ 0xf00 is a valid expression. Such numbers are always unsigned.

Unicode Prolog source

The ISO standard specifies the Prolog syntax in ASCII characters. As SWI-Prolog supports Unicode
in source files we must extend the syntax. This section describes the implication for the source files,
while writing international source files is described in section 3.1.3.

The SWI-Prolog Unicode character classification is based on version 4.1.0 of the Unicode stan-
dard. Please that char type/2 and friends, intended to be used with all text except Prolog source
code is based on the C-library locale-based classification routines.

• Quoted atoms and strings
Any character of any script can be used in quoted atoms and strings. The escape sequences
\uXXXX and \UXXXXXXXX (see section 2.15.1) were introduced to specify Unicode code
points in ASCII files.

• Atoms and Variables
We handle them in one item as they are closely related. The Unicode standard defines a syntax
for identifiers in computer languages.5 In this syntax identifiers start with ID Start followed
by a sequence of ID Continue codes. Such sequences are handled as a single token in SWI-
Prolog. The token is a variable iff it starts with an uppercase character or an underscore ().
Otherwise it is an atom. Note that many languages do not not have the notion of character-case.
In such languages variables must be written as _name.

• White space
All characters marked as separators in the Unicode tables are handled as layout characters.

5http://www.unicode.org/reports/tr31/

SWI-Prolog 5.6 Reference Manual

2.16. INFINITE TREES (CYCLIC TERMS) 41

• Other characters
The first 128 characters follow the ISO Prolog standard. All other characters not covered by the
rules above are considered ‘solo’ characters: they form single-character atoms. We would like
to have a more appropriate distinction between what is known to Prolog as ‘solo’ characters and
‘singleton’ characters.

Singleton variable checking

A singleton variable is a variable that appears only one time in a clause. It can always be replaced
by _, the anonymous variable. In some cases however people prefer to give the variable a name. As
mistyping a variable is a common mistake, Prolog systems generally give a warning (controlled by
style check/1) if a variable is used only once. The system can be informed a variable is known
to appear once by starting it with an underscore. E.g. _Name. Please note that any variable, except
plain _ shares with variables of the same name. The term t(_X, _X) is equivalent to t(X, X),
which is different from t(_, _).

As Unicode requires variables to start with an underscore in many languages this schema needs to
be extended.6 First we define the two classes of named variables.

• Named singleton variables
Named singletons start with a double underscore (__) or a single underscore followed by an
uppercase letter. E.g. __var or _Var.

• Normal variables
All other variables are ‘normal’ variables. Note this makes _var a normal variable.7

Any normal variable appearing exactly ones in the clause and any named singleton variables
appearing more than once are reported. Below are some examples with warnings in the right column.

test().
test(a). Singleton variables: [a]
test(A). Singleton variables: [A]
test(A).
test(a).
test(,).
test(a, a).
test(a, a). Singleton-marked variables appearing more than once: [a]
test(A, A). Singleton-marked variables appearing more than once: [A]
test(A, A).

2.16 Infinite trees (cyclic terms)

SWI-Prolog has limited support for infinite trees, also known as cyclic terms. Full support requires
special code in all built-in predicates that require recursive exploration of a term. The current version
supports cycles terms in the pure Prolog kernel including the garbage collector and in the follow-
ing predicates: =../2, ==/2, =@=/2, =/2, @</2, @=</2, @>=/2, @>/2, \==/2, \=@=/2,

6After a proposal by Richard O’Keefe.
7Some Prolog dialects write variables this way.

SWI-Prolog 5.6 Reference Manual

42 CHAPTER 2. OVERVIEW

\=/2, acyclic term/1, bagof/3, compare/3, copy term/2, cyclic term/1, dif/2,
duplicate term/2, findall/3, ground/1, hash term/2, numbervars/[3,4],
recorda/3, recordz/3, setof/3, term variables/2, throw/1, when/2, write/1
(incomplete) .

2.17 Wide character support

SWI-Prolog supports wide characters, characters with character codes above 255 that cannot be rep-
resented in a single byte. Universal Character Set (UCS) is the ISO/IEC 10646 standard that specifies
a unique 31-bits unsigned integer for any character in any language. It is a superset of 16-bit Unicode,
which in turn is a superset of ISO 8859-1 (ISO Latin-1), a superset of US-ASCII. UCS can handle
strings holding characters from multiple languages and character classification (uppercase, lowercase,
digit, etc.) and operations such as case-conversion are unambiguously defined.

For this reason SWI-Prolog has two representations for atoms and string objects (see section 4.23.
If the text fits in ISO Latin-1, it is represented as an array of 8-bit characters. Otherwise the text is
represented as an array of 32-bit numbers. This representational issue is completely transparent to the
Prolog user. Users of the foreign language interface as described in section 9 sometimes need to be
aware of these issues though.

Character coding comes into view when characters of strings need to be read from or written to
file or when they have to be communicated to other software components using the foreign language
interface. In this section we only deal with I/O through streams, which includes file I/O as well as I/O
through network sockets.

2.17.1 Wide character encodings on streams

Although characters are uniquely coded using the UCS standard internally, streams and files are byte
(8-bit) oriented and there are a variety of ways to represent the larger UCS codes in an 8-bit octet
stream. The most popular one, especially in the context of the web, is UTF-8. Bytes 0 . . . 127
represent simply the corresponding US-ASCII character, while bytes 128 . . . 255 are used for multi-
byte encoding of characters placed higher in the UCS space. Especially on MS-Windows the 16-bit
Unicode standard, represented by pairs of bytes is also popular.

Prolog I/O streams have a property called encoding which specifies the used encoding that influ-
ence get code/2 and put code/2 as well as all the other text I/O predicates.

The default encoding for files is derived from the Prolog flag encoding, which is initialised
from the environment. If the environment variable LANG ends in ”UTF-8”, this encoding is as-
sumed. Otherwise the default is text and the translation is left to the wide-character functions
of the C-library. 8 The encoding can be specified explicitly in load files/2 for loading Pro-
log source with an alternative encoding, open/4 when opening files or using set stream/2 on
any open stream. For Prolog source files we also provide the encoding/1 directive that can be
used to switch between encodings that are compatible to US-ASCII (ascii, iso latin 1, utf8
and many locales). See also section 3.1.3 for writing Prolog files with non-US-ASCII characters
and section 2.15.1 for syntax issues. For additional information and Unicode resources, please visit
http://www.unicode.org/.

SWI-Prolog currently defines and supports the following encodings:

8The Prolog native UTF-8 mode is considerably faster than the generic mbrtowc() one.

SWI-Prolog 5.6 Reference Manual

2.17. WIDE CHARACTER SUPPORT 43

octet
Default encoding for binary streams. This causes the stream to be read and written fully
untranslated.

ascii
7-bit encoding in 8-bit bytes. Equivalent to iso latin 1, but generates errors and warnings
on encountering values above 127.

iso latin 1
8-bit encoding supporting many western languages. This causes the stream to be read and
written fully untranslated.

text
C-library default locale encoding for text files. Files are read and written using the C-library
functions mbrtowc() and wcrtomb(). This may be the same as one of the other locales, notably
it may be the same as iso latin 1 for western languages and utf8 in a UTF-8 context.

utf8
Multi-byte encoding of full UCS, compatible to ascii. See above.

unicode be
Unicode Big Endian. Reads input in pairs of bytes, most significant byte first. Can only repre-
sent 16-bit characters.

unicode le
Unicode Little Endian. Reads input in pairs of bytes, least significant byte first. Can only
represent 16-bit characters.

Note that not all encodings can represent all characters. This implies that writing text to a stream
may cause errors because the stream cannot represent these characters. The behaviour of a stream on
these errors can be controlled using set stream/2. Initially the terminal stream write the charac-
ters using Prolog escape sequences while other streams generate an I/O exception.

BOM: Byte Order Mark

From section 2.17.1, you may have got the impression text-files are complicated. This section deals
with a related topic, making live often easier for the user, but providing another worry to the pro-
grammer. BOM or Byte Order Marker is a technique for identifying Unicode text-files as well as the
encoding they use. Such files start with the Unicode character 0xFEFF, a non-breaking, zero-width
space character. This is a pretty unique sequence that is not likely to be the start of a non-Unicode
file and uniquely distinguishes the various Unicode file formats. As it is a zero-width blank, it even
doesn’t produce any output. This solves all problems, or . . .

Some formats start of as US-ASCII and may contain some encoding mark to switch to UTF-8,
such as the encoding="UTF-8" in an XML header. Such formats often explicitly forbid the the
use of a UTF-8 BOM. In other cases there is additional information telling the encoding making the
use of a BOM redundant or even illegal.

The BOM is handled by SWI-Prolog open/4 predicate. By default, text-files are probed for the
BOM when opened for reading. If a BOM is found, the encoding is set accordingly and the property
bom(true) is available through stream property/2. When opening a file for writing, writing a
BOM can be requested using the option bom(true) with open/4.

SWI-Prolog 5.6 Reference Manual

44 CHAPTER 2. OVERVIEW

2.18 System limits

2.18.1 Limits on memory areas

SWI-Prolog has a number of memory areas which are only enlarged to a certain limit. The default
sizes for these areas should suffice for most applications, but big applications may require larger ones.
They are modified by command-line options. The table below shows these areas. The first column
gives the option name to modify the size of the area. The option character is immediately followed by
a number and optionally by a k or m. With k or no unit indicator, the value is interpreted in Kbytes
(1024 bytes), with m, the value is interpreted in Mbytes (1024× 1024 bytes).

The local-, global- and trail-stack are limited to 128 Mbytes on 32 bit processors, or more gener-
ally to 2bits-per-long−5 bytes.

The PrologScript facility described in section 2.10.2 provides a mechanism for specifying options
with the load-file. On Windows the default stack-sizes are controlled using the Windows registry
on the key HKEY_CURRENT_USER\Software\SWI\Prolog using the names localSize,
globalSize and trailSize. The value is a DWORD expressing the default stack size in Kbytes.
A GUI for modifying these values is provided using the XPCE package. To use this, start the XPCE
manual tools using manpce/0, after which you find Preferences in the File menu.

The heap

With the heap, we refer to the memory area used by malloc() and friends. SWI-Prolog uses the area to
store atoms, functors, predicates and their clauses, records and other dynamic data. As of SWI-Prolog
2.8.5, no limits are imposed on the addresses returned by malloc() and friends.

On some machines, the runtime stacks described above are allocated using ‘sparse allocation’.
Virtual space up to the limit is claimed at startup and committed and released while the area grows
and shrinks. On Win32 platform this is realised using VirtualAlloc() and friends. On Unix systems
this is realised using mmap().

2.18.2 Other Limits

Clauses The only limit on clauses is their arity (the number of arguments to the head), which is
limited to 1024. Raising this limit is easy and relatively cheap, removing it is harder.

Atoms and Strings SWI-Prolog has no limits on the sizes of atoms and strings. read/1 and its
derivatives however normally limit the number of newlines in an atom or string to 5 to improve
error detection and recovery. This can be switched off with style check/1.

The number of atoms is limited to 16777216 (16M) on 32-bit machines. On 64-bit machines
this is virtually unlimited. See also section 9.6.2.

Memory areas On 32-bit hardware, SWI-Prolog data is packed in a 32-bit word, which contains both
type and value information. The size of the various memory areas is limited to 128 Mb for each
of the areas, except for the program heap, which is not limited. On 64-bit hardware there are no
meaningful limits.

Integers Integers are 64-bit on 32 as well as 64-bit machines. Integers up to the value of the
max tagged integer prolog-flag are represented more efficiently on the stack. For clauses
and records the difference is much smaller.

SWI-Prolog 5.6 Reference Manual

2.18. SYSTEM LIMITS 45

Option Default Area name Description
-L 2M local stack The local stack is used to store

the execution environments of
procedure invocations. The
space for an environment is re-
claimed when it fails, exits with-
out leaving choice points, the
alternatives are cut of with the
!/0 predicate or no choice points
have been created since the in-
vocation and the last subclause
is started (tail recursion optimi-
sation).

-G 4M global stack The global stack is used to store
terms created during Prolog’s
execution. Terms on this stack
will be reclaimed by backtrack-
ing to a point before the term
was created or by garbage col-
lection (provided the term is no
longer referenced).

-T 4M trail stack The trail stack is used to store as-
signments during execution. En-
tries on this stack remain alive
until backtracking before the
point of creation or the garbage
collector determines they are nor
needed any longer.

-A 1M argument stack The argument stack is used to
store one of the intermediate
code interpreter’s registers. The
amount of space needed on this
stack is determined entirely by
the depth in which terms are
nested in the clauses that con-
stitute the program. Overflow
is most likely when using long
strings in a clause.
In addition, this stack is used by
some built-in predicates to han-
dle cyclic terms. Its default size
limit is proportional to the global
stack limit such that it will never
overflow.

Table 2.2: Memory areas

SWI-Prolog 5.6 Reference Manual

46 CHAPTER 2. OVERVIEW

Floats Floating point numbers are represented as C-native double precision floats, 64 bit IEEE on
most machines.

2.18.3 Reserved Names

The boot compiler (see -b option) does not support the module system. As large parts of the sys-
tem are written in Prolog itself we need some way to avoid name clashes with the user’s predicates,
database keys, etc. Like Edinburgh C-Prolog [Pereira, 1986] all predicates, database keys, etc. that
should be hidden from the user start with a dollar ($) sign (see style check/1).

SWI-Prolog 5.6 Reference Manual

Initialising and Managing a
Prolog Project 3
Prolog text-books give you an overview of the Prolog language. The manual tells you what predicates
are provided in the system and what they do. This chapter wants to explain how to run a project.
There is no ultimate ‘right’ way to do this. Over the years we developed some practice in this area and
SWI-Prolog’s commands are there to support this practice. This chapter describes the conventions
and supporting commands.

The first two sections (section 3.1 and section 3.2 only require plain Prolog. The remainder dis-
cusses the use of the built-in graphical tools that require the XPCE graphical library installed on your
system.

3.1 The project source-files

Organisation of source-files depends largely on the size of your project. If you are doing exercises for
a Prolog course you’ll normally use one file for each exercise. If you have a small project you’ll work
work with one directory holding a couple of files and some files to link it all together. Even bigger
projects will be organised in sub-projects each using their own directory.

3.1.1 File Names and Locations

File Name Extensions

The first consideration is what extension to use for the source-files. Tradition calls for .pl, but con-
flicts with Perl force the use of another extension on systems where extensions have global meaning,
such as MS-Windows. On such systems .pro is the common alternative.1

All versions of SWI-Prolog load files with the extension .pl as well as with the registered alter-
native extension without explicitly specifying the extension. For portability reasons we propose the
following convention:

If there is no conflict because you do not use a conflicting application or the system does not force
a unique relation between extension and application, use .pl.

With a conflict choose .pro and use this extension for the files you want to load through your file-
manager. Use .pl for all other files for maximal portability.

Project Directories

Large projects are generally composed of sub-projects, each using their own directory or directory-
structure. If nobody else will ever touch your files and you use only one computer there is little to

1On MS-Windows, the alternative extension is stored in the registry-key
HKEY CURRENT USER/Software/SWI/Prolog/fileExtension or HKEY LOCAL MACHINE/Software/SWI/Prolog/fileExtension

SWI-Prolog 5.6 Reference Manual

48 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

worry about, but this is rarely the case with a large project.
To improve portability, SWI-Prolog uses the POSIX notation for filenames, which uses

the forward slash (/) to separate directories. Just before hitting the file-system it uses
prolog to os filename/2 to convert the filename to the conventions used by the hosting oper-
ating system. It is strongly advised to write paths using the /, especially on systems using the \ for
this purpose (MS-Windows). Using \ violates the portability rules and requires you to double the \
due to the Prolog quoted-atom escape rules.

Portable code should use prolog to os filename/2 to convert computed paths into system-
paths when constructing commands for shell/1 and friends.

Sub-projects using search-paths

Thanks to Quintus, Prolog adapted an extensible mechanism for searching files using
file search path/2. This mechanism allows for comfortable and readable specifications.

Suppose you have extensive library packages on graph-algorithms, set-operations and GUI-
primitives. These sub-projects are likely candidates for re-use in future projects. A good choice is
to create a directory with sub-directories for each of these sub-projects.

Next, there are three options. One is to add the sub-projects to the directory-hierarchy of the
current project. Another is to use a completely dislocated directory and finally the sub-project can be
added to the SWI-Prolog hierarchy. Using local installation, a typical file search path/2 is:

:- prolog_load_context(directory, Dir),
asserta(user:file_search_path(myapp, Dir)).

user:file_search_path(graph, myapp(graph)).
user:file_search_path(ui, myapp(ui)).

For using sub-projects in the SWI-Prolog hierarchy one should use the path-alias swi as basis. For a
system-wide installation use an absolute-path.

Extensive sub-projects with a small well-defined API should define a load-file using
use module/1 calls to import the various library-components and export the API.

3.1.2 Project Special Files

There are a number of tasks you typically carry out on your project, such as loading it, creating a
saved-state, debugging it, etc. Good practice on large projects is to define small files that hold the
commands to execute such a task, name this file after the task and give it a file-extension that makes
starting easy (see section 3.1.1). The task load is generally central to these tasks. Here is a tentative
list.

• load.pl
Use this file to set up the environment (prolog flags and file search paths) and load the sources.
Quite commonly this file also provides convenient predicates to parse command-line options
and start the application.

• run.pl
Use this file to start the application. Normally it loads load.pl in silent-mode, and calls one
of the starting predicates from load.pl.

SWI-Prolog 5.6 Reference Manual

3.2. USING MODULES 49

• save.pl
Use this file to create a saved-state of the application by loading load.pl and call
qsave program/2 to generate a saved-state with the proper options.

• debug.pl
Loads the program for debugging. In addition to loading load.pl this file defines rules for
portray/1 to modify printing rules for complex terms and customisation rules for the debug-
ger and editing environment. It may start some of these tools.

3.1.3 International source files

As discussed in section 2.17, SWI-Prolog supports international character handling. Its internal en-
coding is UNICODE. I/O streams convert to/from this internal format. This sections discusses the
options for source-files not in US-ASCII.

SWI-Prolog can read files in any of the encodings described in section 2.17. Two encodings are of
particular interest. The text encoding deals with the current locale, the default used by this computer
for representing text files. The encodings utf8, unicode le and unicode be are UNICODE
encodings: they can represent—in the same file—characters of virtually any known language. In
addition, they do so unambiguously.

If one wants to represent non US-ASCII text as Prolog terms in a source-file there are several
options:

• Use escape sequences
This approach describes NON-ASCII as sequences of the form \octal\. The numerical argu-
ment is interpreted as a UNICODE character.2 The resulting Prolog file is strict 7-bit US-ASCII,
but if there are many NON-ASCII characters it becomes very unreadable.

• Use local conventions
Alternatively the file may be specified using local conventions, such as the EUC encoding for
Japanese text. The disadvantage is portability. If the file is moved to another machine this
machine must be using the same locale or the file is unreadable. There is no elegant if files
from multiple locales must be united in one application using this technique. In other words, it
is fine for local projects in countries with uniform locale conventions.

• Using UTF-8 files
The best way to specify source files with many NON-ASCII characters is definitely the use
of UTF-8 encoding. Prolog can be notified two ways of this encoding, using a UTF-8 BOM
(see section 2.17.1) or using the directive :- encoding(utf8).. Many todays text editors,
including PceEmacs, are capable of editing UTF-8 files. Projects that started using local con-
ventions can be be re-coded using the Unix iconv tool or often using a commands offered by
the editor.

3.2 Using modules

Modules have been debated fiercely in the Prolog world. Despite all counter-arguments we feel they
are extremely useful because

2To my knowledge, the ISO escape sequences is limited to 3 octal digits, which means most characters cannot be
represented.

SWI-Prolog 5.6 Reference Manual

50 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

• They hide local predicates
This is the reason they have been invented in the first place. Hiding provides two features.
They allow for short predicate names without worrying about conflicts. Given the flat name-
space introduced by modules, they still require meaningful module names as well as meaningful
names for exported predicates.

• They document the interface
Possibly more important then avoiding name-conflicts is their role in documenting which part
of the file is for public usage and which is private. When editing a module you may assume
you can reorganise anything but the name and semantics of the exported predicates without
worrying.

• They help the editor
The PceEmacs built-in editor does on-the-fly cross-referencing of the current module, colouring
predicates based on their origin and usage. Using modules, the editor can quickly find out what
is provided by the imported modules by reading just the first term. This allows it to indicate
real-time which predicates are not used or not defined.

Using modules is generally easy. Only if you write meta-predicates (predicates reasoning about
other predicates) that are exported from a module good understanding of resolution of terms to predi-
cates inside a module is required. Here is a typical example from readutil.

:- module(read_util,
[read_line_to_codes/2, % +Fd, -Codes
read_line_to_codes/3, % +Fd, -Codes, ?Tail
read_stream_to_codes/2, % +Fd, -Codes
read_stream_to_codes/3, % +Fd, -Codes, ?Tail
read_file_to_codes/3, % +File, -Codes, +Options
read_file_to_terms/3 % +File, -Terms, +Options

]).

3.3 The test-edit-reload cycle

SWI-Prolog does not enforce the use of a particular editor for writing down Prolog source code.
Editors are complicated programs that must be mastered in detail for real productive programming
and if you are familiar with a specific editor you should not be forced to change. You may specify
your favourite editor using the prolog flag editor, the environment variable EDITOR or by defining
rules for prolog edit:edit source/1 (see section 4.4).

The use of a built-in editor, which is selected by setting the prolog-flag editor to pce emacs,
has advantages. The XPCE editor object around which the built-in PceEmacs is built can be opened
as a Prolog stream allowing analysis of your source by the real Prolog system.

3.3.1 Locating things to edit

The central predicate for editing something is edit/1, an extensible front-end that searches for
objects (files, predicates, modules as well as XPCE classes and methods) in the Prolog database. If
multiple matches are found it provides a choice. Together with the built-in completion on atoms bound
to the TAB key this provides a quick way to edit objects:

SWI-Prolog 5.6 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 51

?- edit(country).
Please select item to edit:

1 chat:country/10 ’/staff/jan/lib/prolog/chat/countr.pl’:16
2 chat:country/1 ’/staff/jan/lib/prolog/chat/world0.pl’:72

Your choice?

3.3.2 Editing and incremental compilation

One of the nice features of Prolog is that the code can be modified while the program is running.
Using pure Prolog you can trace a program, find it is misbehaving, enter a break environment, modify
the source code, reload it and finally do retry on the misbehaving predicate and try again. This
sequence is not uncommon for long-running programs. For faster programs one normally aborts after
understanding the misbehaviour, edit the source, reload it and try again.

One of the nice features of SWI-Prolog is the availability of make/0, a simple predicate that
checks all loaded source files to see which ones you have modified. It then reloads these files, consid-
ering the module from which the file was loaded originally. This greatly simplifies the trace-edit-verify
development cycle. After the tracer reveals there is something wrong with prove/3, you do:

?- edit(prove).

Now edit the source, possibly switching to other files and making multiple changes. After finishing
invoke make/0, either through the editor UI () Compile/Make (Control-C Control-M)) or on
the top-level and watch the files being reloaded.3

?- make.
% show compiled into photo_gallery 0.03 sec, 3,360 bytes

3.4 Using the PceEmacs built-in editor

3.4.1 Activating PceEmacs

Initially edit/1 uses the editor specified in the EDITOR environment variable. There are two ways
to force it to use the built-in editor. One is to set the prolog-flag editor to pce emacs and the
other is by starting the editor explicitly using the emacs/[0,1] predicates.

3.4.2 Bluffing through PceEmacs

PceEmacs closely mimics Richard Stallman’s GNU-Emacs commands, adding features from modern
window-based editors to make it more acceptable for beginners.4

3Watching these files is a good habit. If expected files are not reloaded you may have forgotten to save them from the
editor or you may have been editing the wrong file (wrong directory).

4Decent merging with MS-Windows control-key conventions is difficult as many conflict with GNU-Emacs. Especially
the cut/copy/paste commands conflict with important GNU-Emacs commands.

SWI-Prolog 5.6 Reference Manual

52 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

At the basis, PceEmacs maps keyboard sequences to methods defined on the extended editor
object. Some frequently used commands are, with their key-binding, presented in the menu-bar above
each editor window. A complete overview of the bindings for the current mode is provided through)
Help/Show key bindings (Control-h Control-b).

Edit modes

Modes are the heart of (Pce)Emacs. Modes define dedicated editing support for a particular kind of
(source-)text. For our purpose we want Prolog mode. Their are various ways to make PceEmacs use
Prolog mode for a file.

• Using the proper extension
If the file ends in .pl or the selected alternative (e.g. .pro) extension, Prolog mode is selected.

• Using #!/path/to/pl
If the file is a Prolog Script file, starting with the line #!/path/to/pl options -s, Pro-
log mode is selected regardless of the extension

• Using -*- Prolog -*-
If the above sequence appears in the first line of the file (inside a Prolog comment) Prolog mode
is selected.

• Explicit selection
Finally, using) File/Mode/Prolog (y)ou can switch to Prolog mode explicitly.

Frequently used editor commands

Below we list a few important commands and how to activate them.

• Cut/Copy/Paste
These commands follow Unix/X11 traditions. You’re best suited with a three-button mouse.
After selecting using the left-mouse (double-click uses word-mode and triple line-mode), the
selected text is automatically copied to the clipboard (X11 primary selection on Unix). Cut is
achieved using the DEL key or by typing something else at the location. Paste is achieved using
the middle-mouse (or wheel) button. If you don’t have a middle mouse-button, pressing the
left- and right-button at the same time is interpreted as a middle-button click. If nothing helps
there is the) Edit/Paste menu-entry. Text is pasted at the caret-location.

• Undo
Undo is bound to the GNU-Emacs Control- as well as the MS-Windows Control-Z sequence.

• Abort
Multi-key sequences can be aborted at any stage using Control-G.

• Find
Find (Search) is started using Control-S (forward) or Control-R (backward). PceEmacs imple-
ments incremental search. This is difficult to use for novices, but very powerful once you get
the clue. After one of the above start-keys the system indicates search mode in the status line.
As you are typing the search-string, the system searches for it, extending the search with every
character you type. It illustrates the current match using a green background.

SWI-Prolog 5.6 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 53

If the target cannot be found, PceEmacs warns you and no longer extends the search-string.5

During search some characters have special meaning. Typing anything but these characters
commits the search, re-starting normal edit mode. Special commands are:

Control-S
Search for next forwards.

Control-R
Search for next backwards.

Control-W
Extend search to next word-boundary.

Control-G
Cancel search, go back to where it started.

ESC
Commit search, leaving caret at found location.

Backspace
Remove a character from the search string.

• Dynamic Abbreviation
Also called dabbrev is an important feature of Emacs clones to support programming. After
typing the first few letters of an identifier you may hit Alt-/, causing PceEmacs to search back-
wards for identifiers that start the same and using it to complete the text you typed. A second
Alt-/ searches further backwards. If there are no hits before the caret it starts searching forwards.
With some practice, this system allows for very fast entering code with nice and readable iden-
tifiers (or other difficult long words).

• Open (a file)
Is called) File/Find file (Control-x Control-f). By default the file is loaded into the
current window. If you want to keep this window, Hit Alt-s or click the little icon at the bottom-
left to make the window sticky.

• Split view
Sometimes you want to look at two places of the same file. To do this, use Control-x 2 to create
a new window pointing to the same file. Do not worry, you can edit as well as move around in
both. Control-x 1 kills all other windows running on the same file.

These were the most commonly used commands. In section section 3.4.3 we discuss specific
support for dealing with Prolog source code.

3.4.3 Prolog Mode

In the previous section (section 3.4.2) we explained the basics of PceEmacs. Here we continue with
Prolog specific functionality. Possibly the most interesting is Syntax highlighting. Unlike most editors
where this is based on simple patterns, PceEmacs syntax highlighting is achieved by Prolog itself ac-
tually reading and interpreting the source as you type it. There are three moments at which PceEmacs
checks (part of) the syntax.

5GNU-Emacs keeps extending the string, but why? Adding more text will not make it match.

SWI-Prolog 5.6 Reference Manual

54 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Clauses
Blue bold Head of an exported predicate
Red bold Head of a predicate that is not called
Black Bold Head of remaining predicates

Calls in the clause-body
Blue Call to built-in or imported predicate
Red Call to not-defined predicate
Purple Call to dynamic predicate

Other entities
Dark green Comment
Dark blue Quoted atom or string
Brown Variable

Table 3.1: Colour conventions

• After typing a .
After typing a . that is not preceded by a symbol character the system assumes you completed
a clause, tries to find the start of this clause and verifies the syntax. If this process succeeds it
colours the elements of the clause according to the rules given below. Colouring is done using
information from the last full check on this file. If it fails, the syntax error is displayed in the
status line and the clause is not coloured.

• After the command Control-c Control-s
Acronym for Ccheck Syntax it performs the same checks as above for the clause surrounding
the caret. On a syntax error however, the caret is moved to the expected location of the error.6

• After pausing for two seconds
After a short pause (2 seconds), PceEmacs opens the edit-buffer and reads it as a whole, creating
an index of defined, called, dynamic, imported and exported predicates. After completing this,
it re-reads the file and colours all clauses and calls with valid syntax.

• After typing Control-l Control-l
The Control-l commands re-centers the window (scrolls the window to make the caret the center
of the window). Hitting this command twice starts the same process as above.

The colour schema itself is defined in emacs/prolog colour. The colouring can be extended
and modified using multifile predicates. Please check this source-file for details. In general, under-
lined objects have a popup (right-mouse button) associated for common commands such as viewing
the documentation or source. Bold text is used to indicate the definition of objects (typically predicates
when using plain Prolog). Other colours follow intuitive conventions. See table 3.4.3.

Layout support Layout is not ‘just nice’, it is essential for writing readable code. There is much
debate on the proper layout of Prolog. PceEmacs, being a rather small project supports only one
particular style for layout.7 Below are examples of typical constructs.

6In most cases the location where the parser cannot proceed is further down the file than the actual error-location.
7Defined in Prolog in the file emacs/prolog mode, you may wish to extend this. Please contribute your extensions!

SWI-Prolog 5.6 Reference Manual

3.4. USING THE PCEEMACS BUILT-IN EDITOR 55

head(arg1, arg2).

head(arg1, arg2) :- !.

head(Arg1, arg2) :- !,
call1(Arg1).

head(Arg1, arg2) :-
(if(Arg1)
-> then
; else
).

head(Arg1) :-
(a
; b
).

head :-
a(many,
long,
arguments(with,

many,
more),

and([a,
long,
list,
with,
a,

| tail
])).

PceEmacs uses the same conventions as GNU-Emacs. The TAB key indents the current line according
to the syntax rules. Alt-q indents all lines of the current clause. It provides support for head, calls
(indented 1 tab), if-then-else, disjunction and argument-lists broken across multiple lines as illustrated
above.

Finding your way around

The command Alt-. extracts name and arity from the caret location and jumps (after conformation
or edit) to the definition of the predicate. It does so based on the source-location database of loaded
predicates also used by edit/1. This makes locating predicates reliable if all sources are loaded and
up-to-date (see make/0).

In addition, references to files in use module/[1,2], consult/1, etc. are red if the file can-
not be found and underlined blue if the file can be loaded. A popup allows for opening the referenced
file.

SWI-Prolog 5.6 Reference Manual

56 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

3.5 The Graphical Debugger

SWI-Prolog offers two debuggers. One is the traditional text-console based 4-port Prolog tracer and
the other is a window-based source-level debugger. The window-based debugger requires XPCE
installed. It operates based on the prolog trace interception/4 hook and other low-level
functionality described in chapter B.

Window-based tracing provides much better overview due to the eminent relation to your source-
code, a clear list of named variables and their bindings as well as a graphical overview of the call and
choice-point stack. There are some drawbacks though. Using a textual trace on the console one can
scroll back and examine the past, while the graphical debugger just presents a (much better) overview
of the current state.

3.5.1 Invoking the window-based debugger

Whether the text-based or window-based debugger is used is controlled using the predicates
guitracer/0 and noguitracer/0. Entering debug mode is controlled using the normal pred-
icates for this: trace/0 and spy/1. In addition, PceEmacs prolog mode provides the command)
Prolog/Break at (Control-c b) to insert a break-point at a specific location in the source-code.

guitracer
This predicate installs the above-mentioned hooks that redirect tracing to the window-based
environment. No window appears. The debugger window appears as actual tracing is started
through trace/0, by hitting a spy-point defined by spy/1 or a break-point defined using
PceEmacs command) Prolog/Break at (Control-c b).

noguitracer
Disable the hooks installed by guitracer/0, reverting to normal text-console based tracing.

gtrace
Utility defined as guitracer,trace.

gdebug
Utility defined as guitracer,debug.

gspy(+Predicate)
Utility defined as guitracer,spy(Predicate).

3.6 The Prolog Navigator

Another tool is the Prolog Navigator. This tool can be started from PceEmacs using the command
) Browse/Prolog navigator, from the GUI debugger or using the programmatic IDE interface de-
scribed in section 3.8.

3.7 Cross referencer

A cross-referencers is a tool examining the caller-callee relation between predicates and using this
information to explicate dependency relations between source files, find calls to non-existing predi-
cates and predicates for which no callers can be found. Cross-referencing is useful during program

SWI-Prolog 5.6 Reference Manual

3.7. CROSS REFERENCER 57

Figure 3.1: File info for chattop.pl, part of CHAT80

development, reorganisation, cleanup, porting and other program maintenance tasks. The dynamic
nature of Prolog makes the task non-trivial. Goals can be created dynamically call/1 after con-
struction of a goal term. Abtract interpretation can find some of such calls, but the ultimately they
can come from external communication, making it completely impossible to predict the callee. In
other words, the cross-referencer has only partial understanding of the program and its results are
necessarily incomplete. Still, it provides valuable information to the developer.

SWI-Prolog’s cross-referencer is split into two parts. The standard Prolog library prolog xref
is an extensible library for information gathering described in section A.17 and the XPCE

library pce xref provides a graphical frontend for the cross-referencer described here. We
demonstrate the tool on CHAT80, a natural language question and answer system by Fernando C.N.
Pereira and David H.D. Warren.

gxref
Run cross-referencer on all currently loaded files and present a graphical overview of the result.
As the predicate operates on the currently loaded application it must be run after loading the
application.

The left window (see figure 3.1 provides browsers for loaded files and predicates. To avoid
long file paths the file hierarchy has three main branches. The first is the current directory hold-
ing the sources. The second is marked alias and below it are the file-search-path aliases (see
file search path/2 and absolute file name/3). Here you find files loaded from the sys-
tem as well as modules of the program loaded from other locations using file search path. All loaded
files that fall outside these categories are below the last branch called /. File where the system found
suspicious dependencies are marked with an exclamation mark. This also holds for directories holding
such files. Clicking on a file opens a File info window in the right pane.

SWI-Prolog 5.6 Reference Manual

58 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

Figure 3.2: Dependencies between source files of CHAT80

The File info window shows a file, its main properties, its undefined and not-called predicates and
its import- and export relations to other files in the project. Both predicates and files can be opened
by clicking on them. The number of callers in a file for a certain predicate is indicated with a blue
underlined number. A left-click will open a list and allows to edit the calling predicate.

The Dependencies (see figure 3.2) window displays a graphical overview of dependencies be-
tween files. Using the background menu a complete graph of the project can be created. It is also
possible to drag files onto the graph window and use the menu on the nodes to incrementally expand
the graph. The underlined blue text indicates the number of predicates used in the destination file.
Left-clicking opens a menu to open the definition or select one of the callers.

Module and non-module files The cross-referencer threads module and non-module project files
differently. Module files have explicit import and export relations and the tool shows the usage and
consistency of the relations. Using the menu-command Header the tool creates a consistent import
list for the module that can be included in the file. The tool computes the dependency relations
between the non-module files. If the user wishes to convert the project into a module-based one
the Header command generates an appropriate module header and import list. Note that the cross-
referencer may have missed dependencies and does not deal with meta-predicates defined in one
module and called in another. Such problems must be resolved manually.

Settings The following settings can be controlled from the settings menu:

Warn autoload
By default disabled. If enabled, modules that require predicates to be autoloaded are flagged
with a warning and the file info window of a module shows the required autoload predicates.

SWI-Prolog 5.6 Reference Manual

3.8. ACCESSING THE IDE FROM YOUR PROGRAM 59

Warn not called
If enabled (default), the file-overview shows an alert icon for files that have predicates that are
not called.

3.8 Accessing the IDE from your program

Over the years a collection of IDE components have been developed, each with their own interface.
In addition, some of these components require each other and loading IDE components must be on
demand to avoid the IDE being part of a saved-state (see qsave program/2). For this reason,
access to the IDE will be concentrated on a single interface called prolog ide/1:

prolog ide(+Action)
This predicate ensures the IDE enabling XPCE component is loaded, cre-
ates the XPCE class prolog ide and sends Action to its one and only instance
\index{@prolog_ide}\objectname{prolog_ide}. Action is one of the fol-
lowing:

open navigator(+Directory)
Open the Prolog Navigator (see section 3.6) in the given Directory.

open debug status
Open a window to edit spy- and trace-points.

open query window
Opens a little window to run Prolog queries from a GUI component.

thread monitor
Open a graphical window indicating existing threads and their status.

debug monitor
Open a graphical front-end for the debug library that provides an overview of the topics
and catches messages.

xref
Open a graphical front-end for the cross-referencer that provides an overview of predicates
and their callers.

3.9 Summary of the iDE

The SWI-Prolog development environment consists of a number of interrelated but not (yet) integrated
tools. Here is a list of the most important features and tips.

• Atom completion
The console8 completes a partial atom on the TAB key and shows alternatives on the command
Alt-?.

• Use edit/1 to finding locations
The command edit/1 takes the name of a file, module, predicate or other entity registered
through extensions and starts the users preferred editor at the right location.

8On Windows this is realised by plwin.exe, on Unix through the GNU readline library, which is included automatically
when found by configure.

SWI-Prolog 5.6 Reference Manual

60 CHAPTER 3. INITIALISING AND MANAGING A PROLOG PROJECT

• Select editor
External editors are selected using the EDITOR environment variable, by setting the prolog flag
editor or by defining the hook prolog edit:edit source/1.

• Update Prolog after editing
Using make/0, all files you have edited are re-loaded.

• PceEmacs
Offers syntax-highlighting and checking based on real-time parsing of the editor’s buffer,
layout-support and navigation support.

• Using the graphical debugger
The predicates guitracer/0 and noguitracer/0 switch between traditional text-based
and window-based debugging. The tracer is activated using the trace/0, spy/1 or menu-
items from PceEmacs or the PrologNavigator.

• The Prolog Navigator
Shows the file-structure and structure inside the file. It allows for loading files, editing, setting
spy-points, etc.

SWI-Prolog 5.6 Reference Manual

Built-in predicates 4
4.1 Notation of Predicate Descriptions

We have tried to keep the predicate descriptions clear and concise. First the predicate name is printed
in bold face, followed by the arguments in italics. Arguments are preceded by a ‘+’, ‘-’ or ‘?’ sign.
‘+’ indicates the argument is input to the predicate, ‘-’ denotes output and ‘?’ denotes ‘either input
or output’.1 Constructs like ‘op/3’ refer to the predicate ‘op’ with arity ‘3’. Finally, arguments may
have the ‘:’ specifier, which implies the argument is module-sensitive. Normally the argument is a
callable term referring to a predicate in a specific module. See section 5 for more information on
module-handing.

4.2 Character representation

In traditional (Edinburgh-) Prolog, characters are represented using character-codes. Character codes
are integer indices into a specific character set. Traditionally the character set was 7-bits US-ASCII.
8-bit character sets have been allowed for a long time, providing support for national character sets,
of which iso-latin-1 (ISO 8859-1) is applicable to many western languages. Text-files are supposed to
represent a sequence of character-codes.

ISO Prolog introduces three types, two of which are used for characters and one for accessing
binary streams (see open/4). These types are:

• code
A character-code is an integer representing a single character. As files may use multi-byte
encoding for supporting different character sets (utf-8 encoding for example), reading a code
from a text-file is in general not the same as reading a byte.

• char
Alternatively, characters may be represented as one-character-atoms. This is a very natural rep-
resentation, hiding encoding problems from the programmer as well as providing much easier
debugging.

• byte
Bytes are used for accessing binary-streams.

The current version of SWI-Prolog does not provide support for multi-byte character encoding.
This implies for example that it is not capable of breaking a multi-byte encoded atom into characters.
For SWI-Prolog, bytes and codes are the same and one-character-atoms are simple atoms containing
one byte.

1These marks do not suggest instantiation (e.g. var(+Var)).

SWI-Prolog 5.6 Reference Manual

62 CHAPTER 4. BUILT-IN PREDICATES

To ease the pain of these multiple representations, SWI-Prolog’s built-in predicates dealing with
character-data work as flexible as possible: they accept data in any of these formats as long as the
interpretation is unambiguous. In addition, for output arguments that are instantiated, the character
is extracted before unification. This implies that the following two calls are identical, both testing
whether the next input characters is an a.

peek_code(Stream, a).
peek_code(Stream, 97).

These multiple-representations are handled by a large number of built-in predicates, all of which are
ISO-compatible. For converting between code and character there is char code/2. For breaking
atoms and numbers into characters are are atom chars/2, atom codes/2, number codes/2
and number chars/2. For character I/O on streams there is get char/[1,2],
get code/[1,2], get byte/[1,2], peek char/[1,2], peek code/[1,2],
peek byte/[1,2], put code/[1,2], put char/[1,2] and put byte/[1,2]. The
prolog-flag double quotes (see current prolog flag/2) controls how text between
double-quotes is interpreted.

4.3 Loading Prolog source files

This section deals with loading Prolog source-files. A Prolog source file is a plain text file containing
a Prolog program or part thereof. Prolog source files come in three flavours:

A traditional Prolog source file contains a Prolog clauses and directives, but no module-
declaration. They are normally loaded using consult/1 or ensure loaded/1.

A module Prolog source file starts with a module declaration. The subsequent Prolog code is loaded
into the specified module and only the public predicates are made available to the context load-
ing the module. Module files are normally loaded using use module/[1,2]. See chapter 5
for details.

An include Prolog source file is loaded using the include/1 directive and normally contains only
directives.

Prolog source-files are located using absolute file name/3 with the following options:

locate_prolog_file(Spec, Path) :-
absolute_file_name(Spec,

[file_type(prolog),
access(read)

],
Path).

The file type(prolog) option is used to determine the extension of the file using
prolog file type/2. The default extension is .pl. Spec allows for the path-alias
construct defined by absolute file name/3. The most commonly used path-alias is
library(LibraryFile). The example below loads the library file ordsets.pl (containing predi-
cates for manipulating ordered sets).

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 63

:- use_module(library(ordsets)).

SWI-Prolog recognises grammar rules (DCG) as defined in [Clocksin & Melish, 1987]. The
user may define additional compilation of the source file by defining the dynamic predicates
term expansion/2 and goal expansion/2. Transformations by term expansion/2
overrule the systems grammar rule transformations. It is not allowed to use assert/1, retract/1
or any other database predicate in term expansion/2 other than for local computational pur-
poses.2

Directives may be placed anywhere in a source file, invoking any predicate. They are executed
when encountered. If the directive fails, a warning is printed. Directives are specified by :-/1 or ?-/1.
There is no difference between the two.

SWI-Prolog does not have a separate reconsult/1 predicate. Reconsulting is implied auto-
matically by the fact that a file is consulted which is already loaded.

load files(+Files, +Options)
The predicate load files/2 is the parent of all the other loading predicates except for
include/1. It currently supports a subset of the options of Quintus load files/2. Files
is either a single source-file, or a list of source-files. The specification for a source-file is handed
to absolute file name/2. See this predicate for the supported expansions. Options is a
list of options using the format

OptionName(OptionValue)

The following options are currently supported:

autoload(Bool)
If true (default false), indicate this load is a demand load. This implies that,
depending on the setting of the prolog-flag verbose autoload the load-action is
printed at level informational or silent. See also print message/2 and
current prolog flag/2.

derived from(File)
Indicate that the loaded file is derived from File. Used by make/0 to time-check and load
the original file rather than the derived file.

encoding(Encoding)
Specify the way characters are encoded in the file. Default is taken from the prolog flag
encoding. See section 2.17.1 for details.

expand(Bool)
If true, run the filenames through expand file name/2 and load the returned files.
Default is false, except for consult/1 which is intended for interactive use. Flexible
location of files is defined by file search path/2.

if(Condition)
Load the file only if the specified condition is satisfied. The value true loads the file
unconditionally, changed loads the file if it was not loaded before, or has been modified
since it was loaded the last time, not loaded loads the file if it was not loaded before.

2It does work for normal loading, but not for qcompile/1.

SWI-Prolog 5.6 Reference Manual

64 CHAPTER 4. BUILT-IN PREDICATES

imports(ListOrAll)
If all and the file is a module file, import all public predicates. Otherwise import only
the named predicates. Each predicate is referred to as 〈name〉/〈arity〉. This option has no
effect if the file is not a module file.

must be module(Bool)
If true, raise an error if the file is not a module file. Used by use module/[1,2].

qcompile(Bool)
If this call appears in a directive of a file that is compiled into Quick Load Format using
qcompile/1 and this flag is true, the contents of the argument files are included in the
.qlf file instead of the loading directive.

silent(Bool)
If true, load the file without printing a message. The specified value is the default for
all files loaded as a result of loading the specified files. This option writes the prolog flag
verbose load with the negation of Bool.

stream(Input)
This SWI-Prolog extension compiles the data from the stream Input. If this option is used,
Files must be a single atom which is used to identify the source-location of the loaded
clauses as well as remove all clauses if the data is re-consulted.
This option is added to allow compiling from non-file locations such as databases, the
web, the user (see consult/1) or other servers.

The load files/2 predicate can be hooked to load other data or data from other objects than
files. See prolog load file/2 for a description and http load for an example.

consult(+File)
Read File as a Prolog source file. File may be a list of files, in which case all members are con-
sulted in turn. File may start with the Unix shell special sequences ˜, 〈user〉 and $〈var〉. File
may also be library(Name), in which case the libraries are searched for a file with the spec-
ified name. See also library directory/1 and file search path/2. consult/1
may be abbreviated by just typing a number of file names in a list. Examples:

?- consult(load). % consult load or load.pl
?- [library(quintus)]. % load Quintus compatibility library
?- [user].

The predicate consult/1 is equivalent to load files(Files, []), except for handling the spe-
cial file user, which reads clauses from the terminal. See also the stream(Input) option of
load files/2.

ensure loaded(+File)
If the file is not already loaded, this is equivalent to consult/1. Otherwise, if the file defines a
module, import all public predicates. Finally, if the file is already loaded, is not a module file and
the context module is not the global user module, ensure loaded/1 will call consult/1.

With the semantics, we hope to get as closely possible to the clear semantics without
the presence of a module system. Applications using modules should consider using
use module/[1,2].

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 65

Equivalent to load files(Files, [if(not loaded)]).3

include(+File)
Pretend the terms in File are in the source-file in which :- include(File) appears. The
include construct is only honoured if it appears as a directive in a source-file. Normally File
contains a sequence of directives.

require(+ListOfNameAndArity)
Declare that this file/module requires the specified predicates to be defined “with their com-
monly accepted definition”. This predicate originates from the Prolog portability layer for
XPCE. It is intended to provide a portable mechanism for specifying that this module requires
the specified predicates.

The implementation normally first verifies whether the predicate is already defined. If not, it
will search the libraries and load the required library.

SWI-Prolog, having autoloading, does not load the library. Instead it creates a procedure header
for the predicate if it does not exist. This will flag the predicate as ‘undefined’. See also
check/0 and autoload/0.

encoding(+Encoding)
This directive can appear anywhere in a source file to define how characters are encoded in the
remainder of the file. It can be used in files that are encoded with a superset of US-ASCII,
currently UTF-8 and ISO Latin-1. See also section 2.17.1.

make
Consult all source files that have been changed since they were consulted. It checks all loaded
source files: files loaded into a compiled state using pl -c ... and files loaded using consult
or one of its derivatives. The predicate make/0 is called after edit/1, automatically reload-
ing all modified files. It the user uses an external editor (in a separate window), make/0 is
normally used to update the program after editing. In addition, make/0 updates the autoload
indices (see section 2.13) and runs list undefined/0 from the check library to report on
undefined predicates.

library directory(?Atom)
Dynamic predicate used to specify library directories. Default ./lib, ˜/lib/prolog and
the system’s library (in this order) are defined. The user may add library directories using
assert/1, asserta/1 or remove system defaults using retract/1.

file search path(+Alias, ?Path)
Dynamic predicate used to specify ‘path-aliases’. This feature is best described using an exam-
ple. Given the definition

file_search_path(demo, ’/usr/lib/prolog/demo’).

the file specification demo(myfile) will be expanded to /usr/lib/prolog/demo/
myfile. The second argument of file search path/2 may be another alias.

3On older versions the condition used to be if(changed). Poor time management on some machines or due to copying
often caused problems. The make/0 predicate deals with updating the running system after changing the source code.

SWI-Prolog 5.6 Reference Manual

66 CHAPTER 4. BUILT-IN PREDICATES

Below is the initial definition of the file search path. This path implies swi(〈Path〉) refers to
a file in the SWI-Prolog home directory. The alias foreign(〈Path〉) is intended for storing
shared libraries (.so or .DLL files). See also load foreign library/[1,2].

user:file_search_path(library, X) :-
library_directory(X).

user:file_search_path(swi, Home) :-
current_prolog_flag(home, Home).

user:file_search_path(foreign, swi(ArchLib)) :-
current_prolog_flag(arch, Arch),
atom_concat(’lib/’, Arch, ArchLib).

user:file_search_path(foreign, swi(lib)).

The file search path/2 expansion is used by all loading predicates as well as by
absolute file name/[2,3].

The prolog-flag verbose file search can be set to true to help debugging Prolog’s
search for files.

expand file search path(+Spec, -Path)
Unifies Path with all possible expansions of the file name specification Spec. See also
absolute file name/3.

prolog file type(?Extension, ?Type)
This dynamic multifile predicate defined in module user determines the extensions considered
by file search path/2. Extension is the filename extension without the leading dot, Type
denotes the type as used by the file type(Type) option of file search path/2. Here
is the initial definition of prolog file type/2:

user:prolog_file_type(pl, prolog).
user:prolog_file_type(Ext, prolog) :-

current_prolog_flag(associate, Ext),
Ext \== pl.

user:prolog_file_type(qlf, qlf).
user:prolog_file_type(Ext, executable) :-

current_prolog_flag(shared_object_extension, Ext).

Users may wish to change the extension used for Prolog source files to avoid conflicts (for
example with perl) as well as to be compatible with some specific implementation. The
preferred alternative extension is .pro.

source file(?File)
True if File is a loaded Prolog source file. File is the absolute and canonical path to the source-
file.

source file(?Pred, ?File)
Is true if the predicate specified by Pred was loaded from file File, where File is an absolute path
name (see absolute file name/2). Can be used with any instantiation pattern, but the
database only maintains the source file for each predicate. See also clause property/2.

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 67

prolog load context(?Key, ?Value)
Determine loading context. The following keys are defined:

Key Description
module Module into which file is loaded
source File loaded. Returns the original Prolog file when loading a .qlf

file. Compatible to SICStus Prolog.
file Currently equivalent to file. In future versions it may report a

different values for files being loaded using include/1.
stream Stream identifier (see current input/1)
directory Directory in which File lives.
term position Position of last term read. Term of the form

’$stream position’(0,〈Line〉,0,0,0). See also
stream position data/3.

Quintus compatibility predicate. See also source location/2.

source location(-File, -Line)
If the last term has been read from a physical file (i.e., not from the file user or a string), unify
File with an absolute path to the file and Line with the line-number in the file. New code should
use prolog load context/2.

term expansion(+Term1, -Term2)
Dynamic and multifile predicate, normally not defined. When defined by the user all terms read
during consulting are given to this predicate. If the predicate succeeds Prolog will assert Term2
in the database rather then the read term (Term1). Term2 may be a term of a the form ‘?- Goal’
or ‘:- Goal’. Goal is then treated as a directive. If Term2 is a list all terms of the list are stored
in the database or called (for directives). If Term2 is of the form below, the system will assert
Clause and record the indicated source-location with it.

’$source location’(〈File〉, 〈Line〉):〈Clause〉

When compiling a module (see chapter 5 and the directive module/2), expand term/2
will first try term expansion/2 in the module being compiled to allow for term-expansion
rules that are local to a module. If there is no local definition, or the local definition fails to
translate the term, expand term/2 will try term expansion/2 in module user. For
compatibility with SICStus and Quintus Prolog, this feature should not be used. See also
expand term/2, goal expansion/2 and expand goal/2.

expand term(+Term1, -Term2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
term expansion/2. If this predicate fails it performs a grammar-rule translation. If this
fails it returns the first argument.

goal expansion(+Goal1, -Goal2)
Like term expansion/2, goal expansion/2 provides for macro-expansion of Prolog
source-code. Between expand term/2 and the actual compilation, the body of clauses anal-
ysed and the goals are handed to expand goal/2, which uses the goal expansion/2
hook to do user-defined expansion.

SWI-Prolog 5.6 Reference Manual

68 CHAPTER 4. BUILT-IN PREDICATES

The predicate goal expansion/2 is first called in the module that is being compiled, and
then on the user module. If Goal is of the form Module:Goal where Module is instantiated,
goal expansion/2 is called on Goal using rules from module Module followed by user.

Only goals appearing in the body of clauses when reading a source-file are expanded using
mechanism, and only if they appear literally in the clause, or as an argument to the meta-
predicates not/1, call/1, once/1, ignore/1, findall/3, bagof/3, setof/3 or
forall/2. A real predicate definition is required to deal with dynamically constructed calls.

expand goal(+Goal1, -Goal2)
This predicate is normally called by the compiler to perform preprocessing. First it calls
goal expansion/2. If this fails it returns the first argument.

at initialization(+Goal)
Register Goal to be run when the system initialises. Initialisation takes place after reloading a
.qlf (formerly .wic) file as well as after reloading a saved-state. The hooks are run in the order
they were registered. A warning message is issued if Goal fails, but execution continues. See
also at halt/1

at halt(+Goal)
Register Goal to be run from PL cleanup(), which is called when the system halts. The hooks
are run in the reverse order they were registered (FIFO). Success or failure executing a hook is
ignored. If the hook raises an exception this is printed using print message/2. An attempt
to call halt/[0,1] from a hook is ignored.

initialization(+Goal)
Call Goal and register it using at initialization/1. Directives that do other things
than creating clauses, records, flags or setting predicate attributes should normally be written
using this tag to ensure the initialisation is executed when a saved system starts. See also
qsave program/[1,2].

compiling
True if the system is compiling source files with the -c option or qcompile/1 into
an intermediate code file. Can be used to perform conditional code optimisations in
term expansion/2 (see also the -O option) or to omit execution of directives during com-
pilation.

preprocessor(-Old, +New)
Read the input file via a Unix process that acts as preprocessor. A preprocessor is specified as
an atom. The first occurrence of the string ‘%f’ is replaced by the name of the file to be loaded.
The resulting atom is called as a Unix command and the standard output of this command is
loaded. To use the Unix C preprocessor one should define:

?- preprocessor(Old, ’/lib/cpp -C -P %f’), consult(...).

Old = none

SWI-Prolog 5.6 Reference Manual

4.3. LOADING PROLOG SOURCE FILES 69

4.3.1 Loading files, active code and threads

Traditionally, Prolog environments allow for reloading files holding currently active code. In particu-
lar, the following sequence is valid use of the development environment:

• Trace a goal

• Find unexpected behaviour of a predicate

• Enter a break using the b command

• Fix the sources and reload them using make/0

• Exit the break, retry using the r command

Goals running during the reload keep running on the old definition, while new goals use the
reloaded definition, which is why the retry must be used after the reload. This implies that clauses
of predicates that are active during the reload cannot be reclaimed. Normally a small amount of
dead clauses should not be an issue during development. Such clauses can be reclaimed with
garbage collect clauses/0.

garbage collect clauses
leanup all dirty predicates, where dirty predicates are defined to be predicates that have both
old and new definitions due to reloading a source file while the predicate was active. Of course,
predicates that are active using garbage collect clauses/0 cannot be reclaimed and
remain dirty. Predicate are -like atoms- shared resources and therefore all threads are suspended
during the execution of this predicate.

Threads and reloading running code

As of version 5.5.30, there is basic thread-safety for reloading source files while other threads
are executing code defined in these source files. Reloading a file freezes all threads after mark-
ing the active predicates originating from the file being reloaded. The threads are resumed after
the file has been loaded. In addition, after completing loading the outermost file the system runs
garbage collect clauses/0.

What does that mean? Unfortunately it does not mean we can ‘hot-swap’ modules. Consider the
case where thread A is executing the recursive predicate P . We ‘fix’ P and reload. The already run-
ning goals for P continue to run the old definition, but new recursive calls will use the new definition!
Many similar cases can be constructed with dependent predicates.

It provides some basic security for reloading files in multi-threaded applications during develop-
ment. In the above scenarios the system does not crash uncontrolled, but behaves like any broken
program: it may return the wrong bindings, wrong truth value or raise an exception.

Future versions may have an ‘update now’ facility. Such as facility can be implemented on top
of the logical update view. It would allow threads to do a controlled update between processing
independent jobs.

SWI-Prolog 5.6 Reference Manual

70 CHAPTER 4. BUILT-IN PREDICATES

4.3.2 Quick load files

SWI-Prolog supports compilation of individual or multiple Prolog source files into ‘Quick Load Files’.
A ‘Quick Load Files’ (.qlf file) stores the contents of the file in a precompiled format.

These files load considerably faster than source files and are normally more compact. They are
machine independent and may thus be loaded on any implementation of SWI-Prolog. Note however
that clauses are stored as virtual machine instructions. Changes to the compiler will generally make
old compiled files unusable.

Quick Load Files are created using qcompile/1. They are loaded using consult/1 or one
of the other file-loading predicates described in section 4.3. If consult is given the explicit .pl file,
it will load the Prolog source. When given the .qlf file, it will load the file. When no extension is
specified, it will load the .qlf file when present and the .pl file otherwise.

qcompile(+File)
Takes a single file specification like consult/1 (i.e., accepts constructs like
library(LibFile) and, in addition to the normal compilation, creates a Quick Load File
from File. The file-extension of this file is .qlf. The base name of the Quick Load File is the
same as the input file.

If the file contains ‘:- consult(+File)’, ‘:- [+File]’ or
:- load files(+File, [qcompile(true), ...]) statements, the referred
files are compiled into the same .qlf file. Other directives will be stored in the .qlf file and
executed in the same fashion as when loading the .pl file.

For term expansion/2, the same rules as described in section 2.10 apply.

Conditional execution or optimisation may test the predicate compiling/0.

Source references (source file/2) in the Quick Load File refer to the Prolog source file
from which the compiled code originates.

4.4 Listing and Editor Interface

SWI-Prolog offers an extensible interface which allows the user to edit objects of the program: predi-
cates, modules, files, etc. The editor interface is implemented by edit/1 and consists of three parts:
locating, selecting and starting the editor.

Any of these parts may be extended or redefined by adding clauses to various multi-file (see
multifile/1) predicates defined in the module prolog edit.

The built-in edit specifications for edit/1 (see prolog edit:locate/3) are described below.

Fully specified objects
〈Module〉:〈Name〉/〈Arity〉 Refers a predicate
module(〈Module〉) Refers to a module
file(〈Path〉) Refers to a file
source file(〈Path〉) Refers to a loaded source-file

Ambiguous specifications
〈Name〉/〈Arity〉 Refers this predicate in any module
〈Name〉 Refers to (1) named predicate in any module with any ar-

ity, (2) a (source) file or (3) a module.

SWI-Prolog 5.6 Reference Manual

4.4. LISTING AND EDITOR INTERFACE 71

edit(+Specification)
First exploits prolog edit:locate/3 to translate Specification into a list of Locations. If there
is more than one ‘hit’, the user is asked to select from the locations found. Finally, pro-
log edit:edit source/1 is used to invoke the user’s preferred editor. Typically, edit/1 can
be handed the name of a predicate, module, basename of a file, XPCE class, XPCE method,
etc.

edit
Edit the ‘default’ file using edit/1. The default file is the file loaded with the command-line
option -s or, in windows, the file loaded by double-clicking from the Windows shell.

prolog edit:locate(+Spec, -FullSpec, -Location)
Where Spec is the specification provided through edit/1. This multifile predicate is used to
enumerate locations at with an object satisfying the given Spec can be found. FullSpec is unified
with the complete specification for the object. This distinction is used to allow for ambiguous
specifications. For example, if Spec is an atom, which appears as the base-name of a loaded file
and as the name of a predicate, FullSpec will be bound to file(Path) or Name/Arity.

Location is a list of attributes of the location. Normally, this list will contain the term
file(File) and —if available— the term line(Line).

prolog edit:locate(+Spec, -Location)
Same as prolog edit:locate/3, but only deals with fully-specified objects.

prolog edit:edit source(+Location)
Start editor on Location. See prolog edit:locate/3 for the format of a location term. This multi-
file predicate is normally not defined. If it succeeds, edit/1 assumes the editor is started.

If it fails, edit/1 uses its internal defaults, which are defined by the prolog-flag editor
and/or the environment variable EDITOR. The following rules apply. If the prolog-flag
editor is of the format $〈name〉, the editor is determined by the environment variable 〈name〉.
Else, if this flag is pce emacs or built in and XPCE is loaded or can be loaded, the built-in
Emacs clone is used. Else, if the environment EDITOR is set, this editor is used. Finally, vi is
used as default on Unix systems and notepad on Windows.

See the default user preferences file dotfiles/dotplrc for examples.

prolog edit:edit command(+Editor, -Command)
Determines how Editor is to be invoked using shell/1. Editor is the determined editor (see
edit source/1), without the full path specification, and without possible (exe) extension.
Command is an atom describing the command. The pattern %f is replaced by the full file-name
of the location, and %d by the line number. If the editor can deal with starting at a specified
line, two clauses should be provided, one holding only the %f pattern, and one holding both
patterns.

The default contains definitions for vi, emacs, emacsclient, vim and notepad (latter
without line-number version).

Please contribute your specifications to jan@swi.psy.uva.nl.

prolog edit:load
Normally not-defined multifile predicate. This predicate may be defined to provide loading

SWI-Prolog 5.6 Reference Manual

72 CHAPTER 4. BUILT-IN PREDICATES

hooks for user-extensions to the edit module. For example, XPCE provides the code below to
load swi edit, containing definitions to locate classes and methods as well as to bind this
package to the PceEmacs built-in editor.

:- multifile prolog_edit:load/0.

prolog_edit:load :-
ensure_loaded(library(swi_edit)).

listing(+Pred)
List specified predicates (when an atom is given all predicates with this name will be listed).
The listing is produced on the basis of the internal representation, thus losing user’s layout and
variable name information. See also portray clause/1.

listing
List all predicates of the database using listing/1.

portray clause(+Clause)
Pretty print a clause. A clause should be specified as a term ‘〈Head〉 :- 〈Body〉’. Facts are
represented as ‘〈Head〉 :- true’ or simply 〈Head〉. Variables in the clause are written as A,
B, Singleton variables are written as _. See also portray clause/2.

portray clause(+Stream, +Clause)
Pretty print a clause to Stream. See portray clause/1 for details.

4.5 Verify Type of a Term

var(+Term)
True if Term currently is a free variable.

nonvar(+Term)
True if Term currently is not a free variable.

integer(+Term)
True if Term is bound to an integer.

float(+Term)
True if Term is bound to a floating point number.

rational(+Term)
True if Term is bound to a rational number. Rational numbers include integers.

rational(+Term, -Numerator, -Denominator)
True if Term is a rational number with given Numerator and Denominator. The Numerator and
Denominator are in canonical form, which means Denominator is a positive integer and there
are no common divisors between Numerator and Denominator.

SWI-Prolog 5.6 Reference Manual

4.5. VERIFY TYPE OF A TERM 73

number(+Term)
True if Term is bound to an integer or floating point number.4

atom(+Term)
True if Term is bound to an atom.

string(+Term)
True if Term is bound to a string. Note that string here refers to the built-in atomic type string
as described in section 4.23, Text in double quotes such as "hello" creates a list of character
codes. We illustrate the issues in the example queries below.

?- write("hello").
[104, 101, 108, 108, 111]
?- string("hello").
No
?- is_list("hello").
Yes

atomic(+Term)
True if Term is bound to an atom, string, integer or floating point number. Note that string refers
to the built-in type. See string/1. Strings in the classical Prolog sense are lists and therefore
compound.

compound(+Term)
True if Term is bound to a compound term. See also functor/3 and =../2.

callable(+Term)
True if Term is bound to an atom or a compound term, so it can be handed without type-error to
call/1, functor/3 and =../2.

ground(+Term)
True if Term holds no free variables.

cyclic term(+Term)
True if Term contains cycles, i.e. is an infinite term. See also acyclic term/1 and sec-
tion 2.16.5

acyclic term(+Term)
True if Term does not contain cycles, i.e. can be processed recursively in finite time. See also
cyclic term/1 and section 2.16.

4As rational numbers are not atomic in the current implementation and we do not want to break the rule that number/1
implies atomic/1, number/1 fails on rational numbers. This will change if rational numbers become atomic.

5The predicates cyclic term/1 and acyclic term/1 are compatible to SICStus Prolog. Some Prolog systems
supporting cyclic terms use is cyclic/1.

SWI-Prolog 5.6 Reference Manual

74 CHAPTER 4. BUILT-IN PREDICATES

4.6 Comparison and Unification or Terms

4.6.1 Standard Order of Terms

Comparison and unification of arbitrary terms. Terms are ordered in the so called “standard order”.
This order is defined as follows:

1. Variables < Numbers < Atoms < Strings < Comound Terms6

2. Variables are sorted by address. Attaching attributes (see section 6.1) does not affect the order-
ing.

3. Atoms are compared alphabetically.

4. Strings are compared alphabetically.

5. Numbers are compared by value. Integers and floats are treated identically. If the prolog flag
(see current prolog flag/2) iso is defined, all floating point numbers precede all inte-
gers.

6. Compound terms are first checked on their arity, then on their functor-name (alphabetically) and
finally recursively on their arguments, leftmost argument first.

+Term1 == +Term2
True if Term1 is equivalent to Term2. A variable is only identical to a sharing variable.

+Term1 \== +Term2
Equivalent to \+Term1 == Term2.

+Term1 = +Term2
Unify Term1 with Term2. True if the unification succeeds.

unify with occurs check(+Term1, +Term2)
As =/2, but using sound-unification. That is, a variable only unifies to a term if this term does
not contain the variable itself. To illustrate this, consider the two goals below:

1 ?- A = f(A).

A = f(f(f(f(f(f(f(f(f(f(...))))))))))
2 ?- unify_with_occurs_check(A, f(A)).

No

I.e. the first creates a cyclic-term, which is printed as an infinitely nested f/1 term (see the
max depth option of write term/2). The second executes logically sound unification and
thus fails.

+Term1 \= +Term2
Equivalent to \+Term1 = Term2.

6Strings might be considered atoms in future versions. See also section 4.23

SWI-Prolog 5.6 Reference Manual

4.7. CONTROL PREDICATES 75

+Term1 =@= +Term2
True if Term1 is ‘structurally equal’ to Term2. Structural equivalence is weaker than equivalence
(==/2), but stronger than unification (=/2). Two terms are structurally equal if their tree
representation is identical and they have the same ‘pattern’ of variables. Examples:

a =@= A false
A =@= B true

x(A,A) =@= x(B,C) false
x(A,A) =@= x(B,B) true
x(A,B) =@= x(C,D) true

The predicates =@=/2 and \=@=/2 are cycle-safe. Attributed variables are considered struc-
turally equal iff their attributes are structurally equal.

+Term1 \=@= +Term2
Equivalent to ‘\+Term1 =@= Term2’.

+Term1 @< +Term2
True if Term1 is before Term2 in the standard order of terms.

+Term1 @=< +Term2
True if both terms are equal (==/2) or Term1 is before Term2 in the standard order of terms.

+Term1 @> +Term2
True if Term1 is after Term2 in the standard order of terms.

+Term1 @>= +Term2
True if both terms are equal (==/2) or Term1 is after Term2 in the standard order of terms.

compare(?Order, +Term1, +Term2)
Determine or test the Order between two terms in the standard order of terms. Order is one of
<, > or =, with the obvious meaning.

?=(@Term1, @Term2)
Decide whether the equality of Term1 and Term2 can be compared safely, i.e. whether the result
of Term1 == Term2 can change due to further instantiation of either term. It is defined as
by ?=(A,B) :- (A==B ; A \= B), !. See also dif/2.

unifiable(@X, @Y, -Unifier)
If X and Y can unify, unify Unifier with a list of Var = Value, representing the bindings required
to make X and Y equivalent.7 This predicate can handle cyclic terms. Attributed variables are
handles as normal variables. Associated hooks are not executed.

4.7 Control Predicates

The predicates of this section implement control structures. Normally the constructs in this section,
except for repeat/0, are translated by the compiler. Please note that complex goals passed as ar-
guments to meta-predicates such as findall/3 below cause the goal to be compiled to a temporary

7This predicate was introduced for the implementation of dif/2 and when/2 after discussion with Tom Schrijvers and
Bart Demoen. None of us is really happy with the name and therefore suggestions for a new name are welcome.

SWI-Prolog 5.6 Reference Manual

76 CHAPTER 4. BUILT-IN PREDICATES

location before execution. It is faster to define a sub-predicate (i.e. one character atom/1 in the
example below) and make a call to this simple predicate.

one_character_atoms(As) :-
findall(A, (current_atom(A), atom_length(A, 1)), As).

fail
Always fail. The predicate fail/0 is translated into a single virtual machine instruction.

true
Always succeed. The predicate true/0 is translated into a single virtual machine instruction.

repeat
Always succeed, provide an infinite number of choice points.

!
Cut. Discard choice points of parent frame and frames created after the parent frame. As of
SWI-Prolog 3.3, the semantics of the cut are compliant with the ISO standard. This implies that
the cut is transparent to ;/2, ->/2 and *->/2. Cuts appearing in the condition part of ->/2
and *->/2 as well as in \+/1 are local to the condition.8

t1 :- (a, !, fail ; b). % cuts a/0 and t1/0
t2 :- (a -> b, ! ; c). % cuts b/0 and t2/0
t3 :- call((a, !, fail ; b)). % cuts a/0
t4 :- \+(a, !, fail ; b). % cuts a/0

+Goal1 , +Goal2
Conjunction. True if both ‘Goal1’ and ‘Goal2’ can be proved. It is defined as (this definition
does not lead to a loop as the second comma is handled by the compiler):

Goal1, Goal2 :- Goal1, Goal2.

+Goal1 ; +Goal2
The ‘or’ predicate is defined as:

Goal1 ; _Goal2 :- Goal1.
_Goal1 ; Goal2 :- Goal2.

+Goal1 | +Goal2
Equivalent to ;/2. Retained for compatibility only. New code should use ;/2.

+Condition -> +Action
If-then and If-Then-Else. The ->/2 construct commits to the choices made at its left-hand
side, destroying choice-points created inside the clause (by ;/2), or by goals called by this
clause. Unlike !/0, the choice-point of the predicate as a whole (due to multiple clauses) is
not destroyed. The combination ;/2 and ->/2 acts as if defines by:

8Up to version 4.0.6, the sequence X=!, X acted as a true cut. This feature has been deleted for ISO compliance.

SWI-Prolog 5.6 Reference Manual

4.8. META-CALL PREDICATES 77

If -> Then; _Else :- If, !, Then.
If -> _Then; Else :- !, Else.
If -> Then :- If, !, Then.

Please note that (If -> Then) acts as (If -> Then ; fail), making the construct fail if the condition
fails. This unusual semantics is part of the ISO and all de-facto Prolog standards.

+Condition *-> +Action ; +Else
This construct implements the so-called ‘soft-cut’. The control is defined as follows: If Con-
dition succeeds at least once, the semantics is the same as (Condition, Action). If Condition
does not succeed, the semantics is that of (\+ Condition, Else). In other words, If Condition
succeeds at least once, simply behave as the conjunction of Condition and Action, otherwise
execute Else.

The construct A *-> B, i.e. without an Else branch, is translated as the normal conjunction A,
B.9

\+ +Goal
True if ‘Goal’ cannot be proven (mnemonic: + refers to provable and the backslash (\) is
normally used to indicate negation in Prolog).

4.8 Meta-Call Predicates

Meta-call predicates are used to call terms constructed at run time. The basic meta-call mechanism
offered by SWI-Prolog is to use variables as a subclause (which should of course be bound to a valid
goal at runtime). A meta-call is slower than a normal call as it involves actually searching the database
at runtime for the predicate, while for normal calls this search is done at compile time.

call(+Goal)
Invoke Goal as a goal. Note that clauses may have variables as subclauses, which is identical
to call/1.

call(+Goal, +ExtraArg1, . . .)
Append ExtraArg1, ExtraArg2, . . . to the argument list of Goal and call the result. For example,
call(plus(1), 2, X) will call plus/3, binding X to 3.

The call/[2..] construct is handled by the compiler, which implies that redefinition as a predicate
has no effect. The predicates call/[2-6] are defined as true predicates, so they can be
handled by interpreted code.

apply(+Term, +List)
Append the members of List to the arguments of Term and call the resulting term. For example:
apply(plus(1), [2, X])will call plus(1, 2, X). apply/2 is incorporated in the
virtual machine of SWI-Prolog. This implies that the overhead can be compared to the overhead
of call/1. New code should use call/[2..] if the length of List is fixed, which is more widely
supported and faster because there is no need to build and examine the argument list.

not(+Goal)
True if Goal cannot be proven. Retained for compatibility only. New code should use \+/1.

9BUG: The decompiler implemented by clause/2 returns this construct as a normal conjunction too.

SWI-Prolog 5.6 Reference Manual

78 CHAPTER 4. BUILT-IN PREDICATES

once(+Goal)
Defined as:

once(Goal) :-
Goal, !.

once/1 can in many cases be replaced with ->/2. The only difference is how the cut behaves
(see !/0). The following two clauses are identical:

1) a :- once((b, c)), d.
2) a :- b, c -> d.

ignore(+Goal)
Calls Goal as once/1, but succeeds, regardless of whether Goal succeeded or not. Defined as:

ignore(Goal) :-
Goal, !.

ignore(_).

call with depth limit(+Goal, +Limit, -Result)
If Goal can be proven without recursion deeper than Limit levels,
call with depth limit/3 succeeds, binding Result to the deepest recursion level
used during the proof. Otherwise, Result is unified with depth limit exceeded if the
limit was exceeded during the proof, or the entire predicate fails if Goal fails without exceeding
Limit.

The depth-limit is guarded by the internal machinery. This may differ from the depth computed
based on a theoretical model. For example, true/0 is translated into an inlined virtual machine
instruction. Also, repeat/0 is not implemented as below, but as a non-deterministic foreign
predicate.

repeat.
repeat :-

repeat.

As a result, call with depth limit/3 may still loop infinitely on programs that should
theoretically finish in finite time. This problem can be cured by using Prolog equivalents to
such built-in predicates.

This predicate may be used for theorem-provers to realise techniques like iterative deepening.
It was implemented after discussion with Steve Moyle smoyle@ermine.ox.ac.uk.

call cleanup(:Goal, +Catcher, :Cleanup)
Calls Goal. If Goal is completely finished, either by deterministic success, failure, its choice-
point being cut or raising an exception and Catcher unifies to the termination code (see below),
Cleanup is called. Success or failure of Cleanup is ignored and possible choice-points it created
are destroyed (as once/1). If cleanup throws an exception this is executed as normal.10

10BUG: During the execution of Cleanup, garbage collection and stack-shifts are disabled.

SWI-Prolog 5.6 Reference Manual

4.9. ISO COMPLIANT EXCEPTION HANDLING 79

Catcher is unified with a term describing how the call has finished. If this unification fails,
Cleanup is not called.

exit
Goal succeeded without leaving any choice-points.

fail
Goal failed.

!
Goal succeeded with choice-points and these are now discarded by the execution of a cut
(or other pruning of the search tree such as if-then-else).

exception(Exception)
Goal raised the given Exception.

Typical use of this predicate is cleanup of permanent data storage required to execute Goal,
close file-descriptors, etc. The example below provides a non-deterministic search for a term in
a file, closing the stream as needed.

term_in_file(Term, File) :-
open(File, read, In),
call_cleanup(term_in_stream(Term, In), _, close(In)).

term_in_stream(Term, In) :-
repeat,
read(In, T),
(T == end_of_file
-> !, fail
; T = Term
).

Note that this predicate is impossible to implement in Prolog other then reading all terms into a
list, close the file and call member/2 because without call cleanup/3 there is no way to
gain control if the choice-point left by repeat is killed by a cut.

This predicate is a SWI-Prolog extension. See also call cleanup/2 for compatibility to
other Prolog implementations.

call cleanup(:Goal, :Cleanup)
This predicate is equivalent to call cleanup(Goal, , Cleanup), calling Cleanup regard-
less of the reason for termination and without providing information. This predicate provides
compatibility to a number of other Prolog implementations.

4.9 ISO compliant Exception handling

SWI-Prolog defines the predicates catch/3 and throw/1 for ISO compliant raising and catching of
exceptions. In the current implementation (4.0.6), most of the built-in predicates generate exceptions,
but some obscure predicates merely print a message, start the debugger and fail, which was the normal
behaviour before the introduction of exceptions.

SWI-Prolog 5.6 Reference Manual

80 CHAPTER 4. BUILT-IN PREDICATES

catch(:Goal, +Catcher, :Recover)
Behaves as call/1 if no exception is raised when executing Goal. If a exception is raised
using throw/1 while Goal executes, and the Goal is the innermost goal for which Catcher
unifies with the argument of throw/1, all choice-points generated by Goal are cut, the system
backtracks to the start of catch/3 while preserving the thrown exception term and Recover is
called as in call/1.

The overhead of calling a goal through catch/3 is very comparable to call/1. Recovery
from an exception is much slower, especially if the exception-term is large due to the copying
thereof.

throw(+Exception)
Raise an exception. The system looks for the innermost catch/3 ancestor for which Exception
unifies with the Catcher argument of the catch/3 call. See catch/3 for details.

ISO demands throw/1 to make a copy of Exception, walk up the stack to a catch/3 call,
backtrack and try to unify the copy of Exception with Catcher. SWI-Prolog delays making a
copy of Exception and backtracking until it actually found a matching catch/3 goal. The
advantage is that we can start the debugger at the first possible location while preserving the
entire exception context if there is no matching catch/3 goal. This approach can lead to
different behaviour if Goal and Catcher of catch/3 call share variables. We assume this to
be highly unlikely and could not think of a scenario where this is useful.11

If an exception is raised in a callback from C (see chapter 9) and not caught in the same call-
back, PL next solution() fails and the exception context can be retrieved using PL exception().

4.9.1 Debugging and exceptions

Before the introduction of exceptions in SWI-Prolog a runtime error was handled by printing an
error message, after which the predicate failed. If the prolog flag (see current prolog flag/2)
debug on error was in effect (default), the tracer was switched on. The combination of the error
message and trace information is generally sufficient to locate the error.

With exception handling, things are different. A programmer may wish to trap an exception using
catch/3 to avoid it reaching the user. If the exception is not handled by user-code, the interactive
top-level will trap it to prevent termination.

If we do not take special precautions, the context information associated with an unexpected
exception (i.e, a programming error) is lost. Therefore, if an exception is raised, which is not caught
using catch/3 and the top-level is running, the error will be printed, and the system will enter trace
mode.

If the system is in an non-interactive callback from foreign code and there is no catch/3 active
in the current context, it cannot determine whether or not the exception will be caught by the external
routine calling Prolog. It will then base its behaviour on the prolog flag debug on error:

• current prolog flag(debug on error, false)
The exception does not trap the debugger and is returned to the foreign routine calling Prolog,
where it can be accessed using PL exception(). This is the default.

11I’d like to acknowledge Bart Demoen for his clarifications on these matters.

SWI-Prolog 5.6 Reference Manual

4.9. ISO COMPLIANT EXCEPTION HANDLING 81

• current prolog flag(debug on error, true)
If the exception is not caught by Prolog in the current context, it will trap the tracer to help
analysing the context of the error.

While looking for the context in which an exception takes place, it is advised to switch on debug
mode using the predicate debug/0.

4.9.2 The exception term

Built-in predicates generates exceptions using a term error(Formal, Context). The first argument
is the ‘formal’ description of the error, specifying the class and generic defined context information.
When applicable, the ISO error-term definition is used. The second part describes some additional
context to help the programmer while debugging. In its most generic form this is a term of the form
context(Name/Arity, Message), where Name/Arity describes the built-in predicate that raised the
error, and Message provides an additional description of the error. Any part of this structure may be a
variable if no information was present.

4.9.3 Printing messages

The predicate print message/2 may be used to print a message term in a human readable for-
mat. The other predicates from this section allow the user to refine and extend the message system.
The most common usage of print message/2 is to print error messages from exceptions. The
code below prints errors encountered during the execution of Goal, without further propagating the
exception and without starting the debugger.

...,
catch(Goal, E,

(print_message(error, E),
fail

)),
...

Another common use is to defined message hook/3 for printing messages that are normally silent,
suppressing messages, redirecting messages or make something happen in addition to printing the
message.

print message(+Kind, +Term)
The predicate print message/2 is used to print messages, notably from exceptions in a
human-readable format. Kind is one of informational, banner, warning, error,
help or silent. A human-readable message is printed to the stream user error.

If the prolog flag (see current prolog flag/2) verbose is silent, messages with
Kind informational, or banner are treated as silent. See -q.

This predicate first translates the Term into a list of ‘message lines’ (see
print message lines/3 for details). Next it will call the hook message hook/3 to
allow the user intercepting the message. If message hook/3 fails it will print the message
unless Kind is silent.

SWI-Prolog 5.6 Reference Manual

82 CHAPTER 4. BUILT-IN PREDICATES

The print message/2 predicate and its rules are in the file
〈plhome〉/boot/messages.pl, which may be inspected for more information on the
error messages and related error terms. If you need to report errors from your own predicates,
we advise you to stick to the existing error terms if you can; but should you need to invent new
ones, you can define corresponding error messages by asserting clauses for prolog:message.
You will need to declare the predicate as multifile.

See also message to string/2.

print message lines(+Stream, +Prefix, +Lines)
Print a message (see print message/2) that has been translated to a list of message ele-
ments. The elements of this list are:

〈Format〉-〈Args〉
Where Format is an atom and Args is a list of format argument. Handed to format/3.

flush
If this appears as the last element, Stream is flushed (see flush output/1) and no final
newline is generated.

at same line
If this appears as first element, no prefix is printed for the first line and the line-position is
not forced to 0 (see format/1, ˜N).

〈Format〉
Handed to format/3 as format(Stream, Format, []).

nl
A new line is started and if the message is not complete the Prefix is printed too.

See also print message/2 and message hook/3.

message hook(+Term, +Kind, +Lines)
Hook predicate that may be define in the module user to intercept messages from
print message/2. Term and Kind are the same as passed to print message/2. Lines
is a list of format statements as described with print message lines/3. See also
message to string/2.

This predicate should be defined dynamic and multifile to allow other modules defining clauses
for it too.

message to string(+Term, -String)
Translates a message-term into a string object (see section 4.23. Primarily intended to write
messages to Windows in XPCE (see section 1.5) or other GUI environments.

4.10 Handling signals

As of version 3.1.0, SWI-Prolog is capable to handle software interrupts (signals) in Prolog as well as
in foreign (C) code (see section 9.6.12).

Signals are used to handle internal errors (execution of a non-existing CPU instruction, arithmetic
domain errors, illegal memory access, resource overflow, etc.), as well as for dealing asynchronous
inter-process communication.

SWI-Prolog 5.6 Reference Manual

4.10. HANDLING SIGNALS 83

Signals are defined by the POSIX standard and part of all Unix machines. The MS-Windows
Win32 provides a subset of the signal handling routines, lacking the vital functionality to raise a
signal in another thread for achieving asynchronous inter-process (or inter-thread) communication
(Unix kill() function).

on signal(+Signal, -Old, :New)
Determines the reaction on Signal. Old is unified with the old behaviour, while the behaviour is
switched to New. As with similar environment-control predicates, the current value is retrieved
using on signal(Signal, Current, Current).

The action description is an atom denoting the name of the predicate that will be called if
Signal arrives. on signal/3 is a meta-predicate, which implies that 〈Module〉:〈Name〉 refers
the 〈Name〉/1 in the module 〈Module〉.

Two predicate-names have special meaning. throw implies Prolog will map the signal onto a
Prolog exception as described in section 4.9. default resets the handler to the settings active
before SWI-Prolog manipulated the handler.

Signals bound to a foreign function through PL signal() are reported using the term
$foreign function(Address).

After receiving a signal mapped to throw, the exception raised has the structure

error(signal(〈SigName〉, 〈SigNum〉), 〈Context〉)

One possible usage of this is, for example, to limit the time spent on proving a goal. This
requires a little C-code for setting the alarm timer (see chapter 9):

#include <SWI-Prolog.h>
#include <unistd.h>

foreign_t
pl_alarm(term_t time)
{ double t;

if (PL_get_float(time, &t))
{ alarm((long)(t+0.5));

PL_succeed;
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("alarm", 1, pl_alarm, 0);
}

SWI-Prolog 5.6 Reference Manual

84 CHAPTER 4. BUILT-IN PREDICATES

Next, we can define the Prolog below. This will run Goal just as once/1, throwing the excep-
tion error(signal(alrm,),) if a timeout occurs.12

:- load_foreign_library(alarm).

:- on_signal(alrm, _, throw).

:- module_transparent
call_with_time_limit/2.

call_with_time_limit(MaxTime, Goal) :-
alarm(MaxTime),
call_cleanup(Goal, _, alarm(0)), !.

The signal names are defined by the POSIX standard as symbols of the form SIG 〈SIGNAME〉.
The Prolog name for a signal is the lowercase version of 〈SIGNAME〉. The predicate
current signal/3 may be used to map between names and signals.

Initially, some signals are mapped to throw, while all other signals are default. The fol-
lowing signals throw an exception: ill, fpe, segv, pipe, alrm, bus, xcpu, xfsz and
vtalrm.

current signal(?Name, ?Id, ?Handler)
Enumerate the currently defined signal handling. Name is the signal name, Id is the numerical
identifier and Handler is the currently defined handler (see on signal/3).

4.10.1 Notes on signal handling

Before deciding to deal with signals in your application, please consider the following:

• Portability
On MS-Windows, the signal interface is severely limited. Different Unix brands support differ-
ent sets of signals, and the relation between signal name and number may vary.

• Safety
Signal handling is not completely safe in the current implementation, especially if throw is
used in combination with external foreign code. The system will use the C longjmp() construct
to direct control to the innermost PL next solution(), thus forcing an external procedure to be
abandoned at an arbitrary moment. Most likely not all SWI-Prologs own foreign code is (yet)
safe too. For the multi-threaded versions this is even worse: signals can easily violate thread
synchronisation consistency.

The C-interface described in section 9.6.12 provides the option PL SIGSYNC for registering
a signal handler that delays delivery of signals to a safe point. Unfortunately this may cause
signals to be delayed for a long time if Prolog is executing foreign code.

12Note that call with time limit/2 is defined in time, part of the ‘clib’ package. The version provided in the
library runs on POSIX systems as well as MS-Windows and can schedule multiple concurrent alarms.

SWI-Prolog 5.6 Reference Manual

4.11. THE ‘BLOCK’ CONTROL-STRUCTURE 85

• Garbage Collection
The garbage collector will block all signals that are handled by Prolog. While handling a signal,
the garbage-collector is disabled.

• Time of delivery
Normally delivery is immediate (or as defined by the operating system used). Signals are
blocked when the garbage collector is active, and internally delayed if they occur within in
a ‘critical section’. The critical sections are generally very short.

4.11 The ‘block’ control-structure

The block/3 predicate and friends have been introduced before ISO compatible catch/3 excep-
tion handling for compatibility with some Prolog implementation. The only feature not covered by
catch/3 and throw/1 is the possibility to execute global cuts. New code should use catch/3
and throw/1 to deal with exceptions.

block(+Label, +Goal, -ExitValue)
Execute Goal in a block. Label is the name of the block. Label is normally an atom, but the
system imposes no type constraints and may even be a variable. ExitValue is normally unified
to the second argument of an exit/2 call invoked by Goal.

exit(+Label, +Value)
Calling exit/2 makes the innermost block which Label unifies exit. The block’s ExitValue is
unified with Value. If this unification fails the block fails.

fail(+Label)
Calling fail/1makes the innermost block which Label unifies fail immediately. Implemented
as

fail(Label) :- !(Label), fail.

!(+Label)
Cut all choice-points created since the entry of the innermost block which Label unifies.

4.12 DCG Grammar rules

Grammar rules form a comfortable interface to difference-lists. They are designed both to support
writing parsers that build a parse-tree from a list as for generating a flat list from a term. Unfortunately,
Definite Clause Grammar (DCG) handling is not part of the Prolog standard. Most Prolog engines
implement DCG, but the details differ slightly.

Grammar rules look like ordinary clauses using -->/2 for separating the head and body rather
then :-/2. Expanding grammar rules is done by expand term/2, which adds two additional
argument to each term for representing the difference list. We will illustrate the behaviour by defining
a rule-set for parsing an integer.

integer(I) -->
digit(D0),

SWI-Prolog 5.6 Reference Manual

86 CHAPTER 4. BUILT-IN PREDICATES

digits(D),
{ number_chars(I, [D0|D])
}.

digits([D|T]) -->
digit(D), !,
digits(T).

digits([]) -->
[].

digit(D) -->
[D],
{ code_type(D, digit)
}.

The body of a grammar rule can contain three types of terms. A compound term interpreted as a
reference to a grammar-rule. Code between {. . .} is interpreted as a reference to ordinary Prolog
code and finally, a list is interpreted as a sequence of literals. The Prolog control-constructs (\+/1,
->/2, ;//2, ,/2 and !/0) can be used in grammar rules.

Grammar rule-sets are called using the built-in predicates phrase/2 and phrase/3:

phrase(+RuleSet, +InputList)
Equivalent to phrase(RuleSet, InputList, []).

phrase(+RuleSet, +InputList, -Rest)
Activate the rule-set with given name. ‘InputList’ is the list of tokens to parse, ‘Rest’ is unified
with the remaining tokens if the sentence is parsed correctly. The example below calls the
rule-set ‘integer’ defined above.

?- phrase(integer(X), "42 times", Rest).

X = 42
Rest = [32, 116, 105, 109, 101, 115]

4.13 Database

SWI-Prolog offers three different database mechanisms. The first one is the common assert/retract
mechanism for manipulating the clause database. As facts and clauses asserted using assert/1 or
one of its derivatives become part of the program these predicates compile the term given to them.
retract/1 and retractall/1 have to unify a term and therefore have to decompile the pro-
gram. For these reasons the assert/retract mechanism is expensive. On the other hand, once compiled,
queries to the database are faster than querying the recorded database discussed below. See also
dynamic/1.

The second way of storing arbitrary terms in the database is using the “recorded database”. In this
database terms are associated with a key. A key can be an atom, integer or term. In the last case only
the functor and arity determine the key. Each key has a chain of terms associated with it. New terms

SWI-Prolog 5.6 Reference Manual

4.13. DATABASE 87

can be added either at the head or at the tail of this chain. This mechanism is considerably faster than
the assert/retract mechanism as terms are not compiled, but just copied into the heap.

The third mechanism is a special purpose one. It associates an integer or atom with a key, which
is an atom, integer or term. Each key can only have one atom or integer associated with it. It is faster
than the mechanisms described above, but can only be used to store simple status information like
counters, etc.

abolish(:PredicateIndicator)
Removes all clauses of a predicate with functor Functor and arity Arity from the database. All
predicate attributes (dynamic, multifile, index, etc.) are reset to their defaults. Abolishing an
imported predicate only removes the import link; the predicate will keep its old definition in its
definition module.

According to the ISO standard, abolish/1 can only be applied to dynamic procedures.
This is odd, as for dealing with dynamic procedures there is already retract/1 and
retractall/1. The abolish/1 predicate has been introduced in DEC-10 Prolog pre-
cisely for dealing with static procedures. In SWI-Prolog, abolish/1 works on static proce-
dures, unless the prolog flag iso is set to true.

It is advised to use retractall/1 for erasing all clauses of a dynamic predicate.

abolish(+Name, +Arity)
Same as abolish(Name/Arity). The predicate abolish/2 conforms to the Edinburgh
standard, while abolish/1 is ISO compliant.

redefine system predicate(+Head)
This directive may be used both in module user and in normal modules to redefine any system
predicate. If the system definition is redefined in module user, the new definition is the default
definition for all sub-modules. Otherwise the redefinition is local to the module. The system
definition remains in the module system.

Redefining system predicate facilitates the definition of compatibility packages. Use in other
context is discouraged.

retract(+Term)
When Term is an atom or a term it is unified with the first unifying fact or clause in the database.
The fact or clause is removed from the database.

retractall(+Head)
All facts or clauses in the database for which the head unifies with Head are removed.

assert(+Term)
Assert a fact or clause in the database. Term is asserted as the last fact or clause of the corre-
sponding predicate.

asserta(+Term)
Equivalent to assert/1, but Term is asserted as first clause or fact of the predicate.

assertz(+Term)
Equivalent to assert/1.

SWI-Prolog 5.6 Reference Manual

88 CHAPTER 4. BUILT-IN PREDICATES

assert(+Term, -Reference)
Equivalent to assert/1, but Reference is unified with a unique reference to the asserted
clause. This key can later be used with clause/3 or erase/1.

asserta(+Term, -Reference)
Equivalent to assert/2, but Term is asserted as first clause or fact of the predicate.

assertz(+Term, -Reference)
Equivalent to assert/2.

recorda(+Key, +Term, -Reference)
Assert Term in the recorded database under key Key. Key is an integer, atom or term. Reference
is unified with a unique reference to the record (see erase/1).

recorda(+Key, +Term)
Equivalent to recorda(Key, Value,).

recordz(+Key, +Term, -Reference)
Equivalent to recorda/3, but puts the Term at the tail of the terms recorded under Key.

recordz(+Key, +Term)
Equivalent to recordz(Key, Value,).

recorded(+Key, -Value, -Reference)
Unify Value with the first term recorded under Key which does unify. Reference is unified with
the memory location of the record.

recorded(+Key, -Value)
Equivalent to recorded(Key, Value,).

erase(+Reference)
Erase a record or clause from the database. Reference is an integer returned by recorda/3 or
recorded/3, clause/3, assert/2, asserta/2 or assertz/2. Other integers might
conflict with the internal consistency of the system. Erase can only be called once on a record
or clause. A second call also might conflict with the internal consistency of the system.13

flag(+Key, -Old, +New)
Key is an atom, integer or term. As with the recorded database, if Key is a term, only the name
and arity are used to locate the flag. Unify Old with the old value associated with Key. If the
key is used for the first time Old is unified with the integer 0. Then store the value of New,
which should be an integer, float, atom or arithmetic expression, under Key. flag/3 is a fast
mechanism for storing simple facts in the database. The flag database is shared between threads
and updates are atomic, making it suitable for generating unique integer counters.14

13BUG: The system should have a special type for pointers, thus avoiding the Prolog user having to worry about consis-
tency matters. Currently some simple heuristics are used to determine whether a reference is valid.

14The flag/3 predicate is not portable. Non-backtrackable global variables (nb setval/2) and non-backtrackable
assignment (nb setarg/3) are more widely recognised special-purpose alternatives for non-backtrackable and/or global
state.

SWI-Prolog 5.6 Reference Manual

4.14. DECLARING PREDICATES PROPERTIES 89

4.13.1 Update view

Traditionally, Prolog systems used the immediate update view: new clauses became visible to predi-
cates backtracking over dynamic predicates immediately and retracted clauses became invisible im-
mediately.

Starting with SWI-Prolog 3.3.0 we adhere the logical update view, where backtrackable predicates
that enter the definition of a predicate will not see any changes (either caused by assert/1 or
retract/1) to the predicate. This view is the ISO standard, the most commonly used and the
most ‘safe’.15 Logical updates are realised by keeping reference-counts on predicates and generation
information on clauses. Each change to the database causes an increment of the generation of the
database. Each goal is tagged with the generation in which it was started. Each clause is flagged
with the generation it was created as well as the generation it was erased. Only clauses with ‘created’
. . . ‘erased’ interval that encloses the generation of the current goal are considered visible.

4.13.2 Indexing databases

By default, SWI-Prolog, as most other implementations, indexes predicates on their first argument.
SWI-Prolog allows indexing on other and multiple arguments using the declaration index/1.

For advanced database indexing, it defines hash term/2:

hash term(+Term, -HashKey)
If Term is a ground term (see ground/1), HashKey is unified with a positive integer value
that may be used as a hash-key to the value. If Term is not ground, the predicate succeeds
immediately, leaving HashKey an unbound variable.

This predicate may be used to build hash-tables as well as to exploit argument-indexing to find
complex terms more quickly.

The hash-key does not rely on temporary information like addresses of atoms and may be as-
sumed constant over different invocations and versions of SWI-Prolog. The hash term/2
predicate is cycle-safe.

4.14 Declaring predicates properties

This section describes directives which manipulate attributes of predicate definitions. The functors
dynamic/1, multifile/1 and discontiguous/1 are operators of priority 1150 (see op/3),
which implies the list of predicates they involve can just be a comma separated list:

:- dynamic
foo/0,
baz/2.

On SWI-Prolog all these directives are just predicates. This implies they can also be called by a pro-
gram. Do not rely on this feature if you want to maintain portability to other Prolog implementations.

dynamic +Name/+Arity, . . .
Informs the interpreter that the definition of the predicate(s) may change during execution (us-
ing assert/1 and/or retract/1). In the multi-threaded version, the clauses of dynamic

15For example, using the immediate update view, no call to a dynamic predicate is deterministic.

SWI-Prolog 5.6 Reference Manual

90 CHAPTER 4. BUILT-IN PREDICATES

predicates are shared between the threads. The directive thread local/1 provides an alter-
native where each threads has its own clause-list for the predicate. Dynamic predicates can be
turned into static ones using compile predicates/1.

compile predicates(:ListOfNameArity)
Compile a list of specified dynamic predicates (see dynamic/1 and assert/1) into normal
static predicates. This call tells the Prolog environment the definition will not change anymore
and further calls to assert/1 or retract/1 on the named predicates raise a permission
error. This predicate is designed to deal with parts of the program that is generated at runtime
but does not change during the remainder of the program execution.16

multifile +Name/+Arity, . . .
Informs the system that the specified predicate(s) may be defined over more than one file. This
stops consult/1 from redefining a predicate when a new definition is found.

discontiguous +Name/+Arity, . . .
Informs the system that the clauses of the specified predicate(s) might not be together in the
source file. See also style check/1.

index(+Head)
Index the clauses of the predicate with the same name and arity as Head on the specified argu-
ments. Head is a term of which all arguments are either ‘1’ (denoting ‘index this argument’)
or ‘0’ (denoting ‘do not index this argument’). Indexing has no implications for the semantics
of a predicate, only on its performance. If indexing is enabled on a predicate a special purpose
algorithm is used to select candidate clauses based on the actual arguments of the goal. This
algorithm checks whether indexed arguments might unify in the clause head. Only atoms, in-
tegers and compound terms are considered. Compound terms are indexed on the combination
of their name and arity. Indexing is very useful for predicates with many clauses representing
facts.

Due to the representation technique used at most 4 arguments can be indexed. All indexed
arguments should be in the first 32 arguments of the predicate. If more than 4 arguments are
specified for indexing only the first 4 will be accepted. Arguments above 32 are ignored for
indexing.

Indexing as specified by this predicate uses a quick but linear scan. Without explicit specifica-
tion the system uses an algorithm depending on the structure of the first argument and number
of clauses, In particular, for predicates that can be indexed on the first argument and have many
clauses, the system will use an automatically resizing hash-table to provide access time inde-
pendent from the number of clauses.17 If—for example—one wants to represents sub-types
using a fact list ‘sub type(Sub, Super)’ that should be used both to determine sub- and super
types one should declare sub type/2 as follows:

:- index(sub_type(1, 1)).

16The specification of this predicate is from Richard O’Keefe. The implementation is allowed to optimise the predicate.
This is not yet implemented. In multi-threaded Prolog however, static code runs faster as it does not require synchronisation.
This is particularly true on SMP hardware.

17SWI-Prolog indexing is no longer state-of-the-art. Better schemas for multi-argument as well as indexing inside com-
pound terms are known. We hope to integrate this in future versions.

SWI-Prolog 5.6 Reference Manual

4.15. EXAMINING THE PROGRAM 91

sub_type(horse, animal).
...
...

Note that this type of indexing makes selecting clauses much faster but remains linear with
respect to the number of clauses, while hashing as described with hash/1 provides constant
access time. See also hash/1 and hash term/2.

hash(+Head)
Index the given predicate by hashing on the first argument. This is done by default on any
predicate with more than 5 clauses having a first argument that can be indexed and at most
two that can not be indexed. On dynamic predicates the hash-table is resized as the number
of clauses grows, providing roughly constant-time access regardless of the number of clauses
predicates that can be indexed on the first argument. See also index/1, hash term/2 and
predicate property/2.

4.15 Examining the program

current atom(-Atom)
Successively unifies Atom with all atoms known to the system. Note that current atom/1
always succeeds if Atom is instantiated to an atom.

current blob(?Blob, ?Type)
Examine the type or enumerate blobs of the given Type. Typed blobs are supported through
the foreign language interface for storing arbitrary BLOBS (Binary Large Object) or handles to
external entities. See section 9.6.6 for details.

current functor(?Name, ?Arity)
Successively unifies Name with the name and Arity with the arity of functors known to the
system.

current flag(-FlagKey)
Successively unifies FlagKey with all keys used for flags (see flag/3).

current key(-Key)
Successively unifies Key with all keys used for records (see recorda/3, etc.).

current predicate(?Name, ?Head)
Successively unifies Name with the name of predicates currently defined and Head with the
most general term built from Name and the arity of the predicate. This predicate succeeds for
all predicates defined in the specified module, imported to it, or in one of the modules from
which the predicate will be imported if it is called.

current predicate(:Name/Arity)
ISO compliant implementation of current predicate/2. Unlike
current predicate/2, the current implementation of current predicate/1
does not consider predicates that can be autoloaded ‘current’.

SWI-Prolog 5.6 Reference Manual

92 CHAPTER 4. BUILT-IN PREDICATES

predicate property(:Head, ?Property)
True if Head refers to a predicate that has property Property. Can be used to test whether a
predicate has a certain property, obtain all properties known for Head, find all predicates having
property or even obtaining all information available about the current program. Property is one
of:

built in
Is true if the predicate is locked as a built-in predicate. This implies it cannot be redefined
in its definition module and it can normally not be seen in the tracer.

dynamic
Is true if assert/1 and retract/1 may be used to modify the predicate. This prop-
erty is set using dynamic/1.

exported
Is true if the predicate is in the public list of the context module.

imported from(Module)
Is true if the predicate is imported into the context module from module Module.

file(FileName)
Unify FileName with the name of the source file in which the predicate is defined. See
also source file/2.

foreign
Is true if the predicate is defined in the C language.

indexed(Head)
Predicate is indexed (see index/1) according to Head. Head is a term whose name
and arity are identical to the predicate. The arguments are unified with ‘1’ for indexed
arguments, ‘0’ otherwise.

interpreted
Is true if the predicate is defined in Prolog. We return true on this because, although the
code is actually compiled, it is completely transparent, just like interpreted code.

line count(LineNumber)
Unify LineNumber with the line number of the first clause of the predicate. Fails if the
predicate is not associated with a file. See also source file/2.

multifile
Is true there may be multiple (or no) file providing clauses for the predicate. This property
is set using multifile/1.

nodebug
Details of the predicate are not shown by the debugger. This is the default for
built-in predicates. User predicates can be compiled this way using the Prolog flag
generate debug info.

notrace
Do not show ports of this predicate in the debugger.

number of clauses(ClauseCount)
Unify ClauseCount to the number of clauses associated with the predicate. Fails for for-
eign predicates.

SWI-Prolog 5.6 Reference Manual

4.15. EXAMINING THE PROGRAM 93

thread local
If true (only possible on the multi-threaded version) each thread has its own clauses for
the predicate. This property is set using thread local/1.

transparent
Is true if the predicate is declared transparent using the module transparent/1 dec-
laration.

undefined
Is true if a procedure definition block for the predicate exists, but there are no clauses for
it and it is not declared dynamic or multifile. This is true if the predicate occurs in the
body of a loaded predicate, an attempt to call it has been made via one of the meta-call
predicates or the predicate had a definition in the past. See the library package check for
example usage.

volatile
If true, the clauses are not saved into a saved-state by qsave program/[1,2]. This
property is set using volatile/1.

dwim predicate(+Term, -Dwim)
‘Do What I Mean’ (‘dwim’) support predicate. Term is a term, which name and arity are used as
a predicate specification. Dwim is instantiated with the most general term built from Name and
the arity of a defined predicate that matches the predicate specified by Term in the ‘Do What
I Mean’ sense. See dwim match/2 for ‘Do What I Mean’ string matching. Internal sys-
tem predicates are not generated, unless style check(+dollar) is active. Backtracking
provides all alternative matches.

clause(?Head, ?Body)
True if Head can be unified with a clause head and Body with the corresponding clause body.
Gives alternative clauses on backtracking. For facts Body is unified with the atom true. Nor-
mally clause/2 is used to find clause definitions for a predicate, but it can also be used to
find clause heads for some body template.

clause(?Head, ?Body, ?Reference)
Equivalent to clause/2, but unifies Reference with a unique reference to the clause (see also
assert/2, erase/1). If Reference is instantiated to a reference the clause’s head and body
will be unified with Head and Body.

nth clause(?Pred, ?Index, ?Reference)
Provides access to the clauses of a predicate using their index number. Counting starts at 1.
If Reference is specified it unifies Pred with the most general term with the same name/arity
as the predicate and Index with the index-number of the clause. Otherwise the name and arity
of Pred are used to determine the predicate. If Index is provided Reference will be unified
with the clause reference. If Index is unbound, backtracking will yield both the indices and
the references of all clauses of the predicate. The following example finds the 2nd clause of
member/2:

?- nth_clause(member(_,_), 2, Ref), clause(Head, Body, Ref).

Ref = 160088

SWI-Prolog 5.6 Reference Manual

94 CHAPTER 4. BUILT-IN PREDICATES

Head = system : member(G575, [G578|G579])
Body = member(G575, G579)

clause property(+ClauseRef, -Property)
Queries properties of a clause. ClauseRef is a reference to a clause as produced by clause/3,
nth clause/3 or prolog frame attribute/3. Property is one of the following:

file(FileName)
Unify FileName with the name of the source file in which the clause is defined. Fails if
the clause is not associated to a file.

line count(LineNumber)
Unify LineNumber with the line number of the clause. Fails if the clause is not associated
to a file.

fact
True if the clause has no body.

erased
True if the clause has been erased, but not yet reclaimed because it is referenced.

4.16 Input and output

SWI-Prolog provides two different packages for input and output. The native I/O system is based
on the ISO standard predicates open/3, close/1 and friends.18 Being more widely portable and
equipped with a clearer and more robust specification, new code is encouraged to use these predicates
for manipulation of I/O streams.

Section 4.16.2 describes tell/1, see/1 and friends, providing I/O in the spirit of the outdated
Edinburgh standard. These predicates are layered on top of the ISO predicates. Both packages are
fully integrated; the user may switch freely between them.

4.16.1 ISO Input and Output Streams

The predicates described in this section provide ISO compliant I/O, where streams are explicitly cre-
ated using the predicate open/3. The resulting stream identifier is then passed as a parameter to the
reading and writing predicates to specify the source or destination of the data.

This schema is not vulnerable to filename and stream ambiguities as well as changes to the work-
ing directory. New code is advised to use these predicates to manage input and output streams.

open(+SrcDest, +Mode, -Stream, +Options)
ISO compliant predicate to open a stream. SrcDes is either an atom, specifying a file, or a
term ‘pipe(Command)’, like see/1 and tell/1. Mode is one of read, write, append
or update. Mode append opens the file for writing, positioning the file-pointer at the end.
Mode update opens the file for writing, positioning the file-pointer at the beginning of the file
without truncating the file. Stream is either a variable, in which case it is bound to an integer
identifying the stream, or an atom, in which case this atom will be the stream identifier.19 The
Options list can contain the following options:

18Actually based on Quintus Prolog, providing this interface before the ISO standard existed.
19New code should use the alias(Alias) option for compatibility to the ISO standard

SWI-Prolog 5.6 Reference Manual

4.16. INPUT AND OUTPUT 95

type(Type)
Using type text (default), Prolog will write a text-file in an operating-system compatible
way. Using type binary the bytes will be read or written without any translation. See
also the option encoding.

alias(Atom)
Gives the stream a name. Below is an example. Be careful with this option as stream-
names are global. See also set stream/2.

?- open(data, read, Fd, [alias(input)]).

...,
read(input, Term),
...

encoding(Encoding)
Define the encoding used for reading and writing text to this stream. The default encoding
for type text is derived from the Prolog flag encoding. For binary streams the
default encoding is octet. For details on encoding issues, see section 2.17.1.

bom(Bool)
Check for a BOM (Byte Order Marker) or write one. If omitted, the default is true
for mode read and false for mode write. See also stream property/2 and
especially section 2.17.1 for a discussion on this feature.

eof action(Action)
Defines what happens if the end of the input stream is reached. Action eof code makes
get0/1 and friends return -1 and read/1 and friends return the atom end of file.
Repetitive reading keeps yielding the same result. Action error is like eof code, but
repetitive reading will raise an error. With action reset, Prolog will examine the file
again and return more data if the file has grown.

buffer(Buffering)
Defines output buffering. The atom full (default) defines full buffering, line buffering
by line, and false implies the stream is fully unbuffered. Smaller buffering is useful
if another process or the user is waiting for the output as it is being produced. See also
flush output/[0,1]. This option is not an ISO option.

close on abort(Bool)
If true (default), the stream is closed on an abort (see abort/0). If false, the stream
is not closed. If it is an output stream, it will be flushed however. Useful for logfiles and
if the stream is associated to a process (using the pipe/1 construct).

lock(LockingMode)
Try to obtain a lock on the open file. Default is none, which does not lock the file. The
value read or shared means other processes may read the file, but not write it. The
value write or exclusive means no other process may read or write the file.
Locks are acquired through the POSIX function fcntl() using the command F SETLKW,
which makes a blocked call wait for the lock to be released. Please note that fcntl() locks
are advisory and therefore only other applications using the same advisory locks honour
your lock. As there are many issues around locking in Unix, especially related to NFS
(network file system), please study the fcntl() manual page before trusting your locks!

SWI-Prolog 5.6 Reference Manual

96 CHAPTER 4. BUILT-IN PREDICATES

The lock option is a SWI-Prolog extension.

The option reposition is not supported in SWI-Prolog. All streams connected to a file may
be repositioned.

open(+SrcDest, +Mode, ?Stream)
Equivalent to open/4 with an empty option-list.

open null stream(?Stream)
Open a stream that produces no output. All counting functions are enabled on such a stream.
An attempt to read from a null-stream will immediately signal end-of-file. Similar to Unix
/dev/null. Stream can be an atom, giving the null-stream an alias name.

close(+Stream)
Close the specified stream. If Stream is not open an error message is displayed. If the closed
stream is the current input or output stream the terminal is made the current input or output.

close(+Stream, +Options)
Provides close(Stream, [force(true)]) as the only option. Called this way, any resource error
(such as write-errors while flushing the output buffer) are ignored.

stream property(?Stream, ?StreamProperty)
ISO compatible predicate for querying status of open I/O streams. StreamProperty is one of:

alias(Atom)
If Atom is bound, test of the stream has the specified alias. Otherwise unify Atom with the
first alias of the stream.20

buffer(Buffering)
SWI-Prolog extension to query the buffering mode of this stream. Buffering is one of
full, line or false. See also open/4.

bom(Bool)
If present and true, a BOM (Byte Order Mark) was detected while opening the file for
reading or a BOM was written while opening the stream. See section 2.17.1 for details.

encoding(Encoding)
Query the encoding used for text. See section 2.17.1 for an overview of wide character
and encoding issues in SWI-Prolog.

end of stream(E)
If Stream is an input stream, unify E with one of the atoms not, at or past. See also
at end of stream/[0,1].

eof action(A)
Unify A with one of eof code, reset or error. See open/4 for details.

file name(Atom)
If Stream is associated to a file, unify Atom to the name of this file.

file no(Integer)
If the stream is associated with a POSIX file-descriptor, unify Integer with the descriptor
number. SWI-Prolog extension used primarily for integration with foreign code. See also
Sfileno() from SWI-Stream.h.

20BUG: Backtracking does not give other aliases.

SWI-Prolog 5.6 Reference Manual

4.16. INPUT AND OUTPUT 97

input
True if Stream has mode read.

mode(IOMode)
Unify IOMode to the mode given to open/4 for opening the stream. Values are: read,
write, append and the SWI-Prolog extension update.

output
True if Stream has mode write, append or update.

position(Term)
Unify Term with the current stream-position. A stream-position is an opaque
term whose fields can be extracted using stream position data/3. See also
set stream position/2.

reposition(Bool)
Unify Bool with true if the position of the stream can be set (see seek/4). It is assumed
the position can be set if the stream has a seek-function and is not based on a POSIX
file-descriptor that is not associated to a regular file.

representation errors(Mode)
Determines behaviour of character output if the stream cannot represent a character. For
example, an ISO Latin-1 stream cannot represent cyrillic characters. The behaviour is one
of error (throw and I/O error exception), prolog (write \...\ escape code or xml
(write &#...; XML character entity). The initial mode is prolog for the user streams
and error for all other streams. See also section 2.17.1 and set stream/2.

type(T)
Unify Bool with text or binary.

tty(Bool)
This property is reported with Bool equals true if the stream is associated with a terminal.
See also set stream/2.

current stream(?Object, ?Mode, ?Stream)
The predicate current stream/3 is used to access the status of a stream as well as to
generate all open streams. Object is the name of the file opened if the stream refers to an open
file, an integer file-descriptor if the stream encapsulates an operating-system stream or the atom
[] if the stream refers to some other object. Mode is one of read or write.

is stream(+Term)
True if Term is a stream name or valid stream handle. This predicate realises a safe test for the
existence of a stream alias or handle.

set stream position(+Stream, +Pos)
Set the current position of Stream to Pos. Pos is a term as returned by stream property/2
using the position(Pos) property. See also seek/4.

stream position data(?Field, +Position, -Data)
Extracts information from the opaque stream position term as returned by
stream property/2 requesting the position(Position) property. Field is one
of line count, line position, char count or byte count. See also
line count/2, line position/2, character count/2 and byte count/2.21

21Introduced in version 5.6.4 after extending the position term with a byte-count. Compatible with SICStus Prolog.

SWI-Prolog 5.6 Reference Manual

98 CHAPTER 4. BUILT-IN PREDICATES

seek(+Stream, +Offset, +Method, -NewLocation)
Reposition the current point of the given Stream. Method is one of bof, current or eof, indicat-
ing positioning relative to the start, current point or end of the underlying object. NewLocation
is unified with the new offset, relative to the start of the stream.

If the seek modifies the current location, the line number and character position in the line are
set to 0.

If the stream cannot be repositioned, a reposition error is raised. The predicate seek/4
is compatible to Quintus Prolog, though the error conditions and signalling is ISO compliant.
See also stream property/2 and set stream position/2. Please note that the use
of seek/4 on non-binary files (see open/4) is of limited use as the referred positions are byte
offsets.

set stream(+Stream, +Attribute)
Modify an attribute of an existing stream. Attribute specifies the stream property to set. See
also stream property/2 and open/4.

alias(AliasName)
Set the alias of an already created stream. If AliasName is the name of one of the standard
streams is used, this stream is rebound. Thus, set stream(S, current input) is
the same as set input/1 and by setting the alias of a stream to user input, etc. all
user terminal input is read from this stream. See also interactor/0.

buffer(Buffering)
Set the buffering mode of an already created stream. Buffering is one of full, line or
false.

close on abort(Bool)
Determine whether or not the stream is closed by abort/0. By default streams are
closed.

encoding(Atom)
Defines the mapping between bytes and character codes used for the stream. See sec-
tion 2.17.1 for supported encodings.

eof action(Action)
Set end-of-file handling to one of eof code, reset or error.

timeout(Seconds)
This option can be used to make streams generate an exception if it takes longer than
Seconds before any new data arrives at the stream. The value infinite (default) makes the
stream block indefinitely. Like wait for input/3, this call only applies to streams
that support the select() system call. For further information about timeout handling, see
wait for input/3. The exception is of the form

error(timeout error(read, Stream),)

record position(Bool)
Do/do not record the line-count and line-position (see line count/2 and
line position/2).

representation errors(Mode)
Change the behaviour when writing characters to the stream that cannot be represented by
the encoding. See also stream property/2 and section 2.17.1.

SWI-Prolog 5.6 Reference Manual

4.16. INPUT AND OUTPUT 99

file name(FileName)
Set the file name associated to this stream. This call can be used to set the file for error-
locations if Stream corresponds to FileName and is not obtained by opening the file di-
rectly but, for example, through a network service.

tty(Bool)
Modify whether Prolog thinks there is a terminal (i.e. human interaction) connected
to this stream. On Unix systems the initial value comes from isatty(). On Win-
dows, the initial user streams are supposed to be associated to a terminal. See also
stream property/2.

set prolog IO(+In, +Out, +Error)
Prepare the given streams for interactive behaviour normally associated to the terminal.
In becomes the user input and current input of the calling thread. Out becomes
user output and current output. If Error equals Out an unbuffered stream is as-
sociated to the same destination and linked to user error. Otherwise Error is used for
user error. Output buffering for Out is set to line and buffering on Error is dis-
abled. See also prolog/0 and set stream/2. The clib package provides the library
prolog server creating a TCP/IP server for creating an interactive session to Prolog.

4.16.2 Edinburgh-style I/O

The package for implicit input and output destination is (almost) compatible to Edinburgh DEC-10
and C-Prolog. The reading and writing predicates refer to resp. the current input- and output stream.
Initially these streams are connected to the terminal. The current output stream is changed using
tell/1 or append/1. The current input stream is changed using see/1. The streams current
value can be obtained using telling/1 for output- and seeing/1 for input streams.

Source and destination are either a file, user, or a term ‘pipe(Command)’. The reserved
stream name user refers to the terminal.22 In the predicate descriptions below we will call the
source/destination argument ‘SrcDest’. Below are some examples of source/destination specifica-
tions.

?- see(data). % Start reading from file ‘data’.
?- tell(user). % Start writing to the terminal.
?- tell(pipe(lpr)). % Start writing to the printer.

Another example of using the pipe/1 construct is shown below.23 Note that the pipe/1 con-
struct is not part of Prolog’s standard I/O repertoire.

getwd(Wd) :-
seeing(Old), see(pipe(pwd)),
collect_wd(String),
seen, see(Old),
atom_codes(Wd, String).

22The ISO I/O layer uses user input, user output and user error.
23As of version 5.3.15, the pipe construct is supported in the MS-Windows version, both for plcon.exe and

plwin.exe. The implementation uses code from the LUA programming language (http://www.lua.org).

SWI-Prolog 5.6 Reference Manual

100 CHAPTER 4. BUILT-IN PREDICATES

collect_wd([C|R]) :-
get0(C), C \== -1, !,
collect_wd(R).

collect_wd([]).

Compatibility notes

Unlike Edinburgh Prolog systems, telling/1 and seeing/1 do not return the filename of the
current input/output, but the stream-identifier, to ensure the design pattern below works under all
circumstances.24

...,
telling(Old), tell(x),
...,
told, tell(Old),
...,

The predicates tell/1 and see/1 first check for user, the pipe(command) and a stream-handle.
Otherwise, if the argument is an atom it is first compared to open streams associated to a file with
exactly the same name. If such a stream, created using tell/1 or see/1 exists, output (input) is
switch to the open stream. Otherwise a file with the specified name is opened.

The behaviour is compatible to Edinburgh Prolog. This is not without problems. Changing direc-
tory, non-file streams, multiple names referring to the same file easily lead to unexpected behaviour.
New code, especially when managing multiple I/O channels should consider using the ISO I/O predi-
cates defined in section 4.16.1.

see(+SrcDest)
Open SrcDest for reading and make it the current input (see set input/1). If SrcDest is a
stream-handle, just makes this stream the current input. See the introduction of section 4.16.2
for details.

tell(+SrcDest)
Open SrcDest for writing and make it the current output (see set output/1). If SrcDest is a
stream-handle, just makes this stream the current output. See the introduction of section 4.16.2
for details.

append(+File)
Similar to tell/1, but positions the file pointer at the end of File rather than truncating an
existing file. The pipe construct is not accepted by this predicate.

seeing(?SrcDest)
Same as current input/1, except that user is returned if the current input is the stream
user input to improve compatibility with traditional Edinburgh I/O. See the introduction of
section 4.16.2 for details.

24Filenames can be ambiguous and SWI-Prolog streams can refer to much more than just files.

SWI-Prolog 5.6 Reference Manual

4.16. INPUT AND OUTPUT 101

telling(?SrcDest)
Same as current output/1, except that user is returned if the current output is the stream
user output to improve compatibility with traditional Edinburgh I/O. See the introduction
of section 4.16.2 for details.

seen
Close the current input stream. The new input stream becomes user input.

told
Close the current output stream. The new output stream becomes user output.

4.16.3 Switching Between Edinburgh and ISO I/O

The predicates below can be used for switching between the implicit- and the explicit stream based
I/O predicates.

set input(+Stream)
Set the current input stream to become Stream. Thus, open(file, read, Stream), set input(Stream)
is equivalent to see(file).

set output(+Stream)
Set the current output stream to become Stream. See also with output to/2.

current input(-Stream)
Get the current input stream. Useful to get access to the status predicates associated with
streams.

current output(-Stream)
Get the current output stream.

4.16.4 Write onto atoms, code-lists, etc.

with output to(+Output, :Goal)
Run Goal as once/1, while characters written to the current output is sent to Output. The
predicate is SWI-Prolog specific, inspired by various posts to the mailinglist. It provides a
flexible replacement for predicates such as sformat/3, swritef/3, term to atom/2,
atom number/2 converting numbers to atoms, etc. The predicate format/3 accepts the
same terms as output argument.

Applications should generally avoid creating atoms by breaking and concatenating other atoms
as the creation of large numbers of intermediate atoms generally leads to poor performance,
even more so in multi-threaded applications. This predicate supports creating difference-lists
from character data efficiently. The example below defines the DCG rule term//1 to insert a
term in the output:

term(Term, In, Tail) :-
with_output_to(codes(In, Tail), write(Term)).

?- phrase(term(hello), X).

X = [104, 101, 108, 108, 111]

SWI-Prolog 5.6 Reference Manual

102 CHAPTER 4. BUILT-IN PREDICATES

A Stream handle or alias
Temporary switch current output to the given stream. Redirection using
with output to/2 guarantees the original output is restored, also if Goal fails or
raises an exception. See also call cleanup/2.

atom(-Atom)
Create an atom from the emitted characters. Please note the remark above.

string(-String)
Create a string-object as defined in section 4.23.

codes(-Codes)
Create a list of character codes from the emitted characters, similar to atom codes/2.

codes(-Codes, -Tail)
Create a list of character codes as a difference-list.

chars(-Chars)
Create a list of one-character-atoms codes from the emitted characters, similar to
atom chars/2.

chars(-Chars, -Tail)
Create a list of one-character-atoms as a difference-list.

4.17 Status of streams

wait for input(+ListOfStreams, -ReadyList, +TimeOut)
Wait for input on one of the streams in ListOfStreams and return a list of streams on which input
is available in ReadyList. wait for input/3 waits for at most TimeOut seconds. Timeout
may be specified as a floating point number to specify fractions of a second. If Timeout equals
infinite, wait for input/3 waits indefinitely.25

This predicate can be used to implement timeout while reading and to handle input from multi-
ple sources. The following example will wait for input from the user and an explicitly opened
second terminal. On return, Inputs may hold user or P4 or both.

?- open(’/dev/ttyp4’, read, P4),
wait_for_input([user, P4], Inputs, 0).

This predicate relies on the select() call on most operating systems. On Unix this call is imple-
mented for any stream referring to a file-handle, which implies all OS-based streams: sockets,
terminals, pipes, etc. On non-Unix systems select() is generally only implemented for socket-
based streams. See also socket from the clib package.

Note that wait for input/3 returns streams that have data waiting. This does not mean
you can, for example, call read/2 on the stream without blocking as the stream might hold
an incomplete term. The predicate set stream/2 using the option timeout(Seconds) can
be used to make the stream generate an exception if no new data arrives for within the timeout.
Suppose two processes communicate by exchanging Prolog terms. The following code makes
the server immune for clients that write an incomplete term:

25For compatibility reasons, a Timeout value of 0 (integer) also waits indefinitely. To call select() without giving up the
CPU pass the float 0.0. If compatibility with versions older than 5.1.3 is desired pass the float value 1e-7.

SWI-Prolog 5.6 Reference Manual

4.18. PRIMITIVE CHARACTER I/O 103

...,
tcp_accept(Server, Socket, _Peer),
tcp_open(Socket, In, Out),
set_stream(In, timeout(10)),
catch(read(In, Term), _, (close(Out), close(In), fail)),
...,

byte count(+Stream, -Count)
Byte-position in Stream. For binary streams this is the same as character count/2. For
text files the number may be different due to multi-byte encodings or additional record separa-
tors (such as Control-M in Windows).

character count(+Stream, -Count)
Unify Count with the current character index. For input streams this is the number of characters
read since the open, for output streams this is the number of characters written. Counting starts
at 0.

line count(+Stream, -Count)
Unify Count with the number of lines read or written. Counting starts at 1.

line position(+Stream, -Count)
Unify Count with the position on the current line. Note that this assumes the position is 0 after
the open. Tabs are assumed to be defined on each 8-th character and backspaces are assumed to
reduce the count by one, provided it is positive.

fileerrors(-Old, +New)
Define error behaviour on errors when opening a file for reading or writing. Valid values are the
atoms on (default) and off. First Old is unified with the current value. Then the new value is
set to New.26

With the introduction of exception-handling, it is advised to use catch/3 to catch possibly
file-errors and act accordingly. Note that if fileerrors is off, no exception is generated.

4.18 Primitive character I/O

See section 4.2 for an overview of supported character representations.

nl
Write a newline character to the current output stream. On Unix systems nl/0 is equivalent to
put(10).

nl(+Stream)
Write a newline to Stream.

put(+Char)
Write Char to the current output stream, Char is either an integer-expression evaluating to a
character code or an atom of one character. Depreciated. New code should use put char/1
or put code/1.

26Note that Edinburgh Prolog defines fileerrors/0 and nofileerrors/0. As this does not allow you to switch
back to the old mode I think this definition is better.

SWI-Prolog 5.6 Reference Manual

104 CHAPTER 4. BUILT-IN PREDICATES

put(+Stream, +Char)
Write Char to Stream. See put/1 for details.

put byte(+Byte)
Write a single byte to the output. Byte must be an integer between 0 and 255.

put byte(+Stream, +Byte)
Write a single byte to a stream. Byte must be an integer between 0 and 255.

put char(+Char)
Write a character to the current output, obeying the encoding defined for the current output
stream. Note that this may raise an exception if the encoding of Stream cannot represent Char.

put char(+Stream, +Char)
Write a character to Stream, obeying the encoding defined for Stream. Note that this may raise
an exception if the encoding of Stream cannot represent Char.

put code(+Code)
Similar to put char/1, but using a character code. Code is a non-negative integer. Note that
this may raise an exception if the encoding of Stream cannot represent Code.

put code(+Stream, +Code)
Same as put code/1 but directing Code to Stream.

tab(+Amount)
Writes Amount spaces on the current output stream. Amount should be an expression that eval-
uates to a positive integer (see section 4.26).

tab(+Stream, +Amount)
Writes Amount spaces to Stream.

flush output
Flush pending output on current output stream. flush output/0 is automatically generated
by read/1 and derivatives if the current input stream is user and the cursor is not at the left
margin.

flush output(+Stream)
Flush output on the specified stream. The stream must be open for writing.

ttyflush
Flush pending output on stream user. See also flush output/[0,1].

get byte(-Byte)
Read the current input stream and unify the next byte with Byte (an integer between 0 and 255.
Byte is unified with -1 on end of file.

get byte(+Stream, -Byte)
Read the next byte from Stream, returning an integer between 0 and 255.

get code(-Code)
Read the current input stream and unify Code with the character code of the next character.
Code is unified with -1 on end of file. See also get char/1.

SWI-Prolog 5.6 Reference Manual

4.18. PRIMITIVE CHARACTER I/O 105

get code(+Stream, -Code)
Read the next character-code from Stream.

get char(-Char)
Read the current input stream and unify Char with the next character as a one-character-atom.
See also atom chars/2. On end-of-file, Char is unified to the atom end of file.

get char(+Stream, -Char)
Unify Char with the next character from Stream as a one-character-atom. See also
get char/2, get byte/2 and get code/2.

get0(-Char)
Edinburgh version of the ISO get code/1 predicate. Note that Edinburgh prolog didn’t sup-
port wide characters and therefore technically speaking get0/1 should have been mapped to
get byte/1. The intention of get0/1 however is to read character codes.

get0(+Stream, -Char)
Edinburgh version of the ISO get code/2 predicate. See also get0/1.

get(-Char)
Read the current input stream and unify the next non-blank character with Char. Char is unified
with -1 on end of file.

get(+Stream, -Char)
Read the next non-blank character from Stream.

peek byte(-Byte)
Reads the next input byte like get byte/1, but does not remove it from the input stream.

peek byte(+Stream, -Byte)
Reads the next input byte like get byte/2, but does not remove it from the stream.

peek code(-Code)
Reads the next input code like get code/1, but does not remove it from the input stream.

peek code(+Stream, -Code)
Reads the next input code like get code/2, but does not remove it from the stream.

peek char(-Char)
Reads the next input character like get char/1, but does not remove it from the input stream.

peek char(+Stream, -Char)
Reads the next input character like get char/2, but does not remove it from the stream.

skip(+Code)
Read the input until Char or the end of the file is encountered. A subsequent call to
get code/1 will read the first character after Code.

skip(+Stream, +Code)
Skip input (as skip/1) on Stream.

SWI-Prolog 5.6 Reference Manual

106 CHAPTER 4. BUILT-IN PREDICATES

get single char(-Code)
Get a single character from input stream ‘user’ (regardless of the current input stream). Unlike
get code/1 this predicate does not wait for a return. The character is not echoed to the user’s
terminal. This predicate is meant for keyboard menu selection etc. If SWI-Prolog was started
with the -tty option this predicate reads an entire line of input and returns the first non-blank
character on this line, or the character code of the newline (10) if the entire line consisted of
blank characters.

at end of stream
Succeeds after the last character of the current input stream has been read. Also succeeds if
there is no valid current input stream.

at end of stream(+Stream)
Succeeds after the last character of the named stream is read, or Stream is not a valid input
stream. The end-of-stream test is only available on buffered input stream (unbuffered input
streams are rarely used, see open/4).

copy stream data(+StreamIn, +StreamOut, +Len)
Copy Len codes from stream StreamIn to StreamOut. Note that the copy is done using the
semantics of get code/2 and put code/2, taking care of possibly recoding that needs take
place between two text files. See section 2.17.1.

copy stream data(+StreamIn, +StreamOut)
Copy data all (remaining) data from stream StreamIn to StreamOut.

read pending input(+StreamIn, -Codes, ?Tail)
Read input pending in the input buffer of StreamIn and return it in the difference list Codes-
Tail. I.e. the available characters codes are used to create the list Codes ending in the tail Tail.
This predicate is intended for efficient unbuffered copying and filtering of input coming from
network connections or devices.

The following code fragment realises efficient non-blocking copy of data from an input- to
an output stream. The at end of stream/1 call checks for end-of-stream and fills the
input buffer. Note that the use of a get code/2 and put code/2 based loop requires a
flush output/1 call after each put code/2. The copy stream data/2 does not al-
low for inspection of the copied data and suffers from the same buffering issues.

copy(In, Out) :-
repeat,

(at_end_of_stream(In)
-> !
; read_pending_input(In, Chars, []),

format(Out, ’˜s’, [Chars]),
flush_output(Out),
fail

).

SWI-Prolog 5.6 Reference Manual

4.19. TERM READING AND WRITING 107

4.19 Term reading and writing

This section describes the basic term reading and writing predicates. The predicates format/[1,2]
and writef/2 provide formatted output. Writing to Prolog datastructures such as atoms or code-
lists is supported by with output to/2 and format/3.

There are two ways to manipulate the output format. The predicate print/[1,2] may be
programmed using portray/1. The format of floating point numbers may be manipulated using
the prolog flag (see current prolog flag/2) float format.

Reading is sensitive to the prolog flag character escapes, which controls the interpretation
of the \ character in quoted atoms and strings.

write term(+Term, +Options)
The predicate write term/2 is the generic form of all Prolog term-write predicates. Valid
options are:

attributes(Atom)
Define how attributed variables (see section 6.1) are written. The default is determined by
the prolog flag write attributes. Defined values are ignore (ignore the attribute),
dots (write the attributes as {...}), write (simply hand the attributes recursively to
write term/2) and portray (hand the attributes to attr portray hook/2).

backquoted string(Bool)
If true, write a string object (see section 4.23) as ‘. . .‘. The default depends on the
prolog flag with the same name.

character escapes(Bool)
If true, and quoted(true) is active, special characters in quoted atoms and strings are
emitted as ISO escape-sequences. Default is taken from the reference module (see below).

ignore ops(Bool)
If true, the generic term-representation (〈functor〉(〈args〉 . . .)) will be used for all terms,
Otherwise (default), operators, list-notation and {}/1 will be written using their special
syntax.

max depth(Integer)
If the term is nested deeper than Integer, print the remainder as eclipse (. . .). A 0 (zero)
value (default) imposes no depth limit. This option also delimits the number of printed for
a list. Example:

?- write_term(a(s(s(s(s(0)))), [a,b,c,d,e,f]), [max_depth(3)]).
a(s(s(...)), [a, b|...])

Yes

Used by the top-level and debugger to limit screen output. See also the prolog-flags
toplevel print options and debugger print options.

module(Module)
Define the reference module (default user). This defines the default value for the
character escapes option as well as the operator definitions to use. See also op/3.

SWI-Prolog 5.6 Reference Manual

108 CHAPTER 4. BUILT-IN PREDICATES

numbervars(Bool)
If true, terms of the format $VAR(N), where 〈N〉 is a positive integer, will be writ-
ten as a variable name. If N is an atom it is written without quotes. This extension
allows for writing variables with user-provided names. The default is false. See also
numbervars/3.

portray(Bool)
If true, the hook portray/1 is called before printing a term that is not a variable. If
portray/1 succeeds, the term is considered printed. See also print/1. The default
is false. This option is an extension to the ISO write term options.

quoted(Bool)
If true, atoms and functors that needs quotes will be quoted. The default is false.

write term(+Stream, +Term, +Options)
As write term/2, but output is sent to Stream rather than the current output.

write canonical(+Term)
Write Term on the current output stream using standard parenthesised prefix notation (i.e.,
ignoring operator declarations). Atoms that need quotes are quoted. Terms written with
this predicate can always be read back, regardless of current operator declarations. Equiva-
lent to write term/2 using the options ignore ops, quoted and numbervars after
numbervars/4 using the singletons option.

Note that due to the use of numbervars/4, non-ground terms must be written using a single
write canonical/1 call. This used to be the case anyhow, as garbage collection between
multiple calls to one of the write predicates can change the _G〈NNN〉 identity of the variables.

write canonical(+Stream, +Term)
Write Term in canonical form on Stream.

write(+Term)
Write Term to the current output, using brackets and operators where appropriate. See
current prolog flag/2 for controlling floating point output format.

write(+Stream, +Term)
Write Term to Stream.

writeq(+Term)
Write Term to the current output, using brackets and operators where appropriate. Atoms that
need quotes are quoted. Terms written with this predicate can be read back with read/1
provided the currently active operator declarations are identical.

writeq(+Stream, +Term)
Write Term to Stream, inserting quotes.

print(+Term)
Prints Term on the current output stream similar to write/1, but for each (sub)term of Term
first the dynamic predicate portray/1 is called. If this predicate succeeds print assumes the
(sub)term has been written. This allows for user defined term writing.

SWI-Prolog 5.6 Reference Manual

4.19. TERM READING AND WRITING 109

print(+Stream, +Term)
Print Term to Stream.

portray(+Term)
A dynamic predicate, which can be defined by the user to change the behaviour of print/1
on (sub)terms. For each subterm encountered that is not a variable print/1 first calls
portray/1 using the term as argument. For lists only the list as a whole is given to
portray/1. If portray succeeds print/1 assumes the term has been written.

read(-Term)
Read the next Prolog term from the current input stream and unify it with Term. On a syntax
error read/1 displays an error message, attempts to skip the erroneous term and fails. On
reaching end-of-file Term is unified with the atom end of file.

read(+Stream, -Term)
Read Term from Stream.

read clause(-Term)
Equivalent to read/1, but warns the user for variables only occurring once in a
term (singleton variables, see section 2.15.1) which do not start with an underscore
if style check(singleton) is active (default). Used to read Prolog source
files (see consult/1). New code should use read term/2 with the option
singletons(warning).

read clause(+Stream, -Term)
Read a clause from Stream. See read clause/1.

read term(-Term, +Options)
Read a term from the current input stream and unify the term with Term. The reading is con-
trolled by options from the list of Options. If this list is empty, the behaviour is the same as
for read/1. The options are upward compatible to Quintus Prolog. The argument order is ac-
cording to the ISO standard. Syntax-errors are always reported using exception-handling (see
catch/3). Options:

backquoted string(Bool)
If true, read ‘. . .‘ to a string object (see section 4.23). The default depends on the
prolog flag with the same name.

character escapes(Bool)
Defines how to read \ escape-sequences in quoted atoms. See the prolog-flags
character escapes, current prolog flag/2. (SWI-Prolog).

comments(-Comments)
Unify Comments with a list of Position-Comment, where Position is a stream-position ob-
ject (see stream position data/3) indicating the start of a comment and Comment
is a string-object containing the text including delimiters of a comment. It returns all
comments from where the read term/2 call started upto the end of the term read.

double quotes(Bool)
Defines how to read ”. . . ” strings. See the prolog-flags double quotes,
current prolog flag/2. (SWI-Prolog).

SWI-Prolog 5.6 Reference Manual

110 CHAPTER 4. BUILT-IN PREDICATES

module(Module)
Specify Module for operators, character escapes flag and double quotes flag.
The value of the latter two is overruled if the corresponding read term/3 option is
provided. If no module is specified, the current ‘source-module’ is used. (SWI-Prolog).

singletons(Vars)
As variable names, but only reports the variables occurring only once in the Term
read. Variables starting with an underscore (‘ ’) are not included in this list. (ISO). If Vars
is the constant warning, singleton variables are reported using print message/2.

syntax errors(Atom)
If error (default), throw and exception on a syntax error. Other values are fail, which
causes a message to be printed using print message/2, after which the predicate fails,
quiet which causes the predicate to fail silently and dec10 which causes syntax errors
to be printed, after which read term/[2,3] continues reading the next term. Using
dec10, read term/[2,3] never fails. (Quintus, SICStus).

subterm positions(TermPos)
Describes the detailed layout of the term. The formats for the various types of terms if
given below. All positions are character positions. If the input is related to a normal
stream, these positions are relative to the start of the input, when reading from the terminal,
they are relative to the start of the term.

From-To
Used for primitive types (atoms, numbers, variables).

string position(From, To)
Used to indicate the position of a string enclosed in double quotes (").

brace term position(From, To, Arg)
Term of the form {...}, as used in DCG rules. Arg describes the argument.

list position(From, To, Elms, Tail)
A list. Elms describes the positions of the elements. If the list specifies the tail
as |〈TailTerm〉, Tail is unified with the term-position of the tail, otherwise with the
atom none.

term position(From, To, FFrom, FTo, SubPos)
Used for a compound term not matching one of the above. FFrom and FTo describe
the position of the functor. SubPos is a list, each element of which describes the
term-position of the corresponding subterm.

term position(Pos)
Unifies Pos with the starting position of the term read. Pos if of the same format as use by
stream property/2.

variables(Vars)
Unify Vars with a list of variables in the term. The variables appear in the order they have
been read. See also term variables/2. (ISO).

variable names(Vars)
Unify Vars with a list of ‘Name = Var’, where Name is an atom describing the variable
name and Var is a variable that shares with the corresponding variable in Term. (ISO).

read term(+Stream, -Term, +Options)
Read term with options from Stream. See read term/2.

SWI-Prolog 5.6 Reference Manual

4.20. ANALYSING AND CONSTRUCTING TERMS 111

read history(+Show, +Help, +Special, +Prompt, -Term, -Bindings)
Similar to read term/2 using the option variable names, but allows for history substi-
tutions. read history/6 is used by the top level to read the user’s actions. Show is the com-
mand the user should type to show the saved events. Help is the command to get an overview
of the capabilities. Special is a list of commands that are not saved in the history. Prompt is the
first prompt given. Continuation prompts for more lines are determined by prompt/2. A %w
in the prompt is substituted by the event number. See section 2.7 for available substitutions.

SWI-Prolog calls read history/6 as follows:

read_history(h, ’!h’, [trace], ’%w ?- ’, Goal, Bindings)

prompt(-Old, +New)
Set prompt associated with read/1 and its derivatives. Old is first unified with the current
prompt. On success the prompt will be set to New if this is an atom. Otherwise an error
message is displayed. A prompt is printed if one of the read predicates is called and the cursor
is at the left margin. It is also printed whenever a newline is given and the term has not been
terminated. Prompts are only printed when the current input stream is user.

prompt1(+Prompt)
Sets the prompt for the next line to be read. Continuation lines will be read using the prompt
defined by prompt/2.

4.20 Analysing and Constructing Terms

functor(?Term, ?Functor, ?Arity)
True if Term is a term with functor Functor and arity Arity. If Term is a variable it is unified
with a new term holding only variables. functor/3 silently fails on instantiation faults27 If
Term is an atom or number, Functor will be unified with Term and arity will be unified with the
integer 0 (zero).

arg(?Arg, +Term, ?Value)
Term should be instantiated to a term, Arg to an integer between 1 and the arity of Term.
Value is unified with the Arg-th argument of Term. Arg may also be unbound. In this case
Value will be unified with the successive arguments of the term. On successful unifica-
tion, Arg is unified with the argument number. Backtracking yields alternative solutions.28

The predicate arg/3 fails silently if Arg = 0 or Arg > arity and raises the exception
domain error(not less then zero, Arg) if Arg < 0.

?Term =.. ?List
List is a list which head is the functor of Term and the remaining arguments are the arguments
of the term. Each of the arguments may be a variable, but not both. This predicate is called
‘Univ’. Examples:

27In version 1.2 instantiation faults led to error messages. The new version can be used to do type testing without the
need to catch illegal instantiations first.

28The instantiation pattern (-, +, ?) is an extension to ‘standard’ Prolog. Some systems provide genarg/3 that covers
this pattern.

SWI-Prolog 5.6 Reference Manual

112 CHAPTER 4. BUILT-IN PREDICATES

?- foo(hello, X) =.. List.

List = [foo, hello, X]

?- Term =.. [baz, foo(1)]

Term = baz(foo(1))

numbervars(+Term, +Start, -End)
Unify the free variables of Term with a term $VAR(N), where N is the number of the variable.
Counting starts at Start. End is unified with the number that should be given to the next variable.
Example:

?- numbervars(foo(A, B, A), 0, End).

A = ’$VAR’(0)
B = ’$VAR’(1)
End = 2

See also the numbervars option to write term/3 and numbervars/4.

numbervars(+Term, +Start, -End, +Options)
As numbervars/3, but providing the following options:

functor name(+Atom)
Name of the functor to use instead of $VAR.

attvar(+Action)
What to do if an attributed variable is encountered. Options are skip, which causes
numbervars/3 to ignore the attributed variable, bind which causes it to thread it as
a normal variable and assign the next ’$VAR’(N) term to it or (default) error which
raises the a type error exception.29

singletons(+Bool)
If true (default false), numbervars/4 does singleton detection. Singleton variables
are unified with ’$VAR’(’_’), causing them to be printed as _ by write term/2
using the numbervars option. This option is exploited by portray clause/2 and
write canonical/2.

term variables(+Term, -List)
Unify List with a list of variables, each sharing with a unique variable of Term.30 See also
term variables/3. For example:

29This behaviour was decided after a long discussion between David Reitter, Richard O’Keefe, Bart Demoen and Tom
Schrijvers.

30This predicate used to be called free variables/2. The name term variables/2 is more widely used. The
old predicate is still available from the library backcomp.

SWI-Prolog 5.6 Reference Manual

4.20. ANALYSING AND CONSTRUCTING TERMS 113

?- term_variables(a(X, b(Y, X), Z), L).

L = [G367, G366, G371]
X = G367
Y = G366
Z = G371

term variables(+Term, -List, ?Tail)
Difference list version of term variables/2. I.e. Tail is the tail of the variable-list List.

copy term(+In, -Out)
Create a version if In with renamed (fresh) variables and unify it to Out. Attributed variables
(see section 6.1) have their attributed copied. The implementation of copy term/2 can deal
with infinite trees (cyclic terms). As pure Prolog cannot distinguish a ground term from another
ground term with exactly the same structure, ground sub-terms are shared between In and Out.
Sharing ground terms does affect setarg/3. SWI-Prolog provides duplicate term/2 to
create a true copy of a term.

4.20.1 Non-logical operations on terms

Prolog is not capable to modify instantiated parts of a term. Lacking that capability makes that lan-
guage much safer, but unfortunately there are problems that suffer severely in terms of time and/or
memory usage. Always try hard to avoid the use of these primitives, but they can be a good alternative
to using dynamic predicates. See also section 6.3, discussing the use of global variables.

setarg(+Arg, +Term, +Value)
Extra-logical predicate. Assigns the Arg-th argument of the compound term Term with the given
Value. The assignment is undone if backtracking brings the state back into a position before the
setarg/3 call. See also nb setarg/3.

This predicate may be used for destructive assignment to terms, using them as an extra-logical
storage bin. Always try hard to avoid the use of setarg/3 as it is not supported by many
Prolog systems and one has to be very careful about unexpected copying as well as unexpected
not copying of terms.

nb setarg(+Arg, +Term, +Value)
Assigns the Arg-th argument of the compound term Term with the given Value as setarg/3,
but on backtracking the assignment is not reversed. If Term is not atomic, it is duplicated us-
ing duplicate term/2. This predicate uses the same technique as nb setval/2. We
therefore refer to the description of nb setval/2 for details on non-backtrackable assign-
ment of terms. This predicate is compatible to GNU-Prolog setarg(A,T,V,false), removing
the type-restriction on Value. See also nb linkarg/3. Below is an example for counting the
number of solutions of a goal. Note that this implementation is thread-safe, reentrant and capa-
ble of handling exceptions. Realising these features with a traditional implementation based on
assert/retract or flag/3 is much more complicated.

:- module_transparent succeeds_n_times/2.

SWI-Prolog 5.6 Reference Manual

114 CHAPTER 4. BUILT-IN PREDICATES

succeeds_n_times(Goal, Times) :-
Counter = counter(0),
(Goal,

arg(1, Counter, N0),
N is N0 + 1,
nb_setarg(1, Counter, N),
fail

; arg(1, Counter, Times)
).

nb linkarg(+Arg, +Term, +Value)
As nb setarg/3, but like nb linkval/2 it does not duplicate Value. Use with extreme
care and consult the documentation of nb linkval/2 before use.

duplicate term(+In, -Out)
Version of copy term/2 that also copies ground terms and therefore ensures destruc-
tive modification using setarg/3 does not affect the copy. See also nb setval/2,
nb linkval/2, nb setarg/3 and nb linkarg/3.

4.21 Analysing and Constructing Atoms

These predicates convert between Prolog constants and lists of character codes. The predicates
atom codes/2, number codes/2 and name/2 behave the same when converting from a con-
stant to a list of character codes. When converting the other way around, atom codes/2 will
generate an atom, number codes/2 will generate a number or exception and name/2 will return
a number if possible and an atom otherwise.

The ISO standard defines atom chars/2 to describe the ‘broken-up’ atom as a list of one-
character atoms instead of a list of codes. Up-to version 3.2.x, SWI-Prolog’s atom chars/2
behaved, compatible to Quintus and SICStus Prolog, like atom codes. As of 3.3.x SWI-Prolog
atom codes/2 and atom chars/2 are compliant to the ISO standard.

To ease the pain of all variations in the Prolog community, all SWI-Prolog predicates behave as
flexible as possible. This implies the ‘list-side’ accepts either a code-list or a char-list and the ‘atom-
side’ accept all atomic types (atom, number and string).

atom codes(?Atom, ?String)
Convert between an atom and a list of character codes. If Atom is instantiated, if will be trans-
lated into a list of character codes and the result is unified with String. If Atom is unbound and
String is a list of character codes, it will Atom will be unified with an atom constructed from
this list.

atom chars(?Atom, ?CharList)
As atom codes/2, but CharList is a list of one-character atoms rather than a list of character
codes31.

31Up-to version 3.2.x, atom chars/2 behaved as the current atom codes/2. The current definition is compliant
with the ISO standard

SWI-Prolog 5.6 Reference Manual

4.21. ANALYSING AND CONSTRUCTING ATOMS 115

?- atom_chars(hello, X).

X = [h, e, l, l, o]

char code(?Atom, ?Code)
Convert between character and character code for a single character.32

number chars(?Number, ?CharList)
Similar to atom chars/2, but converts between a number and its representation as a list
of one-character atoms. Fails with a representation error if Number is unbound and
CharList does not describe a number.

number codes(?Number, ?CodeList)
As number chars/2, but converts to a list of character codes rather than one-character
atoms. In the mode -, +, both predicates behave identically to improve handling of non-ISO
source.

atom number(?Atom, ?Number)
Realises the popular combination of atom codes/2 and number codes/2 to convert be-
tween atom and number (integer or float) in one predicate, avoiding the intermediate list.

name(?AtomOrInt, ?String)
String is a list of character codes representing the same text as Atom. Each of the arguments
may be a variable, but not both. When String is bound to an character code list describing an
integer and Atom is a variable Atom will be unified with the integer value described by String
(e.g. ‘name(N, "300"), 400 is N + 100’ succeeds).

term to atom(?Term, ?Atom)
True if Atom describes a term that unifies with Term. When Atom is instantiated Atom is con-
verted and then unified with Term. If Atom has no valid syntax, a syntax error exception
is raised. Otherwise Term is “written” on Atom using write/1.

atom to term(+Atom, -Term, -Bindings)
Use Atom as input to read term/2 using the option variable names and return the read
term in Term and the variable bindings in Bindings. Bindings is a list of Name = Var couples,
thus providing access to the actual variable names. See also read term/2. If Atom has no
valid syntax, a syntax error exception is raised.

atom concat(?Atom1, ?Atom2, ?Atom3)
Atom3 forms the concatenation of Atom1 and Atom2. At least two of the arguments must be
instantiated to atoms, integers or floating point numbers. For ISO compliance, the instantiation-
pattern -, -, + is allowed too, non-deterministically splitting the 3-th argument into two parts (as
append/3 does for lists). See also string concat/3.

concat atom(+List, -Atom)
List is a list of atoms, integers or floating point numbers. Succeeds if Atom can be uni-
fied with the concatenated elements of List. If List has exactly 2 elements it is equivalent to
atom concat/3, allowing for variables in the list.

32This is also called atom char/2 in older versions of SWI-Prolog as well as some other Prolog implementations. The
atom char/2 predicate is available from the library backcomp.pl

SWI-Prolog 5.6 Reference Manual

116 CHAPTER 4. BUILT-IN PREDICATES

concat atom(?List, +Separator, ?Atom)
Creates an atom just like concat atom/2, but inserts Separator between each pair of atoms.
For example:

?- concat_atom([gnu, gnat], ’, ’, A).

A = ’gnu, gnat’

This predicate can also be used to split atoms by instantiating Separator and Atom:

?- concat_atom(L, -, ’gnu-gnat’).

L = [gnu, gnat]

atom length(+Atom, -Length)
True if Atom is an atom of Length characters long. This predicate also works for strings (see
section 4.23). If the prolog flag iso is not set, it also accepts integers and floats, expressing the
number of characters output when given to write/1 as well as code-lists and character-lists,
expressing the length of the list.33

atom prefix(+Atom, +Prefix)
True if Atom starts with the characters from Prefix. Its behaviour is equivalent to
?- sub atom(Atom, 0, , , Prefix). Depreciated.

sub atom(+Atom, ?Before, ?Len, ?After, ?Sub)
ISO predicate for breaking atoms. It maintains the following relation: Sub is a sub-atom of Atom
that starts at Before, has Len characters and Atom contains After characters after the match.

?- sub_atom(abc, 1, 1, A, S).

A = 1, S = b

The implementation minimises non-determinism and creation of atoms. This is a very flexible
predicate that can do search, prefix- and suffix-matching, etc.

4.22 Classifying characters

SWI-Prolog offers two comprehensive predicates for classifying characters and character-codes.
These predicates are defined as built-in predicates to exploit the C-character classification’s handling
of locale (handling of local character-sets). These predicates are fast, logical and deterministic if
applicable.

In addition, there is the library ctype providing compatibility to some other Prolog systems. The
predicates of this library are defined in terms of code type/2.

33BUG: Note that [] is both an atom an empty code/character list. The predicate atom length/2 returns 2 for this
atom.

SWI-Prolog 5.6 Reference Manual

4.22. CLASSIFYING CHARACTERS 117

char type(?Char, ?Type)
Tests or generates alternative Types or Chars. The character-types are inspired by the standard
C <ctype.h> primitives.

alnum
Char is a letter (upper- or lowercase) or digit.

alpha
Char is a letter (upper- or lowercase).

csym
Char is a letter (upper- or lowercase), digit or the underscore (_). These are valid C- and
Prolog symbol characters.

csymf
Char is a letter (upper- or lowercase) or the underscore (_). These are valid first characters
for C- and Prolog symbols

ascii
Char is a 7-bits ASCII character (0..127).

white
Char is a space or tab. E.i. white space inside a line.

cntrl
Char is an ASCII control-character (0..31).

digit
Char is a digit.

digit(Weigth)
Char is a digit with value Weigth. I.e. char type(X, digit(6) yields X = ’6’.
Useful for parsing numbers.

xdigit(Weigth)
Char is a hexa-decimal digit with value Weigth. I.e. char type(a, xdigit(X)
yields X = ’10’. Useful for parsing numbers.

graph
Char produces a visible mark on a page when printed. Note that the space is not included!

lower
Char is a lower-case letter.

lower(Upper)
Char is a lower-case version of Upper. Only true if Char is lowercase and Upper upper-
case.

to lower(Upper)
Char is a lower-case version of Upper. For non-letters, or letter without case, Char and
Lower are the same. See also upcase atom/2 and downcase atom/2.

upper
Char is an upper-case letter.

upper(Lower)
Char is an upper-case version of Lower. Only true if Char is uppercase and Lower lower-
case.

SWI-Prolog 5.6 Reference Manual

118 CHAPTER 4. BUILT-IN PREDICATES

to upper(Lower)
Char is an upper-case version of Lower. For non-letters, or letter without case, Char and
Lower are the same. See also upcase atom/2 and downcase atom/2.

punct
Char is a punctuation character. This is a graph character that is not a letter or digit.

space
Char is some form of layout character (tab, vertical-tab, newline, etc.).

end of file
Char is -1.

end of line
Char ends a line (ASCII: 10..13).

newline
Char is a the newline character (10).

period
Char counts as the end of a sentence (.,!,?).

quote
Char is a quote-character (", ’, ‘).

paren(Close)
Char is an open-parenthesis and Close is the corresponding close-parenthesis.

code type(?Code, ?Type)
As char type/2, but uses character-codes rather than one-character atoms. Please note that
both predicates are as flexible as possible. They handle either representation if the argument
is instantiated and only will instantiate with an integer code or one-character atom depend-
ing of the version used. See also the prolog-flag double quotes, atom chars/2 and
atom codes/2.

4.22.1 Case conversion

There is nothing in the Prolog standard for converting case in textual data. The SWI-Prolog predicates
code type/2 and char type/2 can be used to test and convert individual characters. We have
started some additional support:

downcase atom(+AnyCase, -LowerCase)
Converts the characters of AnyCase into lowercase as char type/2 does (i.e. based on the de-
fined locale if Prolog provides locale support on the hosting platform) and unifies the lowercase
atom with LowerCase.

upcase atom(+AnyCase, -UpperCase)
Converts, similar to downcase atom/2, an atom to upper-case.

4.23 Representing text in strings

SWI-Prolog supports the data type string. Strings are a time and space efficient mechanism to handle
text in Prolog. Strings are stored as a byte array on the global (term) stack and thus destroyed on
backtracking and reclaimed by the garbage collector.

SWI-Prolog 5.6 Reference Manual

4.23. REPRESENTING TEXT IN STRINGS 119

Strings were added to SWI-Prolog based on an early draft of the ISO standard, offering a mech-
anism to represent temporary character data efficiently. As SWI-Prolog strings can handle 0-bytes,
they are frequently used through the foreign language interface (section 9) for storing arbitrary byte-
sequences.

Starting with version 3.3, SWI-Prolog offers garbage collection on the atom-space as well as
representing 0-bytes in atoms. Although strings and atoms still have different features, new code
should consider using atoms to avoid too many representations for text as well as for compatibility to
other Prolog implementations. Below are some of the differences:

• creation
Creating strings is fast, as the data is simply copied to the global stack. Atoms are unique and
therefore more expensive in terms of memory and time to create. On the other hand, if the same
text has to be represented multiple times, atoms are more efficient.

• destruction
Backtracking destroys strings at no cost. They are cheap to handle by the garbage collector,
but it should be noted that extensive use of strings will cause many garbage collections. Atom
garbage collection is generally faster.

String objects by default have no lexical representation and thus can only be created using the
predicates below or through the foreign language interface (See chapter 9. There are two ways to
make read/1 read text into strings, both controlled through Prolog flags. One is by setting the
double quotes flag to string and the other is by setting the backquoted string flag to
true. In latter case, ‘Hello world‘ is read into a string and write term/2 prints strings
between back-quotes if quoted is true. This flag provides compatibility to LPA Prolog string
handling.

string to atom(?String, ?Atom)
Logical conversion between a string and an atom. At least one of the two arguments must be
instantiated. Atom can also be an integer or floating point number.

string to list(?String, ?List)
Logical conversion between a string and a list of character codes characters. At least one of the
two arguments must be instantiated.

string length(+String, -Length)
Unify Length with the number of characters in String. This predicate is functionally equivalent
to atom length/2 and also accepts atoms, integers and floats as its first argument.

string concat(?String1, ?String2, ?String3)
Similar to atom concat/3, but the unbound argument will be unified with a string object
rather than an atom. Also, if both String1 and String2 are unbound and String3 is bound to text,
it breaks String3, unifying the start with String1 and the end with String2 as append does with
lists. Note that this is not particularly fast on long strings as for each redo the system has to
create two entirely new strings, while the list equivalent only creates a single new list-cell and
moves some pointers around.

sub string(+String, ?Start, ?Length, ?After, ?Sub)
Sub is a substring of String starting at Start, with length Length and String has After characters
left after the match. See also sub atom/5.

SWI-Prolog 5.6 Reference Manual

120 CHAPTER 4. BUILT-IN PREDICATES

4.24 Operators

Operators are defined to improve the readability of source-code. For example, without operators, to
write 2*3+4*5 one would have to write +(*(2,3),*(4,5)). In Prolog, a number of operators
have been predefined. All operators, except for the comma (,) can be redefined by the user.

Some care has to be taken before defining new operators. Defining too many operators might
make your source ‘natural’ looking, but at the same time lead to hard to understand the limits of your
syntax. To ease the pain, as of SWI-Prolog 3.3.0, operators are local to the module in which they are
defined. Operators can be exported from modules using a term op(Precedence, Type, Name) in the
export list as specified by module/2. This is an extension specific to SWI-Prolog and the advised
mechanism of portability is not an important concern.

The module-table of the module user acts as default table for all modules and can be modified
explicitly from inside a module to achieve compatibility to other Prolog systems:

:- module(prove,
[prove/1
]).

:- op(900, xfx, user:(=>)).

Unlike what many users think, operators and quoted atoms have no relation: defining an atom as an
operator does not influence parsing characters into atoms and quoting an atom does not stop it from
acting as an operator. To stop an atom acting as an operator, enclose it in braces like this: (myop).

op(+Precedence, +Type, :Name)
Declare Name to be an operator of type Type with precedence Precedence. Name can also be
a list of names, in which case all elements of the list are declared to be identical operators.
Precedence is an integer between 0 and 1200. Precedence 0 removes the declaration. Type is
one of: xf, yf, xfx, xfy, yfx, yfy, fy or fx. The ‘f’ indicates the position of the functor,
while x and y indicate the position of the arguments. ‘y’ should be interpreted as “on this
position a term with precedence lower or equal to the precedence of the functor should occur”.
For ‘x’ the precedence of the argument must be strictly lower. The precedence of a term is 0,
unless its principal functor is an operator, in which case the precedence is the precedence of this
operator. A term enclosed in brackets (...) has precedence 0.

The predefined operators are shown in table 4.1. Note that all operators can be redefined by the
user.

current op(?Precedence, ?Type, ?:Name)
True if Name is currently defined as an operator of type Type with precedence Precedence. See
also op/3.

4.25 Character Conversion

Although I wouldn’t really know for what you would like to use these features, they are provided for
ISO compliance.

char conversion(+CharIn, +CharOut)
Define that term-input (see read term/3) maps each character read as CharIn to the character

SWI-Prolog 5.6 Reference Manual

4.26. ARITHMETIC 121

1200 xfx -->, :-
1200 fx :-, ?-
1150 fx dynamic, discontiguous, initialization,

module transparent, multifile, thread local,
volatile

1100 xfy ;, |
1050 xfy ->, op*->
1000 xfy ,
954 xfy \
900 fy \+
900 fx ˜
700 xfx <, =, =.., =@=, =:=, =<, ==, =\=, >, >=, @<, @=<, @>, @>=,

\=, \==, is
600 xfy :
500 yfx +, -, /\, \/, xor
500 fx +, -, ?, \
400 yfx *, /, //, rdiv, <<, >>, mod, rem
200 xfx **
200 xfy ˆ

Table 4.1: System operators

CharOut. Character conversion is only executed if the prolog-flag char conversion is set
to true and not inside quoted atoms or strings. The initial table maps each character onto
itself. See also current char conversion/2.

current char conversion(?CharIn, ?CharOut)
Queries the current character conversion-table. See char conversion/2 for details.

4.26 Arithmetic

Arithmetic can be divided into some special purpose integer predicates and a series of general pred-
icates for integer, floating point and rational arithmetic as appropriate. The general arithmetic predi-
cates all handle expressions. An expression is either a simple number or a function. The arguments of
a function are expressions. The functions are described in section 4.26.2.

4.26.1 Special purpose integer arithmetic

The predicates in this section provide more logical operations between integers. They are not covered
by the ISO standard, although they are ‘part of the community’ and found as either library or built-in
in many other Prolog systems.

between(+Low, +High, ?Value)
Low and High are integers, High ≥ Low. If Value is an integer, Low ≤ Value ≤ High. When
Value is a variable it is successively bound to all integers between Low and High. If High is inf

SWI-Prolog 5.6 Reference Manual

122 CHAPTER 4. BUILT-IN PREDICATES

or infinite34 between/3 is true iff Value ≥ Low, a feature that is particularly interesting
for generating integers from a certain value.

succ(?Int1, ?Int2)
True if Int2 = Int1 + 1 and Int1 ≥ 0. At least one of the arguments must be instantiated to a
natural number. This predicate raises the domain-error not less than zero if called with
a negative integer. E.g. succ(X, 0) fails silently and succ(X, -1) raises a domain-error.35

plus(?Int1, ?Int2, ?Int3)
True if Int3 = Int1 + Int2. At least two of the three arguments must be instantiated to integers.

4.26.2 General purpose arithmetic

The general arithmetic predicates are optionally compiled (see set prolog flag/2 and the -O
command line option). Compiled arithmetic reduces global stack requirements and improves perfor-
mance. Unfortunately compiled arithmetic cannot be traced, which is why it is optional.

+Expr1 > +Expr2
True if expression Expr1 evaluates to a larger number than Expr2.

+Expr1 < +Expr2
True if expression Expr1 evaluates to a smaller number than Expr2.

+Expr1 =< +Expr2
True if expression Expr1 evaluates to a smaller or equal number to Expr2.

+Expr1 >= +Expr2
True if expression Expr1 evaluates to a larger or equal number to Expr2.

+Expr1 =\= +Expr2
True if expression Expr1 evaluates to a number non-equal to Expr2.

+Expr1 =:= +Expr2
True if expression Expr1 evaluates to a number equal to Expr2.

-Number is +Expr
True if Number has successfully been unified with the number Expr evaluates to. If Expr eval-
uates to a float that can be represented using an integer (i.e, the value is integer and within the
range that can be described by Prolog’s integer representation), Expr is unified with the integer
value.

Note that normally, is/2 should be used with unbound left operand. If equality is to be tested,
=:=/2 should be used. For example:

?- 1 is sin(pi/2). Fails!. sin(pi/2) evaluates to the float 1.0,
which does not unify with the integer 1.

?- 1 =:= sin(pi/2). Succeeds as expected.

34We prefer infinite, but some other Prolog systems already use inf for infinity we accept both for the time being.
35The behaviour to deal with natural numbers only was defined by Richard O’Keefe to support the common count-down-

to-zero in a natural way. Up-to 5.1.8 succ/2 also accepted negative integers.

SWI-Prolog 5.6 Reference Manual

4.26. ARITHMETIC 123

Arithmetic types

SWI-Prolog defines the following numeric types:

• integer
If SWI-Prolog is built using the GNU multiple precision arithmetic library (GMP), integer
arithmetic is unbounded, which means that the size of integers is limited by available memory
only. Without GMP, SWI-Prolog integers are 64-bits, regardless of the native integer size of
the platform. The type of integer support can be detected using the Prolog flags bounded,
min integer and max integer. As the use of GMP is default, most of the following
descriptions assume unbounded integer arithmetic.

Internally, SWI-Prolog has three integer representations. Small integers (defined by the Prolog
flag max tagged integer) are encoded directly. Larger integers are represented as 64-bit
value on the global stack. Integers that do not fit in 64-bit are represented as serialised GNU
MPZ structures on the global stack.

• rational number
Rational numbers (Q) are quotients of two integers. Rational arithmetic is only provided if
GMP is used (see above). Rational numbers are currently not supported by a Prolog type. They
are represented by the compound term rdiv(N,M). Rational numbers that are returned from
is/2 are canonical, which means M is positive and N and M have no common divisors. Ra-
tional numbers are introduced in the computation using the rational/1, rationalize/1
or the rdiv/2 (rational division) function. Using the same functor for rational division and
representing rational numbers allow for passing rational numbers between computations as well
as to format/3 for printing.

On the long term it is likely that rational numbers will become atomic as well as subtype of
number. User code that creates or inspects the rdiv(M,N) terms will not be portable to future
versions. Rationals are created using one of the functions mentioned above and inspected using
rational/3.

• float
Floating point numbers are represented using the C-type double. On most today platforms
these are 64-bit IEEE floating point numbers.

Arithmetic functions that require integer arguments accept, in addition to integers, rational num-
bers with denominator ‘1’ and floating point numbers that can be accurately converted to integers. If
the required argument is a float the argument is converted to float. Note that conversion of integers to
floating point numbers may raise an overflow exception. In all other cases, arguments are converted
to the same type using the order below.

integer → rational number → floating point number

Rational number examples

The use of rational numbers with unbounded integers allows for exact integer or fixed point arith-
metic under the addition, subtraction, multiplication and division. To exploit rational arithmetic
rdiv/2 should be used instead of ‘/’ and floating point numbers must be converted to rational using
rational/1. Omitting the rational/1 on floats will convert a rational operand to float and
continue the arithmetic using floating point numbers. Here are some examples.

SWI-Prolog 5.6 Reference Manual

124 CHAPTER 4. BUILT-IN PREDICATES

A is 2 rdiv 6 A = 1 rdiv 3
A is 4 rdiv 3 + 1 A = 7 rdiv 3
A is 4 rdiv 3 + 1.5 A = 2.83333
A is 4 rdiv 3 + rational(1.5) A = 17 rdiv 6

Note that floats cannot represent all decimal numbers exactly. The function rational/1 creates
an exact equivalent of the float, while rationalize/1 creates a rational number that is within the
float rounding error from the original float. Please check the documentation of these functions for
details and examples.

Rational numbers can be printed as decimal numbers with arbitrary precision using the
format/3 floating point conversion:

?- A is 4 rdiv 3 + rational(1.5),
format(’˜50f˜n’, [A]).

2.8333

A = 17 rdiv 6

Arithmetic Functions

Arithmetic functions are terms which are evaluated by the arithmetic predicates described in sec-
tion 4.26.2. SWI-Prolog tries to hide the difference between integer arithmetic and floating point
arithmetic from the Prolog user. Arithmetic is done as integer arithmetic as long as possible and con-
verted to floating point arithmetic whenever one of the arguments or the combination of them requires
it. If a function returns a floating point value which is whole it is automatically transformed into an
integer. There are four types of arguments to functions:

Expr Arbitrary expression, returning either a floating point value or an
integer.

IntExpr Arbitrary expression that must evaluate into an integer.
RatExpr Arbitrary expression that must evaluate into a rational number.
FloatExpr Arbitrary expression that must evaluate into a floating point.

For systems using bounded integer arithmetic (default is unbounded, see section 4.26.2 for de-
tails), integer operations that would cause overflow automatically convert to floating point arithmetic.

- +Expr
Result = −Expr

+Expr1 + +Expr2
Result = Expr1 + Expr2

+Expr1 - +Expr2
Result = Expr1− Expr2

+Expr1 * +Expr2
Result = Expr1× Expr2

SWI-Prolog 5.6 Reference Manual

4.26. ARITHMETIC 125

+Expr1 / +Expr2
Result = Expr1

Expr2 The the flag iso is true, both arguments are converted to float and the return
value is a float. Otherwise (default), if both arguments are integers the operation returns an
integer if the division is exact. If at least one of the arguments is rational and the other argument
is integer, the operation returns a rational number. In all other cases the return value is a float.
See also ///2 and rdiv/2.

+IntExpr1 mod +IntExpr2
Modulo: Result = IntExpr1 - (IntExpr1 // IntExpr2) × IntExpr2 The function mod/2 is imple-
mented using the C % operator. It’s behaviour with negative values is illustrated in the table
below.

2 = 17 mod 5
2 = 17 mod -5

-2 = -17 mod 5
-2 = -17 mod -5

+IntExpr1 rem +IntExpr2
Remainder of division: Result = float fractional part(IntExpr1/IntExpr2)

+IntExpr1 // +IntExpr2
Integer division: Result = truncate(Expr1/Expr2)

+RatExpr rdiv +RatExpr
Rational number division. This function is only available if SWI-Prolog has been compiled
with rational number support. See section 4.26.2 for details.

abs(+Expr)
Evaluate Expr and return the absolute value of it.

sign(+Expr)
Evaluate to -1 if Expr < 0, 1 if Expr > 0 and 0 if Expr = 0.

max(+Expr1, +Expr2)
Evaluates to the largest of both Expr1 and Expr2. Both arguments are compared after converting
to the same type, but the return value is in the original type. For example, max(2.5, 3) compares
the two values after converting to float, but returns the integer 3.

min(+Expr1, +Expr2)
Evaluates to the smallest of both Expr1 and Expr2. See max/2 for a description of type-
handling.

.(+Int, [])
A list of one element evaluates to the element. This implies "a" evaluates to the character
code of the letter ‘a’ (97). This option is available for compatibility only. It will not work if
‘style check(+string)’ is active as "a" will then be transformed into a string object.
The recommended way to specify the character code of the letter ‘a’ is 0’a.

random(+IntExpr)
Evaluates to a random integer i for which 0 ≤ i < IntExpr. The seed of this random generator
is determined by the system clock when SWI-Prolog was started.

SWI-Prolog 5.6 Reference Manual

126 CHAPTER 4. BUILT-IN PREDICATES

round(+Expr)
Evaluates Expr and rounds the result to the nearest integer.

integer(+Expr)
Same as round/1 (backward compatibility).

float(+Expr)
Translate the result to a floating point number. Normally, Prolog will use integers whenever
possible. When used around the 2nd argument of is/2, the result will be returned as a floating
point number. In other contexts, the operation has no effect.

rational(+Expr)
Convert the Expr to a rational number or integer. The function returns the input on integers and
rational numbers. For floating point numbers, the returned rational number exactly represents
the float. As floats cannot exactly represent all decimal numbers the results may be surprising.
In the examples below, doubles can represent 0.25 and the result is as expected, in contrast to the
result of rational(0.1). The function rationalize/1 remedies this. See section 4.26.2
for more information on rational number support.

?- A is rational(0.25).

A is 1 rdiv 4
?- A is rational(0.1).
A = 3602879701896397 rdiv 36028797018963968

rationalize(+Expr)
Convert the Expr to a rational number or integer. The function is similar to rational/1,
but the result is only accurate within the rounding error of floating point numbers, generally
producing a much smaller denominator.36

?- A is rationalize(0.25).

A = 1 rdiv 4
?- A is rationalize(0.1).

A = 1 rdiv 10

float fractional part(+Expr)
Fractional part of a floating-point number. Negative if Expr is negative, rational if Expr
is rational and 0 if Expr is integer. The following relation is always true: X =
floatfractionalpart(X) + floatintegerpart(X).

float integer part(+Expr)
Integer part of floating-point number. Negative if Expr is negative, Expr if Expr is integer.

36The names rational/1 and rationalize/1 as well as their semantics are inspired by Common Lisp.

SWI-Prolog 5.6 Reference Manual

4.26. ARITHMETIC 127

truncate(+Expr)
Truncate Expr to an integer. If Expr ≥ 0 this is the same as floor(Expr). For Expr < 0 this is
the same as ceil(Expr). E.i. truncate rounds towards zero.

floor(+Expr)
Evaluates Expr and returns the largest integer smaller or equal to the result of the evaluation.

ceiling(+Expr)
Evaluates Expr and returns the smallest integer larger or equal to the result of the evaluation.

ceil(+Expr)
Same as ceiling/1 (backward compatibility).

+IntExpr >> +IntExpr
Bitwise shift IntExpr1 by IntExpr2 bits to the right. The operation performs arithmetic shift,
which implies that the inserted most significant bits are copies of the original most significant
bit.

+IntExpr << +IntExpr
Bitwise shift IntExpr1 by IntExpr2 bits to the left.

+IntExpr \/ +IntExpr
Bitwise ‘or’ IntExpr1 and IntExpr2.

+IntExpr /\ +IntExpr
Bitwise ‘and’ IntExpr1 and IntExpr2.

+IntExpr xor +IntExpr
Bitwise ‘exclusive or’ IntExpr1 and IntExpr2.

\ +IntExpr
Bitwise negation. The returned value is the one’s complement of IntExpr.

sqrt(+Expr)
Result =

√
Expr

sin(+Expr)
Result = sin Expr. Expr is the angle in radians.

cos(+Expr)
Result = cos Expr. Expr is the angle in radians.

tan(+Expr)
Result = tan Expr. Expr is the angle in radians.

asin(+Expr)
Result = arcsin Expr. Result is the angle in radians.

acos(+Expr)
Result = arccos Expr. Result is the angle in radians.

atan(+Expr)
Result = arctan Expr. Result is the angle in radians.

SWI-Prolog 5.6 Reference Manual

128 CHAPTER 4. BUILT-IN PREDICATES

atan(+YExpr, +XExpr)
Result = arctan YExpr

XExpr . Result is the angle in radians. The return value is in the range

[−π . . . π]. Used to convert between rectangular and polar coordinate system.

log(+Expr)
Result = ln Expr

log10(+Expr)
Result = lg Expr

exp(+Expr)
Result = eExpr

+Expr1 ** +Expr2
Result = Expr1Expr2. With unbounded integers and integer values for Expr1 and a non-
negative integer Expr2, the result is always integer.

+Expr1 ˆ +Expr2
Same as **/2. (backward compatibility).

pi
Evaluates to the mathematical constant π (3.141593).

e
Evaluates to the mathematical constant e (2.718282).

cputime
Evaluates to a floating point number expressing the CPU time (in seconds) used by Prolog up
till now. See also statistics/2 and time/1.

Bitvector functions The functions below are not covered by the standard. The msb/1 function is
compatible to hProlog. The others are private extensions that improve handling of —unbounded—
integers as bit-vectors.

msb(+IntExpr)
Return the largest integer N such that (IntExpr >> N) /\ 1 =:= 1. This is the (zero-
origin) index of the most significant 1 bit in the value of IntExpr, which must evaluate to a
positive integer. Errors for 0, negative integers, and non-integers.

lsb(+IntExpr)
Return the smallest integer N such that (IntExpr >> N) /\ 1 =:= 1. This is the (zero-
origin) index of the least significant 1 bit in the value of IntExpr, which must evaluate to a
positive integer. Errors for 0, negative integers, and non-integers.

popcount(+IntExpr)
Return the number of 1s in the binary representation of the non-negative integer IntExpr.

SWI-Prolog 5.6 Reference Manual

4.27. ADDING ARITHMETIC FUNCTIONS 129

4.27 Adding Arithmetic Functions

Prolog predicates can be given the role of arithmetic function. The last argument is used to return the
result, the arguments before the last are the inputs. Arithmetic functions are added using the predi-
cate arithmetic function/1, which takes the head as its argument. Arithmetic functions are
module sensitive, that is they are only visible from the module in which the function is defined and
declared. Global arithmetic functions should be defined and registered from module user. Global
definitions can be overruled locally in modules. The built-in functions described above can be rede-
fined as well.

arithmetic function(+Head)
Register a Prolog predicate as an arithmetic function (see is/2, >/2, etc.). The Prolog predi-
cate should have one more argument than specified by Head, which it either a term Name/Arity,
an atom or a complex term. This last argument is an unbound variable at call time and should
be instantiated to an integer or floating point number. The other arguments are the parameters.
This predicate is module sensitive and will declare the arithmetic function only for the context
module, unless declared from module user. Example:

1 ?- [user].
:- arithmetic_function(mean/2).

mean(A, B, C) :-
C is (A+B)/2.

user compiled, 0.07 sec, 440 bytes.

Yes
2 ?- A is mean(4, 5).

A = 4.500000

current arithmetic function(?Head)
Successively unifies all arithmetic functions that are visible from the context module with Head.

4.28 Built-in list operations

Most list operations are defined in the library lists described in section A.1. Some that are imple-
mented with more low-level primitives are built-in and described here.

is list(+Term)
True if Term is bound to the empty list ([]) or a term with functor ‘.’ and arity 2 and the second
argument is a list.37 This predicate acts as if defined by the following definition:

37In versions before 5.0.1, is list/1 just checked for [] or [|] and proper list/1 had the role of the current
is list/1. The current definition is conform the de-facto standard. Assuming proper coding standards, there should only
be very few cases where a quick-and-dirty is list/1 is a good choice. Richard O’Keefe pointed at this issue.

SWI-Prolog 5.6 Reference Manual

130 CHAPTER 4. BUILT-IN PREDICATES

is_list(X) :-
var(X), !,
fail.

is_list([]).
is_list([_|T]) :-

is_list(T).

memberchk(?Elem, +List)
Equivalent to member/2, but leaves no choice point.

length(?List, ?Int)
True if Int represents the number of elements of list List. Can be used to create a list holding
only variables.

sort(+List, -Sorted)
True if Sorted can be unified with a list holding the elements of List, sorted to the standard order
of terms (see section 4.6). Duplicates are removed. The implementation is in C, using natural
merge sort38

msort(+List, -Sorted)
Equivalent to sort/2, but does not remove duplicates.

keysort(+List, -Sorted)
List is a proper list whose elements are Key-Value, that is, terms whose principal functor is
(-)/2, whose first argument is the sorting key, and whose second argument is the satellite data
to be carried along with the key. keysort/2 sorts List like msort/2, but only compares the
keys. It is used to sort terms not on standard order, but on any criterion that can be expressed on
a multi-dimensional scale. Sorting on more than one criterion can be done using terms as keys,
putting the first criterion as argument 1, the second as argument 2, etc. The order of multiple
elements that have the same Key is not changed. The implementation is in C, using natural
merge sort.

predsort(+Pred, +List, -Sorted)
Sorts similar to sort/2, but determines the order of two terms by calling
Pred(-Delta, +E1, +E2). This call must unify Delta with one of <, > or =. If built-in
predicate compare/3 is used, the result is the same as sort/2. See also keysort/2.39

merge(+List1, +List2, -List3)
List1 and List2 are lists, sorted to the standard order of terms (see section 4.6). List3 will be
unified with an ordered list holding both the elements of List1 and List2. Duplicates are not
removed.

merge set(+Set1, +Set2, -Set3)
Set1 and Set2 are lists without duplicates, sorted to the standard order of terms. Set3 is unified
with an ordered list without duplicates holding the union of the elements of Set1 and Set2.

38Contributed by Richard O’Keefe.
39Please note that the semantics have changed between 3.1.1 and 3.1.2

SWI-Prolog 5.6 Reference Manual

4.29. FINDING ALL SOLUTIONS TO A GOAL 131

4.29 Finding all Solutions to a Goal

findall(+Template, +Goal, -Bag)
Creates a list of the instantiations Template gets successively on backtracking over Goal and
unifies the result with Bag. Succeeds with an empty list if Goal has no solutions. findall/3
is equivalent to bagof/3 with all free variables bound with the existential operator (ˆ), except
that bagof/3 fails when goal has no solutions.

bagof(+Template, +Goal, -Bag)
Unify Bag with the alternatives of Template, if Goal has free variables besides the one sharing
with Template bagof will backtrack over the alternatives of these free variables, unifying Bag
with the corresponding alternatives of Template. The construct +VarˆGoal tells bagof not to
bind Var in Goal. bagof/3 fails if Goal has no solutions.

The example below illustrates bagof/3 and the ˆ operator. The variable bindings are printed
together on one line to save paper.

2 ?- listing(foo).

foo(a, b, c).
foo(a, b, d).
foo(b, c, e).
foo(b, c, f).
foo(c, c, g).

Yes
3 ?- bagof(C, foo(A, B, C), Cs).

A = a, B = b, C = G308, Cs = [c, d] ;
A = b, B = c, C = G308, Cs = [e, f] ;
A = c, B = c, C = G308, Cs = [g] ;

No
4 ?- bagof(C, Aˆfoo(A, B, C), Cs).

A = G324, B = b, C = G326, Cs = [c, d] ;
A = G324, B = c, C = G326, Cs = [e, f, g] ;

No
5 ?-

setof(+Template, +Goal, -Set)
Equivalent to bagof/3, but sorts the result using sort/2 to get a sorted list of alternatives
without duplicates.

SWI-Prolog 5.6 Reference Manual

132 CHAPTER 4. BUILT-IN PREDICATES

4.30 Invoking Predicates on all Members of a List

All the predicates in this section call a predicate on all members of a list or until the predicate called
fails. The predicate is called via call/[2..], which implies common arguments can be put in front of
the arguments obtained from the list(s). For example:

?- maplist(plus(1), [0, 1, 2], X).

X = [1, 2, 3]

we will phrase this as “Predicate is applied on . . . ”

maplist(+Pred, +List)
Pred is applied successively on each element of List until the end of the list or Pred fails. In the
latter case the maplist/2 fails.40

maplist(+Pred, ?List1, ?List2)
Apply Pred on all successive pairs of elements from List1 and List2. Fails if Pred can not be
applied to a pair. See the example above.

maplist(+Pred, ?List1, ?List2, ?List3)
Apply Pred on all successive triples of elements from List1, List2 and List3. Fails if Pred can
not be applied to a triple. See the example above.

sublist(+Pred, +List1, ?List2)
Unify List2 with a list of all elements of List1 to which Pred applies.

4.31 Forall

forall(+Cond, +Action)
For all alternative bindings of Cond Action can be proven. The example verifies that all arith-
metic statements in the list L are correct. It does not say which is wrong if one proves wrong.

?- forall(member(Result = Formula, [2 = 1 + 1, 4 = 2 * 2]),
Result =:= Formula).

4.32 Formatted Write

The current version of SWI-Prolog provides two formatted write predicates. The first is
writef/[1,2], which is compatible with Edinburgh C-Prolog. The second is format/[1,2],
which is compatible with Quintus Prolog. We hope the Prolog community will once define a standard
formatted write predicate. If you want performance use format/[1,2] as this predicate is defined
in C. Otherwise compatibility reasons might tell you which predicate to use.

40The maplist/2 predicate replaces the obsolete checklist/2 predicate.

SWI-Prolog 5.6 Reference Manual

4.32. FORMATTED WRITE 133

4.32.1 Writef

writeln(+Term)
Equivalent to write(Term), nl.

writef(+Atom)
Equivalent to writef(Atom, []).

writef(+Format, +Arguments)
Formatted write. Format is an atom whose characters will be printed. Format may contain
certain special character sequences which specify certain formatting and substitution actions.
Arguments then provides all the terms required to be output.

Escape sequences to generate a single special character:

\n Output a newline character (see also nl/[0,1])
\l Output a line separator (same as \n)
\r Output a carriage-return character (ASCII 13)
\t Output the ASCII character TAB (9)
\\ The character \ is output
\% The character % is output
\nnn where 〈nnn〉 is an integer (1-3 digits) the character with

character code 〈nnn〉 is output (NB : 〈nnn〉 is read as dec-
imal)

Note that \l, \nnn and \\ are interpreted differently when character-escapes are in effect. See
section 2.15.1.

Escape sequences to include arguments from Arguments. Each time a % escape sequence is
found in Format the next argument from Arguments is formatted according to the specification.

SWI-Prolog 5.6 Reference Manual

134 CHAPTER 4. BUILT-IN PREDICATES

%t
print/1 the next item (mnemonic: term)

%w
write/1 the next item

%q
writeq/1 the next item

%d Write the term, ignoring operators. See also
write term/2. Mnemonic: old Edinburgh
display/1.

%p
print/1 the next item (identical to %t)

%n Put the next item as a character (i.e., it is a character code)
%r Write the next item N times where N is the second item

(an integer)
%s Write the next item as a String (so it must be a list of char-

acters)
%f Perform a ttyflush/0 (no items used)
%Nc Write the next item Centered in N columns.
%Nl Write the next item Left justified in N columns.
%Nr Write the next item Right justified in N columns. N is a

decimal number with at least one digit. The item must be
an atom, integer, float or string.

swritef(-String, +Format, +Arguments)
Equivalent to writef/2, but “writes” the result on String instead of the current output stream.
Example:

?- swritef(S, ’%15L%w’, [’Hello’, ’World’]).

S = "Hello World"

swritef(-String, +Format)
Equivalent to swritef(String, Format, []).

4.32.2 Format

format(+Format)
Defined as ‘format(Format) :- format(Format, []).’

format(+Format, +Arguments)
Format is an atom, list of character codes, or a Prolog string. Arguments provides the arguments
required by the format specification. If only one argument is required and this is not a list of
character codes the argument need not be put in a list. Otherwise the arguments are put in a list.

Special sequences start with the tilde (˜), followed by an optional numeric argument, followed
by a character describing the action to be undertaken. A numeric argument is either a sequence
of digits, representing a positive decimal number, a sequence ‘〈character〉, representing the
character code value of the character (only useful for ˜t) or a asterisk (*), in when the numeric

SWI-Prolog 5.6 Reference Manual

4.32. FORMATTED WRITE 135

argument is taken from the next argument of the argument list, which should be a positive
integer.

Numeric conversion (d, D, e, E, f, g and G) accept an arithmetic expression as argument. This
is introduced to handle rational numbers transparently (see section 4.26.2. The floating point
conversions allow for unlimited precision for printing rational numbers in decimal form.

˜ Output the tilde itself.

a Output the next argument, which should be an atom. This option is equivalent to w.
Compatibility reasons only.

c Interpret the next argument as an character code and add it to the output. This argument
should be an integer in the range [0, . . . , 255] (including 0 and 255).

d Output next argument as a decimal number. It should be an integer. If a numeric argument
is specified a dot is inserted argument positions from the right (useful for doing fixed point
arithmetic with integers, such as handling amounts of money).

D Same as d, but makes large values easier to read by inserting a comma every three digits
left to the dot or right.

e Output next argument as a floating point number in exponential notation. The numeric
argument specifies the precision. Default is 6 digits. Exact representation depends on the
C library function printf(). This function is invoked with the format %.〈precision〉e.

E Equivalent to e, but outputs a capital E to indicate the exponent.

f Floating point in non-exponential notation. See C library function printf().

g Floating point in e or f notation, whichever is shorter.

G Floating point in E or f notation, whichever is shorter.

i Ignore next argument of the argument list. Produces no output.

k Give the next argument to (write canonical/1).

n Output a newline character.

N Only output a newline if the last character output on this stream was not a newline. Not
properly implemented yet.

p Give the next argument to print/1.

q Give the next argument to writeq/1.

r Print integer in radix the numeric argument notation. Thus ˜16r prints its argument
hexadecimal. The argument should be in the range [2, . . . , 36]. Lower case letters are
used for digits above 9.

R Same as r, but uses upper case letters for digits above 9.

s Output text from a list of character codes or a string (see string/1 and section 4.23)
from the next argument.

@ Interpret the next argument as a goal and execute it. Output written to the
current output stream is inserted at this place. Goal is called in the module calling
format/3. This option is not present in the original definition by Quintus, but supported
by some other Prolog systems.

SWI-Prolog 5.6 Reference Manual

136 CHAPTER 4. BUILT-IN PREDICATES

t All remaining space between 2 tab stops is distributed equally over ˜t statements between
the tab stops. This space is padded with spaces by default. If an argument is supplied this
is taken to be the character code of the character used for padding. This can be used to do
left or right alignment, centering, distributing, etc. See also ˜| and ˜+ to set tab stops. A
tab stop is assumed at the start of each line.

| Set a tab stop on the current position. If an argument is supplied set a tab stop on the
position of that argument. This will cause all ˜t’s to be distributed between the previous
and this tab stop.

+ Set a tab stop relative to the current position. Further the same as ˜|.

w Give the next argument to write/1.

W Give the next two argument to write term/2. This option is SWI-Prolog specific.

Example:

simple_statistics :-
<obtain statistics> % left to the user
format(’˜tStatistics˜t˜72|˜n˜n’),
format(’Runtime: ˜‘.t ˜2f˜34| Inferences: ˜‘.t ˜D˜72|˜n’,

[RunT, Inf]),
....

Will output

Statistics

Runtime: 3.45 Inferences: 60,345

format(+Output, +Format, +Arguments)
As format/2, but write the output on the given Output. The de-facto standard only al-
lows Output to be a stream. The SWI-Prolog implementation allows all valid arguments for
with output to/2.41 For example:

?- format(atom(A), ’˜D’, [1000000]).
A = ’1,000,000’

4.32.3 Programming Format

format predicate(+Char, +Head)
If a sequence ˜c (tilde, followed by some character) is found, the format derivatives will first
check whether the user has defined a predicate to handle the format. If not, the built in format-
ting rules described above are used. Char is either an ASCII value, or a one character atom,
specifying the letter to be (re)defined. Head is a term, whose name and arity are used to de-
termine the predicate to call for the redefined formatting character. The first argument to the

41Earlier versions defined sformat/[2,3]. These predicates have been moved to the library backcomp.

SWI-Prolog 5.6 Reference Manual

4.33. TERMINAL CONTROL 137

predicate is the numeric argument of the format command, or the atom default if no argu-
ment is specified. The remaining arguments are filled from the argument list. The example
below redefines ˜n to produce Arg times return followed by linefeed (so a (Grr.) DOS machine
is happy with the output).

:- format_predicate(n, dos_newline(_Arg)).

dos_newline(default) :- !,
dos_newline(1).

dos_newline(N) :-
(N > 0
-> write(’\r\n’),

N2 is N - 1,
dos_newline(N2)

; true
).

current format predicate(?Code, ?:Head)
Enumerates all user-defined format predicates. Code is the character code of the format charac-
ter. Head is unified with a term with the same name and arity as the predicate. If the predicate
does not reside in module user, Head is qualified with the definition module of the predicate.

4.33 Terminal Control

The following predicates form a simple access mechanism to the Unix termcap library to provide
terminal independent I/O for screen terminals. These predicates are only available on Unix machines.
The SWI-Prolog Windows consoles accepts the ANSI escape sequences.

tty get capability(+Name, +Type, -Result)
Get the capability named Name from the termcap library. See termcap(5) for the capability
names. Type specifies the type of the expected result, and is one of string, number or
bool. String results are returned as an atom, number result as an integer and bool results as the
atom on or off. If an option cannot be found this predicate fails silently. The results are only
computed once. Successive queries on the same capability are fast.

tty goto(+X, +Y)
Goto position (X, Y) on the screen. Note that the predicates line count/2 and
line position/2 will not have a well defined behaviour while using this predicate.

tty put(+Atom, +Lines)
Put an atom via the termcap library function tputs(). This function decodes padding informa-
tion in the strings returned by tty get capability/3 and should be used to output these
strings. Lines is the number of lines affected by the operation, or 1 if not applicable (as in
almost all cases).

set tty(-OldStream, +NewStream)
Set the output stream, used by tty put/2 and tty goto/2 to a specific stream. Default is
user output.

SWI-Prolog 5.6 Reference Manual

138 CHAPTER 4. BUILT-IN PREDICATES

tty size(-Rows, -Columns)
Determine the size of the terminal. Platforms:

Unix If the system provides ioctl calls for this, these are used and tty size/2 properly re-
flects the actual size after a user resize of the window. As a fallback, the system uses
tty get capability/3 using li and co capabilities. In this case the reported size
reflects the size at the first call and is not updated after a user-initiated resize of the termi-
nal.

Windows Getting the size of the terminal is provided for plwin.exe. The requested value
reflects the current size. For the multi-threaded version the console that is associated with
the user input stream is used.

4.34 Operating System Interaction

shell(+Command, -Status)
Execute Command on the operating system. Command is given to the Bourne shell (/bin/sh).
Status is unified with the exit status of the command.

On Win32 systems, shell/[1,2] executes the command using the CreateProcess() API and
waits for the command to terminate. If the command ends with a & sign, the command is handed
to the WinExec() API, which does not wait for the new task to terminate. See also win exec/2
and win shell/2. Please note that the CreateProcess() API does not imply the Windows
command interpreter (command.exe on Windows 95/98 and cmd.exe on Windows-NT) and
therefore commands built-in to the command-interpreter can only be activated using the com-
mand interpreter. For example: ’command.exe /C copy file1.txt file2.txt’

shell(+Command)
Equivalent to ‘shell(Command, 0)’.

shell
Start an interactive Unix shell. Default is /bin/sh, the environment variable SHELL overrides
this default. Not available for Win32 platforms.

win exec(+Command, +Show)
Win32 systems only. Spawns a Windows task without waiting for its comple-
tion. Show is one of the Win32 SW * constants written in lowercase without the
SW *: hide maximize minimize restore show showdefault showmaximized
showminimized showminnoactive showna shownoactive shownormal. In ad-
dition, iconic is a synonym for minimize and normal for shownormal

win shell(+Operation, +File, +Show)
Win32 systems only. Opens the document File using the windows shell-rules for doing so.
Operation is one of open, print or explore or another operation registered with the shell
for the given document-type. On modern systems it is also possible to pass a URL as File,
opening the URL in Windows default browser. This call interfaces to the Win32 API ShellEx-
ecute(). The Show argument determines the initial state of the opened window (if any). See
win exec/2 for defined values.

SWI-Prolog 5.6 Reference Manual

4.34. OPERATING SYSTEM INTERACTION 139

win shell(+Operation, +File)
Same as win shell(Operation, File, normal)

win registry get value(+Key, +Name, -Value)
Win32 systems only. Fetches the value of a Win32 registry key. Key is an atom formed as a
path-name describing the desired registry key. Name is the desired attribute name of the key.
Value is unified with the value. If the value is of type DWORD, the value is returned as an
integer. If the value is a string it is returned as a Prolog atom. Other types are currently not sup-
ported. The default ‘root’ is HKEY CURRENT USER. Other roots can be specified explicitly as
HKEY CLASSES ROOT, HKEY CURRENT USER, HKEY LOCAL MACHINE or HKEY USERS.
The example below fetches the extension to use for Prolog files (see README.TXT on the Win-
dows version):

?- win_registry_get_value(’HKEY_LOCAL_MACHINE/Software/SWI/Prolog’,
fileExtension,
Ext).

Ext = pl

getenv(+Name, -Value)
Get environment variable. Fails silently if the variable does not exist. Please note that environ-
ment variable names are case-sensitive on Unix systems and case-insensitive on Windows.

setenv(+Name, +Value)
Set an environment variable. Name and Value must be instantiated to atoms or integers. The en-
vironment variable will be passed to shell/[0-2] and can be requested using getenv/2.
They also influence expand file name/2. Environment variables are shared between
threads. Depending on the underlying C library, setenv/2 and unsetenv/1 may not be
thread-safe and may cause memory leaks. Only changing the environment once and before
starting threads is safe in all versions of SWI-Prolog.

unsetenv(+Name)
Remove an environment variable from the environment. Some systems lack the underlying
unsetenv() library function. On these systems unsetenv/1 sets the variable to the empty
string.

setlocale(+Category, -Old, +New)
Set/Query the locale setting which tells the C-library how to interpret text-files, write num-
bers, dates, etc. Category is one of all, collate, ctype, messages, monetary,
numeric or time. For details, please consult the C-library locale documentation. See also
section 2.17.1. Please note that the locale is shared between all threads and thread-safe usage
of setlocale/3 is in general not possible. Do locale operations before starting threads or
thoroughly study threading aspects of locale support in your environment before use in multi-
threaded environments.

unix(+Command)
This predicate comes from the Quintus compatibility library and provides a partial implementa-
tion thereof. It provides access to some operating system features and unlike the name suggests,
is not operating system specific. Defined Command’s are below.

SWI-Prolog 5.6 Reference Manual

140 CHAPTER 4. BUILT-IN PREDICATES

system(+Command)
Equivalent to calling shell/1. Use for compatibility only.

shell(+Command)
Equivalent to calling shell/1. Use for compatibility only.

shell
Equivalent to calling shell/0. Use for compatibility only.

cd
Equivalent to calling working directory/2 to the expansion (see
expand file name/2) of ˜. For compatibility only.

cd(+Directory)
Equivalent to calling working directory/2. Use for compatibility only.

argv(-Argv)
Unify Argv with the list of command-line arguments provides to this Prolog run. Please
note that Prolog system-arguments and application arguments are separated by --. Integer
arguments are passed as Prolog integers, float arguments and Prolog floating point num-
bers and all other arguments as Prolog atoms. New applications should use the prolog-flag
argv. See also prolog prolog-flag argv.
A stand-alone program could use the following skeleton to handle command-line argu-
ments. See also section 2.10.2.

main :-
current_prolog_flag(argv, Argv),
append(_PrologArgs, [--|AppArgs], Argv), !,
main(AppArgs).

4.34.1 Dealing with time and date

Representing time in a computer system is surprisingly complicated. There are a large number of
time representations in use and the correct choice depends on factors such as compactness, resolution
and desired operations. Humans tend to think about time in hours, days, months, years or centuries.
Physicists think about time in seconds. But, a month does not have a defined number of seconds.
Even a day does not have a defined number of seconds as sometimes a leap-second is introduced
to synchronise properly with our earth’s rotation. At the same time, resolution demands range from
better then pico-seconds to millions of years. Finally, civilizations have a wide range of calendars.
Although there exist libraries dealing with most if this complexity, our desire to keep Prolog clean and
lean stops us from fully supporting these.

For human-oriented tasks, time can be broken into years, months, days, hours, minutes, seconds
and a timezone. Physicists prefer to have time in an arithmetic type representing seconds or fraction
thereof, so basic arithmetic deal with comparison and durations. An additional advantage of the physi-
cists approach is that it requires much less space. For these reasons, SWI-Prolog uses an arithmetic
type as its prime time representation.

Many C libraries deal with time using fixed-point arithmetic, dealing with a large but finite time
interval at constant resolution. In our opinion using a floating point number is a more natural choice
as we can use a natural unit and the interface does not need to be changed if a higher resolution is

SWI-Prolog 5.6 Reference Manual

4.34. OPERATING SYSTEM INTERACTION 141

required in the future. Our unit of choice is the second as it is the scientific unit.42 e have placed our
origin at 1970-1-1T0:0:0Z for compatibility with the POSIX notion of time as well as with older time
support provided by SWI-Prolog.

Where older versions of SWI-Prolog relied on the POSIX conversion functions, the current im-
plementation uses libtai to realise conversion between time-stamps and calendar dates for a period of
10 million years.

Time and date data-structures

We use the following time representations

TimeStamp
A TimeStamp is a floating point number expression the time in seconds since the Epoch at
1970-1-1.

date(Y,M,D,H,Mn,S,Off,TZ,DST)
We call this term a date-time structure. The first 5 fields are integers expressing the year, month
(1..12), day (1..31), hour (0..23), Minute (0..59). The S field holds the seconds as a floating
point number between 0.0 and 60.0. Off is an integer representing the offset relative to UTC
in seconds where positive values are west of Greenwhich. If converted from local time (see
stamp date time/3, TZ holds the name of the local timezone. If the timezone is not known
TZ is the atom -. DST is true if daylight saving time applies to the current time, false
if daylight saving time is relevant but not effective and - if unknown or the timezone has no
daylight saving time.

date(Y,M.D)
Date using the same values as described above. Extracted using date time value/3.

time(H,Mn,S)
Time using the same values as described above. Extracted using date time value/3.

Time and date predicates

get time(-TimeStamp)
Return the current time as a TimeStamp. The granularity is system dependent. See sec-
tion 4.34.1.

stamp date time(+TimeStamp, -DateTime, +TimeZone)
Convert a TimeZone to a DateTime in the given time zone. See section 4.34.1 for details on
the data-types. TimeZone describes the timezone for the conversion. It is one of local to
extract the local time, ’UTC’ to extract at UTC time or an integer describing the seconds west
of Greenwhich.

date time stamp(+DateTime, -TimeStamp)
Compute the timestamp from a date/9 term. Values for month, day, hour, minute or second need
not be normalized. This flexibility allows for easy computation of the time at any given number
of these units from a given timestamp. Normalization can be achieved following this call with
stamp date time/3. This example computes the date 200 days after 2006-7-14:

42Using Julian days is a choice made by the Eclipse team. As conversion to dates is needed for a human readable notation
of time and Julian days cannot deal naturally with leap seconds, we decided for second as our unit.

SWI-Prolog 5.6 Reference Manual

142 CHAPTER 4. BUILT-IN PREDICATES

?- date_time_stamp(date(2006,7,214,0,0,0,0,-,-), Stamp),
stamp_date_time(Stamp, D, 0),
date_time_value(date, D, Date).

Date = date(2007, 1, 30)

date time value(?Key, +DateTime, ?Value)
Extract values from a date/9 term. Provided keys are:

key value
year Calendar year as an integer
month Calendar month as an integer 1..12
day Calendar day as an integer 1..31
hour Clock hour as an integer 0..23
minute Clock minute as an integer 0..59
second Clock second as a float 0.0..60.0
utc offset Offset to UTC in seconds (positive is west)
time zone Name of timezone; fails if unknown
daylight saving Bool (true) if dst is effective
date Term date(Y,M,D)
time Term time(H,M,S)

format time(+Out, +Format, +StampOrDateTime)
Modelled after POSIX strftime(), using GNU extensions. Out is a destination as specified with
with output to/2. Format is an atom or string with the following conversions. Conver-
sions start with a tilde (%) character.43

a The abbreviated weekday name according to the current locale.

A The full weekday name according to the current locale.

b The abbreviated month name according to the current locale.

B The full month name according to the current locale.

c The preferred date and time representation for the current locale.

C The century number (year/100) as a 2-digit integer.

d The day of the month as a decimal number (range 01 to 31).

D Equivalent to %m/%d/%y. (Yecch for Americans only. Americans should note that in
other countries %d/%m/%y is rather common. This means that in international context
this format is ambigu ous and should not be used.)

e Like %d, the day of the month as a decimal number, but a leading zero is replaced by a
space.

E Modifier. Not implemented.

F Equivalent to %Y-%m-%d (the ISO 8601 date format).

g Like %G, but without century, i.e., with a 2-digit year (00-99).

43Descriptions taken from Linux Programmer’s Manual

SWI-Prolog 5.6 Reference Manual

4.34. OPERATING SYSTEM INTERACTION 143

G The ISO 8601 year with century as a decimal number. The 4-digit year corresponding to
the ISO week number (see %V). This has the same format and value as %y, except that if
the ISO week number belongs to the previous or next year, that year is used instead.

V The ISO 8601:1988 week number of the current year as a decimal number, range 01 to
53, where week 1 is the first week that has at least 4 days in the current year, and with
Monday as the first day of the week. See also %U and %W.

h Equivalent to %b.

H The hour as a decimal number using a 24-hour clock (range 00 to 23).

I The hour as a decimal number using a 12-hour clock (range 01 to 12).

j The day of the year as a decimal number (range 001 to 366).

k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are preceded
by a blank. (See also %H.)

l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are preceded
by a blank. (See also %I.)

m The month as a decimal number (range 01 to 12).

M The minute as a decimal number (range 00 to 59).

n A newline character.

O Modifier. Not implemented.

p Either ‘AM’ or ‘PM’ according to the given time value, or the corresponding strings for
the current locale. Noon is treated as ‘pm’ and midnight as ‘am’.

P Like %p but in lowercase: ‘am’ or ‘pm’ or a corresponding string for the current locale.

r The time in a.m. or p.m. notation. In the POSIX locale this is equivalent to ‘%I:%M:%S
%p’.

R The time in 24-hour notation (%H:%M). For a version including the seconds, see %T
below.

s The number of seconds since the Epoch, i.e., since 1970-01-01 00:00:00 UTC.

S The second as a decimal number (range 00 to 60). (The range is up to 60 to allow for
occasional leap seconds.)

t A tab character.

T The time in 24-hour notation (%H:%M:%S).

u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w.

U The week number of the current year as a decimal number, range 00 to 53, starting with
the first Sunday as the first day of week 01. See also %V and %W.

w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.

W The week number of the current year as a decimal number, range 00 to 53, starting with
the first Monday as the first day of week 01.

x The preferred date representation for the current locale without the time.

X The preferred time representation for the current locale without the date.

y The year as a decimal number without a century (range 00 to 99).

SWI-Prolog 5.6 Reference Manual

144 CHAPTER 4. BUILT-IN PREDICATES

Y The year as a decimal number including the century.

z The time-zone as hour offset from GMT. Required to emit RFC822-conformant dates
(using ”%a, %d %b %Y %H:%M:%S %z”).

Z The time zone or name or abbreviation.

+ The date and time in date(1) format.

% A literal ‘%’ character.

4.34.2 Controlling the PLWIN.EXE console window

The Windows executable PLWIN.EXE console has a number of predicates to control the appearance
of the console. Being totally non-portable, we do not advice using it for your own application, but use
XPCE or another portable GUI platform instead. We give the predicates for reference here.

window title(-Old, +New)
Unify Old with the title displayed in the console and change the title to New.44

win window pos(+ListOfOptions)
Interface to the MS-Windows SetWindowPos() function, controlling size, position and stacking
order of the window. ListOfOptions is a list that may hold any number of the terms below.

size(W, H)
Change the size of the window. W and H are expressed in character-units.

position(X, Y)
Change the top-left corner of the window. The values are expressed in pixel units.

zorder(ZOrder)
Change the location in the window stacking order. Values are bottom, top, topmost
and notopmost. Topmost windows are displayed above all other windows.

show(Bool)
If true, show the window, if false hide the window.

activate
If present, activate the window.

win has menu
True if win insert menu/2 and win insert menu item/4 are present.

win insert menu(+Label, +Before)
Insert a new entry (pulldown) in the menu. If the menu already contains this entry, nothing is
done. The Label is the label and using the Windows conventions, a letter prefixed with & is
underlined and defines the associated accelerator key. Before is the label before which this one
must be inserted. Using - adds the new entry at the end (right). For example, the call below
adds a Application entry just before the Help menu.

win_insert_menu(’&Application’, ’&Help’)

44BUG: This predicate should have been called win window title for consistent naming.

SWI-Prolog 5.6 Reference Manual

4.35. FILE SYSTEM INTERACTION 145

win insert menu item(+Pulldown, +Label, +Before, :Goal)
Add an item to the named Pulldown menu. Label and Before are handled as in
win insert menu/2, but the label - inserts a separator. Goal is called if the user selects
the item.

4.35 File System Interaction

access file(+File, +Mode)
True if File exists and can be accessed by this prolog process under mode Mode. Mode is one of
the atoms read, write, append, exist, none or execute. File may also be the name of
a directory. Fails silently otherwise. access file(File, none) simply succeeds without
testing anything.

If ‘Mode’ is write or append, this predicate also succeeds if the file does not exist and the
user has write-access to the directory of the specified location.

exists file(+File)
True if File exists and is a regular file. This does not imply the user has read and/or write
permission for the file.

file directory name(+File, -Directory)
Extracts the directory-part of File. The returned Directory name does not end in /. There are
two special cases. The directory-name of / is / itself and the directory-name if File does not
contain any / characters is ..

file base name(+File, -BaseName)
Extracts the filename part from a path specification. If File does not contain any directory
separators, File is returned.

same file(+File1, +File2)
True if both filenames refer to the same physical file. That is, if File1 and File2 are the same
string or both names exist and point to the same file (due to hard or symbolic links and/or
relative vs. absolute paths).

exists directory(+Directory)
True if Directory exists and is a directory. This does not imply the user has read, search and or
write permission for the directory.

delete file(+File)
Remove File from the file system.

rename file(+File1, +File2)
Rename File1 into File2. Currently files cannot be moved across devices.

size file(+File, -Size)
Unify Size with the size of File in characters.

time file(+File, -Time)
Unify the last modification time of File with Time. Time is a floating point number expressing
the seconds elapsed since Jan 1, 1970. See also convert time/[2,8] and get time/1.

SWI-Prolog 5.6 Reference Manual

146 CHAPTER 4. BUILT-IN PREDICATES

absolute file name(+File, -Absolute)
Expand a local file-name into an absolute path. The absolute path is canonised: ref-
erences to . and .. are deleted. This predicate ensures that expanding a file-name
it returns the same absolute path regardless of how the file is addressed. SWI-Prolog
uses absolute file names to register source files independent of the current working di-
rectory. See also absolute file name/3. See also absolute file name/3 and
expand file name/2.

absolute file name(+Spec, +Options, -Absolute)
Converts the given file specification into an absolute path. Option is a list of options to guide
the conversion:

extensions(ListOfExtensions)
List of file-extensions to try. Default is ’’. For each extension,
absolute file name/3 will first add the extension and then verify the condi-
tions imposed by the other options. If the condition fails, the next extension of the list is
tried. Extensions may be specified both as ..ext or plain ext.

relative to(+FileOrDir)
Resolve the path relative to the given directory or directory the holding the given
file. Without this option, paths are resolved relative to the working directory (see
working directory/2) or, if Spec is atomic and absolute file name/[2,3]
is executed in a directive, it uses the current source-file as reference.

access(Mode)
Imposes the condition access file(File, Mode). Mode is on of read, write, append,
exist or none. See also access file/2.

file type(Type)
Defines extensions. Current mapping: txt implies [’’], prolog implies [’.pl’,
’’], executable implies [’.so’, ’’], qlf implies [’.qlf’, ’’] and
directory implies [’’]. The file-type source is an alias for prolog for com-
patibility to SICStus Prolog. See also prolog file type/2.

file errors(fail/error)
If error (default), throw and existence error exception if the file cannot be found.
If fail, stay silent.45

solutions(first/all)
If first (default), the predicates leaves no choice-point. Otherwise a choice-point will
be left and backtracking may yield more solutions.

expand(true/false)
If true (default is false) and Spec is atomic, call expand file name/2 followed
by member/2 on Spec before proceeding. This is a SWI-Prolog extension.

The prolog-flag verbose file search can be set to true to help debugging Prolog’s
search for files.

Compatibility considerations to common argument-order in ISO as well as SICStus
absolute file name/3 forced us to be flexible here. If the last argument is a list and the

45Silent operation was the default up to version 3.2.6.

SWI-Prolog 5.6 Reference Manual

4.35. FILE SYSTEM INTERACTION 147

2nd not, the arguments are swapped, making the call absolute file name(+Spec, -Path,
+Options) valid as well.

is absolute file name(+File)
True if File specifies and absolute path-name. On Unix systems, this implies the path starts
with a ‘/’. For Microsoft based systems this implies the path starts with 〈letter〉:. This
predicate is intended to provide platform-independent checking for absolute paths. See also
absolute file name/2 and prolog to os filename/2.

file name extension(?Base, ?Extension, ?Name)
This predicate is used to add, remove or test filename extensions. The main reason for its
introduction is to deal with different filename properties in a portable manner. If the file system
is case-insensitive, testing for an extension will be done case-insensitive too. Extension may
be specified with or without a leading dot (.). If an Extension is generated, it will not have a
leading dot.

expand file name(+WildCard, -List)
Unify List with a sorted list of files or directories matching WildCard. The normal Unix wild-
card constructs ‘?’, ‘*’, ‘[...]’ and ‘{...}’ are recognised. The interpretation of ‘{...}’
is interpreted slightly different from the C shell (csh(1)). The comma separated argument can be
arbitrary patterns, including ‘{...}’ patterns. The empty pattern is legal as well: ‘\{.pl,\}’
matches either ‘.pl’ or the empty string.

If the pattern does contains wildcard characters, only existing files and directories are returned.
Expanding a ‘pattern’ without wildcard characters returns the argument, regardless on whether
or not it exists.

Before expanding wildcards, the construct $var is expanded to the value of the environment
variable var and a possible leading ˜ character is expanded to the user’s home directory.46.

prolog to os filename(?PrologPath, ?OsPath)
Converts between the internal Prolog pathname conventions and the operating-system pathname
conventions. The internal conventions are Unix and this predicates is equivalent to =/2 (unify)
on Unix systems. On DOS systems it will change the directory-separator, limit the filename
length map dots, except for the last one, onto underscores.

read link(+File, -Link, -Target)
If File points to a symbolic link, unify Link with the value of the link and Target to the file the
link is pointing to. Target points to a file, directory or non-existing entry in the file system, but
never to a link. Fails if File is not a link. Fails always on systems that do not support symbolic
links.

tmp file(+Base, -TmpName)
Create a name for a temporary file. Base is an identifier for the category of file. The TmpName is
guaranteed to be unique. If the system halts, it will automatically remove all created temporary
files.

46On Windows, the home directory is determined as follows: if the environment variable HOME exists, this is used. If
the variables HOMEDRIVE and HOMEPATH exist (Windows-NT), these are used. At initialisation, the system will set the
environment variable HOME to point to the SWI-Prolog home directory if neither HOME nor HOMEPATH and HOMEDRIVE
are defined

SWI-Prolog 5.6 Reference Manual

148 CHAPTER 4. BUILT-IN PREDICATES

make directory(+Directory)
Create a new directory (folder) on the filesystem. Raises an exception on failure. On Unix
systems, the directory is created with default permissions (defined by the process umask setting).

delete directory(+Directory)
Delete directory (folder) from the filesystem. Raises an exception on failure. Please note that
in general it will not be possible to delete a non-empty directory.

working directory(-Old, +New)
Unify Old with an absolute path to the current working directory and change working directory
to New. Use the pattern working directory(CWD, CWD) to get the current directory. See
also absolute file name/2 and chdir/1.47 Note that the working directory is shared
between all threads.

chdir(+Path)
Compatibility predicate. New code should use working directory/2.

4.36 User Top-level Manipulation

break
Recursively start a new Prolog top level. This Prolog top level has its own stacks, but shares
the heap with all break environments and the top level. Debugging is switched off on entering a
break and restored on leaving one. The break environment is terminated by typing the system’s
end-of-file character (control-D). If the -t toplevel command line option is given this goal
is started instead of entering the default interactive top level (prolog/0).

abort
Abort the Prolog execution and restart the top level. If the -t toplevel command line
options is given this goal is started instead of entering the default interactive top level.

There are two implementations of abort/0. The default one uses the exception mechanism
(see throw/1), throwing the exception $aborted. The other one uses the C-construct
longjmp() to discard the entire environment and rebuild a new one. Using exceptions allows
for proper recovery of predicates exploiting exceptions. Rebuilding the environment is safer if
the Prolog stacks are corrupt. Therefore the system will use the rebuild-strategy if the abort was
generated by an internal consistency check and the exception mechanism otherwise. Prolog
can be forced to use the rebuild-strategy setting the prolog flag abort with exception to
false.

halt
Terminate Prolog execution. Open files are closed and if the command line option -tty is not
active the terminal status (see Unix stty(1)) is restored. Hooks may be registered both in Prolog
and in foreign code. Prolog hooks are registered using at halt/1. halt/0 is equivalent to
halt(0).48

47BUG: Some of the file-I/O predicates use local filenames. Changing directory while file-bound streams are open causes
wrong results on telling/1, seeing/1 and current stream/3

48BUG: In the multi-threaded version, halt/0 does not work when not called from the main thread. In the current
system a permission error exception is raised. Future versions may enable halt/0 from any thread.

SWI-Prolog 5.6 Reference Manual

4.37. CREATING A PROTOCOL OF THE USER INTERACTION 149

halt(+Status)
Terminate Prolog execution with given status. Status is an integer. See also halt/0.

prolog
This goal starts the default interactive top level. Queries are read from the stream user input.
See also the history prolog flag (current prolog flag/2). The prolog/0 predicate
is terminated (succeeds) by typing the end-of-file character (On most systems control-D).

The following two hooks allow for expanding queries and handling the result of a query. These
hooks are used by the top-level variable expansion mechanism described in section 2.8.

expand query(+Query, -Expanded, +Bindings, -ExpandedBindings)
Hook in module user, normally not defined. Query and Bindings represents the query read
from the user and the names of the free variables as obtained using read term/3. If this
predicate succeeds, it should bind Expanded and ExpandedBindings to the query and bindings
to be executed by the top-level. This predicate is used by the top-level (prolog/0). See also
expand answer/2 and term expansion/2.

expand answer(+Bindings, -ExpandedBindings)
Hook in module user, normally not defined. Expand the result of a successfully executed
top-level query. Bindings is the query 〈Name〉 = 〈Value〉 binding list from the query. Expand-
edBindings must be unified with the bindings the top-level should print.

4.37 Creating a Protocol of the User Interaction

SWI-Prolog offers the possibility to log the interaction with the user on a file.49 All Prolog interaction,
including warnings and tracer output, are written on the protocol file.

protocol(+File)
Start protocolling on file File. If there is already a protocol file open then close it first. If File
exists it is truncated.

protocola(+File)
Equivalent to protocol/1, but does not truncate the File if it exists.

noprotocol
Stop making a protocol of the user interaction. Pending output is flushed on the file.

protocolling(-File)
True if a protocol was started with protocol/1 or protocola/1 and unifies File with the
current protocol output file.

4.38 Debugging and Tracing Programs

This section is a reference to the debugger interaction predicates. A more use-oriented overview of
the debugger is in section 2.9.

If you have installed XPCE, you can use the graphical front-end of the tracer. This front-end is
installed using the predicate guitracer/0.

49A similar facility was added to Edinburgh C-Prolog by Wouter Jansweijer.

SWI-Prolog 5.6 Reference Manual

150 CHAPTER 4. BUILT-IN PREDICATES

trace
Start the tracer. trace/0 itself cannot be seen in the tracer. Note that the Prolog top-level
treats trace/0 special; it means ‘trace the next goal’.

tracing
True if the tracer is currently switched on. tracing/0 itself can not be seen in the tracer.

notrace
Stop the tracer. notrace/0 itself cannot be seen in the tracer.

guitracer
Installs hooks (see prolog trace interception/4) into the system that redirects trac-
ing information to a GUI front-end providing structured access to variable-bindings, graphical
overview of the stack and highlighting of relevant source-code.

noguitracer
Reverts back to the textual tracer.

trace(+Pred)
Equivalent to trace(Pred, +all).

trace(+Pred, +Ports)
Put a trace-point on all predicates satisfying the predicate specification Pred. Ports is a list
of port names (call, redo, exit, fail). The atom all refers to all ports. If the port is
preceded by a - sign the trace-point is cleared for the port. If it is preceded by a + the trace-point
is set.

The predicate trace/2 activates debug mode (see debug/0). Each time a port (of the 4-
port model) is passed that has a trace-point set the goal is printed as with trace/0. Unlike
trace/0 however, the execution is continued without asking for further information. Exam-
ples:

?- trace(hello). Trace all ports of hello with any arity in any mod-
ule.

?- trace(foo/2, +fail). Trace failures of foo/2 in any module.
?- trace(bar/1, -all). Stop tracing bar/1.

The predicate debugging/0 shows all currently defined trace-points.

notrace(+Goal)
Call Goal, but suspend the debugger while Goal is executing. The current implementation cuts
the choice-points of Goal after successful completion. See once/1. Later implementations
may have the same semantics as call/1.

debug
Start debugger. In debug mode, Prolog stops at spy- and trace-points, disables tail-recursion
optimisation and aggressive destruction of choice-points to make debugging information acces-
sible. Implemented by the Prolog flag debug.

nodebug
Stop debugger. Implemented by the prolog flag debug. See also debug/0.

SWI-Prolog 5.6 Reference Manual

4.38. DEBUGGING AND TRACING PROGRAMS 151

debugging
Print debug status and spy points on current output stream. See also the prolog flag debug.

spy(+Pred)
Put a spy point on all predicates meeting the predicate specification Pred. See section 4.4.

nospy(+Pred)
Remove spy point from all predicates meeting the predicate specification Pred.

nospyall
Remove all spy points from the entire program.

leash(?Ports)
Set/query leashing (ports which allow for user interaction). Ports is one of +Name, -Name,
?Name or a list of these. +Name enables leashing on that port, -Name disables it and ?Name
succeeds or fails according to the current setting. Recognised ports are: call, redo, exit,
fail and unify. The special shorthand all refers to all ports, full refers to all ports except
for the unify port (default). half refers to the call, redo and fail port.

visible(+Ports)
Set the ports shown by the debugger. See leash/1 for a description of the port specification.
Default is full.

unknown(-Old, +New)
Edinburgh-prolog compatibility predicate, interfacing to the ISO prolog flag unknown. Val-
ues are trace (meaning error) and fail. If the unknown flag is set to warning,
unknown/2 reports the value as trace.

style check(+Spec)
Set style checking options. Spec is either +〈option〉, -〈option〉, ?(〈option〉)50 or a list of such
options. +〈option〉 sets a style checking option, -〈option〉 clears it and ?(〈option〉) succeeds
or fails according to the current setting. consult/1 and derivatives resets the style checking
options to their value before loading the file. If—for example—a file containing long atoms
should be loaded the user can start the file with:

:- style_check(-atom).

Currently available options are:

50In older versions ‘?’ was a prefix operator. Inversions after 5.5.13, explicit brackets are needed.

SWI-Prolog 5.6 Reference Manual

152 CHAPTER 4. BUILT-IN PREDICATES

Name Default Description
singleton on

read clause/1 (used by consult/1) warns on vari-
ables only appearing once in a term (clause) which have a
name not starting with an underscore.

atom on
read/1 and derivatives will produce an error message on
quoted atoms or strings longer than 5 lines.

dollar off Accept dollar as a lower case character, thus avoiding the
need for quoting atoms with dollar signs. System mainte-
nance use only.

discontiguous on Warn if the clauses for a predicate are not together in the
same source file.

string off Backward compatibility. See the prolog-flag
double quotes (current prolog flag/2).

charset off Warn on atoms and variables holding non-ASCII charac-
ters that are not quoted. See also section 2.15.1.

4.39 Obtaining Runtime Statistics

statistics(+Key, -Value)
Unify system statistics determined by Key with Value. The possible keys are given in the ta-
ble 4.2. The last part of the table contains keys for compatibility to other Prolog implementa-
tions (Quintus) for improved portability. Note that the ISO standard does not define methods to
collect system statistics.

statistics
Display a table of system statistics on the current output stream.

time(+Goal)
Execute Goal just like once/1 (i.e., leaving no choice points), but print used time, number
of logical inferences and the average number of lips (logical inferences per second). Note that
SWI-Prolog counts the actual executed number of inferences rather than the number of passes
through the call- and redo ports of the theoretical 4-port model.

4.40 Execution profiling

This section describes the hierarchical execution profiler introduced in SWI-Prolog 5.1.10. This pro-
filer is based on ideas from gprof described in [Graham et al., 1982]. The profiler consists of two
parts: the information-gathering is built into the kernel,51 and a presentation component which is de-
fined in the statistics library. The latter can be hooked, which is used by the XPCE module
swi/pce profile to provide an interactive graphical representation of results.

51There are two implementations; one based on setitimer() using the SIGPROF signal and one using Windows Multi
Media (MM) timers. On other systems the profiler is not provided.

SWI-Prolog 5.6 Reference Manual

4.40. EXECUTION PROFILING 153

agc Number of atom garbage-collections performed
agc gained Number of atoms removed
agc time Time spent in atom garbage-collections
cputime (User) CPU time since Prolog was started in seconds
inferences Total number of passes via the call and redo ports since Prolog was

started.
heap Estimated total size of the heap (see section 2.18.1)
heapused Bytes heap in use by Prolog.
heaplimit Maximum size of the heap (see section 2.18.1)
local Allocated size of the local stack in bytes.
localused Number of bytes in use on the local stack.
locallimit Size to which the local stack is allowed to grow
global Allocated size of the global stack in bytes.
globalused Number of bytes in use on the global stack.
globallimit Size to which the global stack is allowed to grow
trail Allocated size of the trail stack in bytes.
trailused Number of bytes in use on the trail stack.
traillimit Size to which the trail stack is allowed to grow
atoms Total number of defined atoms.
functors Total number of defined name/arity pairs.
predicates Total number of predicate definitions.
modules Total number of module definitions.
codes Total amount of byte codes in all clauses.
threads MT-version: number of active threads
threads created MT-version: number of created threads
thread cputime MT-version: seconds CPU time used by finished threads. Sup-

ported on Windows-NT and later, Linux and possibly a few more.
Verify it gives plausible results before using.

Compatibility keys
runtime [CPU time, CPU time since last] (milliseconds)
system time [System CPU time, System CPU time since last] (milliseconds)
real time [Wall time, Wall time since last] (seconds since 1970)
memory [Total unshared data, free memory] (Uses getrusage() if available,

otherwise incomplete own statistics.
stacks [global use, local use]
program [heap, 0]
global stack [global use, global free]
local stack [local use, local free]
trail [trail use, 0]
garbage collection [number of GC, bytes gained, time spent]
stack shifts [global shifts, local shifts, time spent] (fails if no shifter in this

version)
atoms [number, memory use, 0]
atom garbage collection [number of AGC, bytes gained, time spent]
core Same as memory

Table 4.2: Keys for statistics/2

SWI-Prolog 5.6 Reference Manual

154 CHAPTER 4. BUILT-IN PREDICATES

4.40.1 Profiling predicates

Currently, the interface is kept compatible with the old profiler. As experience grows, it is likely that
the old interface is replaced with one that better reflects the new capabilities. Feel free to examine the
internal interfaces and report useful application thereof.

profile(:Goal)
Execute Goal just like time/1, collecting profiling statistics and call show profile(plain,
25). With XPCE installed this opens a graphical interface to the collected profiling data.

profile(:Goal, +Style, +Number)
Execute Goal just like time/1. Collect profiling statistics and show the top Number proce-
dures on the current output stream (see show profile/1) using Style. The results are kept in
the database until reset profiler/0 or profile/3 is called and can be displayed again
with show profile/1. The profile/1 predicate is a backward compatibility interface to
profile/1. The other predicates in this section are low-level predicates for special cases.

show profile(+Style, +Number)
Show the collected results of the profiler. It shows the top Number predicates according the
percentage CPU-time used. If Style is plain the time spent in the predicates itself is displayed.
If Style is cumulative the time spent in its siblings (callees) is added to the predicate.

This predicate first calls prolog:show profile hook/2. If XPCE is loaded this hook is used to
activate a GUI interface to visualise the profile results.

show profile(+Number)
Compatibility. Same as show profile(plain, Number).

profiler(-Old, +New)
Query or change the status of the profiler. The status is a boolean (true or false) stating
whether or not the profiler is collecting data. It can be used to enable or disable profiling certain
parts of the program.

reset profiler
Switches the profiler to false and clears all collected statistics.

noprofile(+Name/+Arity, . . .)
Declares the predicate Name/Arity to be invisible to the profiler. The time spend in the named
predicate is added to the caller and the callees are linked directly to the caller. This is particularly
useful for simple meta-predicates such as call/1, ignore/1, catch/3, etc.

4.40.2 Visualizing profiling data

Browsing the annotated call-tree as described in section 4.40.3 itself is not very attractive. Therefore,
the results are combined per predicate, collecting all callers and and callees as well as the propagation
of time and activations in both directions. Figure 4.1 illustrates this. The central yellowish line is
the ‘current’ predicate with counts for time spent in the predicate (‘Self’), time spent in its children
(‘Siblings’), activations through the call and redo ports. Above that are the callers. Here, the two time
fields indicate how much time is spent serving each of the callers. The columns sum to the time in the
yellowish line. The caller <recursive> are the number of recursive calls. Below the yellowish lines

SWI-Prolog 5.6 Reference Manual

4.40. EXECUTION PROFILING 155

Figure 4.1: Execution profiler showing the activity of the predicate chat:inv map list/5.

are the callees, with the time spent in the callee itself for serving the current predicate and the time
spent in the callees of the callee (’Siblings’), so the whole time-block adds up to the ‘Siblings’ field of
the current predicate. The ‘Access’ fields show how many times the current predicate accesses each
of the callees.

The predicates have a menu that allows changing the view of the detail window to the given caller
or callee, showing the documentation (if it is a built-in) and/or jumping to the source.

The statistics shown in the report-field of figure 4.1 show the following information:

• samples
Number of times the call-tree was sampled for collecting time statistics. On most hardware the
resolution of SIGPROF is 1/100 second. This number must be sufficiently large to get reliable
timing figures. The Time menu allows viewing time as samples, relative time or absolute time.

• sec
Total user CPU time with the profiler active.

• predicates
Total count of predicates that have been called at least one time during the profile.

• nodes
Number of nodes in the call-tree.

• distortion
How much of the time is spend building the call-tree as a percentage of the total execution time.
Timing samples while the profiler is building the call-tree are not added to the call-tree.

4.40.3 Information gathering

While the program executes under the profiler, the system builds a dynamic call-tree. It does this using
three hooks from the kernel: one that starts a new goal (profCall), one the tells the system which goal
is resumed after an exit (profExit) and one that tells the system which goal is resumed after a fail (i.e.
which goal is used to retry (profRedo)). The profCall() function finds or creates the subnode for the
argument predicate below the current node, increments the call-count of this link and returns the sub-
node which is recorded in the Prolog stack-frame. Choice-points are marked with the current profiling
node. profExit() and profRedo() pass the profiling node where execution resumes.

SWI-Prolog 5.6 Reference Manual

156 CHAPTER 4. BUILT-IN PREDICATES

Just using the above algorithm would create a much too big tree due to recursion. For this reason
the system performs detection of recursion. In the simplest case, recursive procedures increment the
‘recursive’ count on the current node. Mutual recursion however is not easily detected. For example,
call/1 can call a predicate that uses call/1 itself. This can be viewed as a recursive invocation,
but this is generally not desirable. Recursion is currently assumed if the same predicate with the same
parent appears higher in the call-graph. Early experience with a some arbitrary non-trivial programs
are promising.

The last part of the profiler collects statistics on the CPU-time used in each node. On systems
providing setitimer() with SIGPROF, it ‘ticks’ the current node of the call-tree each time the timer
fires. On Windows a MM-timer in a separate thread checks 100 times per second how much time is
spent in the profiled thread and adds this to the current node. See section 4.40.3 for details.

Profiling in the Windows Implementation

Profiling in the Windows version is similar but as profiling is a statistical process it is good to be aware
of the implementation52 for proper interpretation of the results.

Windows does not provide timers that fire asynchronously, frequent and proportional to the CPU
time used by the process. Windows does provide multi-media timers that can run at high frequency.
Such timers however run in a separate thread of execution and they are fired on the wall-clock rather
than the amount of CPU time used. The profiler installs such a timer running, for saving CPU time,
rather inaccurately at about 100 Hz. Each time it is fired, it determines the milliseconds CPU time used
by Prolog since the last time it was fired. If this value is non-zero, active predicates are incremented
with this value.

4.41 Memory Management

Note: limit stack/2 and trim stacks/0 have no effect on machines that do not offer dynamic
stack expansion. On these machines these predicates simply succeed to improve portability.

garbage collect
Invoke the global- and trail stack garbage collector. Normally the garbage collector is in-
voked automatically if necessary. Explicit invocation might be useful to reduce the need
for garbage collections in time critical segments of the code. After the garbage collection
trim stacks/0 is invoked to release the collected memory resources.

garbage collect atoms
Reclaim unused atoms. Normally invoked after agc margin (a prolog flag) atoms have been
created. On multi-threaded versions the actual collection is delayed until there there are no
threads performing normal garbage collection. In this case garbage collect atoms/0
returns immediately. Note this implies there is no guarantee it will ever happen as there may
always be threads performing garbage collection.

limit stack(+Key, +Kbytes)
Limit one of the stack areas to the specified value. Key is one of local, global or trail.
The limit is an integer, expressing the desired stack limit in K bytes. If the desired limit is

52We hereby acknowledge Lionel Fourquaux, who suggested the design described here after a newsnet enquiry.

SWI-Prolog 5.6 Reference Manual

4.42. WINDOWS DDE INTERFACE 157

smaller than the currently used value, the limit is set to the nearest legal value above the cur-
rently used value. If the desired value is larger than the maximum, the maximum is taken.
Finally, if the desired value is either 0 or the atom unlimited the limit is set to its maximum.
The maximum and initial limit is determined by the command line options -L, -G and -T.

trim stacks
Release stack memory resources that are not in use at this moment, returning them to the oper-
ating system. Trim stack is a relatively cheap call. It can be used to release memory resources in
a backtracking loop, where the iterations require typically seconds of execution time and very
different, potentially large, amounts of stack space. Such a loop should be written as follows:

loop :-
generator,

trim_stacks,
potentially_expensive_operation,

stop_condition, !.

The prolog top level loop is written this way, reclaiming memory resources after every user
query.

stack parameter(+Stack, +Key, -Old, +New)
Query/set a parameter for the runtime stacks. Stack is one of local, global, trail or
argument. The table below describes the Key/Value pairs. Old is first unified with the current
value.

limit Maximum size of the stack in bytes
min free Minimum free space at entry of foreign predicate

This predicate is currently only available on versions that use the stack-shifter to enlarge the
runtime stacks when necessary. It’s definition is subject to change.

4.42 Windows DDE interface

The predicates in this section deal with MS-Windows ‘Dynamic Data Exchange’ or DDE protocol.53

A Windows DDE conversation is a form of interprocess communication based on sending reserved
window-events between the communicating processes.

See also section 9.4 for loading Windows DLL’s into SWI-Prolog.

4.42.1 DDE client interface

The DDE client interface allows Prolog to talk to DDE server programs. We will demonstrate the use
of the DDE interface using the Windows PROGMAN (Program Manager) application:

1 ?- open_dde_conversation(progman, progman, C).

53This interface is contributed by Don Dwiggins.

SWI-Prolog 5.6 Reference Manual

158 CHAPTER 4. BUILT-IN PREDICATES

C = 0
2 ?- dde_request(0, groups, X)

--> Unifies X with description of groups

3 ?- dde_execute(0, ’[CreateGroup("DDE Demo")]’).

Yes

4 ?- close_dde_conversation(0).

Yes

For details on interacting with progman, use the SDK online manual section on the Shell DDE
interface. See also the Prolog library(progman), which may be used to write simple Windows
setup scripts in Prolog.

open dde conversation(+Service, +Topic, -Handle)
Open a conversation with a server supporting the given service name and topic (atoms). If
successful, Handle may be used to send transactions to the server. If no willing server is found
this predicate fails silently.

close dde conversation(+Handle)
Close the conversation associated with Handle. All opened conversations should be closed
when they’re no longer needed, although the system will close any that remain open on process
termination.

dde request(+Handle, +Item, -Value)
Request a value from the server. Item is an atom that identifies the requested data, and Value will
be a string (CF TEXT data in DDE parlance) representing that data, if the request is successful.
If unsuccessful, Value will be unified with a term of form error(〈Reason〉), identifying the
problem. This call uses SWI-Prolog string objects to return the value rather then atoms to
reduce the load on the atom-space. See section 4.23 for a discussion on this data type.

dde execute(+Handle, +Command)
Request the DDE server to execute the given command-string. Succeeds if the command could
be executed and fails with error message otherwise.

dde poke(+Handle, +Item, +Command)
Issue a POKE command to the server on the specified Item. Command is passed as data of type
CF TEXT.

4.42.2 DDE server mode

The (autoload) library(dde) defines primitives to realise simple DDE server applications in SWI-
Prolog. These features are provided as of version 2.0.6 and should be regarded prototypes. The C-part
of the DDE server can handle some more primitives, so if you need features not provided by this
interface, please study library(dde).

SWI-Prolog 5.6 Reference Manual

4.43. MISCELLANEOUS 159

dde register service(+Template, +Goal)
Register a server to handle DDE request or DDE execute requests from other applications. To
register a service for a DDE request, Template is of the form:

+Service(+Topic, +Item, +Value)

Service is the name of the DDE service provided (like progman in the client example above).
Topic is either an atom, indicating Goal only handles requests on this topic or a variable that
also appears in Goal. Item and Value are variables that also appear in Goal. Item represents the
request data as a Prolog atom.54

The example below registers the Prolog current prolog flag/2 predicate to be accessi-
ble from other applications. The request may be given from the same Prolog as well as from
another application.

?- dde_register_service(prolog(current_prolog_flag, F, V),
current_prolog_flag(F, V)).

?- open_dde_conversation(prolog, current_prolog_flag, Handle),
dde_request(Handle, home, Home),
close_dde_conversation(Handle).

Home = ’/usr/local/lib/pl-2.0.6/’

Handling DDE execute requests is very similar. In this case the template is of the form:

+Service(+Topic, +Item)

Passing a Value argument is not needed as execute requests either succeed or fail. If Goal fails,
a ‘not processed’ is passed back to the caller of the DDE request.

dde unregister service(+Service)
Stop responding to Service. If Prolog is halted, it will automatically call this on all open ser-
vices.

dde current service(-Service, -Topic)
Find currently registered services and the topics served on them.

dde current connection(-Service, -Topic)
Find currently open conversations.

4.43 Miscellaneous

dwim match(+Atom1, +Atom2)
True if Atom1 matches Atom2 in ‘Do What I Mean’ sense. Both Atom1 and Atom2 may also be
integers or floats. The two atoms match if:

54Up-to version 3.4.5 this was a list of character codes. As recent versions have atom garbage collection there is no need
for this anymore.

SWI-Prolog 5.6 Reference Manual

160 CHAPTER 4. BUILT-IN PREDICATES

• They are identical
• They differ by one character (spy ≡ spu)
• One character is inserted/deleted (debug ≡ deug)
• Two characters are transposed (trace ≡ tarce)
• ‘Sub-words’ are glued differently (existsfile ≡ existsFile ≡ exists file)
• Two adjacent sub words are transposed (existsFile ≡ fileExists)

dwim match(+Atom1, +Atom2, -Difference)
Equivalent to dwim match/2, but unifies Difference with an atom identifying the the dif-
ference between Atom1 and Atom2. The return values are (in the same order as above):
equal, mismatched char, inserted char, transposed char, separated and
transposed word.

wildcard match(+Pattern, +String)
True if String matches the wildcard pattern Pattern. Pattern is very similar the the Unix csh
pattern matcher. The patterns are given below:

? Matches one arbitrary character.
* Matches any number of arbitrary characters.
[...] Matches one of the characters specified between the brackets.

〈char1〉-〈char2〉 indicates a range.
{...} Matches any of the patterns of the comma separated list between the braces.

Example:

?- wildcard_match(’[a-z]*.{pro,pl}[%˜]’, ’a_hello.pl%’).

Yes

sleep(+Time)
Suspend execution Time seconds. Time is either a floating point number or an integer. Gran-
ularity is dependent on the system’s timer granularity. A negative time causes the timer to
return immediately. On most non-realtime operating systems we can only ensure execution is
suspended for at least Time seconds.

On Unix systems the sleep/1 predicate is realised —in order of preference— by nanosleep(),
usleep(), select() if the time is below 1 minute or sleep(). On Windows systems Sleep() is used.

SWI-Prolog 5.6 Reference Manual

Using Modules 5
5.1 Why Using Modules?

In traditional Prolog systems the predicate space was flat. This approach is not very suitable for
the development of large applications, certainly not if these applications are developed by more than
one programmer. In many cases, the definition of a Prolog predicate requires sub-predicates that are
intended only to complete the definition of the main predicate. With a flat and global predicate space
these support predicates will be visible from the entire program.

For this reason, it is desirable that each source module has its own predicate space. A module con-
sists of a declaration for its name, its public predicates and the predicates themselves. This approach
allow the programmer to use short (local) names for support predicates without worrying about name
conflicts with the support predicates of other modules. The module declaration also makes explicit
which predicates are meant for public usage and which for private purposes. Finally, using the module
information, cross reference programs can indicate possible problems much better.

5.2 Name-based versus Predicate-based Modules

Two approaches to realize a module system are commonly used in Prolog and other languages. The
first one is the name based module system. In these systems, each atom read is tagged (normally
prefixed) with the module name, with the exception of those atoms that are defined public. In the
second approach, each module actually implements its own predicate space.

A critical problem with using modules in Prolog is introduced by the meta-predicates that trans-
form between Prolog data and Prolog predicates. Consider the case where we write:

:- module(extend, [add_extension/3]).

add_extension(Extension, Plain, Extended) :-
maplist(extend_atom(Extension), Plain, Extended).

extend_atom(Extension, Plain, Extended) :-
atom_concat(Plain, Extension, Extended).

In this case we would like maplist to call extend atom/3 in the module extend. A name based
module system will do this correctly. It will tag the atom extend atom with the module and maplist
will use this to construct the tagged term extend atom/3. A name based module however, will not only
tag the atoms that will eventually be used to refer to a predicate, but all atoms that are not declared
public. So, with a name based module system also data is local to the module. This introduces another
serious problem:

SWI-Prolog 5.6 Reference Manual

162 CHAPTER 5. USING MODULES

:- module(action, [action/3]).

action(Object, sleep, Arg) :-
action(Object, awake, Arg) :-

:- module(process, [awake_process/2]).

awake_process(Process, Arg) :-
action(Process, awake, Arg).

This code uses a simple object-oriented implementation technique were atoms are used as method
selectors. Using a name based module system, this code will not work, unless we declare the selectors
public atoms in all modules that use them. Predicate based module systems do not require particular
precautions for handling this case.

It appears we have to choose either to have local data, or to have trouble with meta-predicates.
Probably it is best to choose for the predicate based approach as novice users will not often write
generic meta-predicates that have to be used across multiple modules, but are likely to write programs
that pass data around across modules. Experienced Prolog programmers should be able to deal with
the complexities of meta-predicates in a predicate based module system.

5.3 Defining a Module

Modules normally are created by loading a module file. A module file is a file holding a module/2
directive as its first term. The module/2 directive declares the name and the public (i.e., externally
visible) predicates of the module. The rest of the file is loaded into the module. Below is an example
of a module file, defining reverse/2.

:- module(reverse, [reverse/2]).

reverse(List1, List2) :-
rev(List1, [], List2).

rev([], List, List).
rev([Head|List1], List2, List3) :-

rev(List1, [Head|List2], List3).

5.4 Importing Predicates into a Module

As explained before, in the predicate based approach adapted by SWI-Prolog, each module has its own
predicate space. In SWI-Prolog, a module initially is completely empty. Predicates can be added to a
module by loading a module file as demonstrated in the previous section, using assert or by importing
them from another module.

Two mechanisms for importing predicates explicitly from another module exist. The
use module/[1,2] predicates load a module file and import (part of the) public predicates of
the file. The import/1 predicate imports any predicate from any module.

SWI-Prolog 5.6 Reference Manual

5.5. USING THE MODULE SYSTEM 163

use module(+File)
Load the file(s) specified with File just like ensure loaded/1. The files should all be mod-
ule files. All exported predicates from the loaded files are imported into the context module.
This predicate is equivalent to ensure loaded/1, except that it raises an error if File is not
a module file.

use module(+File, +ImportList)
Load the file specified with File (only one file is accepted). File should be a module file.
ImportList is a list of name/arity pairs specifying the predicates that should be imported from
the loaded module. If a predicate is specified that is not exported from the loaded module a
warning will be printed. The predicate will nevertheless be imported to simplify debugging.

import(+Head)
Import predicate Head into the current context module. Head should specify the source module
using the 〈module〉:〈term〉 construct. Note that predicates are normally imported using one of
the directives use module/[1,2]. import/1 is meant for handling imports into dynami-
cally created modules.

It would be rather inconvenient to have to import each predicate referred to by the module, includ-
ing the system predicates. For this reason each module is assigned a default module. All predicates
in the default module are available without extra declarations. Their definition however can be over-
ruled in the local module. This schedule is implemented by the exception handling mechanism of
SWI-Prolog: if an undefined predicate exception is raised for a predicate in some module, the excep-
tion handler first tries to import the predicate from one of the module’s import modules. On success,
normal execution is resumed.

5.4.1 Reserved Modules

SWI-Prolog contains two special modules. The first one is the module system. This module contains
all built-in predicates described in this manual. Module system has no default module assigned to
it. The second special module is the module user. This module forms the initial working space of
the user. Initially it is empty. The import module of module user is system, making all built-in
predicate definitions available as defaults. Built-in predicates thus can be overruled by defining them
in module user before they are used.

All other modules import from the module user. This implies they can use all predicates im-
ported into user without explicitly importing them.

5.5 Using the Module System

The current structure of the module system has been designed with some specific organisations for
large programs in mind. Many large programs define a basic library layer on top of which the actual
program itself is defined. The module user, acting as the default module for all other modules of
the program can be used to distribute these definitions over all program module without introducing
the need to import this common layer each time explicitly. It can also be used to redefine built-in
predicates if this is required to maintain compatibility to some other Prolog implementation. Typically,
the loadfile of a large application looks like this:

SWI-Prolog 5.6 Reference Manual

164 CHAPTER 5. USING MODULES

:- use_module(compatibility). % load XYZ prolog compatibility

:- use_module(% load generic parts
[error % errors and warnings
, goodies % general goodies (library extensions)
, debug % application specific debugging
, virtual_machine % virtual machine of application
, ... % more generic stuff
]).

:- ensure_loaded(
[... % the application itself
]).

The ‘use module’ declarations will import the public predicates from the generic modules into the
user module. The ‘ensure loaded’ directive loads the modules that constitute the actual application.
It is assumed these modules import predicates from each other using use module/[1,2] as far as
necessary.

In combination with the object-oriented schema described below it is possible to define a neat
modular architecture. The generic code defines general utilities and the message passing predicates
(invoke/3 in the example below). The application modules define classes that communicate using the
message passing predicates.

5.5.1 Object Oriented Programming

Another typical way to use the module system is for defining classes within an object oriented
paradigm. The class structure and the methods of a class can be defined in a module and the explicit
module-boundary overruling describes in section 5.6.2 can by used by the message passing code to
invoke the behaviour. An outline of this mechanism is given below.

% Define class point

:- module(point, []). % class point, no exports

% name type, default access
% value

variable(x, integer, 0, both).
variable(y, integer, 0, both).

% method name predicate name arguments

behaviour(mirror, mirror, []).

mirror(P) :-
fetch(P, x, X),
fetch(P, y, Y),

SWI-Prolog 5.6 Reference Manual

5.6. META-PREDICATES IN MODULES 165

store(P, y, X),
store(P, x, Y).

The predicates fetch/3 and store/3 are predicates that change instance variables of instances. The
figure below indicates how message passing can easily be implemented:

% invoke(+Instance, +Selector, ?ArgumentList)
% send a message to an instance

invoke(I, S, Args) :-
class_of_instance(I, Class),
Class:behaviour(S, P, ArgCheck), !,
convert_arguments(ArgCheck, Args, ConvArgs),
Goal =.. [P|ConvArgs],
Class:Goal.

The construct 〈Module〉:〈Goal〉 explicitly calls Goal in module Module. It is discussed in more detail
in section 5.6.

5.6 Meta-Predicates in Modules

As indicated in the introduction, the problem with a predicate based module system lies in the dif-
ficulty to find the correct predicate from a Prolog term. The predicate ‘solution(Solution)’ can exist
in more than one module, but ‘assert(solution(4))’ in some module is supposed to refer to the correct
version of solution/1.

Various approaches are possible to solve this problem. One is to add an extra argument to all
predicates (e.g. ‘assert(Module, Term)’). Another is to tag the term somehow to indicate which mod-
ule is desired (e.g. ‘assert(Module:Term)’). Both approaches are not very attractive as they make the
user responsible for choosing the correct module, inviting unclear programming by asserting in other
modules. The predicate assert/1 is supposed to assert in the module it is called from and should
do so without being told explicitly. For this reason, the notion context module has been introduced.

5.6.1 Definition and Context Module

Each predicate of the program is assigned a module, called its definition module. The definition
module of a predicate is always the module in which the predicate was originally defined. Each active
goal in the Prolog system has a context module assigned to it.

The context module is used to find predicates from a Prolog term. By default, this module is the
definition module of the predicate running the goal. For meta-predicates however, this is the context
module of the goal that invoked them. We call this module transparent in SWI-Prolog. In the ‘using
maplist’ example above, the predicate maplist/3 is declared module transparent. This implies the
context module remains extend, the context module of add extension/3. This way maplist/3
can decide to call extend atom in module extend rather than in its own definition module.

All built-in predicates that refer to predicates via a Prolog term are declared module transparent.
Below is the code defining maplist.

SWI-Prolog 5.6 Reference Manual

166 CHAPTER 5. USING MODULES

:- module(maplist, maplist/3).

:- module_transparent maplist/3.

% maplist(+Goal, +List1, ?List2)
% True if Goal can successfully be applied to all successive pairs
% of elements of List1 and List2.

maplist(_, [], []).
maplist(Goal, [Elem1|Tail1], [Elem2|Tail2]) :-

apply(Goal, [Elem1, Elem2]),
maplist(Goal, Tail1, Tail2).

5.6.2 Overruling Module Boundaries

The mechanism above is sufficient to create an acceptable module system. There are however cases
in which we would like to be able to overrule this schema and explicitly call a predicate in some
module or assert explicitly in some module. The first is useful to invoke goals in some module from
the user’s top-level or to implement a object-oriented system (see above). The latter is useful to create
and modify dynamic modules (see section 5.7).

For this purpose, the reserved term :/2 has been introduced. All built-in predicates that transform
a term into a predicate reference will check whether this term is of the form ‘〈Module〉:〈Term〉’. If so,
the predicate is searched for in Module instead of the goal’s context module. The : operator may be
nested, in which case the inner-most module is used.

The special calling construct 〈Module〉:〈Goal〉 pretends Goal is called from Module instead of the
context module. Examples:

?- assert(world:done). % asserts done/0 into module world
?- world:assert(done). % the same
?- world:done. % calls done/0 in module world

5.7 Dynamic Modules

So far, we discussed modules that were created by loading a module-file. These modules have been
introduced on facilitate the development of large applications. The modules are fully defined at load-
time of the application and normally will not change during execution. Having the notion of a set of
predicates as a self-contained world can be attractive for other purposes as well. For example, assume
an application that can reason about multiple worlds. It is attractive to store the data of a particular
world in a module, so we extract information from a world simply by invoking goals in this world.

Dynamic modules can easily be created. Any built-in predicate that tries to locate a predicate in a
specific module will create this module as a side-effect if it did not yet exist. Example:

?- assert(world_a:consistent),
world_a:unknown(_, fail).

SWI-Prolog 5.6 Reference Manual

5.8. MODULE HANDLING PREDICATES 167

These calls create a module called ‘world a’ and make the call ‘world a:consistent’ succeed. Unde-
fined predicates will not start the tracer or autoloader for this module (see unknown/2).

Import and export from dynamically created world is arranged via the predicates import/1 and
export/1:

?- world_b:export(solve(_,_)). % exports solve/2 from world_b
?- world_c:import(world_b:solve(_,_)). % and import it to world_c

5.8 Module Handling Predicates

This section gives the predicate definitions for the remaining built-in predicates that handle modules.

:- module(+Module, +PublicList)
This directive can only be used as the first term of a source file. It declares the file to be a
module file, defining Module and exporting the predicates of PublicList. PublicList is a list of
predicate indicators (name/arity pairs) or operator declarations using the format op(Precedence,
Type, Name). Operators defined in the export list are available inside the module as well as to
modules importing this module. See also section 4.24.

module transparent +Preds
Preds is a comma separated list of name/arity pairs (like dynamic/1). Each goal associated
with a transparent declared predicate will inherit the context module from its parent goal.

meta predicate +Heads
This predicate is defined in quintus and provides a partial emulation of the Quintus predicate.
See section 5.9.1 for details.

current module(-Module)
Generates all currently known modules.

current module(?Module, ?File)
Is true if File is the file from which Module was loaded. File is the internal canonical filename.
See also source file/[1,2].

context module(-Module)
Unify Module with the context module of the current goal. context module/1 itself is
transparent.

strip module(+Term, -Module, -Plain)
Used in module transparent or meta-predicates to extract the referenced module and plain term.
If Term is a module-qualified term, i.e. of the format Module:Plain, Module and Plain are
unified to these values. Otherwise Plain is unified to Term and Module to the context module.

export(+Head)
Add a predicate to the public list of the context module. This implies the predicate will be
imported into another module if this module is imported with use module/[1,2]. Note
that predicates are normally exported using the directive module/2. export/1 is meant to
handle export from dynamically created modules.

SWI-Prolog 5.6 Reference Manual

168 CHAPTER 5. USING MODULES

export list(+Module, ?Exports)
Unifies Exports with a list of terms. Each term has the name and arity of a pub-
lic predicate of Module. The order of the terms in Exports is not defined. See also
predicate property/2.

import module(+Module, -Import)
True if Import is defined as an import module for Module. All normal modules only import
from user, which imports from system. The predicates add import module/3 and
delete import module/2 can be used to manipulate the import list.

add import module(+Module, +Import, +StartOrEnd)
If Import is not already an import module for Module, add it to this list at the start or end
depending on StartOrEnd. See also import module/2 and delete import module/2.

delete import module(+Module, +Import)
Delete Import from the list of import modules for Module. Fails silently if Import is not in the
list.

default module(+Module, -Default)
Successively unifies Default with the module names from which a call in Module attempts to
use the definition. For the module user, this will generate user and system. For any other
module, this will generate the module itself, followed by user and system.

Backward compatibility. New code should use import module/2.

module(+Module)
The call module(Module)may be used to switch the default working module for the interac-
tive top-level (see prolog/0). This may be used to when debugging a module. The example
below lists the clauses of file of label/2 in the module tex.

1 ?- module(tex).

Yes
tex: 2 ?- listing(file_of_label/2).
...

5.9 Compatibility of the Module System

The principles behind the module system of SWI-Prolog differ in a number of aspects from the Quin-
tus Prolog module system.

• The SWI-Prolog module system allows the user to redefine system predicates.

• All predicates that are available in the system and user modules are visible in all other
modules as well.

• Quintus has the ‘meta predicate/1’ declaration were SWI-Prolog has the
module transparent/1 declaration.

SWI-Prolog 5.6 Reference Manual

5.9. COMPATIBILITY OF THE MODULE SYSTEM 169

• Operator declarations are local to a module and may be exported.

The meta predicate/1 declaration causes the compiler to tag arguments that pass module
sensitive information with the module using the :/2 operator. This approach has some disadvantages:

• Changing a meta predicate declaration implies all predicates calling the predicate need to be
reloaded. This can cause serious consistency problems.

• It does not help for dynamically defined predicates calling module sensitive predicates.

• It slows down the compiler (at least in the SWI-Prolog architecture).

• At least within the SWI-Prolog architecture the run-time overhead is larger than the overhead
introduced by the transparent mechanism.

Unfortunately the transparent predicate approach also has some disadvantages. If a predicate
A passes module sensitive information to a predicate B, passing the same information to a module
sensitive system predicate both A and B should be declared transparent. Using the Quintus approach
only A needs to be treated special (i.e., declared with meta predicate/1)1. A second problem
arises if the body of a transparent predicate uses module sensitive predicates for which it wants to refer
to its own module. Suppose we want to define findall/3 using assert/1 and retract/12.
The example in figure 5.1 gives the solution.

5.9.1 Emulating meta predicate

The Quintus meta predicate/1 directive can in many cases be replaced by the transparent dec-
laration. Below is the definition of meta predicate/1 as available from quintus.

:- op(1150, fx, (meta_predicate)).

meta_predicate((Head, More)) :- !,
meta_predicate1(Head),
meta_predicate(More).

meta_predicate(Head) :-
meta_predicate1(Head).

meta_predicate1(Head) :-
Head =.. [Name|Arguments],
member(Arg, Arguments),
module_expansion_argument(Arg), !,
functor(Head, Name, Arity),
module_transparent(Name/Arity).

meta_predicate1(_). % just a mode declaration

module_expansion_argument(:).
module_expansion_argument(N) :- integer(N).

The discussion above about the problems with the transparent mechanism show the two cases in which
this simple transformation does not work.

1Although this would make it impossible to call B directly.
2The system version uses recordz/2 and recorded/3.

SWI-Prolog 5.6 Reference Manual

170 CHAPTER 5. USING MODULES

:- module(findall, [findall/3]).

:- dynamic
solution/1.

:- module_transparent
findall/3,
store/2.

findall(Var, Goal, Bag) :-
assert(findall:solution(’$mark’)),
store(Var, Goal),
collect(Bag).

store(Var, Goal) :-
Goal, % refers to context module of

% caller of findall/3
assert(findall:solution(Var)),
fail.

store(_, _).

collect(Bag) :-
...,

Figure 5.1: findall/3 using modules

SWI-Prolog 5.6 Reference Manual

Special Variables and
Coroutining 6
This chapter deals with extensions primarily designed to support constraint logic programming (CLP).

6.1 Attributed variables

Attributed variables provide a technique for extending the Prolog unification algorithm
[Holzbaur, 1990] by hooking the binding of attributed variables. There is little consensus in the Prolog
community on the exact definition and interface to attributed variables. The SWI-Prolog interface is
identical to the one realised by Bart Demoen for hProlog [Demoen, 2002].

Binding an attributed variable schedules a goal to be executed at the first possible opportunity.
In the current implementation the hooks are executed immediately after a successful unification of
the clause-head or successful completion of a foreign language (built-in) predicate. Each attribute
is associated to a module and the hook (attr unify hook/2) is executed in this module. The
example below realises a very simple and incomplete finite domain reasoner.

:- module(domain,
[domain/2 % Var, ?Domain
]).

:- use_module(library(ordsets)).

domain(X, Dom) :-
var(Dom), !,
get_attr(X, domain, Dom).

domain(X, List) :-
list_to_ordset(List, Domain),
put_attr(Y, domain, Domain),
X = Y.

% An attributed variable with attribute value Domain has been
% assigned the value Y

attr_unify_hook(Domain, Y) :-
(get_attr(Y, domain, Dom2)
-> ordset_intersection(Domain, Dom2, NewDomain),

(NewDomain == []
-> fail
; NewDomain = [Value]
-> Y = Value
; put_attr(Y, domain, NewDomain)

SWI-Prolog 5.6 Reference Manual

172 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

)
; var(Y)
-> put_attr(Y, domain, Domain)
; ordset_memberchk(Y, Domain)
).

Before explaining the code we give some example queries:
?- domain(X, [a,b]), X = c no
?- domain(X, [a,b]), domain(X, [a,c]). X = a
?- domain(X, [a,b,c]), domain(X, [a,c]). X = G492att(domain, [a, c], [])

The predicate domain/2 fetches (first clause) or assigns (second clause) the variable a domain,
a set of values it can be unified with. In the second clause first associates the domain with a fresh
variable and then unifies X to this variable to deal with the possibility that X already has a domain. The
predicate attr unify hook/2 is a hook called after a variable with a domain is assigned a value.
In the simple case where the variable is bound to a concrete value we simply check whether this value
is in the domain. Otherwise we take the intersection of the domains and either fail if the intersection
is empty (first example), simply assign the value if there is only one value in the intersection (second
example) or assign the intersection as the new domain of the variable (third example).

attvar(@Term)
Succeeds if Term is an attributed variable. Note that var/1 also succeeds on attributed vari-
ables. Attributed variables are created with put attr/3.

put attr(+Var, +Module, +Value)
If Var is a variable or attributed variable, set the value for the attribute named Module to Value.
If an attribute with this name is already associated with Var, the old value is replaced. Back-
tracking will restore the old value (i.e. an attribute is a mutable term. See also setarg/3).
This predicate raises a type error if Var is not a variable or Module is not an atom.

get attr(+Var, +Module, -Value)
Request the current value for the attribute named Module. If Var is not an attributed variable
or the named attribute is not associated to Var this predicate fails silently. If Module is not an
atom, a type error is raised.

del attr(+Var, +Module)
Delete the named attribute. If Var loses its last attribute it is transformed back into a traditional
Prolog variable. If Module is not an atom, a type error is raised. In all other cases this predicate
succeeds regardless whether or not the named attribute is present.

attr unify hook(+AttValue, +VarValue)
Hook that must be defined in the module an attributed variable refers to. Is is called after the
attributed variable has been unified with a non-var term, possibly another attributed variable.
AttValue is the attribute that was associated to the variable in this module and VarValue is the
new value of the variable. Normally this predicate fails to veto binding the variable to VarValue,
forcing backtracking to undo the binding. If VarValue is another attributed variable the hook
often combines the two attribute and associates the combined attribute with VarValue using
put attr/3.

SWI-Prolog 5.6 Reference Manual

6.2. COROUTINING 173

attr portray hook(+AttValue, +Var)
Called by write term/2 and friends for each attribute if the option attributes(portray)
is in effect. If the hook succeeds the attribute is considered printed. Otherwise
Module = ... is printed to indicate the existence of a variable.

6.1.1 Special purpose predicates for attributes

Normal user code should deal with put attr/3, get attr/3 and del attr/2. The routines in
this section fetch or set the entire attribute list of a variables. Use of these predicates is anticipated to
be restricted to printing and other special purpose operations.

get attrs(+Var, -Attributes)
Get all attributes of Var. Attributes is a term of the form att(Module, Value, MoreAttributes),
where MoreAttributes is [] for the last attribute.

put attrs(+Var, -Attributes)
Set all attributes of Var. See get attrs/2 for a description of Attributes.

copy term nat(+Term, -Copy)
As copy term/2. Attributes however, are not copied but replaced by fresh variables.

6.2 Coroutining

Coroutining deals with having Prolog goals scheduled for execution as soon as some conditions is
fulfilled. In Prolog the most commonly used conditions is the instantiation (binding) of a variable.
Scheduling a goal to execute immediately after a variable is bound allows may be used to avoid
instantiation errors for some built-in predicates (e.g. arithmetic), do work lazy, prevent the binding of
a variable to a particular value, etc. Using freeze/2 for example we can define a variable can only
be assigned an even number:

?- freeze(X, X mod 2 =:= 0), X = 3

No

freeze(+Var, :Goal)
Delay the execution of Goal until Var is bound (i.e. is not a variable or attributed vari-
able). If Var is bound on entry freeze/2 is equivalent to call/1. The freeze/2
predicate is realised using an attributed variable associated with the module freeze, so
get attr(Var, freeze, AttVal) can be used to find out whether and which goals
are delayed on Var.

frozen(@Var, -Goal)
Unify Goal with the goal or conjunction of goals delayed on Var. If no goals are frozen on Var,
Goal is unified to true.

when(@Condition, :Goal)
Execute Goal when Condition becomes true. Condition is one of ?=(X, Y), nonvar(X),

SWI-Prolog 5.6 Reference Manual

174 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

ground(X), ,(Cond1, Cond2) or ;(Cond1, Cond2). See also freeze/2 and dif/2. The
implementation can deal with cyclic terms.

The when/2 predicate is realised using attributed variable associated with the module when.
It is defined in the autoload library when.

dif(@A, @B)
The dif/2 predicate provides a constraint stating that A and B are different terms. If
A and B can never unify dif/2 succeeds deterministically. If A and B are iden-
tical it fails immediately and finally, if A and B can unify, goals are delayed that
prevent A and B to become equal. The dif/2 predicate behaves as if defined by
dif(X, Y) :- when(?=(X, Y), X \== Y). See also ?=/2. The implementation
can deal with cyclic terms.

The dif/2 predicate is realised using attributed variable associated with the module dif. It is
defined in the autoload library dif.

6.3 Global variables

Global variables are associations between names (atoms) and terms. They differ in various ways from
storing information using assert/1 or recorda/3.

• The value lives on the Prolog (global) stack. This implies that lookup time is independent from
the size of the term. This is particularly interesting for large data structures such as parsed XML
documents or the CHR global constraint store.

• They support both global assignment using nb setval/2 and backtrackable assignment using
b setval/2.

• Only one value (which can be an arbitrary complex Prolog term) can be associated to a variable
at a time.

• Their value cannot be shared among threads. Each thread has its own namespace and values for
global variables.

• Currently global variables are scoped globally. We may consider module scoping in future
versions.

Both b setval/2 and nb setval/2 implicitly create a variable if the referenced name does
not already refer to a variable.

Global variables may be initialised from directives to make them available during the program
lifetime, but some considerations are necessary for saved-states and threads. Saved-states to not store
global variables, which implies they have to be declared with initialization/1 to recreate them
after loading the saved state. Each thread has its own set of global variables, starting with an empty set.
Using thread initialization/1 to define a global variable it will be defined, restored after
reloading a saved state and created in all threads that are created after the registration. Finally, global
variables can be initialised using the exception hook called exception/3. The latter technique is
by CHR (see chapter 7.

SWI-Prolog 5.6 Reference Manual

6.3. GLOBAL VARIABLES 175

b setval(+Name, +Value)
Associate the term Value with the atom Name or replaces the currently associated value with
Value. If Name does not refer to an existing global variable a variable with initial value [] is
created (the empty list). On backtracking the assignment is reversed.

b getval(+Name, -Value)
Get the value associated with the global variable Name and unify it with Value. Note that this
unification may further instantiate the value of the global variable. If this is undesirable the
normal precautions (double negation or copy term/2) must be taken. The b getval/2
predicate generates errors if Name is not an atom or the requested variable does not exist.

nb setval(+Name, +Value)
Associates a copy of Value created with duplicate term/2 with the atom Name. Note that
this can be used to set an initial value other than [] prior to backtrackable assignment.

nb getval(+Name, -Value)
The nb getval/2 predicate is a synonym for b getval/2, introduced for compatibility and
symmetry. As most scenarios will use a particular global variable either using non-backtracable
or backtrackable assignment, using nb getval/2 can be used to document that the variable
is used non-backtracable.

nb linkval(+Name, +Value)
Associates the term Value with the atom Name without copying it. This is a fast special-purpose
variation of nb setval/2 intended for expert users only because the semantics on backtrack-
ing to a point before creating the link are poorly defined for compound terms. The principal
term is always left untouched, but backtracking behaviour on arguments is undone if the origi-
nal assignment was trailed and left alone otherwise, which implies that the history that created
the term affects the behaviour on backtracking. Please consider the following example:

demo_nb_linkval :-
T = nice(N),
(N = world,

nb_linkval(myvar, T),
fail

; nb_getval(myvar, V),
writeln(V)

).

nb current(?Name, ?Value)
Enumerate all defined variables with their value. The order of enumeration is undefined.

nb delete(+Name)
Delete the named global variable.

6.3.1 Compatibility of SWI-Prolog Global Variables

Global variables have been introduced by various Prolog implementations recently. The implemen-
tation of them in SWI-Prolog is based on hProlog by Bart Demoen. In discussion with Bart it was

SWI-Prolog 5.6 Reference Manual

176 CHAPTER 6. SPECIAL VARIABLES AND COROUTINING

decided that the semantics if hProlog nb setval/2, which is equivalent to nb linkval/2 is not
acceptable for normal Prolog users as the behaviour is influenced by how built-in predicates construct-
ing terms (read/1, =../2, etc.) are implemented.

GNU-Prolog provides a rich set of global variables, including arrays. Arrays can be implemented
easily in SWI-Prolog using functor/3 and setarg/3 due to the unrestricted arity of compound
terms.

SWI-Prolog 5.6 Reference Manual

CHR: Constraint Handling
Rules 7
This chapter is written by Tom Schrijvers, K.U. Leuven, and adjustments by Jan Wielemaker.

The CHR system of SWI-Prolog is the K.U.Leuven CHR system. The runtime environment is
written by Christian Holzbaur and Tom Schrijvers while the compiler is written by Tom Schrijvers.
Both are integrated with SWI-Prolog and licensed under compatible conditions with permission from
the authors.

The main reference for the K.U.Leuven CHR system is:

• T. Schrijvers, and B. Demoen, The K.U.Leuven CHR System: Implementation and Applica-
tion, First Workshop on Constraint Handling Rules: Selected Contributions (Frühwirth, T. and
Meister, M., eds.), pp. 1–5, 2004.

On the K.U.Leuven CHR website (http://www.cs.kuleuven.be/˜toms/CHR/) you
can find more related papers, references and example programs.

7.1 Introduction

Constraint Handling Rules (CHR) is a committed-choice rule-based language embedded in Prolog. It
is designed for writing constraint solvers and is particularly useful for providing application-specific
constraints. It has been used in many kinds of applications, like scheduling, model checking, abduc-
tion, type checking among many others.

CHR has previously been implemented in other Prolog systems (SICStus, Eclipse, Yap), Haskell
and Java. This CHR system is based on the compilation scheme and runtime environment of CHR in
SICStus.

In this documentation we restrict ourselves to giving a short overview of CHR in general and
mainly focus on elements specific to this implementation. For a more thorough review of CHR we
refer the reader to [Frühwirth, 1998]. More background on CHR can be found at [Frühwirth,].

In section 7.2 we present the syntax of CHR in Prolog and explain informally its operational
semantics. Next, section 7.3 deals with practical issues of writing and compiling Prolog programs
containing CHR. Section 7.4 explains the currently primitive CHR debugging facilities. Section 7.4.3
provides a few useful predicates to inspect the constraint store and section 7.5 illustrates CHR with
two example programs. In section 7.6 some compatibility issues with older versions of this system
and SICStus’ CHR system. Finally, section 7.7 concludes with a few practical guidelines for using
CHR.

7.2 Syntax and Semantics

7.2.1 Syntax

The syntax of CHR rules is the following:

SWI-Prolog 5.6 Reference Manual

178 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

rules --> rule, rules.
rules --> [].

rule --> name, actual_rule, pragma, [atom(’.’)].

name --> atom, [atom(’@’)].
name --> [].

actual_rule --> simplification_rule.
actual_rule --> propagation_rule.
actual_rule --> simpagation_rule.

simplification_rule --> head, [atom(’<=>’)], guard, body.
propagation_rule --> head, [atom(’==>’)], guard, body.
simpagation_rule --> head, [atom(’\’)], head, [atom(’<=>’)],

guard, body.

head --> constraints.

constraints --> constraint, constraint_id.
constraints --> constraint, constraint_id, [atom(’,’)], constraints.

constraint --> compound_term.

constraint_id --> [].
constraint_id --> [atom(’#’)], variable.
constraint_id --> [atom(’#’)], [atom(’passive’)] .

guard --> [].
guard --> goal, [atom(’|’)].

body --> goal.

pragma --> [].
pragma --> [atom(’pragma’)], actual_pragmas.

actual_pragmas --> actual_pragma.
actual_pragmas --> actual_pragma, [atom(’,’)], actual_pragmas.

actual_pragma --> [atom(’passive(’)], variable, [atom(’)’)].

Note that the guard of a rule may not contain any goal that binds a variable in the head of the rule with
a non-variable or with another variable in the head of the rule. It may however bind variables that do
not appear in the head of the rule, e.g. an auxiliary variable introduced in the guard.

SWI-Prolog 5.6 Reference Manual

7.2. SYNTAX AND SEMANTICS 179

7.2.2 Semantics

In this subsection the operational semantics of CHR in Prolog are presented informally. They do not
differ essentially from other CHR systems.

When a constraint is called, it is considered an active constraint and the system will try to apply
the rules to it. Rules are tried and executed sequentially in the order they are written.

A rule is conceptually tried for an active constraint in the following way. The active constraint
is matched with a constraint in the head of the rule. If more constraints appear in the head they are
looked for among the suspended constraints, which are called passive constraints in this context. If
the necessary passive constraints can be found and all match with the head of the rule and the guard of
the rule succeeds, then the rule is committed and the body of the rule executed. If not all the necessary
passive constraint can be found, the matching fails or the guard fails, then the body is not executed
and the process of trying and executing simply continues with the following rules. If for a rule, there
are multiple constraints in the head, the active constraint will try the rule sequentially multiple times,
each time trying to match with another constraint.

This process ends either when the active constraint disappears, i.e. it is removed by some rule, or
after the last rule has been processed. In the latter case the active constraint becomes suspended.

A suspended constraint is eligible as a passive constraint for an active constraint. The other way
it may interact again with the rules, is when a variable appearing in the constraint becomes bound to
either a non-variable or another variable involved in one or more constraints. In that case the constraint
is triggered, i.e. it becomes an active constraint and all the rules are tried.

Rule Types There are three different kinds of rules, each with their specific semantics:

• simplification
The simplification rule removes the constraints in its head and calls its body.

• propagation
The propagation rule calls its body exactly once for the constraints in its head.

• simpagation
The simpagation rule removes the constraints in its head after the \ and then calls its body. It is
an optimization of simplification rules of the form:

constraints1, constraints2 <=> constraints1, body

Namely, in the simpagation form:

constraints1\constraints2 <=> body

The constraints1 constraints are not called in the body.

Rule Names Naming a rule is optional and has no semantical meaning. It only functions as docu-
mentation for the programmer.

Pragmas The semantics of the pragmas are:

passive(Identifier)
The constraint in the head of a rule Identifier can only match a passive constraint in that rule.
There is an abbreviated syntax for this pragma. Instead of:

SWI-Prolog 5.6 Reference Manual

180 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

..., c # Id, ... <=> ... pragma passive(Id)

you can also write

..., c # passive, ... <=> ...

Additional pragmas may be released in the future.

:- chr option(+Option, +Value)
It is possible to specify options that apply to all the CHR rules in the module. Options are
specified with the chr option/2 declaration:

:- chr_option(Option,Value).

and may appear in the file anywhere after the first constraints declaration.

Available options are:

check guard bindings
This option controls whether guards should be checked for (illegal) variable bindings or
not. Possible values for this option are on, to enable the checks, and off, to disable the
checks. If this option is on, any guard fails when it binds a variable that appears in the
head of the rule. When the option is off (default), the behavior of a binding in the guard is
undefined.

optimize
This option controls the degree of optimization. Possible values are full, to enable all
available optimizations, and off (default), to disable all optimizations. The default is de-
rived from the SWI-Prolog flag optimise, where true is mapped to full. Therefore
the command-line option -O provides full CHR optimization. If optimization is enabled,
debugging must be disabled.

debug
This options enables or disables the possibility to debug the CHR code. Possible values
are on (default) and off. See section 7.4 for more details on debugging. The default is
derived from the prolog flag generate debug info, which is true by default. See
-nodebug. If debugging is enabled, optimization must be disabled.

7.3 CHR in SWI-Prolog Programs

7.3.1 Embedding in Prolog Programs

The CHR constraints defined in a .pl file are associated with a module. The default module is user.
One should never load different .pl files with the same CHR module name.

SWI-Prolog 5.6 Reference Manual

7.3. CHR IN SWI-PROLOG PROGRAMS 181

7.3.2 Constraint declaration

:- chr constraint(+Specifier)
Every constraint used in CHR rules has to be declared with a chr constraint/1 declaration
by the constraint specifier. For convenience multiple constraints may be declared at once with
the same chr constraint/1 declaration followed by a comma-separated list of constraint
specifiers.

A constraint specifier is, in its compact form, F/A where F and A are respectively the functor
name and arity of the constraint, e.g.:

:- chr_constraint foo/1.
:- chr_constraint bar/2, baz/3.

In its extended form, a constraint specifier is c(A1,...,An) where c is the constraint’s func-
tor, n its arity and the Ai are argument specifiers. An argument specifier is a mode, optionally
followed by a type. E.g.

:- chr_constraint get_value(+,?).
:- chr_constraint domain(?int, +list(int)),

alldifferent(?list(int)).

Modes A mode is one of:

-
The corresponding argument of every occurrence of the constraint is always unbound.

+
The corresponding argument of every occurrence of the constraint is always ground.

?
The corresponding argument of every occurrence of the constraint can have any instantiation,
which may change over time. This is the default value.

Types A type can be a user-defined type or one of the built-in types. A type comprises a (possibly
infinite) set of values. The type declaration for a constraint argument means that for every instance of
that constraint the corresponding argument is only ever bound to values in that set. It does not state
that the argument necessarily has to be bound to a value.

The built-in types are:

int
The corresponding argument of every occurrence of the constraint is an integer number.

dense int
The corresponding argument of every occurrence of the constraint is an integer that can be used
as an array index. Note that if this argument takes values in [0, n], the array takes O(n) space.

float
. . . a floating point number.

SWI-Prolog 5.6 Reference Manual

182 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

number
. . . a number.

natural
. . . a positive integer.

any
The corresponding argument of every occurrence of the constraint can have any type. This is
the default value.

:- chr type(+TypeDeclaration)
User-defined types are algebraic data types, similar to those in Haskell or the discriminated
unions in Mercury. An algebraic data type is defined using chr type/1:

:- chr_type type ---> body.

If the type term is a functor of arity zero (i.e. one having zero arguments), it names a monomor-
phic type. Otherwise, it names a polymorphic type; the arguments of the functor must be distinct
type variables. The body term is defined as a sequence of constructor definitions separated by
semi-colons.

Each constructor definition must be a functor whose arguments (if any) are types. Discriminated
union definitions must be transparent: all type variables occurring in the body must also occur
in the type.

Here are some examples of algebraic data type definitions:

:- chr_type color ---> red ; blue ; yellow ; green.

:- chr_type tree ---> empty ; leaf(int) ; branch(tree, tree).

:- chr_type list(T) ---> [] ; [T | list(T)].

:- chr_type pair(T1, T2) ---> (T1 - T2).

Each algebraic data type definition introduces a distinct type. Two algebraic data types that
have the same bodies are considered to be distinct types (name equivalence).

Constructors may be overloaded among different types: there may be any number of construc-
tors with a given name and arity, so long as they all have different types.

Aliases can be defined using ==. For example, if your program uses lists of lists of integers,
you can define an alias as follows:

:- chr_type lli == list(list(int)).

SWI-Prolog 5.6 Reference Manual

7.3. CHR IN SWI-PROLOG PROGRAMS 183

Type Checking Currently two complementary forms of type checking are performed:

1. Static type checking is always performed by the compiler. It is limited to CHR rule heads and
CHR constraint calls in rule bodies.

Two kinds of type error are detected. The first is where a variable has to belong to two types.
For example, in the program:

:-chr_type foo ---> foo.
:-chr_type bar ---> bar.

:-chr_constraint abc(?foo).
:-chr_constraint def(?bar).

foobar @ abc(X) <=> def(X).

the variable X has to be of both type foo and bar. This is reported by the type clash error:

CHR compiler ERROR:
‘--> Type clash for variable _G5398 in rule foobar:

expected type foo in body goal def(_G5398, _G5448)
expected type bar in head def(_G5448, _G5398)

The second kind of error is where a functor is used that does not belong to the declared type.
For example in:

:-chr_type foo ---> foo.
:-chr_type bar ---> bar.

:-chr_constraint abc(?foo).

foo @ abc(bar) <=> true.

in the head of the rule bar appears where something of type foo is expected. This is reported
as:

CHR compiler ERROR:
‘--> Invalid functor in head abc(bar) of rule foo:

found ‘bar’,
expected type ‘foo’!

No runtime overhead is incurred in static type checking.

2. Dynamic type checking checks at runtime, during program execution, whether the arguments
of CHR constraints respect their declared types. The when/2 co-routining library is used to
delay dynamic type checks until variables are instantiated.

The kind of error detected by dynamic type checking is where a functor is used that does not
belong to the declared type. E.g. for the program:

SWI-Prolog 5.6 Reference Manual

184 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

:-chr_type foo ---> foo.

:-chr_constraint abc(?foo).

we get the following error in an erroneous query:

?- abc(bar).
ERROR: Type error: ‘foo’ expected, found ‘bar’ (CHR Runtime Type Error)

Dynamic type checking is weaker than static type checking in the sense that it only checks the
particular program execution at hand rather than all possible executions. It is stronger in the
sense that it tracks types throughout the whole program.

Note that it is enabled only in debug mode, as it incurs some (minor) runtime overhead.

7.3.3 Compilation

The SWI-Prolog CHR compiler exploits term expansion/2 rules to translate the constraint han-
dling rules to plain Prolog. These rules are loaded from the library chr. They are activated if the
compiled file has the .chr extension or after finding a declaration of the format below.

:- chr_constraint ...

It is advised to define CHR rules in a module file, where the module declaration is immediately
followed by including the library(chr) library as exemplified below:

:- module(zebra, [zebra/0]).
:- use_module(library(chr)).

:- chr_constraint ...

Using this style CHR rules can be defined in ordinary Prolog .pl files and the operator definitions
required by CHR do not leak into modules where they might cause conflicts.

7.4 Debugging

The CHR debugging facilities are currently rather limited. Only tracing is currently available. To use
the CHR debugging facilities for a CHR file it must be compiled for debugging. Generating debug
info is controlled by the CHR option debug, whose default is derived from the SWI-Prolog flag
generate debug info. Therefore debug info is provided unless the -nodebug is used.

7.4.1 Ports

For CHR constraints the four standard ports are defined:

call
A new constraint is called and becomes active.

SWI-Prolog 5.6 Reference Manual

7.4. DEBUGGING 185

exit
An active constraint exits: it has either been inserted in the store after trying all rules or has
been removed from the constraint store.

fail
An active constraint fails.

redo
An active constraint starts looking for an alternative solution.

In addition to the above ports, CHR constraints have five additional ports:

wake
A suspended constraint is woken and becomes active.

insert
An active constraint has tried all rules and is suspended in the constraint store.

remove
An active or passive constraint is removed from the constraint store.

try
An active constraints tries a rule with possibly some passive constraints. The try port is entered
just before committing to the rule.

apply
An active constraints commits to a rule with possibly some passive constraints. The apply port
is entered just after committing to the rule.

7.4.2 Tracing

Tracing is enabled with the chr trace/0 predicate and disabled with the chr notrace/0 pred-
icate.

When enabled the tracer will step through the call, exit, fail, wake and apply ports,
accepting debug commands, and simply write out the other ports.

The following debug commands are currently supported:

CHR debug options:

<cr> creep c creep
s skip
g ancestors
n nodebug
b break
a abort
f fail
? help h help

Their meaning is:

SWI-Prolog 5.6 Reference Manual

186 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

creep
Step to the next port.

skip
Skip to exit port of this call or wake port.

ancestors
Print list of ancestor call and wake ports.

nodebug
Disable the tracer.

break
Enter a recursive Prolog top-level. See break/0.

abort
Exit to the top-level. See abort/0.

fail
Insert failure in execution.

help
Print the above available debug options.

7.4.3 CHR Debugging Predicates

The chr module contains several predicates that allow inspecting and printing the content of the
constraint store.

chr trace
Activate the CHR tracer. By default the CHR tracer is activated and deactivated automatically
by the Prolog predicates trace/0 and notrace/0.

chr notrace
De-activate the CHR tracer. By default the CHR tracer is activated and deactivated automati-
cally by the Prolog predicates trace/0 and notrace/0.

chr leash(+Spec)
Define the set of CHR ports on which the CHR tracer asks for user intervention (i.e. stops).
Spec is either a list of ports as defined in section 7.4.1 or a predefined ‘alias’. Defined aliases
are: full to stop at all ports, none or off to never stop, and default to stop at the call,
exit, fail, wake and apply ports. See also leash/1.

chr show store(+Mod)
Prints all suspended constraints of module Mod to the standard output. This predicate is auto-
matically called by the SWI-Prolog top-level at the end of each query for every CHR module
currently loaded. The prolog-flag chr toplevel show store controls whether the top-
level shows the constraint stores. The value true enables it. Any other value disables it.

SWI-Prolog 5.6 Reference Manual

7.5. EXAMPLES 187

7.5 Examples

Here are two example constraint solvers written in CHR.

• The program below defines a solver with one constraint, leq/2/, which is a less-than-or-
equal constraint, also known as a partial order constraint.

:- module(leq,[leq/2]).
:- use_module(library(chr)).

:- chr_constraint leq/2.
reflexivity @ leq(X,X) <=> true.
antisymmetry @ leq(X,Y), leq(Y,X) <=> X = Y.
idempotence @ leq(X,Y) \ leq(X,Y) <=> true.
transitivity @ leq(X,Y), leq(Y,Z) ==> leq(X,Z).

When the above program is saved in a file and loaded in SWI-Prolog, you can call the leq/2
constraints in a query, e.g.:

?- leq(X,Y), leq(Y,Z).
leq(_G23837, _G23841)
leq(_G23838, _G23841)
leq(_G23837, _G23838)

X = _G23837{leq = ...}
Y = _G23838{leq = ...}
Z = _G23841{leq = ...}

Yes

When the query succeeds, the SWI-Prolog top-level prints the content of the CHR constraint
store and displays the bindings generate during the query. Some of the query variables may
have been bound to attributed variables, as you see in the above example.

• The program below implements a simple finite domain constraint solver.

:- module(dom,[dom/2]).
:- use_module(library(chr)).

:- chr_constraint dom(?int,+list(int)).
:- chr_type list(T) ---> [] ; [T|list(T)].

dom(X,[]) <=> fail.
dom(X,[Y]) <=> X = Y.
dom(X,L) <=> nonvar(X) | memberchk(X,L).
dom(X,L1), dom(X,L2) <=> intersection(L1,L2,L3), dom(X,L3).

SWI-Prolog 5.6 Reference Manual

188 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

When the above program is saved in a file and loaded in SWI-Prolog, you can call the dom/2
constraints in a query, e.g.:

?- dom(A,[1,2,3]), dom(A,[3,4,5]).

A = 3

Yes

7.6 Backwards Compatibility

There are small differences between the current K.U.Leuven CHR system in SWI-Prolog, older ver-
sions of the same system and SICStus’ CHR system.

The current system maps old syntactic elements onto new ones and ignores a number of no longer
required elements. However, for each a deprecated warning is issued. You are strongly urged to
replace or remove deprecated features.

Besides differences in available options and pragmas, the following differences should be noted:

• The constraints/1 declaration
This declaration is deprecated. It has been replaced with the chr constraint/1 declara-
tion.

• The option/2 declaration
This declaration is deprecated. It has been replaced with the chr option/2 declaration.

• The handler/1 declaration
In SICStus every CHR module requires a handler/1 declaration declaring a unique handler
name. This declaration is valid syntax in SWI-Prolog, but will have no effect. A warning will
be given during compilation.

• The rules/1 declaration
In SICStus, for every CHR module it is possible to only enable a subset of the available rules
through the rules/1 declaration. The declaration is valid syntax in SWI-Prolog, but has no
effect. A warning is given during compilation.

• Guard bindings
The check guard bindings option only turns invalid calls to unification into failure. In
SICStus this option does more: it intercepts instantiation errors from Prolog built-ins such
as is/2 and turns them into failure. In SWI-Prolog, we do not go this far, as we like to
separate concerns more. The CHR compiler is aware of the CHR code, the Prolog system and
programmer should be aware of the appropriate meaning of the Prolog goals used in guards and
bodies of CHR rules.

7.7 Programming Tips and Tricks

In this section we cover several guidelines on how to use CHR to write constraint solvers and how to
do so efficiently.

SWI-Prolog 5.6 Reference Manual

7.8. COMPILER ERRORS AND WARNINGS 189

• Check guard bindings yourself
It is considered bad practice to write guards that bind variables of the head and to rely on the
system to detect this at runtime. It is inefficient and obscures the working of the program.

• Set semantics
The CHR system allows the presence of identical constraints, i.e. multiple constraints with the
same functor, arity and arguments. For most constraint solvers, this is not desirable: it affects
efficiency and possibly termination. Hence appropriate simpagation rules should be added of
the form:

constraint\constraint <=> true

• Multi-headed rules
Multi-headed rules are executed more efficiently when the constraints share one or more vari-
ables.

• Mode and type declarations
Provide mode and type declarations to get more efficient program execution. Make sure to
disable debug (-nodebug) and enable optimization (-O).

• Compile once, run many times
Does consulting your CHR program take a long time in SWI-Prolog? Probably it takes the CHR
compiler a long time to compile the CHR rules into Prolog code. When you disable optimiza-
tions the CHR compiler will be a lot quicker, but you may loose performance. Alternatively,
you can just use SWI-Prolog’s qcompile/1 to generate a .qlf file once from your .pl file.
This .qlf contains the generated code of the CHR compiler (be it in a binary format). When
you consult the .qlf file, the CHR compiler is not invoked and consultation is much faster.

7.8 Compiler Errors and Warnings

In this section we summarize the most important error and warning messages of the CHR compiler.

7.8.1 CHR Compiler Errors

Type clash for variable ... in rule ...

This error indicates an inconsistency between declared types; a variable should belong to two
types. See static type checking.

Invalid functor in head ... of rule ...

This error indicates an inconsistency between a declared type and the use of a functor in a rule.
See static type checking.

Cyclic alias definition: ... == ...

You have defined a type alias in terms of itself, either directly or indirectly.

Ambiguous type aliases You have defined two overlapping type aliases.

Multiple definitions for type

You have defined the same type multiple times.

SWI-Prolog 5.6 Reference Manual

190 CHAPTER 7. CHR: CONSTRAINT HANDLING RULES

Non-ground type in constraint definition: ...

You have declared a non-ground type for a constraint argument.

Could not find type definition for ...

You have used an undefined type in a type declaration.

Illegal mode/type declaration You have used invalid syntax in a constraint declaration.

Constraint multiply defined There is more than one declaration for the same constraint.

Undeclared constraint ... in head of ...

You have used an undeclared constraint in the head of a rule. This often indicates a misspelled
constrained name or wrong number of arguments.

Invalid pragma ... in ... Pragma should not be a variable.

You have used a variable as a pragma in a rule. This is not allowed.

Invalid identifier ... in pragma passive in ...

You have used an identifier in a passive pragma that does not correspond to an identifier in the
head of the rule. Likely the identifier name is misspelled.

Unknown pragma ... in ...

You have used an unknown pragma in a rule. Likely the pragma is misspelled or not supported.

Something unexpected happened in the CHR compiler

You have most likely bumped into a bug in the CHR compiler. Please contact Tom Schrijvers
to notify him of this error.

SWI-Prolog 5.6 Reference Manual

Multi-threaded applications 8
SWI-Prolog multithreading is based on standard C-language multithreading support. It is not like
ParLog or other parallel implementations of the Prolog language. Prolog threads have their own
stacks and only share the Prolog heap: predicates, records, flags and other global non-backtrackable
data. SWI-Prolog thread support is designed with the following goals in mind.

• Multi-threaded server applications
Todays computing services often focus on (internet) server applications. Such applications of-
ten have need for communication between services and/or fast non-blocking service to multiple
concurrent clients. The shared heap provides fast communication and thread creation is rela-
tively cheap.1

• Interactive applications
Interactive applications often need to perform extensive computation. If such computations are
executed in a new thread, the main thread can process events and allow the user to cancel the
ongoing computation. User interfaces can also use multiple threads, each thread dealing with
input from a distinct group of windows. See also section 8.7.

• Natural integration with foreign code
Each Prolog thread runs in a native thread of the operating system, automatically making them
cooperate with MT-safe foreign-code. In addition, any foreign thread can create its own Prolog
engine for dealing with calling Prolog from C-code.

SWI-Prolog multi-threading is based on the POSIX thread standard [Butenhof, 1997] used on
most popular systems except for MS-Windows. On Windows it uses the pthread-win32 emulation of
POSIX threads mixed with the Windows native API for smoother and faster operation.

8.1 Creating and destroying Prolog threads

thread create(:Goal, -Id, +Options)
Create a new Prolog thread (and underlying C-thread) and start it by executing Goal. If the
thread is created successfully, the thread-identifier of the created thread is unified to Id. Options
is a list of options. The currently defined options are below. Stack size options can also take
the value inf or infinite, which is mapped to the maximum stack size supported by the
platform.

local(K-Bytes)
Set the limit to which the local stack of this thread may grow. If omitted, the limit of the
calling thread is used. See also the -L command-line option.

1On an dual AMD-Athlon 1600, SWI-Prolog 5.1.0 creates and joins 4,957 threads per second elapsed time.

SWI-Prolog 5.6 Reference Manual

192 CHAPTER 8. MULTI-THREADED APPLICATIONS

global(K-Bytes)
Set the limit to which the global stack of this thread may grow. If omitted, the limit of the
calling thread is used. See also the -G command-line option.

trail(K-Bytes)
Set the limit to which the trail stack of this thread may grow. If omitted, the limit of the
calling thread is used. See also the -T command-line option.

argument(K-Bytes)
Set the limit to which the argument stack of this thread may grow. If omitted, the limit of
the calling thread is used. See also the -A command-line option.

stack(K-Bytes)
Set the limit to which the system stack of this thread may grow. The default, minimum
and maximum values are system-dependant.

alias(AliasName)
Associate an ‘alias-name’ with the thread. This named may be used to refer to the thread
and remains valid until the thread is joined (see thread join/2).

detached(Bool)
If false (default), the thread can be waited for using thread join/2.
thread join/2 must be called on this thread to reclaim the all resources associated
to the thread. If true, the system will reclaim all associated resources automatically
after the thread finishes. Please note that thread identifiers are freed for reuse after a de-
tached thread finishes or a normal thread has been joined. See also thread join/2 and
thread detach/1.
If a detached thread dies due to failure or exception of the initial goal the thread prints a
message using print message/2. If such termination is considered normal the code
must be wrapped using ignore/1 and/or catch/3 to ensure successful completion.

The Goal argument is copied to the new Prolog engine. This implies further instantiation of
this term in either thread does not have consequences for the other thread: Prolog threads do
not share data from their stacks.

thread self(-Id)
Get the Prolog thread identifier of the running thread. If the thread has an alias, the alias-name
is returned.

thread join(+Id, -Status)
Wait for the termination of thread with given Id. Then unify the result-status of the thread
with Status. After this call, Id becomes invalid and all resources associated with the thread are
reclaimed. Note that threads with the attribute detached(true) cannot be joined. See also
current thread/2.

A thread that has been completed without thread join/2 being called on it is partly re-
claimed: the Prolog stacks are released and the C-thread is destroyed. A small data-structure
representing the exit-status of the thread is retained until thread join/2 is called on the
thread. Defined values for Status are:

true
The goal has been proven successfully.

SWI-Prolog 5.6 Reference Manual

8.2. MONITORING THREADS 193

false
The goal has failed.

exception(Term)
The thread is terminated on an exception. See print message/2 to turn system ex-
ceptions into readable messages.

exited(Term)
The thread is terminated on thread exit/1 using the argument Term.

thread detach(+Id)
Switch thread into detached-state (see detached(Bool) option at thread create/3) at
runtime. Id is the identifier of the thread placed in detached state. This may be the result of
PL thread self/1.

One of the possible applications is to simplify debugging. Threads that are created as de-
tached leave no traces if they crash. For not-detached threads the status can be inspected using
current thread/2. Threads nobody is waiting for may be created normally and detach
themselves just before completion. This way they leave no traces on normal completion and
their reason for failure can be inspected.

thread exit(+Term)
Terminates the thread immediately, leaving exited(Term) as result-state for
thread join/2. If the thread has the attribute detached(true) it terminates, but its
exit status cannot be retrieved using thread join/2 making the value of Term irrelevant.
The Prolog stacks and C-thread are reclaimed.

thread initialization(:Goal)
Run Goal when thread is started. This predicate must be compared with
initialization/1, but is intended for initialization operations of the runtime stacks, such
as setting global variables as described in section 6.3. Goal is run on four occasions: at the call
to this predicate, after loading a saved state, on starting a new thread and on creating a Prolog
engine through the C interface. On loading a saved state, Goal is executed after running the
initialization/1 hooks.

thread at exit(:Goal)
Run Goal just before releasing the thread resources. This is to be compared to at halt/1,
but only for the current thread. These hooks are ran regardless of why the execution of the
thread has been completed. As these hooks are run, the return-code is already available through
current thread/2 using the result of thread self/1 as thread-identifier.

thread setconcurrency(-Old, +New)
Determine the concurrency of the process, which is defined as the maximum number of con-
currently active threads. ‘Active’ here means they are using CPU time. This option is provided
if the thread-implementation provides pthread setconcurrency(). Solaris is a typical example of
this family. On other systems this predicate unifies Old to 0 (zero) and succeeds silently.

8.2 Monitoring threads

Normal multi-threaded applications should not need these the predicates from this section because
almost any usage of these predicates is unsafe. For example checking the existence of a thread before

SWI-Prolog 5.6 Reference Manual

194 CHAPTER 8. MULTI-THREADED APPLICATIONS

signalling it is of no use as it may vanish between the two calls. Catching exceptions using catch/3
is the only safe way to deal with thread-existence errors.

These predicates are provided for diagnosis and monitoring tasks. See also section 8.5, describing
more high-level primitives.

current thread(?Id, ?Status)
Enumerates identifiers and status of all currently known threads. Calling
current thread/2 does not influence any thread. See also thread join/2. For
threads that have an alias-name, this name is returned in Id instead of the numerical thread
identifier. Status is one of:

running
The thread is running. This is the initial status of a thread. Please note that threads waiting
for something are considered running too.

false
The Goal of the thread has been completed and failed.

true
The Goal of the thread has been completed and succeeded.

exited(Term)
The Goal of the thread has been terminated using thread exit/1 with Term as argu-
ment. If the underlying native thread has exited (using pthread exit()) Term is unbound.

exception(Term)
The Goal of the thread has been terminated due to an uncaught exception (see throw/1
and catch/3).

thread statistics(+Id, +Key, -Value)
Obtains statistical information on thread Id as statistics/2 does in single-threaded ap-
plications. This call returns all keys of statistics/2, although only information statistics
about the stacks and CPU time yield different values for each thread.2

mutex statistics
Print usage statistics on internal mutexes and mutexes associated with dynamic predicates. For
each mutex two numbers are printed: the number of times the mutex was acquired and the num-
ber of collisions: the number times the calling thread has to wait for the mutex. The collision-
count is not available on Windows as this would break portability to Windows-95/98/ME or
significantly harm performance. Generally collision count is close to zero on single-CPU hard-
ware.

8.2.1 Linux: linuxthreads vs. NPTL

Linux has introduces POSIX threads (pthread) using an implementation called linuxthreads, where
each thread was ‘almost’ a process. This approach has various disadvantages, such as poor perfor-
mance and non-compliance with several aspects of POSIX. However, there is one advantage. Where

2Getting the CPU-time of a different thread is not supported on all platforms. For Microsoft, it does not work in
95/98/ME. For POSIX systems it requires times() to return values specific for the calling thread. See also section 8.2.1.

SWI-Prolog 5.6 Reference Manual

8.3. THREAD COMMUNICATION 195

pthread does not provide a way to get statistics per thread, we could get this info from the process-
oriented times() function. Since the 2.6.x kernels, Linux by default now uses the NPTL implemen-
tation which is POSIX compliant. Unfortunately, getting per-thread CPU statistics involves reading
/proc and is therefore too slow for some applications.

SWI-Prolog is setup to run with the default thread model. Unfortunately there is no way to modify
this at runtime, but there is a way to select the old thread model on modern machines at link time. This
is achieved using the environment variable LD ASSUME KERNEL which must be set to a pre-nptl
kernel version for linking the main executable. The value 2.4.21 is appropriate. When building
from source, this flag can be set during the build process. When using a binary distribution one could
create a minimal C program and relink the system using the plld utility.

8.3 Thread communication

8.3.1 Message queues

Prolog threads can exchange data using dynamic predicates, database records, and other globally
shared data. These provide no suitable means to wait for data or a condition as they can only be
checked in an expensive polling loop. Message queues provide a means for threads to wait for data or
conditions without using the CPU.

Each thread has a message-queue attached to it that is identified by the thread. Additional queues
are created using message queue create/1.

thread send message(+QueueOrThreadId, +Term)
Place Term in the given queue or default queue of the indicated thread (which can even be the
message queue of itself (see thread self/1). Any term can be placed in a message queue,
but note that the term is copied to the receiving thread and variable-bindings are thus lost. This
call returns immediately.

If more than one thread is waiting for messages on the given queue and at least one of these
is waiting with a partially instantiated Term, the waiting threads are all sent a wake-up signal,
starting a rush for the available messages in the queue. This behaviour can seriously harm
performance with many threads waiting on the same queue as all-but-the-winner perform a
useless scan of the queue. If there is only one waiting thread or all waiting threads wait with an
unbound variable an arbitrary thread is restarted to scan the queue.3

thread get message(?Term)
Examines the thread message-queue and if necessary blocks execution until a term that unifies
to Term arrives in the queue. After a term from the queue has been unified unified to Term, the
term is deleted from the queue and this predicate returns.

Please note that not-unifying messages remain in the queue. After the following has been
executed, thread 1 has the term b(gnu) in its queue and continues execution using A is gnat.

<thread 1>
thread_get_message(a(A)),

3See the documentation for the POSIX thread functions pthread cond signal() v.s. pthread cond broadcastt() for back-
ground information.

SWI-Prolog 5.6 Reference Manual

196 CHAPTER 8. MULTI-THREADED APPLICATIONS

<thread 2>
thread_send_message(Thread_1, b(gnu)),
thread_send_message(Thread_1, a(gnat)),

See also thread peek message/1.

thread peek message(?Term)
Examines the thread message-queue and compares the queued terms with Term until one unifies
or the end of the queue has been reached. In the first case the call succeeds (possibly instantiat-
ing Term. If no term from the queue unifies this call fails.

message queue create(?Queue)
If Queue is an atom, create a named queue. To avoid ambiguity of
thread send message/2, the name of a queue may not be in use as a thread-name.
If Queue is unbound an anonymous queue is created and Queue is unified to its identifier.

message queue destroy(+Queue)
Destroy a message queue created with message queue create/1. It is not allows to de-
stroy the queue of a thread. Neither is it allowed to destroy a queue other threads are waiting
for or, for anonymous message queues, may try to wait for later.4

thread get message(+Queue, ?Term)
As thread get message/1, operating on a given queue. It is allowed (but not advised) to
get messages from the queue of other threads.

thread peek message(+Queue, ?Term)
As thread peek message/1, operating on a given queue. It is allowed to peek into another
thread’s message queue, an operation that can be used to check whether a thread has swallowed
a message sent to it.

message queue size(+Queue, -Size)
Unify Size with the number of terms waiting in Queue. Note that due to concurrent access the
returned value may be outdated before it is returned. It can be used for debugging purposes as
well as work distribution purposes.

Explicit message queues are designed with the worker-pool model in mind, where multiple threads
wait on a single queue and pick up the first goal to execute. Below is a simple implementation where
the workers execute arbitrary Prolog goals. Note that this example provides no means to tell when all
work is done. This must be realised using additional synchronisation.

% create_workers(+Id, +N)
%
% Create a pool with given Id and number of workers.

create_workers(Id, N) :-
message_queue_create(Id),
forall(between(1, N, _),

4BUG: None of these constraints are properly enforced by the system in the current implementation. It is therefore
advised not to delete queues unless you are absolutely sure it is safe.

SWI-Prolog 5.6 Reference Manual

8.3. THREAD COMMUNICATION 197

thread_create(do_work(Id), _, [])).

do_work(Id) :-
repeat,
thread_get_message(Id, Goal),
(catch(Goal, E, print_message(error, E))
-> true
; print_message(error, goal_failed(Goal, worker(Id)))
),

fail.

% work(+Id, +Goal)
%
% Post work to be done by the pool

work(Id, Goal) :-
thread_send_message(Id, Goal).

8.3.2 Signalling threads

These predicates provide a mechanism to make another thread execute some goal as an interrupt.
Signalling threads is safe as these interrupts are only checked at safe points in the virtual machine.
Nevertheless, signalling in multi-threaded environments should be handled with care as the receiving
thread may hold a mutex (see with mutex). Signalling probably only makes sense to start debugging
threads and to cancel no-longer-needed threads with throw/1, where the receiving thread should be
designed carefully do handle exceptions at any point.

thread signal(+ThreadId, :Goal)
Make thread ThreadId execute Goal at the first opportunity. In the current implementation, this
implies at the first pass through the Call-port. The predicate thread signal/2 itself places
Goal into the signalled-thread’s signal queue and returns immediately.

Signals (interrupts) do not cooperate well with the world of multi-threading, mainly because
the status of mutexes cannot be guaranteed easily. At the call-port, the Prolog virtual machine
holds no locks and therefore the asynchronous execution is safe.

Goal can be any valid Prolog goal, including throw/1 to make the receiving thread generate
an exception and trace/0 to start tracing the receiving thread.

In the Windows version, the receiving thread immediately executes the signal if it reaches a
Windows GetMessage() call, which generally happens of the thread is waiting for (user-)input.

8.3.3 Threads and dynamic predicates

Besides queues (section 8.3.1) threads can share and exchange data using dynamic predicates. The
multi-threaded version knows about two types of dynamic predicates. By default, a predicate declared
dynamic (see dynamic/1) is shared by all threads. Each thread may assert, retract and run the dy-
namic predicate. Synchronisation inside Prolog guarantees the consistency of the predicate. Updates
are logical: visible clauses are not affected by assert/retract after a query started on the predicate. In

SWI-Prolog 5.6 Reference Manual

198 CHAPTER 8. MULTI-THREADED APPLICATIONS

many cases primitive from section 8.4 should be used to ensure application invariants on the predicate
are maintained.

Besides shared predicates, dynamic predicates can be declared with the thread local/1 di-
rective. Such predicates share their attributes, but the clause-list is different in each thread.

thread local +Functor/+Arity, . . .
This directive is related to the dynamic/1 directive. It tells the system that the predicate may
be modified using assert/1, retract/1, etc. during execution of the program. Unlike
normal shared dynamic data however each thread has its own clause-list for the predicate. As
a thread starts, this clause list is empty. If there are still clauses as the thread terminates these
are automatically reclaimed by the system (see also volatile/1). The thread local property
implies the properties dynamic and volatile.

Thread-local dynamic predicates are intended for maintaining thread-specific state or interme-
diate results of a computation.

It is not recommended to put clauses for a thread-local predicate into a file as in the example
below as the clause is only visible from the thread that loaded the source-file. All other threads
start with an empty clause-list.

:- thread_local
foo/1.

foo(gnat).

DISCLAIMER Whether or not this declaration is appropriate in the sense of the proper mech-
anism to reach the goal is still debated. If you have strong feeling in favour or against, please
share them in the SWI-Prolog mailing list.

8.4 Thread synchronisation

All internal Prolog operations are thread-safe. This implies two Prolog threads can operate on the
same dynamic predicate without corrupting the consistency of the predicate. This section deals with
user-level mutexes (called monitors in ADA or critical-sections by Microsoft). A mutex is a MUTual
EXclusive device, which implies at most one thread can hold a mutex.

Mutexes are used to realise related updates to the Prolog database. With ‘related’, we refer to
the situation where a ‘transaction’ implies two or more changes to the Prolog database. For example,
we have a predicate address/2, representing the address of a person and we want to change the
address by retracting the old and asserting the new address. Between these two operations the database
is invalid: this person has either no address or two addresses, depending on the assert/retract order.

Here is how to realise a correct update:

:- initialization
mutex_create(addressbook).

change_address(Id, Address) :-
mutex_lock(addressbook),
retractall(address(Id, _)),

SWI-Prolog 5.6 Reference Manual

8.4. THREAD SYNCHRONISATION 199

asserta(address(Id, Address)),
mutex_unlock(addressbook).

mutex create(?MutexId)
Create a mutex. if MutexId is an atom, a named mutex is created. If it is a variable, an anony-
mous mutex reference is returned. There is no limit to the number of mutexes that can be
created.

mutex destroy(+MutexId)
Destroy a mutex. After this call, MutexId becomes invalid and further references yield an
existence error exception.

with mutex(+MutexId, :Goal)
Execute Goal while holding MutexId. If Goal leaves choice-points, these are destroyed (as
in once/1). The mutex is unlocked regardless of whether Goal succeeds, fails or raises an
exception. An exception thrown by Goal is re-thrown after the mutex has been successfully
unlocked. See also mutex create/1 and call cleanup/3.

Although described in the thread-section, this predicate is also available in the single-threaded
version, where it behaves simply as once/1.

mutex lock(+MutexId)
Lock the mutex. Prolog mutexes are recursive mutexes: they can be locked multiple times by
the same thread. Only after unlocking it as many times as it is locked, the mutex becomes
available for locking by other threads. If another thread has locked the mutex the calling thread
is suspended until to mutex is unlocked.

If MutexId is an atom, and there is no current mutex with that name, the mutex is created
automatically using mutex create/1. This implies named mutexes need not be declared
explicitly.

Please note that locking and unlocking mutexes should be paired carefully. Especially make
sure to unlock mutexes even if the protected code fails or raises an exception. For most common
cases use with mutex/2, which provides a safer way for handling Prolog-level mutexes. The
predicate call cleanup/[2-3] is another way to guarantee that the mutex is unlocked
while retaining non-determinism.

mutex trylock(+MutexId)
As mutex lock/1, but if the mutex is held by another thread, this predicates fails immedi-
ately.

mutex unlock(+MutexId)
Unlock the mutex. This can only be called if the mutex is held by the calling thread. If this is
not the case, a permission error exception is raised.

mutex unlock all
Unlock all mutexes held by the current thread. This call is especially useful to handle thread-
termination using abort/0 or exceptions. See also thread signal/2.

current mutex(?MutexId, ?ThreadId, ?Count)
Enumerates all existing mutexes. If the mutex is held by some thread, ThreadId is unified with

SWI-Prolog 5.6 Reference Manual

200 CHAPTER 8. MULTI-THREADED APPLICATIONS

the identifier of the holding thread and Count with the recursive count of the mutex. Otherwise,
ThreadId is [] and Count is 0.

8.5 Thread-support library(threadutil)

This library defines a couple of useful predicates for demonstrating and debugging multi-threaded
applications. This library is certainly not complete.

threads
Lists all current threads and their status.

join threads
Join all terminated threads. For normal applications, dealing with terminated threads must be
part of the application logic, either detaching the thread before termination or making sure it
will be joined. The predicate join threads/0 is intended for interactive sessions to reclaim
resources from threads that died unexpectedly during development.

interactor
Create a new console and run the Prolog top-level in this new console. See also
attach console/0. In the Windows version a new interactor can also be created from
the Run/New thread menu.

8.5.1 Debugging threads

Support for debugging threads is still very limited. Debug and trace mode are flags that are local
to each thread. Individual threads can be debugged either using the graphical debugger described
in section 3.5 (see tspy/1 and friends) or by attaching a console to the thread and running the
traditional command-line debugger (see attach console/0).

attach console
If the current thread has no console attached yet, attach one and redirect the user streams (input,
output, and error) to the new console window. On Unix systems the console is an xterm
application. On Windows systems this requires the GUI version plwin.exe rather than the
console based plcon.exe.

This predicate has a couple of useful applications. One is to separate (debugging) I/O of differ-
ent threads. Another is to start debugging a thread that is running in the background. If thread
10 is running, the following sequence starts the tracer on this thread:

?- thread_signal(10, (attach_console, trace)).

tdebug(+ThreadId)
Prepare ThreadId for debugging using the graphical tracer. This implies installing the tracer
hooks in the thread and switching the thread to debug-mode using debug/0. The call is
injected into the thread using thread signal/2. We refer to the documentation of this
predicate for asynchronous interaction with threads. New threads created inherit their debug-
mode from the thread that created them.

SWI-Prolog 5.6 Reference Manual

8.6. MULTI-THREADED MIXED C AND PROLOG APPLICATIONS 201

tdebug
Call tdebug/1 in all running threads.

tnodebug(+ThreadId)
Disable debugging thread ThreadId.

tnodebug
Disable debugging in all threads.

tspy(:Spec, +ThreadId)
Set a spy-point as spy/1 and enable the thread for debugging using tdebug/1. Note that a
spy-point is a global flag on a predicate that is visible from all threads. Spy points are honoured
in all threads that are in debug-mode and ignored in threads that are in nodebug mode.

tspy(:Spec)
Set a spy-point as spy/1 and enable debugging in all threads using tdebug/0. Note that
removing spy-points can be done using nospy/1. Disabling spy-points in a specific thread is
achieved by tnodebug/1.

8.5.2 Profiling threads

In the current implementation, at most one thread can be profiled at any moment. Any thread can call
profile/1 to profile the execution of some part of its code. The predicate tprofile/1 allows
for profiling the execution of another thread until the user stops collecting profile data.

tprofile(+ThreadId)
Start collecting profile data in ThreadId and ask the user to hit 〈return〉 to stop the profiler. See
section 4.40 for details on the execution profiler.

8.6 Multi-threaded mixed C and Prolog applications

All foreign-code linked to the multi-threading version of SWI-Prolog should be thread-safe (reen-
trant) or guarded in Prolog using with mutex/2 from simultaneous access from multiple Prolog
threads. If you want to write mixed multi-threaded C and Prolog application you should first famil-
iarise yourself with writing multi-threaded applications in C (C++).

If you are using SWI-Prolog as an embedded engine in a multi-threaded application you can
access the Prolog engine from multiple threads by creating an engine in each thread from which you
call Prolog. Without creating an engine, a thread can only use functions that do not use the term t
type (for example PL new atom()).

The system supports two models. Section 8.6.1 describes the original one-to-one mapping. In
this schema a native thread attaches a Prolog thread if it needs to call Prolog and detaches is when
finished, as opposed to the model from section 8.6.2 where threads temporary use a Prolog engine.

Please note that the interface below will only work if threading in your application is based
on the same thread-library as used to compile SWI-Prolog.

8.6.1 A Prolog thread for each native thread (one-to-one)

In the one-to-one model, the thread that called PL initialise() has a Prolog engine attached.
If another C-thread in the system wishes to call Prolog it must first attach an engine using

SWI-Prolog 5.6 Reference Manual

202 CHAPTER 8. MULTI-THREADED APPLICATIONS

PL thread attach engine() and call PL thread destroy engine() after all Prolog work is finished. This
model is especially suitable with long running threads that need to do Prolog work regularly. See
section 8.6.2 for the alternative many-to-many model.

int PL thread self()
Returns the integer Prolog identifier of the engine or -1 if the calling thread has no Prolog
engine. This function is also provided in the single-threaded version of SWI-Prolog, where it
returns -2.

int PL thread attach engine(const PL thread attr t *attr)
Creates a new Prolog engine in the calling thread. If the calling thread already has an engine
the reference count of the engine is incremented. The attr argument can be NULL to create a
thread with default attributes. Otherwise it is a pointer to a structure with the definition below.
For any field with value ‘0’, the default is used. The cancel field may be filled with a pointer
to a function that is called when PL cleanup() terminates the running Prolog engines. If this
function is not present or returns FALSE pthread cancel() is used.

typedef struct
{ unsigned long local_size; /* Stack sizes (K-bytes) */
unsigned long global_size;
unsigned long trail_size;
unsigned long argument_size;
char * alias; /* alias name */
int (*cancel)(int thread);

} PL_thread_attr_t;

The structure may be destroyed after PL thread attach engine() has returned. On success it
returns the Prolog identifier for the thread (as returned by PL thread self()). If an error occurs,
-1 is returned. If this Prolog is not compiled for multi-threading, -2 is returned.

int PL thread destroy engine()
Destroy the Prolog engine in the calling thread. Only takes effect if PL thread destroy engine()
is called as many times as PL thread attach engine() in this thread. Returns TRUE on success
and FALSE if the calling thread has no engine or this Prolog does not support threads.

Please note that construction and destruction of engines are relatively expensive operations.
Only destroy an engine if performance is not critical and memory is a critical resource.

int PL thread at exit(void (*function)(void *), void *closure, int global)
Register a handle to be called as the Prolog engine is destroyed. The handler function is called
with one void * argument holding closure. If global is TRUE, the handler is installed for all
threads. Globally installed handlers are executed after the thread-local handlers. If the handler
is installed local for the current thread only (global == FALSE) it is stored in the same FIFO
queue as used by thread at exit/1.

8.6.2 Pooling Prolog engines (many-to-many)

In this model Prolog engines live as entities that are independent from threads. If a thread needs to
call Prolog it takes one of the engines from the pool and returns the engine when done. This model is
suitable in the following identified cases:

SWI-Prolog 5.6 Reference Manual

8.6. MULTI-THREADED MIXED C AND PROLOG APPLICATIONS 203

• Compatibility with the single-threaded version
In the single-threaded version, foreign threads must serialise access the the one and only thread
engine. Functions from this section allow sharing one engine among multiple threads.

• Many native threads with infrequent Prolog work
Prolog threads are expensive in terms of memory and time to create and destroy them. Systems
that use a large number of threads that only infrequently need to call Prolog are better take an
engine from a pool and return it there.

• Prolog status must be handed to another thread
This situation has been identified by Uwe Lesta when creating a .NET interface for SWI-Prolog.
.NET distributes work for active internet connection over a pool of threads. If a Prolog engine
contains state for a connection, it must be possible to detach the engine from a thread and
re-attach it to another thread handling the same connection.

PL engine t PL create engine(PL thread attr t *attributes)
Create a new Prolog engine. attributes is described with PL thread attach engine(). Any thread
can make this call after PL initialise() returned success. The returned engine is not attached to
any thread and lives until PL destroy engine() is used on the returned handle.

In the single-threaded version this call always returns NULL, indicating failure.

int PL destroy engine(PL engine t e)
Destroy the given engine. Destroying an engine is only allowed if the engine is not attached to
any thread or attached to the calling thread. On success this function returns TRUE, on failure
the return value is FALSE.

int PL set engine(PL engine t engine, PL engine t *old)
Make the calling thread ready to use engine. If old is non-NULL the current engine associated
with the calling thread is stored at the given location. If engine equals PL ENGINE MAIN the
initial engine is attached to the calling thread. If engine is PL ENGINE CURRENT the engine is
not changed. This can be used to query the current engine. This call returns PL ENGINE SET
if the engine was switched successfully, PL ENGINE INVAL if engine is not a valid engine
handle and PL ENGINE INUSE if the engine is currently in use by another thread.

Engines can be changed at any time. For example, it is allowed to select an engine to initiate a
Prolog goal, detach it and at a later moment execute the goal from another thread. Note however
that the term t, qid t and fid t types are interpreted relative to the engine for which they
are created. Behaviour when passing one of these types from one engine to another is undefined.

In the single-threaded version this call only succeeds if engine refers to the main engine.

Engines in single-threaded SWI-Prolog

In theory it is possible to port the API of section 8.6.2 to the single-threaded version of SWI-Prolog.
This allows C-programs to control multiple Prolog engines concurrently. This has not yet been re-
alised.

SWI-Prolog 5.6 Reference Manual

204 CHAPTER 8. MULTI-THREADED APPLICATIONS

8.7 Multithreading and the XPCE graphics system

GUI applications written in XPCE can benefit from the multi-threaded version of XPCE/SWI-Prolog
if they need to do expensive computations that block to UI in the single-threaded version.

Due to various technical problems on both Windows and Unix/X11 threading is best exploited by
handing long computations to their own thread.

The XPCE message passing system is guarded with a single mutex, which synchronises both
access from Prolog and activation through the GUI. In MS-Windows, GUI events are processed by the
thread that created the window in which the event occurred, whereas in Unix/X11 they are processed
by the thread that dispatches messages.

Some tentative work is underway to improve the integration between XPCE and multi-threaded
SWI-Prolog. There are two sets of support predicates. The first model assumes that XPCE is running
in the main thread and background threads are used for computation. In the second model, XPCE
event dispatching runs in the background, while the foreground thread is used for Prolog.

XPCE in the foreground Using XPCE in the foreground simplifies debugging of the UI and gen-
erally provides the most comfortable development environment. The GUI creates new threads using
thread create/3 and, after work in the thread is completed, the sub-thread signals the main
thread of the the completion using in pce thread/1.

in pce thread(:Goal)
Assuming XPCE is running in the foreground thread, this call gives background threads the
opportunity to make calls to the XPCE thread. A call to in pce thread/1 succeeds im-
mediately, copying Goal to the XPCE thread. Goal is added to the XPCE event-queue and
executed synchronous to normal user events like typing and clicking.

XPCE in the background In this model a thread for running XPCE is created using
pce dispatch/1 and actions are sent to this thread using pce call/1.

pce dispatch(+Options)
Create a Prolog thread with the alias-name pce for XPCE event-handling. In the X11 version
this call creates a thread that executes the X11 event-dispatch loop. In MS-Windows it creates
a thread that executes a windows event-dispatch loop. The XPCE event-handling thread has the
alias pce. Options specifies the thread-attributes as thread create/3.

pce call(:Goal)
Post Goal to the pce thread, executing it synchronous with the thread’s event-loop. The
pce call/1 predicate returns immediately without waiting. Note that Goal is copied to the
pce thread.

For further information about XPCE in threaded applications, please visit
http://gollem.science.uva.nl/twiki/pl/bin/view/Development/MultiThreadsXPCE

SWI-Prolog 5.6 Reference Manual

Foreign Language Interface 9
SWI-Prolog offers a powerful interface to C [Kernighan & Ritchie, 1978]. The main design objectives
of the foreign language interface are flexibility and performance. A foreign predicate is a C-function
that has the same number of arguments as the predicate represented. C-functions are provided to
analyse the passed terms, convert them to basic C-types as well as to instantiate arguments using
unification. Non-deterministic foreign predicates are supported, providing the foreign function with a
handle to control backtracking.

C can call Prolog predicates, providing both an query interface and an interface to extract multiple
solutions from an non-deterministic Prolog predicate. There is no limit to the nesting of Prolog calling
C, calling Prolog, etc. It is also possible to write the ‘main’ in C and use Prolog as an embedded logical
engine.

9.1 Overview of the Interface

A special include file called SWI-Prolog.h should be included with each C-source file that is to be
loaded via the foreign interface. The installation process installs this file in the directory include in
the SWI-Prolog home directory (?- current prolog flag(home, Home).). This C-header
file defines various data types, macros and functions that can be used to communicate with SWI-
Prolog. Functions and macros can be divided into the following categories:

• Analysing Prolog terms

• Constructing new terms

• Unifying terms

• Returning control information to Prolog

• Registering foreign predicates with Prolog

• Calling Prolog from C

• Recorded database interactions

• Global actions on Prolog (halt, break, abort, etc.)

9.2 Linking Foreign Modules

Foreign modules may be linked to Prolog in two ways. Using static linking, the extensions, a (short)
file defining main() which attaches the extensions calls Prolog and the SWI-Prolog kernel distributed
as a C-library are linked together to form a new executable. Using dynamic linking, the extensions

SWI-Prolog 5.6 Reference Manual

206 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

are linked to a shared library (.so file on most Unix systems) or dynamic-link library (.DLL file on
Microsoft platforms) and loaded into the the running Prolog process.1.

9.2.1 What linking is provided?

The static linking schema can be used on all versions of SWI-Prolog. Whether or not dy-
namic linking is supported can be deduced from the prolog-flag open shared object (see
current prolog flag/2). If this prolog-flag yields true, open shared object/2 and re-
lated predicates are defined. See section 9.4 for a suitable high-level interface to these predicates.

9.2.2 What kind of loading should I be using?

All described approaches have their advantages and disadvantages. Static linking is portable and
allows for debugging on all platforms. It is relatively cumbersome and the libraries you need to
pass to the linker may vary from system to system, though the utility program plld described in
section 9.7 often hides these problems from the user.

Loading shared objects (DLL files on Windows) provides sharing and protection and is
generally the best choice. If a saved-state is created using qsave program/[1,2], an
initialization/1 directive may be used to load the appropriate library at startup.

Note that the definition of the foreign predicates is the same, regardless of the linking type used.

9.3 Dynamic Linking of shared libraries

The interface defined in this section allows the user to load shared libraries (.so files on most Unix
systems, .dll files on Windows). This interface is portable to Windows as well as to Unix machines
providing dlopen(2) (Solaris, Linux, FreeBSD, Irix and many more) or shl open(2) (HP/UX).
It is advised to use the predicates from section 9.4 in your application.

open shared object(+File, -Handle)
File is the name of a shared object file (called dynamic load library in MS-Windows).
This file is attached to the current process and Handle is unified with a handle to
the library. Equivalent to open shared object(File, [], Handle). See also
load foreign library/[1,2].

On errors, an exception shared object(Action, Message) is raised. Message is the return
value from dlerror().

open shared object(+File, -Handle, +Options)
As open shared object/2, but allows for additional flags to be passed. Options is a list of
atoms. now implies the symbols are resolved immediately rather than lazy (default). global
implies symbols of the loaded object are visible while loading other shared objects (by default
they are local). Note that these flags may not be supported by your operating system. Check
the documentation of dlopen() or equivalent on your operating system. Unsupported flags are
silently ignored.

1The system also contains code to load .o files directly for some operating systems, notably Unix systems using the
BSD a.out executable format. As the number of Unix platforms supporting this gets quickly smaller and this interface is
difficult to port and slow, it is no longer described in this manual. The best alternatively would be to use the dld package on
machines do not have shared libraries

SWI-Prolog 5.6 Reference Manual

9.4. USING THE LIBRARY SHLIB FOR .DLL AND .SO FILES 207

close shared object(+Handle)
Detach the shared object identified by Handle.

call shared object function(+Handle, +Function)
Call the named function in the loaded shared library. The function is called without arguments
and the return-value is ignored. Normally this function installs foreign language predicates
using calls to PL register foreign().

9.4 Using the library shlib for .DLL and .so files

This section discusses the functionality of the (autoload) library shlib.pl, providing an interface to
shared libraries. This library can only be used if the prolog-flag open shared object is enabled.

load foreign library(+Lib, +Entry)
Search for the given foreign library and link it to the current SWI-Prolog instance. The library
may be specified with or without the extension. First, absolute file name/3 is used to lo-
cate the file. If this succeeds, the full path is passed to the low-level function to open the library.
Otherwise, the plain library name is passed, exploiting the operating-system defined search
mechanism for the shared library. The file search path/2 alias mechanism defines the
alias foreign, which refers to the directories 〈plhome〉/lib/〈arch〉 and 〈plhome〉/lib, in
this order.

If the library can be loaded, the function called Entry will be called without arguments. The
return value of the function is ignored.

The Entry function will normally call PL register foreign() to declare functions in the library
as foreign predicates.

load foreign library(+Lib)
Equivalent to load foreign library/2. For the entry-point, this function first identifies
the ‘base-name’ of the library, which is defined to be the file-name with path nor extension.
It will then try the entry-point install-〈base〉. On failure it will try to function install().
Otherwise no install function will be called.

unload foreign library(+Lib)
If the foreign library defines the function uninstall 〈base〉() or uninstall(), this function will be
called without arguments and its return value is ignored. Next, abolish/2 is used to remove
all known foreign predicates defined in the library. Finally the library itself is detached from
the process.

current foreign library(-Lib, -Predicates)
Query the currently loaded foreign libraries and their predicates. Predicates is a list with ele-
ments of the form Module:Head, indicating the predicates installed with PL register foreign()
when the entry-point of the library was called.

Figure 9.1 connects a Windows message-box using a foreign function. This example was tested
using Windows NT and Microsoft Visual C++ 2.0.

SWI-Prolog 5.6 Reference Manual

208 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

#include <windows.h>
#include <SWI-Prolog.h>

static foreign_t
pl_say_hello(term_t to)
{ char *a;

if (PL_get_atom_chars(to, &a))
{ MessageBox(NULL, a, "DLL test", MB_OK|MB_TASKMODAL);

PL_succeed;
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("say_hello", 1, pl_say_hello, 0);
}

Figure 9.1: MessageBox() example in Windows NT

9.4.1 Static Linking

Below is an outline of the files structure required for statically linking SWI-Prolog with foreign ex-
tensions. \ldots/pl refers to the SWI-Prolog home directory (see current prolog flag/2).
〈arch〉 refers to the architecture identifier that may be obtained using current prolog flag/2.

.../pl/runtime/〈arch〉/libpl.a SWI-Library

.../pl/include/SWI-Prolog.h Include file

.../pl/include/SWI-Stream.h Stream I/O include file

.../pl/include/SWI-Exports Export declarations (AIX only)

.../pl/include/stub.c Extension stub

The definition of the foreign predicates is the same as for dynamic linking. Unlike with dynamic
linking however, there is no initialisation function. Instead, the file \ldots/pl/include/stub.
c may be copied to your project and modified to define the foreign extensions. Below is stub.c,
modified to link the lowercase example described later in this chapter:

#include <stdio.h>
#include <SWI-Prolog.h>

extern foreign_t pl_lowercase(term, term);

PL_extension predicates[] =
{

SWI-Prolog 5.6 Reference Manual

9.5. INTERFACE DATA TYPES 209

/*{ "name", arity, function, PL_FA_<flags> },*/

{ "lowercase", 2 pl_lowercase, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */

};

int
main(int argc, char **argv)
{ PL_register_extensions(predicates);

if (!PL_initialise(argc, argv))
PL_halt(1);

PL_install_readline(); /* delete if not required */

PL_halt(PL_toplevel() ? 0 : 1);
}

Now, a new executable may be created by compiling this file and linking it to libpl.a from the
runtime directory and the libraries required by both the extensions and the SWI-Prolog kernel. This
may be done by hand, or using the plld utility described in secrefplld. If the linking is performed
‘by hand’, the command-line option -dump-runtime-variables (see section 2.4) can be used
to obtain the required paths, libraries and linking options to link the new executable.

9.5 Interface Data types

9.5.1 Type term t: a reference to a Prolog term

The principal data-type is term t. Type term t is what Quintus calls QP term ref. This name
indicates better what the type represents: it is a handle for a term rather than the term itself. Terms
can only be represented and manipulated using this type, as this is the only safe way to ensure the
Prolog kernel is aware of all terms referenced by foreign code and thus allows the kernel to perform
garbage-collection and/or stack-shifts while foreign code is active, for example during a callback from
C.

A term reference is a C unsigned long, representing the offset of a variable on the Prolog
environment-stack. A foreign function is passed term references for the predicate-arguments, one for
each argument. If references for intermediate results are needed, such references may be created us-
ing PL new term ref() or PL new term refs(). These references normally live till the foreign function
returns control back to Prolog. Their scope can be explicitly limited using PL open foreign frame()
and PL close foreign frame()/PL discard foreign frame().

A term t always refers to a valid Prolog term (variable, atom, integer, float or compound term).
A term lives either until backtracking takes us back to a point before the term was created, the
garbage collector has collected the term or the term was created after a PL open foreign frame()
and PL discard foreign frame() has been called.

The foreign-interface functions can either read, unify or write to term-references. In the this
document we use the following notation for arguments of type term t:

SWI-Prolog 5.6 Reference Manual

210 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

term t +t Accessed in read-mode. The ‘+’ indicates the argument is
‘input’.

term t -t Accessed in write-mode.
term t ?t Accessed in unify-mode.

Term references are obtained in any of the following ways.

• Passed as argument
The C-functions implementing foreign predicates are passed their arguments as term-references.
These references may be read or unified. Writing to these variables causes undefined behaviour.

• Created by PL new term ref()
A term created by PL new term ref() is normally used to build temporary terms or be written
by one of the interface functions. For example, PL get arg() writes a reference to the term-
argument in its last argument.

• Created by PL new term refs(int n)
This function returns a set of term refs with the same characteristics as PL new term ref(). See
PL open query().

• Created by PL copy term ref(term t t)
Creates a new term-reference to the same term as the argument. The term may be written to.
See figure 9.3.

Term-references can safely be copied to other C-variables of type term t, but all copies will always
refer to the same term.

term t PL new term ref()
Return a fresh reference to a term. The reference is allocated on the local stack. Allocating a
term-reference may trigger a stack-shift on machines that cannot use sparse-memory manage-
ment for allocation the Prolog stacks. The returned reference describes a variable.

term t PL new term refs(int n)
Return n new term references. The first term-reference is returned. The others are t+1, t+2, etc.
There are two reasons for using this function. PL open query() expects the arguments as a set of
consecutive term references and very time-critical code requiring a number of term-references
can be written as:

pl_mypredicate(term_t a0, term_t a1)
{ term_t t0 = PL_new_term_refs(2);
term_t t1 = t0+1;

...
}

term t PL copy term ref(term t from)
Create a new term reference and make it point initially to the same term as from. This function
is commonly used to copy a predicate argument to a term reference that may be written.

SWI-Prolog 5.6 Reference Manual

9.5. INTERFACE DATA TYPES 211

void PL reset term refs(term t after)
Destroy all term references that have been created after after, including after itself. Any refer-
ence to the invalidated term references after this call results in undefined behaviour.

Note that returning from the foreign context to Prolog will reclaim all references used in
the foreign context. This call is only necessary if references are created inside a loop that
never exits back to Prolog. See also PL open foreign frame(), PL close foreign frame() and
PL discard foreign frame().

Interaction with the garbage collector and stack-shifter

Prolog implements two mechanisms for avoiding stack overflow: garbage collection and stack ex-
pansion. On machines that allow for it, Prolog will use virtual memory management to detect stack
overflow and expand the runtime stacks. On other machines Prolog will reallocate the stacks and up-
date all pointers to them. To do so, Prolog needs to know which data is referenced by C-code. As all
Prolog data known by C is referenced through term references (term t), Prolog has all information
necessary to perform its memory management without special precautions from the C-programmer.

9.5.2 Other foreign interface types

atom t An atom in Prologs internal representation. Atoms are pointers to an opaque structure. They
are a unique representation for represented text, which implies that atom A represents the same
text as atom B if-and-only-if A and B are the same pointer.

Atoms are the central representation for textual constants in Prolog The transformation of C a
character string to an atom implies a hash-table lookup. If the same atom is needed often, it is
advised to store its reference in a global variable to avoid repeated lookup.

functor t A functor is the internal representation of a name/arity pair. They are used to find the name
and arity of a compound term as well as to construct new compound terms. Like atoms they
live for the whole Prolog session and are unique.

predicate t Handle to a Prolog predicate. Predicate handles live forever (although they can loose
their definition).

qid t Query Identifier. Used by PL open query()/PL next solution()/PL close query() to handle
backtracking from C.

fid t Frame Identifier. Used by PL open foreign frame()/PL close foreign frame().

module t A module is a unique handle to a Prolog module. Modules are used only to call predicates
in a specific module.

foreign t Return type for a C-function implementing a Prolog predicate.

control t Passed as additional argument to non-deterministic foreign functions. See PL retry*() and
PL foreign context*().

install t Type for the install() and uninstall() functions of shared or dynamic link libraries. See se-
crefshlib.

SWI-Prolog 5.6 Reference Manual

212 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int64 t Actually part of the C99 standard rather than Prolog. As of version 5.5.6, Prolog integers are
64-bit on all hardware. The C99 type int64 t is defined in the stdint.h standard header and
provides platform independent 64-bit integers. Portable code accessing Prolog should use this
type to exchange integer values. Please note that PL get long() can return FALSE on Prolog
integers outside the long domain. Robust code should not assume any of the integer fetching
functions to succeed if the Prolog term is know to be an integer.

9.6 The Foreign Include File

9.6.1 Argument Passing and Control

If Prolog encounters a foreign predicate at run time it will call a function specified in the predicate
definition of the foreign predicate. The arguments 1, . . . , 〈arity〉 pass the Prolog arguments to the goal
as Prolog terms. Foreign functions should be declared of type foreign t. Deterministic foreign
functions have two alternatives to return control back to Prolog:

(return) foreign t PL succeed()
Succeed deterministically. PL succeed is defined as return TRUE.

(return) foreign t PL fail()
Fail and start Prolog backtracking. PL fail is defined as return FALSE.

Non-deterministic Foreign Predicates

By default foreign predicates are deterministic. Using the PL FA NONDETERMINISTIC attribute
(see PL register foreign()) it is possible to register a predicate as a non-deterministic predicate. Writ-
ing non-deterministic foreign predicates is slightly more complicated as the foreign function needs
context information for generating the next solution. Note that the same foreign function should be
prepared to be simultaneously active in more than one goal. Suppose the natural number below n/2
is a non-deterministic foreign predicate, backtracking over all natural numbers lower than the first
argument. Now consider the following predicate:

quotient_below_n(Q, N) :-
natural_number_below_n(N, N1),
natural_number_below_n(N, N2),
Q =:= N1 / N2, !.

In this predicate the function natural number below n/2 simultaneously generates solutions for both
its invocations.

Non-deterministic foreign functions should be prepared to handle three different calls from Prolog:

• Initial call (PL FIRST CALL)
Prolog has just created a frame for the foreign function and asks it to produce the first answer.

• Redo call (PL REDO)
The previous invocation of the foreign function associated with the current goal indicated it was
possible to backtrack. The foreign function should produce the next solution.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 213

• Terminate call (PL CUTTED)
The choice point left by the foreign function has been destroyed by a cut. The foreign function
is given the opportunity to clean the environment.

Both the context information and the type of call is provided by an argument of type control t
appended to the argument list for deterministic foreign functions. The macro PL foreign control()
extracts the type of call from the control argument. The foreign function can pass a context han-
dle using the PL retry*() macros and extract the handle from the extra argument using the
PL foreign context*() macro.

(return) foreign t PL retry(long)
The foreign function succeeds while leaving a choice point. On backtracking over this
goal the foreign function will be called again, but the control argument now indicates it is
a ‘Redo’ call and the macro PL foreign context() returns the handle passed via PL retry().
This handle is a 30 bits signed value (two bits are used for status indication). Defined as
return PL retry(n). See also PL succeed().

(return) foreign t PL retry address(void *)
As PL retry(), but ensures an address as returned by malloc() is correctly recovered by
PL foreign context address(). Defined as return PL retry address(n). See also
PL succeed().

int PL foreign control(control t)
Extracts the type of call from the control argument. The return values are described above. Note
that the function should be prepared to handle the PL CUTTED case and should be aware that
the other arguments are not valid in this case.

long PL foreign context(control t)
Extracts the context from the context argument. In the call type is PL FIRST CALL the context
value is 0L. Otherwise it is the value returned by the last PL retry() associated with this goal
(both if the call type is PL REDO as PL CUTTED).

void * PL foreign context address(control t)
Extracts an address as passed in by PL retry address().

Note: If a non-deterministic foreign function returns using PL succeed or PL fail, Prolog assumes
the foreign function has cleaned its environment. No call with control argument PL CUTTED will
follow.

The code of figure 9.2 shows a skeleton for a non-deterministic foreign predicate definition.

9.6.2 Atoms and functors

The following functions provide for communication using atoms and functors.

atom t PL new atom(const char *)
Return an atom handle for the given C-string. This function always succeeds. The returned
handle is valid as long as the atom is referenced (see section 9.6.2).

SWI-Prolog 5.6 Reference Manual

214 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

typedef struct /* define a context structure */
{ ...
} context;

foreign_t
my_function(term_t a0, term_t a1, control_t handle)
{ struct context * ctxt;

switch(PL_foreign_control(handle))
{ case PL_FIRST_CALL:

ctxt = malloc(sizeof(struct context));
...
PL_retry_address(ctxt);

case PL_REDO:
ctxt = PL_foreign_context_address(handle);
...
PL_retry_address(ctxt);

case PL_CUTTED:
ctxt = PL_foreign_context_address(handle);
...
free(ctxt);
PL_succeed;

}
}

Figure 9.2: Skeleton for non-deterministic foreign functions

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 215

const char* PL atom chars(atom t atom)
Return a C-string for the text represented by the given atom. The returned text will not be
changed by Prolog. It is not allowed to modify the contents, not even ‘temporary’ as the string
may reside in read-only memory. The returned string becomes invalid if the atom is garbage-
collected (see section 9.6.2). Foreign functions that require the text from an atom passed in a
term t normally use PL get atom chars() or PL get atom nchars().

functor t PL new functor(atom t name, int arity)
Returns a functor identifier, a handle for the name/arity pair. The returned handle is valid for
the entire Prolog session.

atom t PL functor name(functor t f)
Return an atom representing the name of the given functor.

int PL functor arity(functor t f)
Return the arity of the given functor.

Atoms and atom-garbage collection

With the introduction of atom-garbage collection in version 3.3.0, atoms no longer live as long as the
process. Instead, their lifetime is guaranteed only as long as they are referenced. In the single-threaded
version, atom garbage collections are only invoked at the call-port. In the multi-threaded version (see
section 8, they appear asynchronously, except for the invoking thread.

For dealing with atom garbage collection, two additional functions are provided:

void PL register atom(atom t atom)
Increment the reference count of the atom by one. PL new atom() performs this automatically,
returning an atom with a reference count of at least one.2

void PL unregister atom(atom t atom)
Decrement the reference count of the atom. If the reference-count drops below zero, an assertion
error is raised.

Please note that the following two calls are different with respect to atom garbage collection:

PL_unify_atom_chars(t, "text");
PL_unify_atom(t, PL_new_atom("text"));

The latter increments the reference count of the atom text, which effectively ensures the atom will
never be collected. It is advised to use the * chars() or * nchars() functions whenever applicable.

9.6.3 Analysing Terms via the Foreign Interface

Each argument of a foreign function (except for the control argument) is of type term t, an opaque
handle to a Prolog term. Three groups of functions are available for the analysis of terms. The first
just validates the type, like the Prolog predicates var/1, atom/1, etc and are called PL is *().
The second group attempts to translate the argument into a C primitive type. These predicates take a
term t and a pointer to the appropriate C-type and return TRUE or FALSE depending on successful
or unsuccessful translation. If the translation fails, the pointed-to data is never modified.

2Otherwise asynchronous atom garbage collection might destroy the atom before it is used.

SWI-Prolog 5.6 Reference Manual

216 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

Testing the type of a term

int PL term type(term t)
Obtain the type of a term, which should be a term returned by one of the other interface pred-
icates or passed as an argument. The function returns the type of the Prolog term. The type
identifiers are listed below. Note that the extraction functions PL ge t*() also validate the
type and thus the two sections below are equivalent.

if (PL_is_atom(t))
{ char *s;

PL_get_atom_chars(t, &s);
...;

}

or

char *s;
if (PL_get_atom_chars(t, &s))
{ ...;
}

PL VARIABLE An unbound variable. The value of term as such is a
unique identifier for the variable.

PL ATOM A Prolog atom.
PL STRING A Prolog string.
PL INTEGER A Prolog integer.
PL FLOAT A Prolog floating point number.
PL TERM A compound term. Note that a list is a compound term

./2.

The functions PL is 〈type〉 are an alternative to PL term type(). The test
PL is variable(term) is equivalent to PL term type(term) == PL VARIABLE,
but the first is considerably faster. On the other hand, using a switch over PL term type() is faster and
more readable then using an if-then-else using the functions below. All these functions return either
TRUE or FALSE.

int PL is variable(term t)
Returns non-zero if term is a variable.

int PL is ground(term t)
Returns non-zero if term is a ground term. See also ground/1. This function is cycle-safe.

int PL is atom(term t)
Returns non-zero if term is an atom.

int PL is string(term t)
Returns non-zero if term is a string.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 217

int PL is integer(term t)
Returns non-zero if term is an integer.

int PL is float(term t)
Returns non-zero if term is a float.

int PL is compound(term t)
Returns non-zero if term is a compound term.

int PL is functor(term t, functor t)
Returns non-zero if term is compound and its functor is functor. This test is equivalent to
PL get functor(), followed by testing the functor, but easier to write and faster.

int PL is list(term t)
Returns non-zero if term is a compound term with functor ./2 or the atom [].

int PL is atomic(term t)
Returns non-zero if term is atomic (not variable or compound).

int PL is number(term t)
Returns non-zero if term is an integer or float.

Reading data from a term

The functions PL get *() read information from a Prolog term. Most of them take two arguments.
The first is the input term and the second is a pointer to the output value or a term-reference.

int PL get atom(term t +t, atom t *a)
If t is an atom, store the unique atom identifier over a. See also PL atom chars() and
PL new atom(). If there is no need to access the data (characters) of an atom, it is advised to
manipulate atoms using their handle. As the atom is referenced by t, it will live at least as long
as t does. If longer live-time is required, the atom should be locked using PL register atom().

int PL get atom chars(term t +t, char **s)
If t is an atom, store a pointer to a 0-terminated C-string in s. It is explicitly not allowed to
modify the contents of this string. Some built-in atoms may have the string allocated in read-
only memory, so ‘temporary manipulation’ can cause an error.

int PL get string chars(term t +t, char **s, int *len)
If t is a string object, store a pointer to a 0-terminated C-string in s and the length of the string
in len. Note that this pointer is invalidated by backtracking, garbage-collection and stack-shifts,
so generally the only save operations are to pass it immediately to a C-function that doesn’t
involve Prolog.

int PL get chars(term t +t, char **s, unsigned flags)
Convert the argument term t to a 0-terminated C-string. flags is a bitwise disjunction from two
groups of constants. The first specifies which term-types should converted and the second how
the argument is stored. Below is a specification of these constants. BUF RING implies, if the
data is not static (as from an atom), the data is copied to the next buffer from a ring of 16 buffers.

SWI-Prolog 5.6 Reference Manual

218 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

This is a convenient way of converting multiple arguments passed to a foreign predicate to C-
strings. If BUF MALLOC is used, the data must be freed using PL free() when not needed any
longer.

With the introduction of wide-characters (see section 2.17.1), not all atoms can be converted into
a char*. This function fails if t is of the wrong type, but also if the text cannot be represented.
See the REP * flags below for details.

CVT ATOM Convert if term is an atom
CVT STRING Convert if term is a string
CVT LIST Convert if term is a list of integers between 1 and 255
CVT INTEGER Convert if term is an integer (using %d)
CVT FLOAT Convert if term is a float (using %f)
CVT NUMBER Convert if term is a integer or float
CVT ATOMIC Convert if term is atomic
CVT VARIABLE Convert variable to print-name
CVT WRITE Convert any term that is not converted by any of the

other flags using write/1. If no BUF * is provided,
BUF RING is implied.

CVT ALL Convert if term is any of the above, except for
CVT VARIABLE and CVT WRITE

CVT EXCEPTION If conversion fails due to a type error, raise a Prolog type
error exception in addition to failure

BUF DISCARDABLE Data must copied immediately
BUF RING Data is stored in a ring of buffers
BUF MALLOC Data is copied to a new buffer returned by

PL malloc(3). When no longer needed the user
must call PL free() on the data.

REP ISO LATIN 1 (0, default). Text is in ISO Latin-1 encoding and the call
fails if text cannot be represented.

REP UTF8 Convert the text to a UTF-8 string. This works for all text.
REP MB Convert to default locale-defined 8-bit string. Success de-

pends on the locale. Conversion is done using the wcr-
tomb() C-library function.

int PL get list chars(+term t l, char **s, unsigned flags)
Same as PL get chars(l, s, CVT LIST|flags), provided flags contains no of the
CVT * flags.

int PL get integer(+term t t, int *i)
If t is a Prolog integer, assign its value over i. On 32-bit machines, this is the same as
PL get long(), but avoids a warning from the compiler. See also PL get long().

int PL get long(term t +t, long *i)
If t is a Prolog integer that can be represented as a long, assign its value over i. If t is an integer
that cannot be represented by a C long, this function returns FALSE. If t is a floating point
number that can be represented as a long, this function succeeds as well. See also PL get int64()

int PL get int64(term t +t, int64 t *i)
If t is a Prolog integer or float that can be represented as a int64 t, assign its value over

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 219

i. Currently all Prolog integers can be represented using this type, but this might change if
SWI-Prolog introduces unbounded integers.

int PL get bool(term t +t, int *val)
If t has the value true or false, set val to the C constant TRUE or FALSE and return success.
otherwise return failure.

int PL get pointer(term t +t, void **ptr)
In the current system, pointers are represented by Prolog integers, but need some manip-
ulation to make sure they do not get truncated due to the limited Prolog integer range.
PL put pointer()/PL get pointer() guarantees pointers in the range of malloc() are handled with-
out truncating.

int PL get float(term t +t, double *f)
If t is a float or integer, its value is assigned over f.

int PL get functor(term t +t, functor t *f)
If t is compound or an atom, the Prolog representation of the name-arity pair will be assigned
over f. See also PL get name arity() and PL is functor().

int PL get name arity(term t +t, atom t *name, int *arity)
If t is compound or an atom, the functor-name will be assigned over name and the arity over
arity. See also PL get functor() and PL is functor().

int PL get module(term t +t, module t *module)
If t is an atom, the system will lookup or create the corresponding module and assign an opaque
pointer to it over module,.

int PL get arg(int index, term t +t, term t -a)
If t is compound and index is between 1 and arity (including), assign a with a term-reference to
the argument.

int PL get arg(int index, term t +t, term t -a)
Same as PL get arg(), but no checking is performed, nor whether t is actually a term, nor
whether index is a valid argument-index.

Exchanging text using length and string

All internal text-representation of SWI-Prolog is represented using char * plus length and allow
for 0-bytes in them. The foreign library supports this by implementing a * nchars() function for each
applicable * chars() function. Below we briefly present the signatures of these functions. For full
documentation consult the * chars() function.

int PL get atom nchars(term t t, unsigned int *len, char **s)
See PL get atom chars().

int PL get list nchars(term t t, unsigned int *len, char **s)
See PL get list chars().

int PL get nchars(term t t, unsigned int *len, char **s, unsigned int flags)
See PL get chars().

SWI-Prolog 5.6 Reference Manual

220 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL put atom nchars(term t t, unsigned int len, const char *s)
See PL put atom chars().

int PL put string nchars(term t t, unsigned int len, const char *s)
See PL put string chars().

int PL put list ncodes(term t t, unsigned int len, const char *s)
See PL put list codes().

int PL put list nchars(term t t, unsigned int len, const char *s)
See PL put list chars().

int PL unify atom nchars(term t t, unsigned int len, const char *s)
See PL unify atom chars().

int PL unify string nchars(term t t, unsigned int len, const char *s)
See PL unify string chars().

int PL unify list ncodes(term t t, unsigned int len, const char *s)
See PL unify codes().

int PL unify list nchars(term t t, unsigned int len, const char *s)
See PL unify list chars().

In addition, the following functions are available for creating and inspecting atoms:

atom t PL new atom nchars(unsigned int len, const char *s)
Create a new atom as PL new atom(), but from length and characters.

const char * PL atom nchars(atom t a, unsigned int *len)
Extract text and length of an atom.

Wide character versions

Support for exchange of wide character strings is still under considerations. The functions dealing
with 8-bit character strings return failure when operating on a wide character atom or Prolog string
object. The functions below can extract and unify bith 8-bit and wide atoms and string objects. Wide
character strings are represented as C arrays of objects of the type pl wchar t, which is guaranteed
to be the same as wchar t on platforms supporting this type. For example, on MS-Windows, this
represents 16-bit UCS2 characters, while using the GNU C library (glibc) this represents 32-bit UCS4
characters.

atom t PL new atom wchars(int len, const pl wchar t *s)
Create atom from wide-character string as PL new atom nchars() does for ISO-Latin-1 strings.
It s only contains ISO-Latin-1 characters a normal byte-array atom is created.

pl wchar t* PL atom wchars(atom t atom, int *len)
Extract characters from a wide-character atom. Fails (returns NULL) if atom is not a wide-
character atom. This is the wide-character version of PL atom nchars(). Note that only one
of these functions succeeds on a particular atom. Especially, after creating an atom with
PL new atom wchars(), extracting the text using PL atom wchars() will fail of the atom only
contains ISO-Latin-1 characters.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 221

int PL get wchars(term t t, unsigned int *len, pl wchar t **s, unsigned flags)
Wide-character version of PL get chars(). The flags argument is the same as for PL get chars().

int PL unify wchars(term t t, int type, unsigned int len, const pl wchar t *s)
Unify t with a textual representation of the C wide character array s. The argtype argument
defines the Prolog representation and is one of PL ATOM, PL STRING, PL CODE LIST or
PL CHAR LIST.

int PL unify wchars diff(term t +t, term t -tail, int type, unsigned int len, const pl wchar t *s)
Difference list version of PL unify wchars(), only supporting the types PL CODE LIST and
PL CHAR LIST. It serves two purposes. It allows for returning very long lists from data read
from a stream without the need for a resizing buffer in C and the use of difference lists is
often practical for further processing in Prolog. Examples can be found in packages/clib/
readutil.c from the source distribution.

Reading a list

The functions from this section are intended to read a Prolog list from C. Suppose we expect a list of
atoms, the following code will print the atoms, each on a line:

foreign_t
pl_write_atoms(term_t l)
{ term_t head = PL_new_term_ref(); /* variable for the elements */
term_t list = PL_copy_term_ref(l); /* copy as we need to write */

while(PL_get_list(list, head, list))
{ char *s;

if (PL_get_atom_chars(head, &s))
Sprintf("%s\n", s);

else
PL_fail;

}

return PL_get_nil(list); /* test end for [] */
}

int PL get list(term t +l, term t -h, term t -t)
If l is a list and not [] assign a term-reference to the head to h and to the tail to t.

int PL get head(term t +l, term t -h)
If l is a list and not [] assign a term-reference to the head to h.

int PL get tail(term t +l, term t -t)
If l is a list and not [] assign a term-reference to the tail to t.

int PL get nil(term t +l)
Succeeds if represents the atom [].

SWI-Prolog 5.6 Reference Manual

222 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

An example: defining write/1 in C

Figure 9.3 shows a simplified definition of write/1 to illustrate the described functions. This sim-
plified version does not deal with operators. It is called display/1, because it mimics closely the
behaviour of this Edinburgh predicate.

9.6.4 Constructing Terms

Terms can be constructed using functions from the PL put *() and PL cons *() families. This
approach builds the term ‘inside-out’, starting at the leaves and subsequently creating compound
terms. Alternatively, terms may be created ‘top-down’, first creating a compound holding only vari-
ables and subsequently unifying the arguments. This section discusses functions for the first approach.
This approach is generally used for creating arguments for PL call() and PL open query.

void PL put variable(term t -t)
Put a fresh variable in the term. The new variable lives on the global stack. Note that the initial
variable lives on the local stack and is lost after a write to the term-references. After using this
function, the variable will continue to live.

void PL put atom(term t -t, atom t a)
Put an atom in the term reference from a handle. See also PL new atom() and PL atom chars().

void PL put atom chars(term t -t, const char *chars)
Put an atom in the term-reference constructed from the 0-terminated string. The string itself
will never be references by Prolog after this function.

void PL put string chars(term t -t, const char *chars)
Put a zero-terminated string in the term-reference. The data will be copied. See also
PL put string nchars().

void PL put string nchars(term t -t, unsigned int len, const char *chars)

Put a string, represented by a length/start pointer pair in the term-reference. The data will be
copied. This interface can deal with 0-bytes in the string. See also section 9.6.19.

void PL put list chars(term t -t, const char *chars)
Put a list of ASCII values in the term-reference.

void PL put integer(term t -t, long i)
Put a Prolog integer in the term reference.

void PL put int64(term t -t, int64 t i)
Put a Prolog integer in the term reference.

void PL put pointer(term t -t, void *ptr)
Put a Prolog integer in the term-reference. Provided ptr is in the ‘malloc()-area’,
PL get pointer() will get the pointer back.

void PL put float(term t -t, double f)
Put a floating-point value in the term-reference.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 223

foreign_t
pl_display(term_t t)
{ functor_t functor;
int arity, len, n;
char *s;

switch(PL_term_type(t))
{ case PL_VARIABLE:
case PL_ATOM:
case PL_INTEGER:
case PL_FLOAT:
PL_get_chars(t, &s, CVT_ALL);
Sprintf("%s", s);
break;

case PL_STRING:
PL_get_string_chars(t, &s, &len);
Sprintf("\"%s\"", s);
break;

case PL_TERM:
{ term_t a = PL_new_term_ref();

PL_get_name_arity(t, &name, &arity);
Sprintf("%s(", PL_atom_chars(name));
for(n=1; n<=arity; n++)
{ PL_get_arg(n, t, a);
if (n > 1)
Sprintf(", ");

pl_display(a);
}
Sprintf(")");
break;

default:
PL_fail; /* should not happen */

}

PL_succeed;
}

Figure 9.3: A Foreign definition of display/1

SWI-Prolog 5.6 Reference Manual

224 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

void PL put functor(term t -t, functor t functor)
Create a new compound term from functor and bind t to this term. All arguments of the term
will be variables. To create a term with instantiated arguments, either instantiate the arguments
using the PL unify *() functions or use PL cons functor().

void PL put list(term t -l)
Same as PL put functor(l, PL new functor(PL new atom("."), 2)).

void PL put nil(term t -l)
Same as PL put atom chars("[]").

void PL put term(term t -t1, term t +t2)
Make t1 point to the same term as t2.

void PL cons functor(term t -h, functor t f, . . .)
Create a term, whose arguments are filled from variable argument list holding the same number
of term t objects as the arity of the functor. To create the term animal(gnu, 50), use:

{ term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
term_t t = PL_new_term_ref();
functor_t animal2;

/* animal2 is a constant that may be bound to a global
variable and re-used

*/
animal2 = PL_new_functor(PL_new_atom("animal"), 2);

PL_put_atom_chars(a1, "gnu");
PL_put_integer(a2, 50);
PL_cons_functor(t, animal2, a1, a2);

}

After this sequence, the term-references a1 and a2 may be used for other purposes.

void PL cons functor v(term t -h, functor t f, term t a0)
Creates a compound term like PL cons functor(), but a0 is an array of term references as re-
turned by PL new term refs(). The length of this array should match the number of arguments
required by the functor.

void PL cons list(term t -l, term t +h, term t +t)
Create a list (cons-) cell in l from the head and tail. The code below creates a list of atoms from
a char **. The list is built tail-to-head. The PL unify *() functions can be used to build
a list head-to-tail.

void
put_list(term_t l, int n, char **words)
{ term_t a = PL_new_term_ref();

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 225

PL_put_nil(l);
while(--n >= 0)
{ PL_put_atom_chars(a, words[n]);
PL_cons_list(l, a, l);

}
}

Note that l can be redefined within a PL cons list call as shown here because operationally
its old value is consumed before its new value is set.

9.6.5 Unifying data

The functions of this sections unify terms with other terms or translated C-data structures. Except
for PL unify(), the functions of this section are specific to SWI-Prolog. They have been introduced
to make translation of old code easier, but also because they provide for a faster mechanism for
returning data to Prolog that requires less term-references. Consider the case where we want a foreign
function to return the host name of the machine Prolog is running on. Using the PL get *() and
PL put *() functions, the code becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
{ term_t tmp = PL_new_term_ref();

PL_put_atom_chars(tmp, buf);
return PL_unify(name, tmp);

}

PL_fail;
}

Using PL unify atom chars(), this becomes:

foreign_t
pl_hostname(term_t name)
{ char buf[100];

if (gethostname(buf, sizeof(buf)))
return PL_unify_atom_chars(name, buf);

PL_fail;
}

int PL unify(term t ?t1, term t ?t2)
Unify two Prolog terms and return non-zero on success.

SWI-Prolog 5.6 Reference Manual

226 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int PL unify atom(term t ?t, atom t a)
Unify t with the atom a and return non-zero on success.

int PL unify chars(term t ?t, int flags, unsigned int len, const char *chars)
New function do deal with unification of char* with various encodings to a Prolog represen-
tation. The flags argument is a bitwise or specifying the Prolog target type and the encoding
of chars. Prolog types is one of PL ATOM, PL STRING, PL CODE LIST or PL CHAR LIST.
Representations is one of REP ISO LATIN T, REP UTF8 or REP MB. See PL get chars() for
a definition of the representation types. If len is -1, chars is assumed to be null-terminated.

int PL unify atom chars(term t ?t, const char *chars)
Unify t with an atom created from chars and return non-zero on success.

int PL unify list chars(term t ?t, const char *chars)
Unify t with a list of ASCII characters constructed from chars.

void PL unify string chars(term t ?t, const char *chars)
Unify t with a Prolog string object created from the zero-terminated string chars. The data will
be copied. See also PL unify string nchars().

void PL unify string nchars(term t ?t, unsigned int len, const char *chars)
Unify t with a Prolog string object created from the string created from the len/chars pair. The
data will be copied. This interface can deal with 0-bytes in the string. See also section 9.6.19.

int PL unify integer(term t ?t, long n)
Unify t with a Prolog integer from n.

int PL unify int64(term t ?t, int64 t n)
Unify t with a Prolog integer from n.

int PL unify float(term t ?t, double f)
Unify t with a Prolog float from f.

int PL unify pointer(term t ?t, void *ptr)
Unify t with a Prolog integer describing the pointer. See also PL put pointer() and
PL get pointer().

int PL unify functor(term t ?t, functor t f)
If t is a compound term with the given functor, just succeed. If it is unbound, create a term
and bind the variable, else fails. Not that this function does not create a term if the argument is
already instantiated.

int PL unify list(term t ?l, term t -h, term t -t)
Unify l with a list-cell (./2). If successful, write a reference to the head of the list to h and
a reference to the tail of the list in t. This reference may be used for subsequent calls to this
function. Suppose we want to return a list of atoms from a char **. We could use the example
described by PL put list(), followed by a call to PL unify(), or we can use the code below. If
the predicate argument is unbound, the difference is minimal (the code based on PL put list() is
probably slightly faster). If the argument is bound, the code below may fail before reaching the
end of the word-list, but even if the unification succeeds, this code avoids a duplicate (garbage)
list and a deep unification.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 227

foreign_t
pl_get_environ(term_t env)
{ term_t l = PL_copy_term_ref(env);
term_t a = PL_new_term_ref();
extern char **environ;
char **e;

for(e = environ; *e; e++)
{ if (!PL_unify_list(l, a, l) ||

!PL_unify_atom_chars(a, *e))
PL_fail;

}

return PL_unify_nil(l);
}

int PL unify nil(term t ?l)
Unify l with the atom [].

int PL unify arg(int index, term t ?t, term t ?a)
Unifies the index-th argument (1-based) of t with a.

int PL unify term(term t ?t, . . .)
Unify t with a (normally) compound term. The remaining arguments is a sequence of a type
identifier, followed by the required arguments. This predicate is an extension to the Quintus
and SICStus foreign interface from which the SWI-Prolog foreign interface has been derived,
but has proved to be a powerful and comfortable way to create compound terms from C. Due to
the vararg packing/unpacking and the required type-switching this interface is slightly slower
than using the primitives. Please note that some bad C-compilers have fairly low limits on the
number of arguments that may be passed to a function.

Special attention is required when passing numbers. C ‘promotes’ any integral smaller than
int to int. I.e. the types char, short and int are all passed as int. In addition, on most
32-bit platforms int and long are the same. Up-to version 4.0.5, only PL INTEGER could be
specified which was taken from the stack as long. Such code fails when passing small integral
types on machines where int is smaller than long. It is advised to use PL SHORT, PL INT
or PL LONG as appropriate. Similar, C compilers promote float to double and therefore
PL FLOAT and PL DOUBLE are synonyms.

The type identifiers are:

PL VARIABLE none
No op. Used in arguments of PL FUNCTOR.

PL BOOL int
Unify the argument with true or false.

PL ATOM atom t
Unify the argument with an atom, as in PL unify atom().

SWI-Prolog 5.6 Reference Manual

228 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL CHARS const char *
Unify the argument with an atom, constructed from the C char *, as in
PL unify atom chars().

PL NCHARS unsigned int, const char *
Unify the argument with an atom, constructed from length and char* as in
PL unify atom nchars().

PL UTF8 CHARS const char *
Create an atom from a UTF-8 string.

PL UTF8 STRING const char *
Create a packed string object from a UTF-8 string.

PL MBCHARS const char *
Create an atom from a multi-byte string in the current locale.

PL MBCODES const char *
Create a list of character codes from a multi-byte string in the current locale.

PL MBSTRING const char *
Create a packed string object from a multi-byte string in the current locale.

PL NWCHARS unsigned int, const wchar t *
Create an atom from a length and a wide character pointer.

PL NWCODES unsigned int, const wchar t *
Create an list of character codes from a length and a wide character pointer.

PL NWSTRING unsigned int, const wchar t *
Create a packed string object from a length and a wide character pointer.

PL SHORT short
Unify the argument with an integer, as in PL unify integer(). As short is promoted to
int, PL SHORT is a synonym for PL INT.

PL INT int
Unify the argument with an integer, as in PL unify integer().

PL LONG long
Unify the argument with an integer, as in PL unify integer().

PL INTEGER long
Unify the argument with an integer, as in PL unify integer().

PL DOUBLE double
Unify the argument with a float, as in PL unify float(). Note that, as the argument is
passed using the C vararg conventions, a float must be casted to a double explicitly.

PL FLOAT double
Unify the argument with a float, as in PL unify float().

PL POINTER void *
Unify the argument with a pointer, as in PL unify pointer().

PL STRING const char *
Unify the argument with a string object, as in PL unify string chars().

PL TERM term t
Unify a subterm. Note this may the return value of a PL new term ref() call to get access
to a variable.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 229

PL FUNCTOR functor t, . . .
Unify the argument with a compound term. This specification should be followed by
exactly as many specifications as the number of arguments of the compound term.

PL FUNCTOR CHARS const char *name, int arity, . . .
Create a functor from the given name and arity and then behave as PL FUNCTOR.

PL LIST int length, . . .
Create a list of the indicated length. The following arguments contain the elements of the
list.

For example, to unify an argument with the term language(dutch), the following skeleton
may be used:

static functor_t FUNCTOR_language1;

static void
init_constants()
{ FUNCTOR_language1 = PL_new_functor(PL_new_atom("language"), 1);
}

foreign_t
pl_get_lang(term_t r)
{ return PL_unify_term(r,

PL_FUNCTOR, FUNCTOR_language1,
PL_CHARS, "dutch");

}

install_t
install()
{ PL_register_foreign("get_lang", 1, pl_get_lang, 0);
init_constants();

}

int PL chars to term(const char *chars, term t -t)
Parse the string chars and put the resulting Prolog term into t. chars may or may not be closed
using a Prolog full-stop (i.e., a dot followed by a blank). Returns FALSE if a syntax error
was encountered and TRUE after successful completion. In addition to returning FALSE, the
exception-term is returned in t on a syntax error. See also term to atom/2.

The following example build a goal-term from a string and calls it.

int
call_chars(const char *goal)
{ fid_t fid = PL_open_foreign_frame();
term_t g = PL_new_term_ref();
BOOL rval;

SWI-Prolog 5.6 Reference Manual

230 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

if (PL_string_to_term(goal, g))
rval = PL_call(goal, NULL);

else
rval = FALSE;

PL_discard_foreign_frame(fid);
return rval;

}

...
call_chars("consult(load)");
...

char * PL quote(int chr, const char *string)
Return a quoted version of string. If chr is ’\’’, the result is a quoted atom. If chr is ’"’,
the result is a string. The result string is stored in the same ring of buffers as described with the
BUF RING argument of PL get chars();

In the current implementation, the string is surrounded by chr and any occurrence of chr is
doubled. In the future the behaviour will depend on the character escape prolog-flag.
See current prolog flag/2.

9.6.6 BLOBS: Using atoms to store arbitrary binary data

SWI-Prolog atoms as well as strings can represent arbitrary binary data of arbitrary length. This
facility is attractive for storing foreign data such as images in an atom. An atom is a unique handle to
this data and the atom garbage collector is able to destroy atoms that are no longer referenced by the
Prolog engine. This property of atoms makes them attractive as a handle to foreign resources, such as
Java atoms, Microsoft’s COM objects, etc., providing safe combined garbage collection.

To exploit these features safely and in an organised manner the SWI-Prolog foreign interface
allows for creating ‘atoms’ with additional type information. The type is represented by a structure
holding C function pointers that tell Prolog how to handle releasing the atom, writing it, sorting it,
etc. Two atoms created with different types can represent the same sequence of bytes. Atoms are first
ordered on the rank number of the type and then on the result of the compare() function. Rank
numbers are assigned when the type is registered.

Defining a BLOB type

The type PL blob t represents a structure with the layout displayed above. The structure contains
additional fields at the . . . for internal bookkeeping as well as future extension.

typedef struct PL_blob_t
{ unsigned long magic; /* PL_BLOB_MAGIC */
unsigned long flags; /* Bitwise or of PL_BLOB_* */
char * name; /* name of the type */
int (*release)(atom_t a);
int (*compare)(atom_t a, atom_t b);
int (*write)(IOSTREAM *s, atom_t a, int flags);

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 231

...
} PL_blob_t;

For each type exactly one such structure should be allocated. Its first field must be initialised to
PL BLOB MAGIC. The flags is a bitwise or of the following constants:

PL BLOB TEXT
If specified the blob is assumed to contain text and is considered a normal Prolog atom.

PL BLOB UNIQUE
If specified the system ensures that the blob-handle is a unique reference for a blob with the
given type, length and content. If this flag is not specified each lookup creates a new blob.

PL BLOB NOCOPY
By default the content of the blob is copied. Using this flag the blob references the external
data directly. The user must ensure the provided pointer is valid as long as the atom lives. If
PL BLOB UNIQUE is also specified uniqueness is determined by comparing the pointer rather
than the data pointed at.

The name field represents the type name as available to Prolog. See also current blob/2.
The other field are function pointers that must be initialised to proper functions or NULL to get the
default behaviour of built-in atoms. Below are the defined member functions:

void acquire(atom t a)
Called if a new blob of this type is created through PL put blob() or PL unify blob(). This
callback may be used together with the release hook to deal with reference counted external
objects.

int release(atom t a)
The blob (atom) a is about to be released. This function can retrieve the data of the blob using
PL blob data(). If it returns FALSE the atom garbage collector will not reclaim the atom.

int compare(atom t a, atom t b)
Compare the blobs a and b, both of which are of the type associated to this blob-type. Return
values are, as memcmp(), < 0 if a is less then b, = 0 if both are equal and > 0 otherwise.

int write(IOSTREAM *s, atom t a, int flags)
Write the content of the blob a to the stream s and respecting the flags. The flags are a bitwise or
of zero or more of the PL WRT * flags defined in SWI-Prolog.h. This prototype is available
if the undocumented SWI-Stream.h is included before SWI-Prolog.h.

If this function is not provided, write/1 emits the content of the blob for blobs of type
PL BLOB TEXT or a string of the format <#hex data> for binary blobs.

If a blob type is registered from a loadable object (shared object or DLL) the blob-type must be
deregistered before the object may be released.

int PL unregister blob type(PL blob t *type)
Unlink the blob type from the registered type and transform the type of possible living blobs
to unregistered, avoiding further reference to the type structure, functions referred by it
as well as the data. This function returns TRUE if no blobs of this type existed and FALSE
otherwise. PL unregister blob type() is intended for the uninstall() hook of foreign modules,
avoiding further references to the module.

SWI-Prolog 5.6 Reference Manual

232 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

Accessing blobs

The blob access functions are similar to the atom accessing functions. Blobs being atoms, the atom
functions operate on blobs and visa versa. For clarity and possible future compatibility issues however
it is not advised to rely on this.

int PL is blob(term t t, PL blob t **type)
Succeeds if t refers to a blob, in which case type is filled with the type of the blob.

int PL unify blob(term t t, void *blob, unsigned int len, PL blob t *type)
Unify t to a new blob constructed from the given data and associated to the given type. See also
PL unify atom nchars().

int PL put blob(term t t, void *blob, unsigned int len, PL blob t *type)
Store the described blob in t. The return value indicates whether a new blob was allocated
(FALSE) or the blob is a reference to an existing blob (TRUE). Reporting new/existing can be
used to deal with external objects having their own reference counts. If the return is TRUE this
reference count must be incremented and it must be decremented on blob destruction callback.
See also PL put atom nchars().

int PL get blob(term t t, void **blob, unsigned int *len, PL blob t **type)
If t holds a blob or atom get the data and type and return TRUE. Otherwise return FALSE. Each
result pointer may be NULL, in which case the requested information is ignored.

void * PL blob data(atom t a, unsigned int *len, PL blob t **type)
Get the data and type associated to a blob. This function is mainly used from the callback
functions described in section 9.6.6.

9.6.7 Exchanging GMP numbers

If SWI-Prolog is linked with the GNU Multiple Precision Arithmetic Library (GMP, used by default),
the foreign interface provides functions for exchanging numeric values to GMP types. To access these
functions the header <gmp.h> must be included before <SWI-Prolog.h>. Here is an example
exploiting the function mpz nextprime():

#include <gmp.h>
#include <SWI-Prolog.h>

static foreign_t
next_prime(term_t n, term_t prime)
{ mpz_t mpz;
int rc;

mpz_init(mpz);
if (PL_get_mpz(n, mpz))
{ mpz_nextprime(mpz, mpz);

rc = PL_unify_mpz(prime, mpz);
} else

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 233

rc = FALSE;

mpz_clear(mpz);
return rc;

}

install_t
install()
{ PL_register_foreign("next_prime", 2, next_prime, 0);
}

int PL get mpz(term t t, mpz t mpz)
If t represents an integer mpz is filled with the value and the function returns TRUE. Otherwise
mpz is untouched and the function returns FALSE. Note that mpz must have been initialised
before calling this function and must be cleared using mpz clear() to reclaim any storage asso-
ciated with it.

int PL get mpq(term t t, mpq t mpq)
If t is an integer or rational number (term rdiv/2) mpq is filled with the normalise rational
number and the function returns TRUE. Otherwise mpq is untouched and the function returns
FALSE. Note that mpq must have been initialised before calling this function and must be
cleared using mpq clear() to reclaim any storage associated with it.

int PL unify mpz(term t t, mpz t mpz)
Unify t with the integer value represented by mpz and return TRUE on success. The mpz argu-
ment is not changed.

int PL unify mpq(term t t, mpq t mpq)
Unify t with a rational number represented by mpq and return TRUE on success. Note that t is
unified with an integer if the denominator is 1. The mpq argument is not changed.

9.6.8 Calling Prolog from C

The Prolog engine can be called from C. There are two interfaces for this. For the first, a term is
created that could be used as an argument to call/1 and next PL call() is used to call Prolog. This
system is simple, but does not allow to inspect the different answers to a non-deterministic goal and
is relatively slow as the runtime system needs to find the predicate. The other interface is based
on PL open query(), PL next solution() and PL cut query() or PL close query(). This mechanism is
more powerful, but also more complicated to use.

Predicate references

This section discusses the functions used to communicate about predicates. Though a Prolog predicate
may defined or not, redefined, etc., a Prolog predicate has a handle that is not destroyed, nor moved.
This handle is known by the type predicate t.

predicate t PL pred(functor t f, module t m)
Return a handle to a predicate for the specified name/arity in the given module. This function

SWI-Prolog 5.6 Reference Manual

234 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

always succeeds, creating a handle for an undefined predicate if no handle was available. If the
module argument m is NULL, the current context module is used.

predicate t PL predicate(const char *name, int arity, const char* module)
Same a PL pred(), but provides a more convenient interface to the C-programmer.

void PL predicate info(predicate t p, atom t *n, int *a, module t *m)
Return information on the predicate p. The name is stored over n, the arity over a, while m
receives the definition module. Note that the latter need not be the same as specified with
PL predicate(). If the predicate is imported into the module given to PL predicate(), this func-
tion will return the module where the predicate is defined.

Initiating a query from C

This section discusses the functions for creating and manipulating queries from C. Note that a foreign
context can have at most one active query. This implies it is allowed to make strictly nested calls
between C and Prolog (Prolog calls C, calls Prolog, calls C, etc., but it is not allowed to open multiple
queries and start generating solutions for each of them by calling PL next solution(). Be sure to call
PL cut query() or PL close query() on any query you opened before opening the next or returning
control back to Prolog.

qid t PL open query(module t ctx, int flags, predicate t p, term t +t0)

Opens a query and returns an identifier for it. This function always succeeds, regardless whether
the predicate is defined or not. ctx is the context module of the goal. When NULL, the context
module of the calling context will be used, or user if there is no calling context (as may happen
in embedded systems). Note that the context module only matters for module transparent pred-
icates. See context module/1 and module transparent/1. The p argument specifies
the predicate, and should be the result of a call to PL pred() or PL predicate(). Note that it is
allowed to store this handle as global data and reuse it for future queries. The term-reference t0
is the first of a vector of term-references as returned by PL new term refs(n).

The flags arguments provides some additional options concerning debugging and exception
handling. It is a bitwise or of the following values:

PL Q NORMAL
Normal operation. The debugger inherits its settings from the environment. If an excep-
tion occurs that is not handled in Prolog, a message is printed and the tracer is started to
debug the error.3

PL Q NODEBUG
Switch off the debugger while executing the goal. This option is used by many
calls to hook-predicates to avoid tracing the hooks. An example is print/1 calling
portray/1 from foreign code.

PL Q CATCH EXCEPTION
If an exception is raised while executing the goal, do not report it, but make it available
for PL exception().

3Do not pass the integer 0 for normal operation, as this is interpreted as PL Q NODEBUG for backward compatibility
reasons.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 235

PL Q PASS EXCEPTION
As PL Q CATCH EXCEPTION, but do not invalidate the exception-term while calling
PL close query(). This option is experimental.

The example below opens a query to the predicate is a/2 to find the ancestor of for some name.

char *
ancestor(const char *me)
{ term_t a0 = PL_new_term_refs(2);
static predicate_t p;

if (!p)
p = PL_predicate("is_a", 2, "database");

PL_put_atom_chars(a0, me);
PL_open_query(NULL, PL_Q_NORMAL, p, a0);
...

}

int PL next solution(qid t qid)
Generate the first (next) solution for the given query. The return value is TRUE if a solution
was found, or FALSE to indicate the query could not be proven. This function may be called
repeatedly until it fails to generate all solutions to the query.

void PL cut query(qid)
Discards the query, but does not delete any of the data created by the query. It just invalidate
qid, allowing for a new call to PL open query() in this context.

void PL close query(qid)
As PL cut query(), but all data and bindings created by the query are destroyed.

int PL call predicate(module t m, int flags, predicate t pred, term t +t0)
Shorthand for PL open query(), PL next solution(), PL cut query(), generating a single solu-
tion. The arguments are the same as for PL open query(), the return value is the same as
PL next solution().

int PL call(term t, module t)
Call term just like the Prolog predicate once/1. Term is called in the specified module, or in
the context module if module t = NULL. Returns TRUE if the call succeeds, FALSE otherwise.
Figure 9.4 shows an example to obtain the number of defined atoms. All checks are omitted to
improve readability.

9.6.9 Discarding Data

The Prolog data created and term-references needed to setup the call and/or analyse the result can in
most cases be discarded right after the call. PL close query() allows for destructing the data, while
leaving the term-references. The calls below may be used to destroy term-references and data. See
figure 9.4 for an example.

SWI-Prolog 5.6 Reference Manual

236 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int
count_atoms()
{ fid_t fid = PL_open_foreign_frame();
term_t goal = PL_new_term_ref();
term_t a1 = PL_new_term_ref();
term_t a2 = PL_new_term_ref();
functor_t s2 = PL_new_functor(PL_new_atom("statistics"), 2);
int atoms;

PL_put_atom_chars(a1, "atoms");
PL_cons_functor(goal, s2, a1, a2);
PL_call(goal, NULL); /* call it in current module */

PL_get_integer(a2, &atoms);
PL_discard_foreign_frame(fid);

return atoms;
}

Figure 9.4: Calling Prolog

fid t PL open foreign frame()
Created a foreign frame, holding a mark that allows the system to undo bindings and destroy
data created after it as well as providing the environment for creating term-references. This
function is called by the kernel before calling a foreign predicate.

void PL close foreign frame(fid t id)
Discard all term-references created after the frame was opened. All other Prolog data is retained.
This function is called by the kernel whenever a foreign function returns control back to Prolog.

void PL discard foreign frame(fid t id)
Same as PL close foreign frame(), but also undo all bindings made since the open and destroy
all Prolog data.

void PL rewind foreign frame(fid t id)
Undo all bindings and discard all term-references created since the frame was created, but does
not pop the frame. I.e. the same frame can be rewinded multiple times, and must eventually be
closed or discarded.

It is obligatory to call either of the two closing functions to discard a foreign frame. Foreign
frames may be nested.

9.6.10 Foreign Code and Modules

Modules are identified via a unique handle. The following functions are available to query and ma-
nipulate modules.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 237

module t PL context()
Return the module identifier of the context module of the currently active foreign predicate.

int PL strip module(term t +raw, module t *m, term t -plain)
Utility function. If raw is a term, possibly holding the module construct 〈module〉:〈rest〉 this
function will make plain a reference to 〈rest〉 and fill module * with 〈module〉. For further
nested module constructs the inner most module is returned via module *. If raw is not a
module construct arg will simply be put in plain. If module * is NULL it will be set to the
context module. Otherwise it will be left untouched. The following example shows how to
obtain the plain term and module if the default module is the user module:

{ module m = PL_new_module(PL_new_atom("user"));
term_t plain = PL_new_term_ref();

PL_strip_module(term, &m, plain);
...

atom t PL module name(module t)
Return the name of module as an atom.

module t PL new module(atom t name)
Find an existing or create a new module with name specified by the atom name.

9.6.11 Prolog exceptions in foreign code

This section discusses PL exception(), PL throw() and PL raise exception(), the interface functions
to detect and generate Prolog exceptions from C-code. PL throw() and PL raise exception() from the
C-interface to raise an exception from foreign code. PL throw() exploits the C-function longjmp() to
return immediately to the innermost PL next solution(). PL raise exception() registers the exception
term and returns FALSE. If a foreign predicate returns FALSE, while and exception-term is registered
a Prolog exception will be raised by the virtual machine.

Calling these functions outside the context of a function implementing a foreign predicate results
in undefined behaviour.

PL exception() may be used after a call to PL next solution() fails, and returns a term reference
to an exception term if an exception was raised, and 0 otherwise.

If a C-function, implementing a predicate calls Prolog and detects an exception using
PL exception(), it can handle this exception, or return with the exception. Some caution is required
though. It is not allowed to call PL close query() or PL discard foreign frame() afterwards, as this
will invalidate the exception term. Below is the code that calls a Prolog defined arithmetic function
(see arithmetic function/1).

If PL next solution() succeeds, the result is analysed and translated to a number, after which
the query is closed and all Prolog data created after PL open foreign frame() is destroyed. On the
other hand, if PL next solution() fails and if an exception was raised, just pass it. Otherwise gen-
erate an exception (PL error() is an internal call for building the standard error terms and calling
PL raise exception()). After this, the Prolog environment should be discarded using PL cut query()
and PL close foreign frame() to avoid invalidating the exception term.

SWI-Prolog 5.6 Reference Manual

238 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

static int
prologFunction(ArithFunction f, term_t av, Number r)
{ int arity = f->proc->definition->functor->arity;
fid_t fid = PL_open_foreign_frame();
qid_t qid;
int rval;

qid = PL_open_query(NULL, PL_Q_NORMAL, f->proc, av);

if (PL_next_solution(qid))
{ rval = valueExpression(av+arity-1, r);
PL_close_query(qid);
PL_discard_foreign_frame(fid);

} else
{ term_t except;

if ((except = PL_exception(qid)))
{ rval = PL_throw(except); /* pass exception */
} else
{ char *name = stringAtom(f->proc->definition->functor->name);

/* generate exception */
rval = PL_error(name, arity-1, NULL, ERR_FAILED, f->proc);

}

PL_cut_query(qid); /* donot destroy data */
PL_close_foreign_frame(fid); /* same */

}

return rval;
}

int PL raise exception(term t exception)
Generate an exception (as throw/1) and return FALSE. Below is an example returning an
exception from foreign predicate:

foreign_t
pl_hello(term_t to)
{ char *s;

if (PL_get_atom_chars(to, &s))
{ Sprintf("Hello \"%s\"\n", s);

PL_succeed;
} else
{ term_t except = PL_new_term_ref();

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 239

PL_unify_term(except,
PL_FUNCTOR_CHARS, "type_error", 2,
PL_CHARS, "atom",
PL_TERM, to);

return PL_raise_exception(except);
}

}

int PL throw(term t exception)
Similar to PL raise exception(), but returns using the C longjmp() function to the innermost
PL next solution().

term t PL exception(qid t qid)
If PL next solution() fails, this can be due to normal failure of the Prolog call, or because an
exception was raised using throw/1. This function returns a handle to the exception term if
an exception was raised, or 0 if the Prolog goal simply failed.4.

9.6.12 Catching Signals (Software Interrupts)

SWI-Prolog offers both a C and Prolog interface to deal with software interrupts (signals). The Prolog
mapping is defined in section 4.10. This subsection deals with handling signals from C.

If a signal is not used by Prolog and the handler does not call Prolog in any way, the native signal
interface routines may be used.

Some versions of SWI-Prolog, notably running on popular Unix platforms, handle SIG SEGV for
guarding the Prolog stacks. If the application wishes to handle this signal too, it should use PL signal()
to install its handler after initialising Prolog. SWI-Prolog will pass SIG SEGV to the user code if it
detected the signal is not related to a Prolog stack overflow.

Any handler that wishes to call one of the Prolog interface functions should call PL signal() for
its installation.

void (*)() PL signal(sig, func)
This function is equivalent to the BSD-Unix signal() function, regardless of the platform used.
The signal handler is blocked while the signal routine is active, and automatically reactivated
after the handler returns.

After a signal handler is registered using this function, the native signal interface redirects the
signal to a generic signal handler inside SWI-Prolog. This generic handler validates the en-
vironment, creates a suitable environment for calling the interface functions described in this
chapter and finally calls the registered user-handler.

By default, signals are handled asynchronously (i.e. at the time they arrive). It is inher-
ently dangerous to call extensive code fragments, and especially exception related code from
asynchronous handlers. The interface allows for synchronous handling of signals. In this

4This interface differs in two ways from Quintus. The calling predicates simp,y signal failure if an exception was raised,
and a term referenced is returned, rather passed and filled with the error term. Exceptions can only be handled using the
PL next solution() interface, as a handle to the query is required

SWI-Prolog 5.6 Reference Manual

240 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

case the native OS handler just schedules the signal using PL raise(), which is checked by
PL handle signals() at the call- and redo-port. This behaviour is realised by or-ing sig with the
constant PL SIGSYNC.5

Signal handling routines may raise exceptions using PL raise exception(). The use of
PL throw() is not safe. If a synchronous handler raises an exception, the exception is delayed
to the next call to PL handle signals();

int PL raise(int sig)
Register sig for synchronous handling by Prolog. Synchronous signals are handled at the call-
port or if foreign code calls PL handle signals(). See also thread signal/2.

int PL handle signals(void)
Handle any signals pending from PL raise(). PL handle signals() is called at each pass
through the call- and redo-port at a safe point. Exceptions raised by the handler using
PL raise exception() are properly passed to the environment.

The user may call this function inside long-running foreign functions to handle scheduled inter-
rupts. This routine returns the number of signals handled. If a handler raises an exception, the
return value is -1 and the calling routine should return with FALSE as soon as possible.

9.6.13 Miscellaneous

Term Comparison

int PL compare(term t t1, term t t2)
Compares two terms using the standard order of terms and returns -1, 0 or 1. See also
compare/3.

int PL same compound(term t t1, term t t2)
Yields TRUE if t1 and t2 refer to physically the same compound term and FALSE otherwise.

Recorded database

In some applications it is useful to store and retrieve Prolog terms from C-code. For example, the
XPCE graphical environment does this for storing arbitrary Prolog data as slot-data of XPCE objects.

Please note that the returned handles have no meaning at the Prolog level and the recorded terms
are not visible from Prolog. The functions PL recorded() and PL erase() are the only functions that
can operate on the stored term.

Two groups of functions are provided. The first group (PL record() and friends) store Prolog
terms on the Prolog heap for retrieval during the same session. These functions are also used by
recorda/3 and friends. The recorded database may be used to communicate Prolog terms between
threads.

record t PL record(term t +t)
Record the term t into the Prolog database as recorda/3 and return an opaque handle to the
term. The returned handle remains valid until PL erase() is called on it. PL recorded() is used
to copy recorded terms back to the Prolog stack.

5A better default would be to use synchronous handling, but this interface preserves backward compatibility.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 241

void PL recorded(record t record, term t -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. See also PL record() and PL erase().

void PL erase(record t record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

The second group (headed by PL record external()) provides the same functionality, but the re-
turned data has properties that enable storing the data on an external device. It has been designed
to make it possible to store Prolog terms fast an compact in an external database. Here are the main
features:

• Independent of session
Records can be communicated to another Prolog session and made visible using
PL recorded external().

• Binary
The representation is binary for maximum performance. The returned data may contain 0-bytes.

• Byte-order independent
The representation can be transferred between machines with different byte-order.

• No alignment restrictions
There are no memory alignment restrictions and copies of the record can thus be moved freely.
For example, it is possible to use this representation to exchange terms using shared memory
between different Prolog processes.

• Compact
It is assumed that a smaller memory footprint will eventually outperform slightly faster repre-
sentations.

• Stable
The format is designed for future enhancements without breaking compatibility with older
records.

char * PL record external(term t +t, unsigned int *len)
Record the term t into the Prolog database as recorda/3 and return an opaque handle to the
term. The returned handle remains valid until PL erase external() is called on it.

It is allowed to copy the data and use PL recorded external() on the copy. The user is respon-
sible for the memory management of the copy. After copying, the original may be discarded
using PL erase external().

PL recorded external() is used to copy such recorded terms back to the Prolog stack.

int PL recorded external(const char *record, term t -t)
Copy a recorded term back to the Prolog stack. The same record may be used to copy multiple
instances at any time to the Prolog stack. See also PL record external() and PL erase external().

int PL erase external(char *record)
Remove the recorded term from the Prolog database, reclaiming all associated memory re-
sources.

SWI-Prolog 5.6 Reference Manual

242 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

Getting file names

The function PL get file name() provides access to Prolog filenames and its file-search mechanism
described with absolute file name/3. Its existence is motivated to realise a uniform interface
to deal with file-properties, search, naming conventions etc. from foreign code.

int PL get file name(term t spec, char **name, int flags)
Translate a Prolog term into a file name. The name is stored in the static buffer ring described
with PL get chars() option BUF RING. Conversion from the internal UNICODE encoding is
done using standard C library functions. flags is a bit-mask controlling the conversion process.
Options are:

PL FILE ABSOLUTE
Return an absolute path to the requested file.

PL FILE OSPATH
Return a the name using the hosting OS conventions. On MS-Windows, \ is used to
separate directories rather than the canonical /.

PL FILE SEARCH
Invoke absolute file name/3. This implies rules from file search path/2
are used.

PL FILE EXIST
Demand the path to refer to an existing entity.

PL FILE READ
Demand read-access on the result.

PL FILE WRITE
Demand write-access on the result.

PL FILE EXECUTE
Demand execute-access on the result.

PL FILE NOERRORS
Do not raise any exceptions.

9.6.14 Errors and warnings

PL warning() prints a standard Prolog warning message to the standard error (user error) stream.
Please note that new code should consider using PL raise exception() to raise a Prolog exception. See
also section 4.9.

int PL warning(format, a1, . . .)
Print an error message starting with ‘[WARNING: ’, followed by the output from format,
followed by a ‘]’ and a newline. Then start the tracer. format and the arguments are the
same as for printf(2). Always returns FALSE.

9.6.15 Environment Control from Foreign Code

int PL action(int, ...)
Perform some action on the Prolog system. int describes the action, Remaining arguments
depend on the requested action. The actions are listed in table 9.1.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 243

PL ACTION TRACE Start Prolog tracer (trace/0). Requires no arguments.
PL ACTION DEBUG Switch on Prolog debug mode (debug/0). Requires no

arguments.
PL ACTION BACKTRACE Print backtrace on current output stream. The argument

(an int) is the number of frames printed.
PL ACTION HALT Halt Prolog execution. This action should be called rather

than Unix exit() to give Prolog the opportunity to clean up.
This call does not return. The argument (an int) is the exit
code. See halt/1.

PL ACTION ABORT Generate a Prolog abort (abort/0). This call does not
return. Requires no arguments.

PL ACTION BREAK Create a standard Prolog break environment (break/0).
Returns after the user types the end-of-file character. Re-
quires no arguments.

PL ACTION GUIAPP Win32: Used to indicate the kernel that the application is
a GUI application if the argument is not 0 and a console
application if the argument is 0. If a fatal error occurs,
the system uses a windows messagebox to report this on
a GUI application and simply prints the error and exits
otherwise.

PL ACTION WRITE Write the argument, a char * to the current output
stream.

PL ACTION FLUSH Flush the current output stream. Requires no arguments.
PL ACTION ATTACH CONSOLEAttach a console to a thread if it does not have one. See

attach console/0.

Table 9.1: PL action() options

SWI-Prolog 5.6 Reference Manual

244 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL QUERY ARGC Return an integer holding the number of arguments given
to Prolog from Unix.

PL QUERY ARGV Return a char ** holding the argument vector given to Pro-
log from Unix.

PL QUERY SYMBOLFILE Return a char * holding the current symbol file of the run-
ning process.

PL MAX INTEGER Return a long, representing the maximal integer value rep-
resented by a Prolog integer.

PL MIN INTEGER Return a long, representing the minimal integer value.
PL QUERY VERSION Return a long, representing the version as 10, 000×M +

100×m + p, where M is the major, m the minor version
number and p the patch-level. For example, 20717means
2.7.17.

PL QUERY MAX THREADS Return the maximum number of threads that can be cre-
ated in this version. Return values of PL thread self() are
between 0 and this number.

PL QUERY ENCODING Return the default stream encoding of Prolog (of type
IOENC).

PL QUERY USER CPU Get amount of user CPU time of the process in millisec-
onds.

Table 9.2: PL query() options

9.6.16 Querying Prolog

long PL query(int)
Obtain status information on the Prolog system. The actual argument type depends on the
information required. int describes what information is wanted.6 The options are given in
table 9.2.

9.6.17 Registering Foreign Predicates

int PL register foreign in module(const char *module, const char *name, int arity, foreign t (*function)(), int flags)

Register a C-function to implement a Prolog predicate. After this call returns success-
fully a predicate with name name (a char *) and arity arity (a C int) is created in module
module. If module is NULL, the predicate is created in the module of the calling context or if
no context is present in the module user.

When called in Prolog, Prolog will call function. flags forms bitwise or’ed list of options for
the installation. These are:

PL FA NOTRACE Predicate cannot be seen in the tracer
PL FA TRANSPARENT Predicate is module transparent
PL FA NONDETERMINISTIC Predicate is non-deterministic. See also PL retry().
PL FA VARARGS Use alternative calling convention.

6Returning pointers and integers as a long is bad style. The signature of this function should be changed.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 245

Predicates may be registered either before or after PL initialise(). When registered before ini-
tialisation the registration is recorded and executed after installing the system predicates and
before loading the saved state.

Default calling (i.e. without PL FA VARARGS) function is passed the same number of term t
arguments as the arity of the predicate and, if the predicate is non-deterministic, an extra ar-
gument of type control t (see section 9.6.1). If PL FA VARARGS is provided, function is
called with three arguments. The first argument is a term t handle to the first argument. Fur-
ther arguments can be reached by adding the offset (see also PL new term refs()). The second
argument is the arity, which defines the number of valid term-references in the argument vector.
The last argument is used for non-deterministic calls. It is currently undocumented and should
be defined of type void*. Here is an example:

static foreign_t
atom_checksum(term_t a0, int arity, void* context)
{ char *s;

if (PL_get_atom_chars(a0, &s))
{ int sum;

for(sum=0; *s; s++)
sum += *s&0xff;

return PL_unify_integer(a0+1, sum&0xff);
}

return FALSE;
}

install_t
install()
{ PL_register_foreign("atom_checksum", 2, atom_checksum, PL_FA_VARARGS);
}

int PL register foreign(const char *name, int arity, foreign t (*function)(), int flags)
Same as PL register foreign in module(), passing NULL for the module.

void PL register extensions in module(const char *module, PL extension *e)
Register a series of predicates from an array of definitions of the type PL extension in the
given module. If module is NULL, the predicate is created in the module of the calling context
or if no context is present in the module user. The PL extension type is defined as

typedef struct PL_extension
{ char *predicate_name; /* Name of the predicate */
short arity; /* Arity of the predicate */
pl_function_t function; /* Implementing functions */
short flags; /* Or of PL_FA_... */

} PL_extension;

SWI-Prolog 5.6 Reference Manual

246 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

For details, see PL register foreign in module(). Here is an example of its usage:

static PL_extension predicates[] = {
{ "foo", 1, pl_foo, 0 },
{ "bar", 2, pl_bar, PL_FA_NONDETERMINISTIC },
{ NULL, 0, NULL, 0 }
};

main(int argc, char **argv)
{ PL_register_extensions_in_module("user", predicates);

if (!PL_initialise(argc, argv))
PL_halt(1);

...
}

void PL register extensions(PL extension *e)
Same as PL register extensions in module() using NULL for the module argument.

9.6.18 Foreign Code Hooks

For various specific applications some hooks re provided.

PL dispatch hook t PL dispatch hook(PL dispatch hook t)
If this hook is not NULL, this function is called when reading from the terminal. It is sup-
posed to dispatch events when SWI-Prolog is connected to a window environment. It can re-
turn two values: PL DISPATCH INPUT indicates Prolog input is available on file descriptor
0 or PL DISPATCH TIMEOUT to indicate a timeout. The old hook is returned. The type
PL dispatch hook t is defined as:

typedef int (*PL_dispatch_hook_t)(void);

void PL abort hook(PL abort hook t)
Install a hook when abort/0 is executed. SWI-Prolog abort/0 is implemented using C
setjmp()/longjmp() construct. The hooks are executed in the reverse order of their registra-
tion after the longjmp() took place and before the Prolog top-level is reinvoked. The type
PL abort hook t is defined as:

typedef void (*PL_abort_hook_t)(void);

int PL abort unhook(PL abort hook t)
Remove a hook installed with PL abort hook(). Returns FALSE if no such hook is found, TRUE
otherwise.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 247

void PL on halt(void (*f)(int, void *), void *closure)
Register the function f to be called if SWI-Prolog is halted. The function is called with two
arguments: the exit code of the process (0 if this cannot be determined on your operating system)
and the closure argument passed to the PL on halt() call. See also at halt/1.

PL agc hook t PL agc hook(PL agc hook t new)
Register a hook with the atom-garbage collector (see garbage collect atoms/0 that is
called on any atom that is reclaimed. The old hook is returned. If no hook is currently defined,
NULL is returned. The argument of the called hook is the atom that is to be garbage collected.
The return value is an int. If the return value is zero, the atom is not reclaimed. The hook
may invoke any Prolog predicate.

The example below defines a foreign library for printing the garbage collected atoms for debug-
ging purposes.

#include <SWI-Stream.h>
#include <SWI-Prolog.h>

static int
atom_hook(atom_t a)
{ Sdprintf("AGC: deleting %s\n", PL_atom_chars(a));

return TRUE;
}

static PL_agc_hook_t old;

install_t
install()
{ old = PL_agc_hook(atom_hook);
}

install_t
uninstall()
{ PL_agc_hook(old);
}

9.6.19 Storing foreign data

This section provides some hints for handling foreign data in Prolog. With foreign data, we refer to
data that is used by foreign language predicates and needs to be passed around in Prolog. Excluding
combinations, there are three principal options for storing such data

• Natural Prolog data
E.i. using the representation one would choose if there was no foreign interface required.

• Opaque packed Prolog data
Data can also be represented in a foreign structure and stored on the Prolog stacks using

SWI-Prolog 5.6 Reference Manual

248 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

PL put string nchars() and retrieved using PL get string chars(). It is generally good practice
to wrap the string in a compound term with arity 1, so Prolog can identify the type. portray/1
rules may be used to streamline printing such terms during development.

• Natural foreign data, passing a pointer
An alternative is to pass a pointer to the foreign data. Again, this functor may be wrapped in a
compound term.

The choice may be guided using the following distinctions

• Is the data opaque to Prolog
With ‘opaque’ data, we refer to data handled in foreign functions, passed around in Prolog, but
of which Prolog never examines the contents of the data itself. If the data is opaque to Prolog,
the chosen representation does not depend on simple analysis by Prolog, and the selection will
be driven solely by simplicity of the interface and performance (both in time and space).

• How big is the data
Is efficient encoding required? For examine, a boolean array may be expressed as a compound
term, holding integers each of which contains a number of bits, or as a list of true and false.

• What is the nature of the data
For examples in C, constants are often expressed using ‘enum’ or #define’d integer values. If
prolog needs to handle this data, atoms are a more logical choice. Whether or not this mapping
is used depends on whether Prolog needs to interpret the data, how important debugging is and
how important performance is.

• What is the lifetime of the data
We can distinguish three cases.

1. The lifetime is dictated by the accessibility of the data on the Prolog stacks. Their is no
way by which the foreign code when the data becomes ‘garbage’, and the data thus needs
to be represented on the Prolog stacks using Prolog data-types. (2),

2. The data lives on the ‘heap’ and is explicitly allocated and deallocated. In this case,
representing the data using native foreign representation and passing a pointer to it is a
sensible choice.

3. The data lives as during the lifetime of a foreign predicate. If the predicate is deterministic,
foreign automatic variables are suitable. if the predicate is non-deterministic, the data may
be allocated using malloc() and a pointer may be passed. See section 9.6.1.

Examples for storing foreign data

In this section, we will outline some examples, covering typical cases. In the first example, we will
deal with extending Prolog’s data representation with integer-sets, represented as bit-vectors. Finally,
we discuss the outline of the DDE interface.

Integer sets with not-too-far-apart upper- and lower-bounds can be represented using bit-vectors.
Common set operations, such as union, intersection, etc. are reduced to simple and’ing and or’ing the
bit-vectors. This can be done in Prolog, using a compound term holding integer arguments. Especially

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 249

if the integers are kept below the maximum tagged integer value (see current prolog flag/2),
this representation is fairly space-efficient (wasting 1 word for the functor and and 7 bits per integer
for the tags). Arithmetic can all be performed in Prolog too.

For really demanding applications, foreign representation will perform better, especially time-
wise. Bit-vectors are naturally expressed using string objects. If the string is wrapped in
bitvector/1, lower-bound of the vector is 0, and the upper-bound is not defined, an implementa-
tion for getting and putting the sets as well as the union predicate for it is below.

#include <SWI-Prolog.h>

#define max(a, b) ((a) > (b) ? (a) : (b))
#define min(a, b) ((a) < (b) ? (a) : (b))

static functor_t FUNCTOR_bitvector1;

static int
get_bitvector(term_t in, int *len, unsigned char **data)
{ if (PL_is_functor(in, FUNCTOR_bitvector1))
{ term_t a = PL_new_term_ref();

PL_get_arg(1, in, a);
return PL_get_string(a, (char **)data, len);

}

PL_fail;
}

static int
unify_bitvector(term_t out, int len, const unsigned char *data)
{ if (PL_unify_functor(out, FUNCTOR_bitvector1))
{ term_t a = PL_new_term_ref();

PL_get_arg(1, out, a);

return PL_unify_string_nchars(a, len, (const char *)data);
}

PL_fail;
}

static foreign_t
pl_bitvector_union(term_t t1, term_t t2, term_t u)
{ unsigned char *s1, *s2;
int l1, l2;

if (get_bitvector(t1, &l1, &s1) &&
get_bitvector(t2, &l2, &s2))

SWI-Prolog 5.6 Reference Manual

250 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

{ int l = max(l1, l2);
unsigned char *s3 = alloca(l);

if (s3)
{ int n;
int ml = min(l1, l2);

for(n=0; n<ml; n++)
s3[n] = s1[n] | s2[n];

for(; n < l1; n++)
s3[n] = s1[n];

for(; n < l2; n++)
s3[n] = s2[n];

return unify_bitvector(u, l, s3);
}

return PL_warning("Not enough memory");
}

PL_fail;
}

install_t
install()
{ PL_register_foreign("bitvector_union", 3, pl_bitvector_union, 0);

FUNCTOR_bitvector1 = PL_new_functor(PL_new_atom("bitvector"), 1);
}

The DDE interface (see section 4.42) represents another common usage of the foreign interface:
providing communication to new operating system features. The DDE interface requires knowledge
about active DDE server and client channels. These channels contains various foreign data-types.
Such an interface is normally achieved using an open/close protocol that creates and destroys a handle.
The handle is a reference to a foreign data-structure containing the relevant information.

There are a couple of possibilities for representing the handle. The choice depends on re-
sponsibilities and debugging facilities. The simplest approach is to using PL unify pointer() and
PL get pointer(). This approach is fast and easy, but has the drawbacks of (untyped) pointers:
there is no reliable way to detect the validity of the pointer, not to verify it is pointing to a struc-
ture of the desired type. The pointer may be wrapped into a compound term with arity 1 (i.e.,
dde channel(〈Pointer〉)), making the type-problem less serious.

Alternatively (used in the DDE interface), the interface code can maintain a (preferably variable
length) array of pointers and return the index in this array. This provides better protection. Especially
for debugging purposes, wrapping the handle in a compound is a good suggestion.

SWI-Prolog 5.6 Reference Manual

9.6. THE FOREIGN INCLUDE FILE 251

9.6.20 Embedding SWI-Prolog in other applications

With embedded Prolog we refer to the situation where the ‘main’ program is not the Prolog appli-
cation. Prolog is sometimes embedded in C, C++, Java or other languages to provide logic based
services in a larger application. Embedding loads the Prolog engine as a library to the external lan-
guage. Prolog itself only provides for embedding in the C-language (compatible to C++). Embedding
in Java is achieved using JPL using a C-glue between the Java and Prolog C-interfaces.

The most simple embedded program is below. The interface function PL initialise() must be
called before any of the other SWI-Prolog foreign language functions described in this chapter, except
for PL initialise hook(), PL new atom(), PL new functor() and PL register foreign(). PL initialise()
interprets all the command-line arguments, except for the -t toplevel flag that is interpreted by
PL toplevel().

int
main(int argc, char **argv)
{
#ifdef READLINE /* Remove if you don’t want readline */
PL_initialise_hook(install_readline);

#endif

if (!PL_initialise(argc, argv))
PL_halt(1);

PL_halt(PL_toplevel() ? 0 : 1);
}

int PL initialise(int argc, char **argv)
Initialises the SWI-Prolog heap and stacks, restores the Prolog state, loads the system and
personal initialisation files, runs the at initialization/1 hooks and finally runs the
-g goal hook.

Special consideration is required for argv[0]. On Unix, this argument passes the part of the
command-line that is used to locate the executable. Prolog uses this to find the file holding the
running executable. The Windows version uses this to find a module of the running executable.
If the specified module cannot be found, it tries the module libpl.dll, containing the Prolog
runtime kernel. In all these cases, the resulting file is used for two purposes

• See whether a Prolog saved-state is appended to the file. If this is the case, this state will
be loaded instead of the default boot.prc file from the SWI-Prolog home directory. See
also qsave program/[1,2] and section 9.7.

• Find the Prolog home directory. This process is described in detail in section 9.8.

PL initialise() returns 1 if all initialisation succeeded and 0 otherwise.7

In most cases, argc and argv will be passed from the main program. It is allowed to create
your own argument vector, provided argv[0] is constructed according to the rules above. For
example:

7BUG: Various fatal errors may cause PL initialise to call PL halt(1), preventing it from returning at all.

SWI-Prolog 5.6 Reference Manual

252 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

int
main(int argc, char **argv)
{ char *av[10];
int ac = 0;

av[ac++] = argv[0];
av[ac++] = "-x";
av[ac++] = "mystate";
av[ac] = NULL;

if (!PL_initialise(ac, av))
PL_halt(1);

...
}

Please note that the passed argument vector may be referred from Prolog at any time and should
therefore be valid as long as the Prolog engine is used.

A good setup in Windows is to add SWI-Prolog’s bin directory to your PATH and either pass a
module holding a saved-state, or "libpl.dll" as argv[0]. If the Prolog state is attached
to a DLL (see the -dll option of plld, pass the name of this DLL.

int PL is initialised(int *argc, char ***argv)
Test whether the Prolog engine is already initialised. Returns FALSE if Prolog is not initialised
and TRUE otherwise. If the engine is initialised and argc is not NULL, the argument count used
with PL initialise() is stored in argc. Same for the argument vector argv.

void PL install readline()
Installs the GNU-readline line-editor. Embedded applications that do not use the Prolog top-
level should normally delete this line, shrinking the Prolog kernel significantly. Note that the
Windows version does not use GNU readline.

int PL toplevel()
Runs the goal of the -t toplevel switch (default prolog/0) and returns 1 if successful,
0 otherwise.

void PL cleanup(int status)
This function performs the reverse of PL initialise(). It runs the PL on halt() and at halt/1
handlers, closes all streams (except for the ‘standard I/O’ streams which are flushed only),
deallocates all memory and restores all signal handlers. The status argument is passed to the
various termination hooks and indicates the exit-status.

This function allows deleting and restarting the Prolog system in the same process. Use it with
care, as PL initialise() is a costly function. Unix users should consider using exec() (available
as part of the clib package,).

int PL halt(int status)
Cleanup the Prolog environment using PL cleanup() and calls exit() with the status argument.

SWI-Prolog 5.6 Reference Manual

9.7. LINKING EMBEDDED APPLICATIONS USING PLLD 253

As PL cleanup() can only be called from the main thread, this function returns FALSE when
called from another thread as the main one.8

Threading, Signals and embedded Prolog

This section applies to Unix-based environments that have signals or multi-threading. The Windows
version is compiled for multi-threading and Windows lacks proper signals.

We can distinguish two classes of embedded executables. There are small C/C++-programs that
act as an interfacing layer around Prolog. Most of these programs can be replaced using the normal
Prolog executable extended with a dynamically loaded foreign extension and in most cases this is
the preferred route. In other cases, Prolog is embedded in a complex application that—like Prolog—
wants to control the process environment. A good example is Java. Embedding Prolog is generally
the only way to get these environments together in one process image. Java applications however are
by nature multi-threaded and appear to do signal-handling (software interrupts).

To make Prolog operate smoothly in such environments it must be told not to alter the process
environment. This is partly done at build-time and partly execution time. At build-time we must
specify the use of software stack-overflow rather then the default hardware checks. This is done using

sh configure --disable-segv-handling

The resulting Prolog executable is about 10% slower than the normal executable, but behaves much
more reliable in complicated embedded situations. In addition, as the process no longer handles
segmentation violations, debugging foreign code linked to it is much easier.

At runtime, it is advised to pass the flag -nosignals, which inhibits all default signal handling.
This has a few consequences though:

• It is no longer possible to break into the tracer using an interrupt signal (Control-C).

• SIGPIPE is normally set to be ignored. Prolog uses return-codes to diagnose broken pipes.
Depending on the situation one should take appropriate action if Prolog streams are connected
to pipes.

• Fatal errors normally cause Prolog to call PL cleanup() and exit(). It is advised to call
PL cleanup() as part of the exit-procedure of your application.

9.7 Linking embedded applications using plld

The utility program plld (Win32: plld.exe) may be used to link a combination of C-files and Prolog
files into a stand-alone executable. plld automates most of what is described in the previous sections.

In the normal usage, a copy is made of the default embedding template \ldots/pl/include/
stub.c. The main() routine is modified to suit your application. PL initialise() must be passed
the program-name (argv[0]) (Win32: the executing program can be obtained using GetModuleFile-
Name()). The other elements of the command-line may be modified. Next, plld is typically invoked
as:

plld -o output stubfile.c [other-c-or-o-files] [plfiles]

8BUG: Eventually it may become possible to call PL halt() from any thread.

SWI-Prolog 5.6 Reference Manual

254 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

plld will first split the options into various groups for both the C-compiler and the Prolog compiler.
Next, it will add various default options to the C-compiler and call it to create an executable holding
the user’s C-code and the Prolog kernel. Then, it will call the SWI-Prolog compiler to create a saved
state from the provided Prolog files and finally, it will attach this saved state to the created emulator
to create the requested executable.

Below, it is described how the options are split and which additional options are passed.

-help
Print brief synopsis.

-pl prolog
Select the prolog to use. This prolog is used for two purposes: get the home-directory as well
as the compiler/linker options and create a saved state of the Prolog code.

-ld linker
Linker used to link the raw executable. Default is to use the C-compiler (Win32: link.exe).

-cc C-compiler
Compiler for .c files found on the command-line. Default is the compiler used to build SWI-
Prolog (see current prolog flag/2) (Win32: cl.exe).

-c++ C++-compiler
Compiler for C++ sources (extensions .cpp, .cxx, .cc or .C) files found on the command-
line. Default is c++ or g++ if the C-compiler is gcc) (Win32: cl.exe).

-nostate
Just relink the kernel, do not add any Prolog code to the new kernel. This is used to create a
new kernel holding additional foreign predicates on machines that do not support the shared-
library (DLL) interface, or if building the state cannot be handled by the default procedure used
by plld. In the latter case the state is created separately and appended to the kernel using
cat 〈kernel〉 〈state〉 > 〈out〉 (Win32: copy /b 〈kernel〉+〈state〉 〈out〉)

-shared
Link C, C++ or object files into a shared object (DLL) that can be loaded by the
load foreign library/1 predicate. If used with -c it sets the proper options to com-
pile a C or C++ file ready for linking into a shared object

-dll
Windows only. Embed SWI-Prolog into a DLL rather than an executable.

-c
Compile C or C++ source-files into object files. This turns plld into a replacement for the C
or C++ compiler where proper options such as the location of the include directory are passed
automatically to the compiler.

-E
Invoke the C preprocessor. Used to make plld a replacement for the C or C++ compiler.

-pl-options ,. . .
Additional options passed to Prolog when creating the saved state. The first character immedi-
ately following pl-options is used as separator and translated to spaces when the argument
is built. Example: -pl-options,-F,xpce passed -F xpce as additional flags to Prolog.

SWI-Prolog 5.6 Reference Manual

9.7. LINKING EMBEDDED APPLICATIONS USING PLLD 255

-ld-options ,. . .
Passes options to the linker, similar to -pl-options.

-cc-options ,. . .
Passes options to the C/C++ compiler, similar to -pl-options.

-v
Select verbose operation, showing the various programs and their options.

-o outfile
Reserved to specify the final output file.

-llibrary
Specifies a library for the C-compiler. By default, -lpl (Win32: libpl.lib) and the libraries
needed by the Prolog kernel are given.

-Llibrary-directory
Specifies a library directory for the C-compiler. By default the directory containing the Prolog
C-library for the current architecture is passed.

-g | -Iinclude-directory | -Ddefinition
These options are passed to the C-compiler. By default, the include directory containing
SWI-Prolog.h is passed. plld adds two additional * -Ddef flags:

-D SWI PROLOG
Indicates the code is to be connected to SWI-Prolog.

-D SWI EMBEDDED
Indicates the creation of an embedded program.

*.o | *.c | *.C | *.cxx | *.cpp
Passed as input files to the C-compiler

.pl |.qlf
Passed as input files to the Prolog compiler to create the saved-state.

*
I.e. all other options. These are passed as linker options to the C-compiler.

9.7.1 A simple example

The following is a very simple example going through all the steps outlined above. It provides an
arithmetic expression evaluator. We will call the application calc and define it in the files calc.c
and calc.pl. The Prolog file is simple:

calc(Atom) :-
term_to_atom(Expr, Atom),
A is Expr,
write(A),
nl.

SWI-Prolog 5.6 Reference Manual

256 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

#include <stdio.h>
#include <SWI-Prolog.h>

#define MAXLINE 1024

int
main(int argc, char **argv)
{ char expression[MAXLINE];
char *e = expression;
char *program = argv[0];
char *plav[2];
int n;

/* combine all the arguments in a single string */

for(n=1; n<argc; n++)
{ if (n != 1)

*e++ = ’ ’;
strcpy(e, argv[n]);
e += strlen(e);

}

/* make the argument vector for Prolog */

plav[0] = program;
plav[1] = NULL;

/* initialise Prolog */

if (!PL_initialise(1, plav))
PL_halt(1);

/* Lookup calc/1 and make the arguments and call */

{ predicate_t pred = PL_predicate("calc", 1, "user");
term_t h0 = PL_new_term_refs(1);
int rval;

PL_put_atom_chars(h0, expression);
rval = PL_call_predicate(NULL, PL_Q_NORMAL, pred, h0);

PL_halt(rval ? 0 : 1);
}

return 0;
}

Figure 9.5: C-source for the calc application
SWI-Prolog 5.6 Reference Manual

9.8. THE PROLOG ‘HOME’ DIRECTORY 257

The C-part of the application parses the command-line options, initialises the Prolog engine, locates
the calc/1 predicate and calls it. The coder is in figure 9.5.
The application is now created using the following command-line:

% plld -o calc calc.c calc.pl

The following indicates the usage of the application:

% calc pi/2
1.5708

9.8 The Prolog ‘home’ directory

Executables embedding SWI-Prolog should be able to find the ‘home’ directory of the devel-
opment environment unless a self-contained saved-state has been added to the executable (see
qsave program/[1,2] and section 9.7).

If Prolog starts up, it will try to locate the development environment. To do so, it will try the
following steps until one succeeds.

1. If the environment variable SWI HOME DIR is defined and points to an existing directory, use
this.

2. If the environment variable SWIPL is defined and points to an existing directory, use this.

3. Locate the primary executable or (Windows only) a component (module) thereof and check
whether the parent directory of the directory holding this file contains the file swipl. If so,
this file contains the (relative) path to the home directory. If this directory exists, use this. This
is the normal mechanism used by the binary distribution.

4. If the precompiled path exists, use it. This is only useful for a source installation.

If all fails and there is no state attached to the executable or provided Windows module (see
PL initialise()), SWI-Prolog gives up. If a state is attached, the current working directory is used.

The file search path/2 alias swi is set to point to the home directory located.

9.9 Example of Using the Foreign Interface

Below is an example showing all stages of the declaration of a foreign predicate that transforms atoms
possibly holding uppercase letters into an atom only holding lower case letters. Figure 9.6 shows the
C-source file, figure 9.7 illustrates compiling and loading of foreign code.

SWI-Prolog 5.6 Reference Manual

258 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

/* Include file depends on local installation */
#include <SWI-Prolog.h>
#include <stdlib.h>
#include <ctype.h>

foreign_t
pl_lowercase(term_t u, term_t l)
{ char *copy;
char *s, *q;
int rval;

if (!PL_get_atom_chars(u, &s))
return PL_warning("lowercase/2: instantiation fault");

copy = malloc(strlen(s)+1);

for(q=copy; *s; q++, s++)

*q = (isupper(*s) ? tolower(*s) : *s);

*q = ’\0’;

rval = PL_unify_atom_chars(l, copy);
free(copy);

return rval;
}

install_t
install()
{ PL_register_foreign("lowercase", 2, pl_lowercase, 0);
}

Figure 9.6: Lowercase source file

SWI-Prolog 5.6 Reference Manual

9.9. EXAMPLE OF USING THE FOREIGN INTERFACE 259

% gcc -I/usr/local/lib/pl-\plversion/include -fpic -c lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% pl
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

For help, use ?- help(Topic). or ?- apropos(Word).

1 ?- load_foreign_library(lowercase).

Yes
2 ?- lowercase(’Hello World!’, L).

L = ’hello world!’

Yes

Figure 9.7: Compiling the C-source and loading the object file

SWI-Prolog 5.6 Reference Manual

260 CHAPTER 9. FOREIGN LANGUAGE INTERFACE

9.10 Notes on Using Foreign Code

9.10.1 Memory Allocation

SWI-Prolog’s heap memory allocation is based on the malloc(3) library routines. The stacks are
allocated using mmap() on most Unix machines and using VirtualAlloc() on windows. SWI-Prolog
provides the functions below as a wrapper around malloc(). Allocation errors in these functions trap
SWI-Prolog’s fatal-error handler, in which case PL malloc() or PL realloc() do not return.

Portable applications must use PL free() to release strings returned by PL get chars() using the
BUF MALLOC argument. Portable applications may use both PL malloc() and friends or malloc() and
friends but should not mix these two sets of functions on the same memory.9

void * PL malloc(size t bytes)
Allocate bytes of memory. On failure SWI-Prolog’s fatal error handler is called and PL malloc()
does not return. Memory allocated using these functions must use PL realloc() and PL free()
rather than realloc() and free().

void * PL realloc(void *mem, size t size)
Change the size of the allocated chunk, possibly moving it. The mem argument must be obtained
from a previous PL malloc() or PL realloc() call.

void PL free(void *mem)
Release memory. The mem argument must be obtained from a previous PL malloc() or
PL realloc() call.

9.10.2 Compatibility between Prolog versions

Great care is taken to ensure binary compatibility of foreign extensions between different Prolog
versions. Only much less frequently used stream interface has been responsible for binary incompati-
bilities.

Source-code that relies on new features of the foreign interface can use the macro PLVERSION to
find the version of SWI-Prolog.h and PL query() using the option PL QUERY VERSION to find
the version of the attached Prolog system. Both follow the same numbering schema explained with
PL query().

9.10.3 Debugging Foreign Code

Statically linked foreign code or embedded systems can be debugged normally. Most modern envi-
ronments provide debugging tools for dynamically loaded shared objects or dynamic load libraries.
The following example traces the code of lowercase using gdb(1) in a Unix environment.

% gcc -I/usr/local/lib/pl-2.2.0/include -fpic -c -g lowercase.c
% gcc -shared -o lowercase.so lowercase.o
% gdb pl
(gdb) r
Welcome to SWI-Prolog (Version \plversion)
Copyright (c) 1993-1996 University of Amsterdam. All rights reserved.

9These functions were introduced in SWI-Prolog 5.0.9 to realise guaranteed portability. Foreign code that must be
compatible with older versions can check the PLVERSION macro.

SWI-Prolog 5.6 Reference Manual

9.10. NOTES ON USING FOREIGN CODE 261

For help, use ?- help(Topic). or ?- apropos(Word).

?- load_foreign_library(lowercase).
<type Control-C>
(gdb) shared % loads symbols for shared objects
(gdb) break pl_lowercase
(gdb) continue
?- lowercase(’HELLO’, X).

9.10.4 Name Conflicts in C modules

In the current version of the system all public C functions of SWI-Prolog are in the symbol table.
This can lead to name clashes with foreign code. Someday I should write a program to strip all these
symbols from the symbol table (why does Unix not have that?). For now I can only suggest to give
your function another name. You can do this using the C preprocessor. If—for example—your foreign
package uses a function warning(), which happens to exist in SWI-Prolog as well, the following macro
should fix the problem.

#define warning warning_

Note that shared libraries do not have this problem as the shared library loader will only look for
symbols in the main executable for symbols that are not defined in the library itself.

9.10.5 Compatibility of the Foreign Interface

The term-reference mechanism was first used by Quintus Prolog version 3. SICStus Prolog version 3
is strongly based on the Quintus interface. The described SWI-Prolog interface is similar to using the
Quintus or SICStus interfaces, defining all foreign-predicate arguments of type +term. SWI-Prolog
explicitly uses type functor t, while Quintus and SICStus uses 〈name〉 and 〈arity〉. As the names
of the functions differ from Prolog to Prolog, a simple macro layer dealing with the names can also
deal with this detail. For example:

#define QP_put_functor(t, n, a) PL_put_functor(t, PL_new_functor(n, a))

The PL unify *() functions are lacking from the Quintus and SICStus interface. They can easily
be emulated or the put/unify approach should be used to write compatible code.

The PL open foreign frame()/PL close foreign frame() combination is lacking from both other
Prologs. SICStus has PL new term refs(0), followed by PL reset term refs() that allows for discard-
ing term references.

The Prolog interface for the graphical user interface package XPCE shares about 90% of the code
using a simple macro layer to deal with different naming and calling conventions of the interfaces.

SWI-Prolog 5.6 Reference Manual

Generating Runtime
Applications 10
This chapter describes the features of SWI-Prolog for delivering applications that can run without the
development version of the system installed.

A SWI-Prolog runtime executable is a file consisting of two parts. The first part is the emulator,
which is machine dependent. The second part is the resource archive, which contains the compiled
program in a machine-independent format, startup options and possibly user-defined resources, see
resource/3 and open resource/3.

These two parts can be connected in various different ways. The most common way for distributed
runtime applications is to concatenate the two parts. This can be achieved using external commands
(Unix: cat, Windows: copy), or using the stand alone option to qsave program/2. The
second option is to attach a startup script in front of the resource that starts the emulator with the
proper options. This is the default under Unix. Finally, an emulator can be told to use a specified
resource file using the -x command-line switch.

qsave program(+File, +ListOfOptions)
Saves the current state of the program to the file File. The result is a resource archive contain-
ing a saved-state that expresses all Prolog data from the running program and all user-defined
resources. Depending on the stand alone option, the resource is headed by the emulator, a
Unix shell-script or nothing.

ListOfOptions is a list of 〈Key〉 = 〈Value〉 or 〈Key〉(〈Value〉) pairs. The available keys are
described in table 10.1.

Before writing the data to file, qsave program/2 will run autoload/0 to all required
autoloading the system can discover. See autoload/0.

Provided the application does not require any of the Prolog libraries to be loaded at runtime, the
only file from the SWI-Prolog development environment required is the emulator itself. The
emulator may be built in two flavours. The default is the development emulator. The runtime
emulator is similar, but lacks the tracer.

If the option stand alone(true) is present, the emulator is the first part of the state. If
the emulator is started it will test whether a boot-file (state) is attached to the emulator itself
and load this state. Provided the application has all libraries loaded, the resulting executable is
completely independent of the runtime environment or location where it was build.

See also section 2.10.2.

qsave program(+File)
Equivalent to qsave program(File, []).

autoload
Check the current Prolog program for predicates that are referred to, are undefined and have a
definition in the Prolog library. Load the appropriate libraries.

SWI-Prolog 5.6 Reference Manual

263

Key Option Type Description
local -L K-bytes Size (Limit) of local stack
global -G K-bytes Size (Limit) of global stack
trail -T K-bytes Size (Limit) of trail stack
argument -A K-bytes Size (Limit) of argument stack
goal -g atom Initialisation goal
toplevel -t atom Prolog top-level goal
init file -f atom Personal initialisation file
class atom If runtime, only read resources from the state

(default). If kernel, lock all predicates as sys-
tem predicates If development, save the pred-
icates in their current state and keep reading re-
sources from their source (if present). See also
resource/3.

autoload bool If true, run autoload/0 first
map file File to write info on dump
op save/standard Save operator declarations?
stand alone bool Include the emulator in the state
emulator file Emulator attached to the (stand-alone) executable.

Default is the running emulator.

Table 10.1: 〈Key〉 = 〈Value〉 pairs for qsave program/2

This predicate is used by qsave program/[1,2] to ensure the saved state will not depend
on one of the libraries. The predicate autoload/0will find all direct references to predicates.
It does not find predicates referenced via meta-predicates. The predicate log/2 is defined in the
library(quintus) to provide a quintus compatible means to compute the natural logarithm of a
number. The following program will behave correctly if its state is executed in an environment
where the library(quintus) is not available:

logtable(From, To) :-
From > To, !.

logtable(From, To) :-
log(From, Value),
format(’˜d˜t˜8|˜2f˜n’, [From, Value]),
F is From + 1,
logtable(F, To).

However, the following implementation refers to log/2 through the meta-predicate
maplist/3. Autoload will not be able to find the reference. This problem may be fixed
either by loading the module library(quintus) explicitly or use require/1 to tell the system
that the predicate log/2 is required by this module.

logtable(From, To) :-
findall(X, between(From, To, X), Xlist),

SWI-Prolog 5.6 Reference Manual

264 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

maplist(log, Xlist, SineList),
write_table(Xlist, SineList).

write_table([], []).
write_table([I|IT], [V|VT]) :-

format(’˜d˜t˜8|˜2f˜n’, [I, V]),
write_table(IT, VT).

volatile +Name/Arity, . . .
Declare that the clauses of specified predicates should not be saved to the program. The volatile
declaration is normally used to avoid that the clauses of dynamic predicates that represent data
for the current session is saved in the state file.

10.1 Limitations of qsave program

There are three areas that require special attention when using qsave program/[1,2].

• If the program is an embedded Prolog application or uses the foreign language interface, care
has to be taken to restore the appropriate foreign context. See section 10.2 for details.

• If the program uses directives (:- goal. lines) that perform other actions then setting predi-
cate attributes (dynamic, volatile, etc.) or loading files (consult, etc.), the directive may need to
be prefixed with initialization/1.

• Database references as returned by clause/3, recorded/3, etc. are not preserved and may
thus not be part of the database when saved.

10.2 Runtimes and Foreign Code

Some applications may need to use the foreign language interface. Object code is by definition
machine-dependent and thus cannot be part of the saved program file.

To complicate the matter even further there are various ways of loading foreign code:

• Using the library(shlib) predicates
This is the preferred way of dealing with foreign code. It loads quickly and ensures an accept-
able level of independence between the versions of the emulator and the foreign code loaded. It
works on Unix machines supporting shared libraries and library functions to load them. Most
modern Unixes, as well as Win32 (Windows 95/NT) satisfy this constraint.

• Static linking
This mechanism works on all machines, but generally requires the same C-compiler and linker
to be used for the external code as is used to build SWI-Prolog itself.

To make a runtime executable that can run on multiple platforms one must make runtime checks
to find the correct way of linking. Suppose we have a source-file myextension.c defining the
installation function install().

If this file is compiled into a shared library, load foreign library/1 will load this library
and call the installation function to initialise the foreign code. If it is loaded as a static extension,
define install() as the predicate install/0:

SWI-Prolog 5.6 Reference Manual

10.3. USING PROGRAM RESOURCES 265

static foreign_t
pl_install()
{ install();

PL_succeed;
}

PL_extension PL_extensions [] =
{
/*{ "name", arity, function, PL_FA_<flags> },*/

{ "install", 0, pl_install, 0 },
{ NULL, 0, NULL, 0 } /* terminating line */

};

Now, use the following Prolog code to load the foreign library:

load_foreign_extensions :-
current_predicate(install, install), !, % static loaded
install.

load_foreign_extensions :- % shared library
load_foreign_library(foreign(myextension)).

:- initialization load_foreign_extensions.

The path alias foreign is defined by file search path/2. By default it searches the di-
rectories 〈home〉/lib/〈arch〉 and 〈home〉/lib. The application can specify additional rules for
file search path/2.

10.3 Using program resources

A resource is very similar to a file. Resources however can be represented in two different formats:
on files, as well as part of the resource archive of a saved-state (see qsave program/2).

A resource has a name and a class. The source data of the resource is a file. Resources
are declared by declaring the predicate resource/3. They are accessed using the predicate
open resource/3.

Before going into details, let us start with an example. Short texts can easily be expressed in Prolog
source code, but long texts are cumbersome. Assume our application defines a command ‘help’ that
prints a helptext to the screen. We put the content of the helptext into a file called help.txt. The
following code implements our help command such that help.txt is incorporated into the runtime
executable.

resource(help, text, ’help.txt’).

help :-
open_resource(help, text, In),
copy_stream(In, user_output),

SWI-Prolog 5.6 Reference Manual

266 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

close(In).

copy_stream(In, Out) :-
get0(In, C),
copy_stream(C, In, Out).

copy_stream(-1, _, _) :- !.
copy_stream(C, In, Out) :-

put(Out, C),
get0(In, C2),
copy_stream(C2, In, Out).

The predicate help/0 opens the resource as a Prolog stream. If we are executing this from the devel-
opment environment, this will actually return a stream to the file help.txt itself. When executed
from the saved-state, the stream will actually be a stream opened on the program resource file, taking
care of the offset and length of the resource.

10.3.1 Predicates Definitions

resource(+Name, +Class, +FileSpec)
This predicate is defined as a dynamic predicate in the module user. Clauses for it may be
defined in any module, including the user module. Name is the name of the resource (an atom).
A resource name may contain any character, except for $ and :, which are reserved for internal
usage by the resource library. Class describes the what kind of object is stored in the resource.
In the current implementation, it is just an atom. FileSpec is a file specification that may exploit
file search path/2 (see absolute file name/2).

Normally, resources are defined as unit clauses (facts), but the definition of this predicate also
allows for rules. For proper generation of the saved state, it must be possible to enumerate the
available resources by calling this predicate with all its arguments unbound.

Dynamic rules are useful to turn all files in a certain directory into resources, without specifying
a resources for each file. For example, assume the file search path/2 icons refers to
the resource directory containing icon-files. The following definition makes all these images
available as resources:

resource(Name, image, icons(XpmName)) :-
atom(Name), !,
file_name_extension(Name, xpm, XpmName).

resource(Name, image, XpmFile) :-
var(Name),
absolute_file_name(icons(.), [type(directory)], Dir)
concat(Dir, ’/*.xpm’, Pattern),
expand_file_name(Pattern, XpmFiles),
member(XpmFile, XpmFiles).

open resource(+Name, ?Class, -Stream)
Opens the resource specified by Name and Class. If the latter is a variable, it will be unified to

SWI-Prolog 5.6 Reference Manual

10.4. FINDING APPLICATION FILES 267

the class of the first resource found that has the specified Name. If successful, Stream becomes
a handle to a binary input stream, providing access to the content of the resource.

The predicate open resource/3 first checks resource/3. When successful it will open
the returned resource source-file. Otherwise it will look in the programs resource database.
When creating a saved-state, the system normally saves the resource contents into the resource
archive, but does not save the resource clauses.

This way, the development environment uses the files (and modifications to the resource/3
declarations and/or files containing resource info thus immediately affect the running environ-
ment, while the runtime system quickly accesses the system resources.

10.3.2 The plrc program

The utility program plrc can be used to examine and manipulate the contents of a SWI-Prolog
resource file. The options are inspired by the Unix ar program. The basic command is:

% plrc option resource-file member ...

The options are described below.

l
List contents of the archive.

x
Extract named (or all) members of the archive into the current directory.

a
Add files to the archive. If the archive already contains a member with the same name, the
contents is replaced. Anywhere in the sequence of members, the options --class=class and
--encoding=encoding may appear. They affect the class and encoding of subsequent files.
The initial class is data and encoding none.

d
Delete named members from the archive.

This command is also described in the pl(1) Unix manual page.

10.4 Finding Application files

If your application uses files that are not part of the saved program such as database files, configuration
files, etc., the runtime version has to be able to locate these files. The file search path/2
mechanism in combination with the -palias command-line argument is the preferred way to locate
runtime files. The first step is to define an alias for the top-level directory of your application. We will
call this directory gnatdir in our examples.

A good place for storing data associated with SWI-Prolog runtime systems is below the emulator’s
home-directory. swi is a predefined alias for this directory. The following is a useful default definition
for the search path.

user:file_search_path(gnatdir, swi(gnat)).

SWI-Prolog 5.6 Reference Manual

268 CHAPTER 10. GENERATING RUNTIME APPLICATIONS

The application should locate all files using absolute file name. Suppose gnatdir contains a file
config.pl to define local configuration. Then use the code below to load this file:

configure_gnat :-
(absolute_file_name(gnatdir(’config.pl’), ConfigFile)

-> consult(ConfigFile)
; format(user_error, ’gnat: Cannot locate config.pl˜n’),
halt(1)
).

10.4.1 Passing a path to the application

Suppose the system administrator has installed the SWI-Prolog runtime environment in /usr/
local/lib/rt-pl-3.2.0. A user wants to install gnat, but gnat will look for its configuration
in /usr/local/lib/rt-pl-3.2.0/gnat where the user cannot write.

The user decides to install the gnat runtime files in /users/bob/lib/gnat. For one-time
usage, the user may decide to start gnat using the command:

% gnat -p gnatdir=/users/bob/lib/gnat

10.5 The Runtime Environment

10.5.1 The Runtime Emulator

The sources may be used to built two versions of the emulator. By default, the development emulator
is built. This emulator contains all features for interactive development of Prolog applications. If the
system is configured using --enable-runtime, make(1) will create a runtime version of the
emulator. This emulator is equivalent to the development version, except for the following features:

• No input editing
The GNU library -lreadline that provides EMACS compatible editing of input lines will
not be linked to the system.

• No tracer
The tracer and all its options are removed, making the system a little faster too.

• No profiler
profile/3 and friends are not supported. This saves some space and provides better perfor-
mance.

• No interrupt
Keyboard interrupt (Control-C normally) is not rebound and will normally terminate the appli-
cation.

• current prolog flag(runtime, true) succeeds
This may be used to verify your application is running in the runtime environment rather than
the development environment.

SWI-Prolog 5.6 Reference Manual

10.5. THE RUNTIME ENVIRONMENT 269

• clause/[2,3
do not work on static predicates] This prolog-flag inhibits listing your program. It is only a very
limited protection however.

The following fragment is an example for building the runtime environment in \env{HOME}/
lib/rt-pl-3.2.0. If possible, the shared-library interface should be configured to ensure it can
serve a large number of applications.

% cd pl-3.2.0
% mkdir runtime
% cd runtime
% ../src/configure --enable-runtime --prefix=$HOME
% make
% make rt-install

The runtime directory contains the components listed below. This directory may be tar’ed and shipped
with your application.

README.RT Info on the runtime environment
bin/〈arch〉/pl The emulator itself
man/pl.1 Manual page for pl
swipl pointer to the home directory (.)
lib/ directory for shared libraries
lib/〈arch〉/ machine-specific shared libraries

SWI-Prolog 5.6 Reference Manual

The SWI-Prolog library A
This chapter documents the SWI-Prolog library. As SWI-Prolog provides auto-loading, there is little
difference between library predicates and built-in predicates. Part of the library is therefore docu-
mented in the rest of the manual. Library predicates differ from built-in predicates in the following
ways.

• User-definition of a built-in leads to a permission-error, while using the name of a library pred-
icate is allowed.

• If autoloading is disabled explicitely or because trapping unknown predicates is disabled (see
unknown/2 and current prolog flag/2), library predicates must be loaded explicitely.

• Using libraries reduce the footprint of applications that don’t need them.

The documentation of the library is just started. Material from the standard packages
should be moved here, some material from other parts of the manual should be moved
too and various libraries are not documented at all.

A.1 lists: List Manipulation

This library provides commonly accepted basic predicates for list manipulation in the Prolog commu-
nity. Some additional list manipulations are built-in. Their description is in section 4.28.

append(?List1, ?List2, ?List3)
Succeeds when List3 unifies with the concatenation of List1 and List2. The predicate can be
used with any instantiation pattern (even three variables).

member(?Elem, ?List)
Succeeds when Elem can be unified with one of the members of List. The predicate can be used
with any instantiation pattern.

nextto(?X, ?Y, ?List)
Succeeds when Y immediatly follows X in List.

delete(+List1, ?Elem, ?List2)
Delete all members of List1 that simultaneously unify with Elem and unify the result with List2.

select(?Elem, ?List, ?Rest)
Select Elem from List leaving Rest. It behaves as member/2, returning the remaining elements
in Rest. Note that besides selecting elements from a list, it can also be used to insert elements.1

1BUG: Upto SWI-Prolog 3.3.10, the definition of this predicate was not according to the de-facto standard. The first two
arguments were in the wrong order.

SWI-Prolog 5.6 Reference Manual

A.1. LISTS: LIST MANIPULATION 271

nth0(?Index, ?List, ?Elem)
Succeeds when the Index-th element of List unifies with Elem. Counting starts at 0.

nth1(?Index, ?List, ?Elem)
Succeeds when the Index-th element of List unifies with Elem. Counting starts at 1.

last(?List, ?Elem)
Succeeds if Elem unifies with the last element of List. If List is a proper list last/2 is deter-
ministic. If List has an unbound tail, backtracking will cause List to grow.2

reverse(+List1, -List2)
Reverse the order of the elements in List1 and unify the result with the elements of List2.

permutation(?List1, ?List2)
Permuation is true when List1 is a permutation of List2. The implementation can solve for List2
given List1 or List1 given List2, or even enumerate List1 and List2 together.

flatten(+List1, -List2)
Transform List1, possibly holding lists as elements into a ‘flat’ list by replacing each list with
its elements (recursively). Unify the resulting flat list with List2. Example:

?- flatten([a, [b, [c, d], e]], X).

X = [a, b, c, d, e]

sumlist(+List, -Sum)
Unify Sum to the result of adding all elements in List. List must be a proper list holding numbers.
See number/1 and is/2. for details on arithmetic.

numlist(+Low, +High, -List)
If Low and High are integers with Low ≤ High, unify List to a list [Low, Low + 1, . . . High].
See also between/3.

A.1.1 Set Manipulation

The set predicates listed in this section work on ordinary unsorted lists. Note that this makes many of
the operations order N2. For larger sets consider the use of ordered sets as implemented by library
ordsets.pl, running most these operations in order N . See section A.2.

is set(+Set)
Succeeds if Set is a list (see is list/1) without duplicates.

list to set(+List, -Set)
Unifies Set with a list holding the same elements as List in the same order. If list contains
duplicates, only the first is retained. See also sort/2. Example:

?- list_to_set([a,b,a], X)

X = [a,b]

2The argument order of this predicate was changed in 5.1.12 for compatibility reasons.

SWI-Prolog 5.6 Reference Manual

272 APPENDIX A. THE SWI-PROLOG LIBRARY

intersection(+Set1, +Set2, -Set3)
Succeeds if Set3 unifies with the intersection of Set1 and Set2. Set1 and Set2 are lists without
duplicates. They need not be ordered.

subtract(+Set, +Delete, -Result)
Delete all elements of set ‘Delete’ from ‘Set’ and unify the resulting set with ‘Result’.

union(+Set1, +Set2, -Set3)
Succeeds if Set3 unifies with the union of Set1 and Set2. Set1 and Set2 are lists without dupli-
cates. They need not be ordered.

subset(+Subset, +Set)
Succeeds if all elements of Subset are elements of Set as well.

A.2 ordsets: Ordered Set Manipulation

Ordered sets are lists with unique elements sorted to the standard order of terms (see sort/2).
Exploiting ordering, many of the set operations can be expressed in order N rather than N2 when
dealing with unordered sets that may contain duplicates. The ordsets is available in a number of
Prolog implementations. Our predicates are designed to be compatible with common practice in the
Prolog community. The implementation is incomplete and relies partly on oset, an older ordered set
library distributed with SWI-Prolog. New applications are advices to use ordsets.

Some of these predicates match directly to corresponding list operations. It is adviced to use the
versions from this library to make clear you are operating on ordered sets.

ord empty(?Set)
True if Set is an empty ordered set. Set unifies with the empty list.

list to ord set(+List, -OrdSet)
Convert a List to an ordered set. Same as sort/2.

ord add element(+Set, +Element, -NewSet)
Add an element to an ordered set. NewSet is the same as Set if Element is already part of Set.

ord del element(+Set, +Element, -NewSet)
Delete Element from Set. Succeeds without changing Set if Set does not contain Element.

ord intersect(+Set1, +Set2)
True if the intersection of Set1 and Set2 is non-empty.

ord intersection(+Set1, +Set2, -Intersection)
True if Intersection is the intersection of Set1 and Set2.

ord disjoint(+Set1, +Set2)
True if Set1 and Set2 have no common element. Negation of ord intersect/2.

ord subtract(+Set, +Delete, -Remaining)
True if Remaining contains the elements of Set that are not in set Delete.

ord union(+Set1, +Set2, -Union)
True if Union contains all elements from Set1 and Set2

SWI-Prolog 5.6 Reference Manual

A.3. ASSOC: ASSOCIATION LISTS 273

ord union(+Set1, +Set2, -Union, -New)
Defined as if ord union(Set1, Set2, Union), ord subtract(Set2, Set1, New).

ord subset(+Sub, +Super)
True if all elements of Sub are in Super.

ord memberchk(+Element, +Set)
True if Element appears in Set. Does not backtrack. Same as memberchk/2.

A.3 assoc: Association lists

Authors: Richard A. O’Keefe, L.Damas, V.S.Costa and Markus Triska

Elements of an association list have 2 components: A (unique) key and a value. Keys should be
ground, values need not be. An association list can be used to fetch elements via their keys and to
enumerate its elements in ascending order of their keys. The assoc module uses AVL trees to im-
plement association lists. This makes inserting, changing and fetching a single element an O(log(N))
(where N denotes the number of elements in the list) expected time (and worst-case time) operation.

assoc to list(+Assoc, -List)
List is a list of Key-Value pairs corresponding to the associations in Assoc in ascending order of
keys.

empty assoc(-Assoc)
Assoc is unified with an empty association list.

gen assoc(?Key, +Assoc, ?Value)
Enumerate matching elements of Assoc in ascending order of their keys via backtracking.

get assoc(+Key, +Assoc, ?Value)
Value is the value associated with Key in the association list Assoc.

get assoc(+Key, +Assoc, ?Old, ?NewAssoc, ?New)
NewAssoc is an association list identical to Assoc except that the value associated with Key is
New instead of Old.

list to assoc(+List, ?Assoc)
Assoc is an association list corresponding to the Key-Value pairs in List.

map assoc(:Goal, +Assoc)
Goal(V) is true for every value V in Assoc.

map assoc(:Goal, +AssocIn, ?AssocOut)
AssocOut is AssocIn with Goal applied to all corresponding pairs of values.

max assoc(+Assoc, ?Key, ?Value)
Key and Value are key and value of the element with the largest key in Assoc.

min assoc(+Assoc, ?Key, ?Value)
Key and Value are key and value of the element with the smallest key in Assoc.

SWI-Prolog 5.6 Reference Manual

274 APPENDIX A. THE SWI-PROLOG LIBRARY

ord list to assoc(+List, ?Assoc)
Assoc is an association list correpsond to the Key-Value pairs in List, which must occur in
ascending order of their keys.

put assoc(+Key, +Assoc, +Value, ?NewAssoc)
NewAssoc is an association list identical to Assoc except that Key is associated with Value. This
can be used to insert and change associations.

A.4 ugraphs: Unweighted Graphs

Authors: Richard O’Keefe & Vitor Santos Costa

Implementation and documentation are copied from YAP 5.0.1. The ugraph library is
based on code originally written by Richard O’Keefe. The code was then extended to be
compatible with the SICStus Prolog ugraphs library. Code and documentation have been
cleaned and style has been changed to be more in line with the rest of SWI-Prolog.

The ugraphs library was originally released in the public domain. YAP is convered by the
Perl artistic license, which does not imply further restrictions on the SWI-Prolog LGPL
license.

The routines assume directed graphs, undirected graphs may be implemented by using two edges.
Originally graphs where represented in two formats. The SICStus library and this version of

ugraphs.pl only uses the S-representation. The S-representation of a graph is a list of (vertex-
neighbors) pairs, where the pairs are in standard order (as produced by keysort) and the neighbors
of each vertex are also in standard order (as produced by sort). This form is convenient for many
calculations. Each vertex appears in the S-representation, also if it has no neighbors.

vertices edges to ugraph(+Vertices, +Edges, -Graph)
Given a graph with a set of Vertices and a set of Edges, Graph must unify with the corresponding
S-representation. Note that the vertices without edges will appear in Vertices but not in Edges.
Moreover, it is sufficient for a vertice to appear in Edges.

?- vertices_edges_to_ugraph([],[1-3,2-4,4-5,1-5], L).
L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[]]

In this case all vertices are defined implicitly. The next example shows three unconnected
vertices:

?- vertices_edges_to_ugraph([6,7,8],[1-3,2-4,4-5,1-5], L).
L = [1-[3,5], 2-[4], 3-[], 4-[5], 5-[], 6-[], 7-[], 8-[]] ?

vertices(+Graph, -Vertices)
Unify Vertices with all vertices appearing in graph Graph. Example:

?- vertices([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
L = [1, 2, 3, 4, 5]

SWI-Prolog 5.6 Reference Manual

A.4. UGRAPHS: UNWEIGHTED GRAPHS 275

edges(+Graph, -Edges)
Unify Edges with all edges appearing in Graph. In the next example:

?- edges([1-[3,5],2-[4],3-[],4-[5],5-[]], L).
L = [1-3, 1-5, 2-4, 4-5]

add vertices(+Graph, +Vertices, -NewGraph)
Unify NewGraph with a new graph obtained by adding the list of Vertices to the Graph. Exam-
ple:

?- add_vertices([1-[3,5],2-[]], [0,1,2,9], NG).
NG = [0-[], 1-[3,5], 2-[], 9-[]]

del vertices(+Vertices, +Graph, -NewGraph)
Unify NewGraph with a new graph obtained by deleting the list of Vertices and all the edges
that start from or go to a vertex in Vertices to the Graph. Example:

?- del_vertices([2,1],
[1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[2,6],8-[]],
NL).

NL = [3-[],4-[5],5-[],6-[],7-[6],8-[]]

add edges(+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by adding the list of edges Edges to the graph
Graph. Example:

?- add_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]],
[1-6,2-3,3-2,5-7,3-2,4-5],
NL).

NL = [1-[3,5,6], 2-[3,4], 3-[2], 4-[5], 5-[7], 6-[], 7-[], 8-[]]

del edges(+Graph, +Edges, -NewGraph)
Unify NewGraph with a new graph obtained by removing the list of Edges from the Graph.
Notice that no vertices are deleted. In the next example:

?- del_edges([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]],
[1-6,2-3,3-2,5-7,3-2,4-5,1-3],
NL).

NL = [1-[5],2-[4],3-[],4-[],5-[],6-[],7-[],8-[]]

transpose(+Graph, -NewGraph)
Unify NewGraph with a new graph obtained from Graph by replacing all edges of the form
V1-V2 by edges of the form V2-V1. The cost is O(|V |2). Notice that an undirected graph is its
own transpose. Example:

SWI-Prolog 5.6 Reference Manual

276 APPENDIX A. THE SWI-PROLOG LIBRARY

?- transpose([1-[3,5],2-[4],3-[],4-[5],5-[],6-[],7-[],8-[]], NL).
NL = [1-[],2-[],3-[1],4-[2],5-[1,4],6-[],7-[],8-[]]

neighbours(+Vertex, +Graph, -Vertices)
Unify Vertices with the list of neighbours of vertex Vertex in Graph. Example:

?- neighbours(4,[1-[3,5],2-[4],3-[],
4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).

NL = [1,2,7,5]

neighbors(+Vertex, +Graph, -Vertices)
American version of neighbours/3.

complement(+Graph, -NewGraph)
Unify NewGraph with the graph complementary to Graph. Example:

?- complement([1-[3,5],2-[4],3-[],
4-[1,2,7,5],5-[],6-[],7-[],8-[]], NL).

NL = [1-[2,4,6,7,8],2-[1,3,5,6,7,8],3-[1,2,4,5,6,7,8],
4-[3,5,6,8],5-[1,2,3,4,6,7,8],6-[1,2,3,4,5,7,8],
7-[1,2,3,4,5,6,8],8-[1,2,3,4,5,6,7]]

compose(+LeftGraph, +RightGraph, -NewGraph)
Compose, by connecting the drains of LeftGraph to the sources of RightGraph. Example:

?- compose([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
L = [1-[4], 2-[1,2,4], 3-[]]

ugraph union(+Graph1, +Graph2, -NewGraph)
NewGraph is the union of Graph1 and Graph2. Example:

?- ugraph_union([1-[2],2-[3]],[2-[4],3-[1,2,4]],L).
L = [1-[2], 2-[3,4], 3-[1,2,4]]

top sort(+Graph, -Sort)
Generate the set of nodes Sort as a topological sorting of graph Graph, if one is possible. A
toplogical sort is possible if the graph is connected and acyclic. In the example we show how
topological sorting works for a linear graph:

?- top_sort([1-[2], 2-[3], 3-[]], L).
L = [1, 2, 3]

top sort(+Graph, -Sort0, -Sort)
Generate the difference list Sort-Sort0 as a topological sorting of graph Graph, if one is possible.

SWI-Prolog 5.6 Reference Manual

A.5. NBSET: NON-BACKTRACKABLE SET 277

transitive closure(+Graph, -Closure)
Generate the graph Closure as the transitive closure of graph Graph. Example:

?- transitive_closure([1-[2,3],2-[4,5],4-[6]],L).
L = [1-[2,3,4,5,6], 2-[4,5,6], 4-[6]]

reachable(+Vertex, +Graph, -Vertices)
Unify Vertices with the set of all vertices in graph Graph that are reachable from Vertex. Exam-
ple:

?- reachable(1,[1-[3,5],2-[4],3-[],4-[5],5-[]],V).
V = [1, 3, 5]

A.5 nbset: Non-backtrackable set

The library nb set defines non-backtrackable sets, implemented as binary trees. The sets are repre-
sented as compound terms and manipulated using nb setarg/3. Non-backtrackable manipulation
of datastructures is not supported by a large number of Prolog implementation, but it it has several
advantages over using the database. It produces less garbage, is thread-safe, reentrant and deals with
exceptions without leaking data.

Similar to the assoc library keys can be any Prolog term, but it is not allowed to instantiate or
modify a term.

One of the ways to use this library is to generate unique values on backtracking without generating
all solutions first, for example to act as a filter between a generator producing many duplicates and an
expensive test routine, as outlines below.

generate_and_test(Solution) :-
empty_nb_set(Set),
generate(Solution),
add_nb_set(Solution, Set, true),
test(Solution).

empty nb set(?Set)
True if Set is a non-backtrackable emoty set.

add nb set(+Key, !Set)
Add Key to Set. If Key is already a member of Set, add nb set/3 succeeds without modifying
Set.

add nb set(+Key, !Set, ?New)
If Key is not in Set and New is unified to true Key is added to Set. If Key is in Set New is
unified to false. It can be used for many purposes:

add nb set(+, +, false) Test membership
add nb set(+, +, true) Succeed only if new member
add nb set(+, +, Var) Succeed, bindin Var

SWI-Prolog 5.6 Reference Manual

278 APPENDIX A. THE SWI-PROLOG LIBRARY

gen nb set(+Set, -Key)
Generate all members of Set on backtracking in the standard order of terms. To test membership,
use add nb set/3.

size nb set(+Set, -Size)
Unify Size with the number of elements in Set.

nb set to list(+Set, -List)
Unify List with a list of all elements in set in the standard order of terms (i.e. and ordered list).

A.6 gensym: Generate unique identifiers

Gensym (Generate Symbols) is an old library for generating unique symbols (atoms). Such symbols
are generated from a base atom which gets a sequence number appended. Of course there is no
guarantee that ‘catch22’ is not an already defined atom and therefore one must be aware these atoms
are only unique in an isolated context.

The SWI-Prolog gensym library is thread-safe. The sequence numbers are global over all threads
and therefore generated atoms are unique over all threads.

gensym(+Base, -Unique)
Generate a unique atom from base Base and unify it with Unique. Base should be an atom. The
first call will return 〈base〉1, the next 〈base〉2, etc. Note that this is no warrant that the atom is
unique in the system.

reset gensym(+Base)
Restart generation of identifiers from Base at 〈Base〉1. Used to make sure a program produces
the same results on subsequent runs. Use with care.

reset gensym
Reset gensym for all registered keys. This predicate is available for compatibility only. New
code is strongly advice to avoid the use of reset gensym or at least to reset only the keys used
by your program to avoid unexpected site-effects on other components.

A.7 check: Elementary completeness checks

This library defines the predicate check/0 and a few friends that allow for a quick-and-dirty cross-
referencing.

check
Performs the three checking passes implemented by list undefined/0,
list autoload/0 and list redefined/0. Please check the definition of these
predicates for details.

The typical usage of this predicate is right after loading your program to get a quick overview
on the completeness and possible conflicts in your program.

list undefined
Scans the database for predicates that have no definition. A predicate is considered defined if
it has clauses, is declared using dynamic/1 or multifile/1. As a program is compiled

SWI-Prolog 5.6 Reference Manual

A.8. DEBUG: SOME REUSABLE CODE TO HELP DEBUGGING APPLICATIONS 279

calls are translated to predicates. If the called predicate is not yet defined it is created as a
predicate without definition. The same happens with runtime generated calls. This predicate
lists all such undefined predicates that are referenced and not defined in the library. See also
list autoload/0. Below is an example from a real program and an illustration how to edit
the referencing predicate using edit/1.

?- list_undefined.
Warning: The predicates below are not defined. If these are defined
Warning: at runtime using assert/1, use :- dynamic Name/Arity.
Warning:
Warning: rdf_edit:rdfe_retract/4, which is referenced by
Warning: 1-st clause of rdf_edit:undo/4
Warning: rdf_edit:rdfe_retract/3, which is referenced by
Warning: 1-st clause of rdf_edit:delete_object/1
Warning: 1-st clause of rdf_edit:delete_subject/1
Warning: 1-st clause of rdf_edit:delete_predicate/1

?- edit(rdf_edit:undo/4).

list autoload
Lists all undefined (see list undefined/0) predicates that have a definition in the library
along with the file from which they will be autoloaded when accessed. See also autoload/0.

list redefined
Lists predicates that are defined in the global module user as well as in a normal module. I.e.
predicates for which the local definition overrules the global default definition.

A.8 debug: Some reusable code to help debugging applications

This library provides an structured alternative for putting print-statements into your source-code to
trace what is going on. Debug messages are organised in topics that can be activated and de-activated
without changing the source. In addition, if the application is compiled with the -O flag these predi-
cates are removed using goal expansion/2.

Although this library can be used through the normal demand-loading mechanism it is adviced
to load it explicitely before code using it to profit from goal-expansion, which removes these calls
if compiled with optimisation on and records the topics from debug/3 and debugging/1 for
list debug topics/0.

debug(+Topic, +Format, +Args)
If Topic is a selected debugging topic (see debug/1) a message is printed using
print message/2 with level informational. Format and Args are interpreted by
format/2. Here is a typical example:

...,
debug(init, ’Initialised ˜w’, [Module]),
...,

SWI-Prolog 5.6 Reference Manual

280 APPENDIX A. THE SWI-PROLOG LIBRARY

Topic can be any Prolog term. Compound terms can be used to make categories of topics that
can be activated using debug/1.

debugging(+Topic)
Succeeds if Topic is a selected debugging topic. It is intended to execute ar-
bitrary code depending on the users debug topic selection. The construct
(debugging(Topic) -> Code ; true) is removed if the code is compiled in
optimise mode.

debug(+Topic)
Select all registered topics that unify with Topic for debugging. This call is normally used from
the toplevel to activate a topic for debugging. Topics are de-activated using nodebug/1.

nodebug(+Topic)
Deactivates topics for debugging. See debug/1 for the arguments.

list debug topics
List the current status of registered topics. See also debugging/0.

assertion(:Goal)
This predicate is to be compared to the C-library assert() function. By inserting this goal you
explicitely state you expect Goal to succeed at this place. As assertion/1 calls are removed
when compiling in optimized mode Goal should not have side-effects. Typical examples are
type-tests and validating invariants defined by your application.

If Goal fails the system prints a message, followed by a stack-trace and starts the debugger.

In older versions of this library this predicate was called assume/1. Code using assume/1
is automatically converted while printing a warning on the first occurrence.

A.9 readutil: Reading lines, streams and files

This library contains primitives to read lines, files, multiple terms, etc. The package clib provides
a shared object (DLL) named readutil. If the library can locate this shared object it will use the
foreign implementation for reading character codes. Otherwise it will use a Prolog implementation.
Distributed applications should make sure to deliver the readutil shared object if performance of
these predicates is critical.

read line to codes(+Stream, -Codes)
Read the next line of input from Stream and unify the result with Codes after the line has been
read. A line is ended by a newline character or end-of-file. Unlike read line to codes/3,
this predicate removes trailing newline character.

On end-of-file the atom end of file is returned. See also at end of stream/[0,1].

read line to codes(+Stream, -Codes, ?Tail)
Diference-list version to read an input line to a list of character codes. Reading stops at the
newline or end-of-file character, but unlike read line to codes/2, the newline is retained
in the output. This predicate is especially useful for readine a block of lines upto some delimiter.
The following example reads an HTTP header ended by a blank line:

SWI-Prolog 5.6 Reference Manual

A.10. NETSCAPE: ACTIVATING YOUR WEB-BROWSER 281

read_header_data(Stream, Header) :-
read_line_to_codes(Stream, Header, Tail),
read_header_data(Header, Stream, Tail).

read_header_data("\r\n", _, _) :- !.
read_header_data("\n", _, _) :- !.
read_header_data("", _, _) :- !.
read_header_data(_, Stream, Tail) :-

read_line_to_codes(Stream, Tail, NewTail),
read_header_data(Tail, Stream, NewTail).

read stream to codes(+Stream, -Codes)
Read all input until end-of-file and unify the result to Codes.

read stream to codes(+Stream, -Codes, ?Tail)
Difference-list version of read stream to codes/2.

read file to codes(+Spec, -Codes, +Options)
Read a file to a list of character codes. Spec is a file-specification for
absolute file name/3. Codes is the resulting code-list. Options is a list of op-
tions for absolute file name/3 and open/4. In addition, the option tail(Tail) is
defined, forming a difference-list.

read file to terms(+Spec, -Terms, +Options)
Read a file to a list of prolog terms (see read/1). Spec is a file-specification for
absolute file name/3. Terms is the resulting list of Prolog terms. Options is a list of
options for absolute file name/3 and open/4. In addition, the option tail(Tail) is
defined, forming a difference-list.

A.10 netscape: Activating your Web-browser

This library deals with the very system dependent task of opening a web page in a browser. See also
url and the HTTP package.

www open url(+URL)
Open URL in an external web-browser. The reason to place this in the library is to centralise
the maintenance on this highly platform and browser specific task. It distinguishes between the
following cases:

• MS-Windows
If it detects MS-Windows it uses win shell/2 to open the URL. The behaviour and
browser started depends on the Window and Windows-shell configuration, but in general
it should be the behaviour expected by the user.

• Other platforms
On other platforms it tests the environment variable (see getenv/2) named BROWSER
or uses netscape if this variable is not set. If the browser is either mozilla or
netscape, www open url/1 first tries to open a new window on a running using the

SWI-Prolog 5.6 Reference Manual

282 APPENDIX A. THE SWI-PROLOG LIBRARY

-remote option of netscape. If this fails or the browser is not mozilla or netscape
the system simply passes the URL as first argument to the program.

A.11 registry: Manipulating the Windows registry

The registry is only available on the MS-Windows version of SWI-Prolog. It loads the foreign
extension plregtry.dll, providing the predicates described below. This library only makes the
most common operations on the registry available through the Prolog user. The underlying DLL
provides a more complete coverage of the Windows registry API. Please consult the sources in pl/
src/win32/foreign/plregtry.c for further details.

In all these predicates, Path refers to a ‘/’ separated path into the registry. This is not an atom
containing ‘/’-characters as used for filenames, but a term using the functor //2. Windows defines the
following roots for the registry: classes root, current user, local machine and users

registry get key(+Path, -Value)
Get the principal (default) value associated to this key. Fails silently of the key does not exist.

registry get key(+Path, +Name, -Value)
Get a named value associated to this key.

registry set key(+Path, +Value)
Set the principal (default) value of this key. Creates (a path to) the key if this does not already
exist.

registry set key(+Path, +Name, +Value)
Associated a named value to this key. Creates (a path to) the key if this does not already exist.

registry delete key(+Path)
Delete the indicated key.

shell register file type(+Ext, +Type, +Name, +OpenAction)
Register a file-type. Ext is the extension to associate. Type is the type name, often something
link prolog.type. Name is the name visible in the Windows file-type browser. Finally, Ope-
nAction defines the action to execute when a file with this extension is opened in the Windows
explorer.

shell register dde(+Type, +Action, +Service, +Topic, +Command, +IfNotRunning)
Associate DDE actions to a type. Type is the same type as used for the 2nd argument of
shell register file type/4, Action is the a action to perform, Service and Topic spec-
ify the DDE topic to address and Command is the command to execute on this topic. Finally,
IfNotRunning defines the command to execute if the required DDE server is not present.

shell register prolog(+Ext)
Default registration of SWI-Prolog, which is invoked as part of the initialisation process on
Windows systems. As the source also explains the above predicates, it is given as an example:

shell_register_prolog(Ext) :-
current_prolog_flag(argv, [Me|_]),
concat_atom([’"’, Me, ’" "%1"’], OpenCommand),

SWI-Prolog 5.6 Reference Manual

A.12. URL: ANALYSING AND CONSTRUCTING URL 283

shell_register_file_type(Ext, ’prolog.type’, ’Prolog Source’,
OpenCommand),

shell_register_dde(’prolog.type’, consult,
prolog, control, ’consult(’’%1’’)’, Me),

shell_register_dde(’prolog.type’, edit,
prolog, control, ’edit(’’%1’’)’, Me).

A.12 url: Analysing and constructing URL

This library deals with the analysis and construction of a URL, Universal Resource Locator. URL is
the basis for communicating locations of resources (data) on the web. A URL consists of a protocol
identifier (e.g. HTTP, FTP), and a protocol-specific syntax further defining the location. URLs are
standardized in RFC-1738.

The implementation in this library covers only a small portion of the defined protocols. Though the
initial implementation followed RFC-1738 strictly, the current is more relaxed to deal with frequent
violations of the standard encountered in practical use.

This library contains code by Jan Wielemaker who wrote the initial version and Lukas Faulstich
who added various extensions.

parse url(?URL, ?Parts)
Construct or analyse a URL. URL is an atom holding a URL or a variable. Parts is a list of
components. Each component is of the format Name(Value). Defined components are:

protocol(Protocol)
The used protocol. This is, after the optional url:, an identifier separated from the
remainder of the URL using :. parse url/2 assumes the http protocol if no protocol
is specified and the URL can be parsed as a valid HTTP url. In addition to the RFC-1738
specified protocols, the file: protocol is supported as well.

host(Host)
Host-name or IP-address on which the resource is located. Supported by all network-based
protocols.

port(Port)
Integer port-number to access on the Host. This only appears if the port is explicitly
specified in the URL. Implicit default ports (e.g. 80 for HTTP) do not appear in the part-
list.

path(Path)
(File-) path addressed by the URL. This is supported for the ftp, http and file pro-
tocols. If no path appears, the library generates the path /.

search(ListOfNameValue)
Search-specification of HTTP URL. This is the part after the ?, normally used to transfer
data from HTML forms that use the ‘GET’ protocol. In the URL it consists of a www-
form-encoded list of Name=Value pairs. This is mapped to a list of Prolog Name=Value
terms with decoded names and values.

fragment(Fragment)
Fragment specification of HTTP URL. This is the part after the # character.

SWI-Prolog 5.6 Reference Manual

284 APPENDIX A. THE SWI-PROLOG LIBRARY

The example below illustrates the all this for an HTTP UTL.

?- parse_url(’http://swi.psy.uva.nl/message.cgi?msg=Hello+World%21#x’,
P).

P = [protocol(http),
host(’swi.psy.uva.nl’),
fragment(x),
search([msg = ’Hello World!’

]),
path(’/message.cgi’)

].

By instantiating the parts-list this predicate can be used to create a URL.

parse url(?URL, +BaseURL, ?Parts)
Same as parse url/2, but dealing a url that is relative to the given BaseURL. This is used to
analyse or construct a URI found in the document behind BaseURL.

global url(+URL, +BaseURL, -AbsoluteUrl)
Transform a (possibly) relative URL into a global one.

http location(?Parts, ?Location)
Similar to parse url/2, but only deals with the location part of an HTTP URL. That is, the
path, search and fragment specifiers. In the HTTP protocol, the first line of a message is

Action Location [HTTP/HttpVersion]

Location is either an atom or a code-list.

www form encode(?Value, ?WwwFormEncoded)
Translate between a string-literal and the x-www-form-encoded representation used in path and
search specifications of the HTTP protocol.

Encoding implies mapping space to +, preserving alpha-numercial characters, map newlines to
%0D%0A and anything else to %XX. When decoding, newlines appear as a single newline (10)
character.

A.13 clp/bounds: Integer Bounds Constraint Solver

Author: Tom Schrijvers, K.U.Leuven
The bounds solver is a rather simple integer constraint solver, implemented with attributed variables.
Its syntax is a subset of the SICStus clp(FD) syntax.

Please note that the clp/bounds library is not an autoload library and therefore this library
must be loaded explicitely before using it using:

:- use_module(library(’clp/bounds’)).

SWI-Prolog 5.6 Reference Manual

A.13. CLP/BOUNDS: INTEGER BOUNDS CONSTRAINT SOLVER 285

A.13.1 Constraints

The following constraints are supported:

-Var in +Range
Varibale Var is restricted to be in range Range. A range is denoted by L..U where both L and
U are integers.

-Vars in +Range
A list of variables Vars are restriced to be in range Range.

tuples in(+Tuples, +Extension)
Where Tuples is a list of tuples (lists) of variables and integers, each of length N , and Extension
is a list of tuples of integers, each of length N . Each tuple of Tuples is constrained to be in the
relation defined by Extension. See section A.13.4 for an example.

?Expr #> ?Expr
The left-hand expression is constrained to be greater than the right-hand expressions.

?Expr #< ?Expr
The left-hand expression is constrained to be smaller than the right-hand expressions.

?Expr #>= ?Expr
The left-hand expression is constrained to be greater than or equal to the right-hand expressions.

?Expr #=< ?Expr
The left-hand expression is constrained to be smaller than or equal to the right-hand expressions.

?Expr #= ?Expr
The left-hand expression is constrained to be equal to the right-hand expressions.

?Expr #\= ?Expr
The left-hand expression is constrained to be not equal to the right-hand expressions.

sum(+Vars,+Op,?Value)
Here Vars is a list of variables and integers, Op is one of the binary constraint relation symbols
above and Value is an integer or variable. It represents the constraint (

∑
Vars) Op Value.

lex chain(+VarsLists)
The constraint enforces lexicographic ordering on the lists in the argument. The argument Vars
is a list of lists of variables and integers. The current implementation was contributed by Markus
Triska.

all different(+Vars)
Constrains all variabls in the list Vars to be pairwise not equal.

indomain(+Var)
Assigns a value in its domain to variable Var. Backtracks over all possible values from lowest
to greatest. Contributed by Markus Triska.

label(+Vars)
All variables are assigned a variable that does not violate the constraint on them.

SWI-Prolog 5.6 Reference Manual

286 APPENDIX A. THE SWI-PROLOG LIBRARY

Here Expr can be one of

integer Any integer.

variable A variable.

?Expr + ?Expr
The sum of two expressions.

?Expr * ?Expr
The product of two expressions.

?Expr - ?Expr
The difference of two expressions.

max(?Expr,?Expr)
The maximum of two expressions.

min(?Expr,?Expr)
The minimum of two expressions.

?Expr mod ?Expr
The first expression modulo the second expression.

abs(?Expr)
The absolute value of an expression.

A.13.2 Constraint Implication and Reified Constraints

The following constraint implication predicates are available:

+P #=> +Q
P implies Q, where P and Q are reifyable constraints.

+Q #<= +P
P implies Q, where P and Q are reifyable constraints.

+P #<=> +Q
P and Q are equivalent, where P and Q are reifyable constraints.

In addition, instead of being a reifyable constraint, either P or Q can be a boolean variable that is the
truth value of the corresponding constraint.
The following constraints are reifyable: #=/2, #\=/2, #</2, #>/2, #=</2, #>/2.

For example, to count the number of occurrences of a particular value in a list of constraint vari-
ables:

• Using constraint implication
occurrences(List,Value,Count) :-

occurrences(List,Value,0,Count).

occurrences([],_,Count,Count).
occurrences([X|Xs],Value,Acc,Count) :-

SWI-Prolog 5.6 Reference Manual

A.13. CLP/BOUNDS: INTEGER BOUNDS CONSTRAINT SOLVER 287

X #= Value #=> NAcc #= Acc + 1,
X #\= Value #=> NAcc #= Acc,
occurrences(Xs,Value,NAcc,Count).

• Using reified constraints
occurrences(List,Value,Count) :-

occurrences(List,Value,0,Count).

occurrences([],_,Count,Count).
occurrences([X|Xs],Value,Acc,Count) :-

X #= Value #=> B,
NAcc #= Acc + B,
occurrences(Xs,Value,NAcc,Count).

A.13.3 Example 1: Send+More=Money

The following is an implementation of the classic alphametics puzzle SEND + MORE = MONEY:

:- use_module(library(’clp/bounds’)).

send([[S,E,N,D], [M,O,R,E], [M,O,N,E,Y]]) :-
Digits = [S,E,N,D,M,O,R,Y],
Carries = [C1,C2,C3,C4],
Digits in 0..9,
Carries in 0..1,

M #= C4,
O + 10 * C4 #= M + S + C3,
N + 10 * C3 #= O + E + C2,
E + 10 * C2 #= R + N + C1,
Y + 10 * C1 #= E + D,

M #>= 1,
S #>= 1,
all_different(Digits),
label(Digits).

A.13.4 Example 2: Using tuples in for a train schedule

This example demonstrates tuples in/2. A train schedule is represented as a list Ts of quadruples,
denoting departure and arrival places and times for each train. The path/3 predicate given below
constrains Ps to a feasible journey from A to D via 3 trains that are part of the given schedule.

:- use_module(library(bounds)).

schedule(Ts) :-
Ts = [[1,2,0,1],[2,3,4,5],[2,3,0,1],[3,4,5,6],[3,4,2,3],[3,4,8,9]].

SWI-Prolog 5.6 Reference Manual

288 APPENDIX A. THE SWI-PROLOG LIBRARY

path(A, D, Ps) :-
schedule(Ts),
Ps = [[A,B,_T0,T1],[B,C,T2,T3],[C,D,T4,_T5]],
tuples_in(Ps, Ts),
T2 #> T1,
T4 #> T3.

An example query:

?- path(1, 4, Ps), flatten(Ps, Vars), label(Vars).

Ps = [[1, 2, 0, 1], [2, 3, 4, 5], [3, 4, 8, 9]]

A.13.5 SICStus clp(FD) compatibility

Apart from the limited syntax, the bounds solver differs in the following ways from the SICStus
clp(FD) solver:

• inf and sup
The smallest lowerbound and greatest upperbound in bounds are max integer and
min integer + 1.

A.14 clpqr: Constraint Logic Programming over Rationals and Reals

Author: Leslie De Koninck, K.U. Leuven

This CLP(Q,R) system is a port of the CLP(Q,R) system of Sicstus Prolog by Christian Holzbaur:
Holzbaur C.: OFAI clp(q,r) Manual, Edition 1.3.3, Austrian Research Institute for Artificial Intelli-
gence, Vienna, TR-95-09, 1995.3 This manual is roughly based on the manual of the above mentioned
CLP(Q,R) implementation.

The CLP(Q,R) system consists of two components: the CLP(Q) library for handling constraints
over the rational numbers and the CLP(R) library for handling constraints over the real numbers (using
floating point numbers as representation). Both libraries offer the same predicates (with exception of
bb inf/4 in CLP(Q) and bb inf/5 in CLP(R)). It is allowed to use both libraries in one program,
but using both CLP(Q) and CLP(R) constraints on the same variable will result in an exception.

Please note that the clpqr library is not an autoload library and therefore this library must be
loaded explicitely before using it:

:- use_module(library(clpq)).

or

:- use_module(library(clpr)).

3http://www.ai.univie.ac.at/cgi-bin/tr-online?number+95-09

SWI-Prolog 5.6 Reference Manual

A.14. CLPQR: CONSTRAINT LOGIC PROGRAMMING OVER RATIONALS AND REALS289

A.14.1 Solver predicates

The following predicates are provided to work with constraints:

{}(+Constraints)
Adds the constraints given by Constraints to the constraint store.

entailed(+Constraint)
Succeeds if Constraint is necessarily true within the current constraint store. This means that
adding the negation of the constraint to the store results in failure.

inf(+Expression, -Inf)
Computes the infimum of Expression within the current state of the constraint store and returns
that infimum in Inf. This predicate does not change the constraint store.

sup(+Expression, -Sup)
Computes the supremum of Expression within the current state of the constraint store and re-
turns that supremum in Sup. This predicate does not change the constraint store.

minimize(+Expression)
Minimizes Expression within the current constraint store. This is the same as computing the
infimum and equation the expression to that infimum.

maximize(+Expression)
Maximizes Expression within the current constraint store. This is the same as computing the
supremum and equating the expression to that supremum.

bb inf(+Ints, +Expression, -Inf, -Vertex, +Eps)
This predicate is offered in CLP(R) only. It computes the infimum of Expression within the
current constraint store, with the additional constraint that in that infimum, all variables in Ints
have integral values. Vertex will contain the values of Ints in the infimum. Eps denotes how
much a value may differ from an integer to be considered an integer. E.g. when Eps = 0.001,
then X = 4.999 will be considered as an integer (5 in this case). Eps should be between 0 and
0.5.

bb inf(+Ints, +Expression, -Inf, -Vertex)
This predicate is offered in CLP(Q) only. It behaves the same as bb inf/5 but does not use
an error margin.

bb inf(+ints, +Expression, -Inf)
The same as bb inf/5 or bb inf/4 but without returning the values of the integers. In
CLP(R), an error margin of 0.001 is used.

dump(+Target, +Newvars, -CodedAnswer)
Returns the constraints on Target in the list CodedAnswer where all variables of Target have
veen replaced by NewVars. This operation does not change the constraint store. E.g. in

dump([X,Y,Z],[x,y,z],Cons)

Cons will contain the constraints on X, Y and Z where these variables have been replaced by
atoms x, y and z.

SWI-Prolog 5.6 Reference Manual

290 APPENDIX A. THE SWI-PROLOG LIBRARY

〈Constraints〉 ::= 〈Constraint〉 single constraint
| 〈Constraint〉 , 〈Constraints〉 conjunction
| 〈Constraint〉 ; 〈Constraints〉 disjunction

〈Constraint〉 ::= 〈Expression〉 < 〈Expression〉 less than
| 〈Expression〉 > 〈Expression〉 greater than
| 〈Expression〉 =< 〈Expression〉 less or equal
| <=(〈Expression〉, 〈Expression〉) less or equal
| 〈Expression〉 >= 〈Expression〉 greater or equal
| 〈Expression〉 =\= 〈Expression〉 not equal
| 〈Expression〉 =:= 〈Expression〉 equal
| 〈Expression〉 = 〈Expression〉 equal

〈Expression〉 ::= 〈Variable〉 Prolog variable
| 〈Number〉 Prolog number (float, integer)
| +〈Expression〉 unary plus
| -〈Expression〉 unary minus
| 〈Expression〉 + 〈Expression〉 addition
| 〈Expression〉 - 〈Expression〉 substraction
| 〈Expression〉 * 〈Expression〉 multiplication
| 〈Expression〉 / 〈Expression〉 division
| abs(〈Expression〉) absolute value
| sin(〈Expression〉) sine
| cos(〈Expression〉) cosine
| tan(〈Expression〉) tangent
| exp(〈Expression〉) exponent
| pow(〈Expression〉) exponent
| 〈Expression〉 ˆ 〈Expression〉 exponent
| min(〈Expression〉, 〈Expression〉) minimum
| max(〈Expression〉, 〈Expression〉) maximum

Table A.1: CLP(Q,R) constraint BNF

A.14.2 Syntax of the predicate arguments

The arguments of the predicates defined in the subsection above are defined in table A.1. Failing to
meet the syntax rules will result in an exception.

A.14.3 Use of unification

Instead of using the {}/1 predicate, you can also use the standard unification mechanism to store
constraints. The following code samples are equivalent:

• Unification with a variable
{X =:= Y}
{X = Y}
X = Y

• Unification with a number

SWI-Prolog 5.6 Reference Manual

A.15. CLP/CLP DISTINCT: WEAK ARC CONSISTENT ‘ALL DISTINCT’ CONSTRAINT291

A = B ∗ C B or C is ground A = 5 * C or A = B * 4
A and (B or C) are ground 20 = 5 * C or 20 = B * 4

A = B/C C is ground A = B / 3
A and B are ground 4 = 12 / C

X = min(Y, Z) Y and Z are ground X = min(4,3)
X = max(Y, Z) Y and Z are ground X = max(4,3)
X = abs(Y) Y is ground X = abs(-7)
X = pow(Y, Z) X and Y are ground 8 = 2 ˆ Z
X = exp(Y, Z) X and Z are ground 8 = Y ˆ 3
X = Y ˆ Z Y and Z are ground X = 2 ˆ 3
X = sin(Y) X is ground 1 = sin(Y)
X = cos(Y) Y is ground X = sin(1.5707)
X = tan(Y)

Table A.2: CLP(Q,R) isolating axioms

{X =:= 5.0}
{X = 5.0}
X = 5.0

A.14.4 Non-linear constraints

The CLP(Q,R) system deals only passively with non-linear constraints. They remain in a passive
state until certain conditions are satisfied. These conditions, which are called the isolation axioms, are
given in table A.2.

A.15 clp/clp distinct: Weak arc consistent ‘all distinct’ con-
straint

Author: Markus Triska
The clp/clp distinct module provides the following constraints:

all distinct(+Vars)
The variables in Vars are constrained to be pairwise distinct. All variables must already be
assigned domains (via vars in/2 or vars in/3) when this constraint is posted.

vars in(+Vars, +Domain)
Where Vars is a list of variables and Domain is a list of non-negative integers. Each variable of
Vars is constrained to be in Domain.

vars in(+Vars, +From, +To)
Where Vars is a list of variables, and 0 ≤ From ≤ To. Each variable in Vars is constrained to
be in the discrete interval [From,To].

A.15.1 Example 1

The all distinct/1 constraint can detect various inconsistencies:

SWI-Prolog 5.6 Reference Manual

292 APPENDIX A. THE SWI-PROLOG LIBRARY

?- vars_in([X,Y,Z], [1,2]), all_distinct([X,Y,Z]).

No

A.15.2 Example 2

In this example, 3 is assigned to Z without labeling any variables:

?- vars_in([X,Y], [1,2]), vars_in([Z], [1,2,3]), all_distinct([X,Y,Z]).

X = _G180{1-2}
Y = _G183{1-2}
Z = 3 ;

A.15.3 Example 3

The clp distinct module can be used in conjunction with clp/bounds. All relevant variables must still
be assigned domains via one of the vars in predicates before all distinct/1 can be posted:

:- use_module(library(bounds)).
:- use_module(library(clp_distinct)).

?- [X,Y] in 1..2, vars_in([X,Y], [1,2]), all_distinct([X,Y]), label([X,Y]).

X = 1
Y = 2 ;

X = 2
Y = 1 ;

A.16 simplex: Solve linear programming problems

Author: Markus Triska

A linear programming problem consists of a set of (linear) constraints, a number of variables and a
linear objective function. The goal is to assign values to the variables so as to maximize (or minimize)
the value of the objective function while satisfying all constraints.

Many optimization problems can be modeled in this way. Consider having a knapsack with fixed
capacity C, and a number of items with sizes s(i) and values v(i). The goal is to put as many items as
possible in the knapsack (not exceeding its capacity) while maximizing the sum of their values.

As another example, suppose you are given a set of coins with certain values, and you are to find
the minimum number of coins such that their values sum up to a fixed amount. Instances of these
problems are solved below.
The simplex module provides the following predicates:

SWI-Prolog 5.6 Reference Manual

A.16. SIMPLEX: SOLVE LINEAR PROGRAMMING PROBLEMS 293

assignment(+Cost, -Assignment)
Cost is a list of lists representing the quadratic cost matrix, where element (i,j) denotes the cost
of assigning entity i to entity j. An assignment with minimal cost is computed and unified with
Assignment as a list of lists, representing an adjacency matrix.

constraint(+Constraint, +S0, -S)
Adds a linear or integrality constraint to the linear program corresponding to state S0. A linear
constraint is of the form ”Left Op C”, where ”Left” is a list of Coefficient*Variable terms
(variables in the context of linear programs can be atoms or compound terms) and C is a non-
negative numeric constant. The list represents the sum of its elements. Op can be =, =¡ or ¿=.
The coefficient ”1” can be omitted. An integrality constraint is of the form integral(Variable)
and constrains Variable to an integral value.

constraint(+Name, +Constraint, +S0, -S)
Like constraint/3, and attaches the name Name (an atom or compound term) to the new
constraint.

constraint add(+Name, +Left, +S0, -S)
Left is a list of Coefficient*Variable terms. The terms are added to the left-hand side of the
constraint named Name. S is unified with the resulting state.

gen state(-State)
Generates an initial state corresponding to an empty linear program.

maximize(+Objective, +S0, -S)
Maximizes the objective function, stated as a list of ”Coefficient*Variable” terms that represents
the sum of its elements, with respect to the linear program corresponding to state S0. S is unified
with an internal representation of the solved instance.

minimize(+Objective, +S0, -S)
Analogous to maximize/3.

objective(+State, -Objective)
Unifies Objective with the result of the objective function at the obtained extremum. State must
correspond to a solved instance.

shadow price(+State, +Name, -Value)
Unifies Value with the shadow price corresponding to the linear constraint whose name is Name.
State must correspond to a solved instance.

transportation(+Supplies, +Demands, +Costs, -Transport)
Supplies and Demands are both lists of positive numbers. Their respective sums must be equal.
Costs is a list of lists representing the cost matrix, where an entry (i,j) denotes the cost of
transporting one unit from i to j. A transportation plan having minimum cost is computed and
unified with Transport in the form of a list of lists that represents the transportation matrix,
where element (i,j) denotes how many units to ship from i to j.

variable value(+State, +Variable, -Value)
Value is unified with the value obtained for Variable. State must correspond to a solved instance.

SWI-Prolog 5.6 Reference Manual

294 APPENDIX A. THE SWI-PROLOG LIBRARY

All numeric quantities are converted to rationals via rationalize/1, and rational arithmetic is
used throughout solving linear programs. In the current implementation, all variables are implicitly
constrained to be non-negative. This may change in future versions, and non-negativity constraints
should therefore be stated explicitly.

A.16.1 Example 1

This is the ”radiation therapy” example, taken from ”Introduction to Operations Research” by Hillier
and Lieberman. DCG notation is used to implicitly thread the state through posting the constraints:

:- use_module(library(simplex)).

post_constraints -->
constraint([0.3*x1, 0.1*x2] =< 2.7),
constraint([0.5*x1, 0.5*x2] = 6),
constraint([0.6*x1, 0.4*x2] >= 6),
constraint([x1] >= 0),
constraint([x2] >= 0).

radiation(S) :-
gen_state(S0),
post_constraints(S0, S1),
minimize([0.4*x1, 0.5*x2], S1, S).

An example query:

?- radiation(S), variable_value(S, x1, Val1), variable_value(S, x2, Val2).

Val1 = 15 rdiv 2
Val2 = 9 rdiv 2 ;

A.16.2 Example 2

Here is an instance of the knapsack problem described above, where C = 8, and we have two types of
items: One item with value 7 and size 6, and 2 items each having size 4 and value 4. We introduce
two variables, x(1) and x(2) that denote how many items to take of each type.

knapsack_constrain(S) :-
gen_state(S0),
constraint([6*x(1), 4*x(2)] =< 8, S0, S1),
constraint([x(1)] =< 1, S1, S2),
constraint([x(2)] =< 2, S2, S).

knapsack(S) :-
knapsack_constrain(S0),
maximize([7*x(1), 4*x(2)], S0, S).

An example query yields:

SWI-Prolog 5.6 Reference Manual

A.16. SIMPLEX: SOLVE LINEAR PROGRAMMING PROBLEMS 295

?- knapsack(S), variable_value(S, x(1), X1), variable_value(S, x(2), X2).

X1 = 1
X2 = 1 rdiv 2 ;

That is, we are to take the one item of the first type, and half of one of the items of the other type to
maximize the total value of items in the knapsack.

If items can not be split, integrality constraints have to be imposed:

knapsack_integral(S) :-
knapsack_constrain(S0),
constraint(integral(x(1)), S0, S1),
constraint(integral(x(2)), S1, S2),
maximize([7*x(1), 4*x(2)], S2, S).

Now the result is different:

?- knapsack_integral(S), variable_value(S, x(1), X1), variable_value(S, x(2), X2).

X1 = 0
X2 = 2

That is, we are to take only the two items of the second type. Notice in particular that always choosing
the remaining item with best performance (ratio of value to size) that still fits in the knapsack does not
necessarily yield an optimal solution in the presence of integrality constraints.

A.16.3 Example 3

We are given 3 coins each worth 1, 20 coins each worth 5, and 10 coins each worth 20 units of money.
The task is to find a minimal number of these coins that amount to 111 units of money. We introduce
variables c(1), c(5) and c(20) denoting how many coins to take of the respective type:

coins -->
constraint([c(1), 5*c(5), 20*c(20)] = 111),
constraint([c(1)] =< 3),
constraint([c(5)] =< 20),
constraint([c(20)] =< 10),
constraint([c(1)] >= 0),
constraint([c(5)] >= 0),
constraint([c(20)] >= 0),
constraint(integral(c(1))),
constraint(integral(c(5))),
constraint(integral(c(20))),
minimize([c(1), c(5), c(20)]).

coins(S) :-
gen_state(S0),
coins(S0, S).

SWI-Prolog 5.6 Reference Manual

296 APPENDIX A. THE SWI-PROLOG LIBRARY

An example query:

?- coins(S), variable_value(S, c(1), C1), variable_value(S, c(5), C5), variable_value(S, c(20), C20).

C1 = 1
C5 = 2
C20 = 5

A.17 prologxref: Cross-reference data collection library

This library collects information on defined and used objects in Prolog sourcefiles. Typically these are
predicates, but we expect the library to deal with other types of objects in the future. The library is a
building block for tools doing dependency tracking in applications. Dependency tracking is useful to
reveal the structure of an unknown program or detect missing components at compile-time, but also
for program transformation or minimising a program saved-state by only saving the reachable objects.

This section gives a partial description of the library API, providing some insight in how you can
use it for analysing your program. The library should be further modularized, moving its knowledge
about -for example- XPCE into a different file and allowing for adding knowledge about other libraries
such as Logtalk. Please do not consider this interface rock-solid.

The library is exploited by two graphical tools in the SWI-Prolog environment. The XPCE fron-
tend started by gxref/0 and described in section 3.7 and PceEmacs (section 3.4) which exploits this
library for its syntax colouring.

For all predicates described below, Source is the source that is processed. This is normally a
filename in any notation acceptable to the file loading predicates (see load files/2). Using the
hooks defined in section A.17.1 it can be anything else that can be translated into a Prolog stream
holding Prolog source text. Callable is a callable term (see callable/1). Callables do not carry a
module qualifier unless the referred predicate is not in the module defined Source.

xref source(+Source)
Gather information on Source. If Source has already been processed and is still up-to-date
according to the file timestamp, no action is taken. This predicate must be called on a file
before information can be gathered.

xref current source(?Source)
Source has been processed.

xref clean(+Source)
Remove the information gathered for Source

xref defined(?Source, ?Callable, -How)
Callable is defined in Source. How is one of

SWI-Prolog 5.6 Reference Manual

A.17. PROLOGXREF: CROSS-REFERENCE DATA COLLECTION LIBRARY 297

dynamic(Line) Declared dynamic at Line
thread local(Line) Declared thread local at Line
multifile(Line) Declared multifile at Line
local(Line) First clause at Line
foreign(Line) Foreign library loaded at Line
constraint(Line) CHR Constraint at Line
imported(File) Imported from File

xref called(?Source, ?Callable, ?By)
Callable is called in Source by By.

xref exported(?Source, ?Callable)
Callable is public (exported from the module).

xref module(?Source, ?Module)
Source is a module-file defining the given module.

xref built in(?Callable)
True if Callable is a built-in predicate. Currently this is assumed for all predicates defined in
the system module and having the property built in. Built-in predicates are not registered
as ‘called’.

A.17.1 Extending the library

The library provides hooks for extending its rules it uses for finding predicates called by some pro-
gramming construct.

prolog:called by(+Goal, -Called)
Where Goal is a non-var subgoal appearing in called object (typically a clause-body). If it
succeeds it must return a list of goals called by Goal. As a special construct, if a term Callable+
N is returned, N variable arguments are added to Callable before further processing. For simple
meta-calls a single fact suffices. Complex rules as used in the html write library provided
by the HTTP package examine the arguments and create a list of called objects.

The current system cannot deal with the same name/arity in different modules that behave dif-
ferently with respect to called arguments.

SWI-Prolog 5.6 Reference Manual

Hackers corner B
This appendix describes a number of predicates which enable the Prolog user to inspect the Prolog
environment and manipulate (or even redefine) the debugger. They can be used as entry points for
experiments with debugging tools for Prolog. The predicates described here should be handled with
some care as it is easy to corrupt the consistency of the Prolog system by misusing them.

B.1 Examining the Environment Stack

prolog current frame(-Frame)
Unify Frame with an integer providing a reference to the parent of the current local stack frame.
A pointer to the current local frame cannot be provided as the predicate succeeds deterministi-
cally and therefore its frame is destroyed immediately after succeeding.

prolog frame attribute(+Frame, +Key, -Value)
Obtain information about the local stack frame Frame. Frame is a frame reference as obtained
through prolog current frame/1, prolog trace interception/4 or this predi-
cate. The key values are described below.

alternative
Value is unified with an integer reference to the local stack frame in which execution is
resumed if the goal associated with Frame fails. Fails if the frame has no alternative frame.

has alternatives
Value is unified with true if Frame still is a candidate for backtracking. false other-
wise.

goal
Value is unified with the goal associated with Frame. If the definition module of the active
predicate is not user the goal is represented as 〈module〉:〈goal〉. Do not instantiate
variables in this goal unless you know what you are doing! Note that the returned term
may contain references to the frame and should be discarded before the frame terminates.1

parent goal
If Value is instantiated to a callable term, find a frame executing the predicate described by
Value and unify the arguments of Value to the goal arguments associated with the frame.
This is intended to check the current execution context. The user must ensure the checked
parent goal is not removed from the stack due to last-call optimisation and be aware of the
slow operation on deeply nested calls.

1The returned term is actually an illegal Prolog term that may hold references from the global- to the local stack to
preserve the variable names.

SWI-Prolog 5.6 Reference Manual

B.1. EXAMINING THE ENVIRONMENT STACK 299

clause
Value is unified with a reference to the currently running clause. Fails if the current
goal is associated with a foreign (C) defined predicate. See also nth clause/3 and
clause property/2.

level
Value is unified with the recursion level of Frame. The top level frame is at level ‘0’.

parent
Value is unified with an integer reference to the parent local stack frame of Frame. Fails
if Frame is the top frame.

context module
Value is unified with the name of the context module of the environment.

top
Value is unified with true if Frame is the top Prolog goal from a recursive call back from
the foreign language. false otherwise.

hidden
Value is unified with true if the frame is hidden from the user, either because a parent has
the hide-childs attribute (all system predicates), or the system has no trace-me attribute.

pc
Value is unified with the program-pointer saved on behalf of the parent-goal if the parent-
goal is not owned by a foreign predicate.

argument(N)
Value is unified with the N-th slot of the frame. Argument 1 is the first argument of the
goal. Arguments above the arity refer to local variables. Fails silently if N is out of range.

prolog choice attribute(+ChoicePoint, +Key, -Value)
Extract attributes of a choice-point. ChoicePoint is a reference to a choice-point as passed
to prolog trace interception/4 on the 3-th argument. Key specifies the requested
information:

parent
Requests a reference to the first older choice-point.

frame
Requests a reference to the frame to which the choice-point refers.

type
Requests the type. Defined values are clause (the goal has alternative clauses),
foreign (non-deterministic foreign predicate), jump (clause internal choice-point),
top (first dummy choice-point), catch (catch/3 to allow for undo), debug (help
the debugger), or none (has been deleted).

This predicate is used for the graphical debugger to show the choice-point stack.

deterministic(-Boolean)
Unifies its argument with true if the clause in which is appears has not created any choice-
points since it was started. There are few realistic situations for using this predicate. It is used
by the prolog/0 toplevel to check whether Prolog should prompt the user for alternatives.

SWI-Prolog 5.6 Reference Manual

300 APPENDIX B. HACKERS CORNER

B.2 Intercepting the Tracer

prolog trace interception(+Port, +Frame, +Choice, -Action)
Dynamic predicate, normally not defined. This predicate is called from the SWI-Prolog debug-
ger just before it would show a port. If this predicate succeeds the debugger assumes the trace
action has been taken care of and continues execution as described by Action. Otherwise the
normal Prolog debugger actions are performed.

Port denotes the reason to activate the tracer (‘port’ in the 4/5-port, but with some additions:

call
Normal entry through the call-port of the 4-port debugger.

redo
Normal entry through the call-port of the 4-port debugger. The redo port signals resum-
ing a predicate to generate alternative solutions.

unify
The unify-port represents the neck instruction, signalling the end of the head-matching
process. This port is normally invisible. See leash/1 and visible/1.

exit
The exit-port signals the goal is proved. It is possible for the goal to have alternative. See
prolog frame attribute/3 to examine the goal-stack.

fail
The fail-port signals final failure of the goal.

exception(Except)
An exception is raised and still pending. This port is activated on each parent frame of
the frame generating the exception until the exception is caught or the user restarts normal
computation using retry. Except is the pending exception-term.

break(PC)
A break instruction is executed. PC is program counter. This port is used by the graphi-
cal debugger.

cut call(PC)
A cut is encountered at PC. This port is used by the graphical debugger. to visualise the
effect of the cut.

cut exit(PC)
A cut has been executed. See cut call(PC) for more information.

Frame is a reference to the current local stack frame, which can be examined using
prolog frame attribute/3. Choice is a reference to the last choice-point and can be
examined using prolog choice attribute/3. Action should be unified with one of the
atoms continue (just continue execution), retry (retry the current goal) or fail (force the
current goal to fail). Leaving it a variable is identical to continue.

Together with the predicates described in section 4.38 and the other predicates of this chapter
this predicate enables the Prolog user to define a complete new debugger in Prolog. Besides
this it enables the Prolog programmer monitor the execution of a program. The example below
records all goals trapped by the tracer in the database.

SWI-Prolog 5.6 Reference Manual

B.3. ADDING CONTEXT TO ERRORS: PROLOG EXCEPTION HOOK 301

prolog_trace_interception(Port, Frame, _PC, continue) :-
prolog_frame_attribute(Frame, goal, Goal),
prolog_frame_attribute(Frame, level, Level),
recordz(trace, trace(Port, Level, Goal)).

To trace the execution of ‘go’ this way the following query should be given:

?- trace, go, notrace.

prolog skip level(-Old, +New)
Unify Old with the old value of ‘skip level’ and than set this level according to New. New is
an integer, or the special atom very deep (meaning don’t skip). The ‘skip level’ is a global
variable of the Prolog system that disables the debugger on all recursion levels deeper than the
level of the variable. Used to implement the trace options ‘skip’ (sets skip level to the level of
the frame) and ‘up’ (sets skip level to the level of the parent frame (i.e., the level of this frame
minus 1).

B.3 Adding context to errors: prolog exception hook

The hook prolog exception hook/4 has been introduced in SWI-Prolog 5.6.5 to provide ded-
icated exception handling facilities for application frameworks. For example non-interactive server
applications that wish to provide extensive context for exceptions for offline debugging.

prolog exception hook(+ExceptionIn, -ExceptionOut, +Frame, +CatcherFrame)
This hook predicate, if defined in the module user, is between raising an exception and han-
dling it. It is intended to allow a program adding additional context to an exception to simplify
diagnosing the problem. ExceptionIn is the exception term as raised by throw/1 or one of the
bullt-in predicates. The output argument ExceptionOut describes the exception that is actually
raised. Frame is the innermost frame. See prolog frame attribute/3 and the library
prolog stack for getting information from this. CatcherFrame is a reference to the frame
calling the matching catch/3 or none of the exception is not caught.

The hook is run in ‘nodebug’ mode. If it succeeds ExceptionOut is considered the current
exception. If it fails, ExceptionIn is used for further processing. The hook is never called
recursively. The hook is not allowed to modify ExceptionOut in such as way that it no longer
unifies with the catching frame.

Typically, prolog exception hook/4 is used to fill the second argument of
error(Formal, Context) exceptions. Formal is defined by the ISO standard, while SWI-
Prolog defines Context as a term context(Location, Message). Location is bound to a term
〈name〉/〈arity〉 by the kernel. This hook can be used to add more information on the calling
context, such as a full stack trace.

Applications that use exceptions as part of normal processing must do a quick test of the envi-
ronment before starting expensive gathering information on the state of the program.

The hook can call trace/0 to enter trace mode immediately.

SWI-Prolog 5.6 Reference Manual

302 APPENDIX B. HACKERS CORNER

B.4 Hooks using the exception predicate

This section describes the predicate exception/3, which can be defined by the user in the module
user as a multifile predicate. Unlike the name suggests, this is actually a hook predicate that has no
relation to Prolog exceptions as defined by the ISO predicates catch/3 and throw/1.

The predicate exception/3 is called by the kernel on a couple of events, allowing the user to
‘fix’ errors just in time events. The mechanism allows for lazy creation of objects such as predicates.

exception(+Exception, +Context, -Action)
Dynamic predicate, normally not defined. Called by the Prolog system on run-time exceptions
that can be repaired ‘just in time’. The values for Exception are described below. See also
catch/3 and throw/1.

If this hook predicate succeeds it must instantiate the Action argument to the atom fail to
make the operation fail silently, retry to tell Prolog to retry the operation or error to make
the system generate an exception. The action retry only makes sense if this hook modified
the environment such that the operation can now succeed without error.

undefined predicate
Context is instantiated to a term Name/Arity. Name refers to the name and Arity to the arity
of the undefined predicate. If the definition module of the predicate is not user, Context
will be of the form 〈Module〉:〈Name〉/〈Arity〉. If the predicate fails Prolog will generate
an existence error exception.

undefined global variable
Context is instantiated to the name of the missing global variable. The hook must call
nb setval/2 or b setval/2 before returning with the action retry.

B.5 Hooks for integrating libraries

Some libraries realise an entirely new programming paradigm on top of Prolog. An example is XPCE
which adds an object-system to Prolog as well as an extensive set of graphical primitives. SWI-Prolog
provides several hooks to improve the integration of such libraries. See also section 4.4 for editing
hooks and section 4.9.3 for hooking into the message system.

prolog list goal(:Goal)
Hook, normally not defined. This hook is called by the ’L’ command of the tracer in the module
user to list the currently called predicate. This hook may be defined to list only relevant clauses
of the indicated Goal and/or show the actual source-code in an editor. See also portray/1
and multifile/1.

prolog:debug control hook(:Action)
Hook for the debugger-control predicates that allows the creator of more high-level program-
ming languages to use the common front-end predicates to control de debugger. For example,
XPCE uses these hooks to allow for spying methods rather then predicates. Action is one of:

spy(Spec)
Hook in spy/1. If the hook succeeds spy/1 takes no further action.

SWI-Prolog 5.6 Reference Manual

B.6. HOOKS FOR LOADING FILES 303

nospy(Spec)
Hook in nospy/1. If the hook succeeds spy/1 takes no further action. If spy/1 is
hooked, it is advised to place a complementary hook for nospy/1.

nospyall
Hook in nospyall/0. Should remove all spy-points. This hook is called in a failure-
driven loop.

debugging
Hook in debugging/0. It can be used in two ways. It can report the status of the
additional debug-points controlled by the above hooks and fail to let the system report the
others or it succeed, overruling the entire behaviour of debugging/0.

prolog:help hook(+Action)
Hook into help/0 and help/1. If the hook succeeds, the built-in actions are not executed.
For example, ?- help(picture). is caught by the XPCE help-hook to give help on the
class picture. Defined actions are:

help
User entered plain help/0 to give default help. The default performs help(help/1),
giving help on help.

help(What)
Hook in help/1 on the topic What.

apropos(What)
Hook in apropos/1 on the topic What.

B.6 Hooks for loading files

All loading of source-files is achieved by load files/2. The hook prolog load file/2 can
be used to load Prolog code from non-files or even load entirely different information, such as foreign
files.

prolog load file(+Spec, +Options)
Load a single object. If this call succeeds, load files/2 assumes the action has been taken
care of. This hook is only called if Options does not contain the stream(Input) option. The
hook must be defined in the module user.

The http load provides an example, loading Prolog sources directly from an HTTP server.

prolog:comment hook(+Comments, +Pos, +Term)
This hook allows for processing —structured— comments encountered by the compiler. The
reader collects all comments found from the current position to the end of the next term. It
calls this hook providing a list of Position-Comment in Comments, the start-position of the next
term in Pos and the next term itself in Term. All positions are stream-position terms. This
hook is exploited by the documentation system. See stream position data/3. See also
read term/3.

SWI-Prolog 5.6 Reference Manual

304 APPENDIX B. HACKERS CORNER

B.7 Readline Interaction

The following predicates are available if current prolog flag(readline, true) suc-
ceeds. They allow for direct interaction with the GNU readline library. See also readline(3)

rl read init file(+File)
Read a readline initialisation file. Readline by default reads ˜/.inputrc. This predicate may
be used to read alternative readline initialisation files.

rl add history(+Line)
Add a line to the Control-P/Control-N history system of the readline library.

SWI-Prolog 5.6 Reference Manual

Glossary of Terms C
anonymous [variable]

The variable _ is called the anonymous variable. Multiple occurrences of _ in a single term are
not shared.

arguments
Arguments are terms that appear in a compound term. A1 and a2 are the first and second
argument of the term myterm(A1, a2).

arity
Argument count (is number of arguments) of a compound term.

assert
Add a clause to a predicate. Clauses can be added at either end of the clause-list of a predicate.
See assert/1 and assertz/1.

atom
Textual constant. Used as name for compound terms, to represent constants or text.

backtracking
Searching process used by Prolog. If a predicate offers multiple clauses to solve a goal, they are
tried one-by-one until one succeeds. If a subsequent part of the proof is not satisfied with the
resulting variable binding, it may ask for an alternative solution (= binding of the variables),
causing Prolog to reject the previously chosen clause and try the next one.

binding [of a variable]
Current value of the variable. See also backtracking and query.

built-in [predicate]
Predicate that is part of the Prolog system. Built in predicates cannot be redefined by the user,
unless this is overruled using redefine system predicate/1.

body
Part of a clause behind the neck operator (:-).

clause
‘Sentence’ of a Prolog program. A clause consists of a head and body separated by the neck
operator (:-) or it is a fact. For example:

parent(X) :-
father(X, _).

SWI-Prolog 5.6 Reference Manual

306 APPENDIX C. GLOSSARY OF TERMS

Expressed “X is a parent if X is a father of someone”. See also variable and predicate.

compile
Process where a Prolog program is translated to a sequence of instructions. See also interpreted.
SWI-Prolog always compiles your program before executing it.

compound [term]
Also called structure. It consists of a name followed by N arguments, each of which are terms.
N is called the arity of the term.

context module
If a term is referring to a predicate in a module, the context module is used to find the target
module. The context module of a goal is the module in which the predicate is defined, unless
this predicate is module transparent, in which case the context module is inherited from the
parent goal. See also module transparent/1.

dynamic [predicate]
A dynamic predicate is a predicate to which clauses may be asserted and from which clauses
may be retracted while the program is running. See also update view.

exported [predicate]
A predicate is said to be exported from a module if it appears in the public list. This im-
plies that the predicate can be imported into another module to make it visible there. See also
use module/[1,2].

fact
Clause without a body. This is called a fact because interpreted as logic, there is no condition
to be satisfied. The example below states john is a person.

person(john).

fail
A goal is said to haved failed if it could not be proven.

float
Computers crippled representation of a real number. Represented as ‘IEEE double’.

foreign
Computer code expressed in other languages than Prolog. SWI-Prolog can only cooperate
directly with the C and C++ computer languages.

functor
Combination of name and arity of a compound term. The term foo(a, b, c) is said to be a term
belonging to the functor foo/3. foo/0 is used to refer to the atom foo.

goal
Question stated to the Prolog engine. A goal is either an atom or a compound term. A goal
succeeds, in which case the variables in the compound terms have a binding or fails if Prolog
fails to prove the goal.

SWI-Prolog 5.6 Reference Manual

307

hashing
Indexing technique used for quick lookup.

head
Part of a clause before the neck instruction. This is an atom or compound term.

imported [predicate]
A predicate is said to be imported into a module if it is defined in another module and made
available in this module. See also chapter 5.

indexing
Indexing is a technique used to quickly select candidate clauses of a predicate for a specific
goal. In most Prolog systems, including SWI-Prolog, indexing is done on the first argument
of the head. If this argument is instantiated to an atom, integer, float or compound term with
functor, hashing is used quickly select all clauses of which the first argument may unify with
the first argument of the goal.

integer
Whole number. On all implementations of SWI-Prolog integers are at least 64-bit signed
values. When linked to the GNU GMP library, integer arithmetic is unbounded. See also
current prolog flag/2, flags bounded, max integer and min integer.

interpreted
As opposed to compiled, interpreted means the Prolog system attempts to prove a goal by
directly reading the clauses rather than executing instructions from an (abstract) instruction set
that is not or only indirectly related to Prolog.

meta-predicate
A predicate that reasons about other predicates, either by calling them, (re)defining them or
querying properties.

module
Collection of predicates. Each module defines a name-space for predicates. built-in predicates
are accessible from all modules. Predicates can be published (exported) and imported to make
their definition available to other modules.

module transparent [predicate]
A predicate that does not change the context module. Sometimes also called a meta-predicate.

multifile [predicate]
Predicate for which the definition is distributed over multiple source-files. See multifile/1.

neck
Operator (:-) separating head from body in a clause.

operator
Symbol (atom) that may be placed before its operand (prefix), after its operand (postfix) or
between its two operands (infix).

In Prolog, the expression a+b is exactly the same as the canonical term +(a,b).

SWI-Prolog 5.6 Reference Manual

308 APPENDIX C. GLOSSARY OF TERMS

operand
Argument of an operator.

precedence
The priority of an operator. Operator precedence is used to interpret a+b*c as
+(a, *(b,c)).

predicate
Collection of clauses with the same functor (name/arity). If a goal is proved, the system looks
for a predicate with the same functor, then used indexing to select candidate clauses and then
tries these clauses one-by-one. See also backtracking.

priority
In the context of operators a synonym for precedence.

program
Collection of predicates.

property
Attribute of an object. SWI-Prolog defines various * property predicates to query the status of
predicates, clauses. etc.

prove
Process where Prolog attempts to prove a query using the available predicates.

public list
List of predicates exported from a module.

query
See goal.

retract
Remove a clause from a predicate. See also dynamic, update view and assert.

shared
Two variables are called shared after they are unified. This implies if either of them is bound,
the other is bound to the same value:

?- A = B, A = a.

A = a,
B = a

singleton [variable]
Variable appearing only one time in a clause. SWI-Prolog normally warns for this to avoid
you making spelling mistakes. If a variable appears on purpose only once in a clause, write
it as _ (see anonymous). Rules for naming a variable and avoiding a warning are given in
section 2.15.1.

solution
Bindings resulting from a successfully proven goal.

SWI-Prolog 5.6 Reference Manual

309

structure
Synonym for compound term.

string
Used for the following representations of text: a packed array (see section 4.23, SWI-Prolog
specific), a list of character codes or a list of one-character atoms.

succeed
A goal is said to have succeeded if it has been proven.

term
Value in Prolog. A term is either a variable, atom, integer, float or compound term. In addition,
SWI-Prolog also defines the type string

transparent
See module transparent.

unify
Prolog process to make two terms equal by assigning variables in one term to values at the
corresponding location of the other term. For example:

?- foo(a, B) = foo(A, b).

A = a,
B = b

Unlike assignment (which does not exist in Prolog), unification is not directed.

update view
How Prolog behaves when a dynamic predicate is changed while it is running. There are two
models. In most older Prolog systems the change becomes immediately visible to the goal, in
modern systems including SWI-Prolog, the running goal is not affected. Only new goals ‘see’
the new definition.

variable
A Prolog variable is a value that ‘is not yet bound’. After binding a variable, it cannot be
modified. Backtracking to a point in the execution before the variable was bound will turn it
back into a variable:

?- A = b, A = c.
No
?- (A = b; true; A = c).
A = b ;
A = _G283 ;
A = c ;
No

See also unify.

SWI-Prolog 5.6 Reference Manual

SWI-Prolog License Conditions
and Tools D
SWI-Prolog licensing aims at a large audience, combining ideas from the Free Software Foundation
and the less principal Open Source Initiative. The license aims at:

• Make SWI-Prolog itself and its libraries are ‘As free as possible’.

• Allow for easy integration of contributions. See section D.2.

• Free software can build on SWI-Prolog without limitations.

• Non-free (open or proprietary) software can be produced using SWI-Prolog, although con-
tributed pure GPL-ed components cannot be used.

To achieve this, different parts of the system have different licenses. SWI-Prolog programs con-
sists of a mixture of ‘native’ code (source compiled to machine instructions) and ‘virtual machine’
code (Prolog source compiled to SWI-Prolog virtual machine instructions, covering both compiled
SWI-Prolog libraries and your compiled application).

For maximal coherence between free licenses, we start with the two prime licenses from the Free
Software Foundation, the GNU General Public License (GPL) and the Lesser GNU General Public
License (LGPL), after which we add a proven (used by the GNU-C compiler runtime library as well
as the GNU ClassPath project) exception to deal with the specific nature of compiled virtual machine
code in a saved state.

D.1 The SWI-Prolog kernel and foreign libraries

The SWI-Prolog kernel and our foreign libraries are distributed under the LGPL. A Prolog executable
consists of the combination of these ‘native’ code components and Prolog virtual machine code. The
SWI-Prolog plrc utility allows for disassembling and re-assembling these parts, a process satisfying
article 6b of the LGPL.

Under the LGPL SWI-Prolog can be linked to code distributed under arbitrary licenses, provided
a number of requirements are fullfilled. The most important requirement is that, if an application
replies on a modified version of SWI-Prolog, the modified sources must be made available.

D.1.1 The SWI-Prolog Prolog libraries

Lacking a satisfactory technical solution to handle article 6 of the LGPL, this license cannot be used
for the Prolog source code that is part of the SWI-Prolog system (both libraries and kernel code). This
situation is comparable to libgcc, the runtime library used with the GNU C-compiler. Therefore,
we use the same proven license terms as this library. The libgcc license is the with a special exception.
Below we rephrased this exception adjusted to our needs:

SWI-Prolog 5.6 Reference Manual

D.2. CONTRIBUTING TO THE SWI-PROLOG PROJECT 311

As a special exception, if you link this library with other files, compiled with a Free
Software compiler, to produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License. This exception
does not however invalidate any other reasons why the executable file might be covered
by the GNU General Public License.

D.2 Contributing to the SWI-Prolog project

To achieve maximal coherence using SWI-Prolog for Free and Non-Free software we advice the use
of the LGPL for contributed foreign code and the use of the GPL with SWI-Prolog exception for
Prolog code for contributed modules.

As a rule of thumb it is advised to use the above licenses whenever possible and only use a strict
GPL compliant license only if the module contains other code under strict GPL compliant licenses.

D.3 Software support to keep track of license conditions

Given the above, it is possible that SWI-Prolog packages and extensions will rely on the GPL.1 The
predicates below allow for registering license requirements for Prolog files and foreign modules. The
predicate eval license/0 reports which components from the currenly configured system are dis-
tributed under copy-left and open source enforcing licenses (the GPL) and therefore must be replaced
before distributing linked applications under non-free license conditions.

eval license
Evaluate the license conditions of all loaded components. If the system contains one or more
components that are licenced under GPL-like restrictions the system indicates this program may
only be distributed under the GPL license as well as which components prohibit the use of other
license conditions.

license(+LicenseId, +Component)
Register the fact that Component is distributed under a license identified by LicenseId. The
most important LicenseId’s are:

swipl
Indicates this module is distributed under the GNU General Public License (GPL) with
the SWI-Prolog exception:2

As a special exception, if you link this library with other files, compiled with
SWI-Prolog, to produce an executable, this library does not by itself cause the
resulting executable to be covered by the GNU General Public License. This
exception does not however invalidate any other reasons why the executable file
might be covered by the GNU General Public License.

1On the Unix version, the default toplevel uses the GNU readline library for command-line editing. This library is
distributed under the GPL. In practice this problem is small as most final applications have Prolog embedded, without direct
access to the commandline and therefore without need for libreadline.

2This exception is a straight re-phrasing of the license used for libgcc, the GNU-C runtime library facing similar
technical issues.

SWI-Prolog 5.6 Reference Manual

312 APPENDIX D. SWI-PROLOG LICENSE CONDITIONS AND TOOLS

This should be the default for software contributed to the SWI-Prolog project as it allows
the community to prosper both in the free and non-free world. Still, people using SWI-
Prolog to create non-free applications must contribute sources to improvements they make
to the community.

lgpl
This is the default license for foreign-libraries linked with SWI-Prolog. Use PL license()
to register the condition from foreign code.

gpl
Indicates this module is strictly Free Software, which implies it cannot be used together
with any module that is incompatible to the GPL. Please only use these conditions when
forced by other code used in the component.

Other licenses known to the system are guile, gnu ada, x11, expat, sml,
public domain, cryptix, bsd, zlib, constlgpl compatible and gpl compatible.
New licenses can be defined by adding clauses for the multifile predicate license:license/3.
Below is an example. The second argument is either gpl or lgpl to indicate compatibility to
these licenses. Other values cause the license to interpreted as proprietary. Proprietary licenses
are reported by eval license/0. See the file boot/license.pl for details.

:- multifile license:license/3.

license:license(mylicense, lgpl,
[comment(’My personal license’),
url(’http://www.mine.org/license.html’)

]).

:- license(mylicense).

license(+LicenseId)
Intented as a directive in Prolog source files. It takes the current filename and calls
license/2.

void PL license(const char *LicenseId, const char *Component)
Intended for the install() procedure of foreign libraries. This call can be made before
PL initialise().

SWI-Prolog 5.6 Reference Manual

D.4. LIBRARY PREDICATES 313

D.4 Library predicates

D.4.1 check

check/0 Program completeness and consistency
list undefined/0 List undefined predicates
list autoload/0 List predicates that require autoload
list redefined/0 List locally redefined predicates

D.4.2 lists

append/3 Concatenate lists
delete/3 Delete all matching members from a list
flatten/2 Transform nested list into flat list
intersection/3 Set intersection
is set/1 Type check for a set
list to set/2 Remove duplicates
member/2 Element is member of a list
nextto/3 Y follows X in List
nth0/3 N-th element of a list (0-based)
nth1/3 N-th element of a list (1-based)
numlist/3 Create list of integers in interval
permutation/2 Test/generate permutations of a list
reverse/2 Inverse the order of the elements in a list
select/3 Select element of a list
subset/2 Check subset relation for unordered sets
subtract/3 Delete elements that do not satisfy condition
sumlist/2 Add all numbers in a list
union/3 Union of two sets

D.4.3 ordsets

ord empty/1 Test empty ordered set
list to ord set/2 Create ordered set
ord add element/3 Add element to ordered set
ord del element/3 Delete element from ordered set
ord intersect/2 Test non-empty intersection
ord intersection/3 Compute intersection
ord disjoint/2 Test empty intersection
ord subtract/3 Delete set from set
ord union/3 Union of two ordered sets
ord union/4 Union and difference of two ordered sets
ord subset/2 Test subset
ord memberchk/2 Deterministically test membership

SWI-Prolog 5.6 Reference Manual

314 APPENDIX D. SWI-PROLOG LICENSE CONDITIONS AND TOOLS

D.4.4 ugraphs

vertices edges to ugraph/3 Create unweighted graph
vertices/2 Find vertices in graph
edges/2 Find edges in graph
add vertices/3 Add vertices to graph
del vertices/3 Delete vertices from graph
add edges/3 Add edges to graph
del edges/3 Delete edges from graph
transpose/2 Invert the direction of all edges
neighbors/3 Find neighbors of vertice
neighbours/3 Find neighbors of vertice
complement/2 Inverse presense of edges
compose/3
top sort/2 Sort graph topologically
top sort/3 Sort graph topologically
transitive closure/2 Create transitive closure of graph
reachable/3 Find all reachable vertices
ugraph union/3 Union of two graphs

D.4.5 www browser

www open url/1 Open a web-page in a browser

D.4.6 readutil

read line to codes/2 Read line from a stream
read line to codes/3 Read line from a stream
read stream to codes/2 Read contents of stream
read stream to codes/3 Read contents of stream
read file to codes/3 Read contents of file
read file to terms/3 Read contents of file to Prolog terms

D.4.7 registry

This library is only available on Windows systems.

registry get key/2 Get principal value of key
registry get key/3 Get associated value of key
registry set key/2 Set principal value of key
registry set key/3 Set associated value of key
registry delete key/1 Remove a key
shell register file type/4 Register a file-type
shell register dde/6 Register DDE action
shell register prolog/1 Register Prolog

SWI-Prolog 5.6 Reference Manual

D.4. LIBRARY PREDICATES 315

D.4.8 url

parse url/2 Analyse or construct a URL
parse url/3 Analyse or construct a relative URL
global url/3 Make relative URL global
http location/2 Analyse or construct location
www form encode/2 Encode or decode form-data

D.4.9 clp/bounds

in/2 Define interval for variable
#>/2 Greater than constraint
#</2 Less than constraint
#>=/2 Greater or equal constraint
#=</2 Less of equal constraint
#\=/2 Non-equal constraint
#=/2 Equality constraint
#<=>/2 Constraint equivalence
#<=/2 Constraint implication to the left
#=>/2 Constraint implication to the right
all different/1 Constraint all values to be unique
indomain/1 Enumerate values from domain
label/1 Solve constraints for variables
lex chain/1 Constraint on lexicographic ordering
sum/3 Constraint sum of variables
tuples in/2 Symbolic constraints on tuples

D.4.10 clp/clp distinct

all distinct/1 Demand distinct values
vars in/2 Declare domain of variable as set
vars in/3 Declare domain of variable as interval

D.4.11 clp/simplex

assignment/2 Solve assignment problem
constraint/3 Add linear constraint to state
constraint/4 Add named linear constraint to state
gen state/1 Create empty linear program
maximize/3 Maximize objective function in to linear constraints
minimize/3 Minimize objective function in to linear constraints
objective/2 Fetch value of objective function
shadow price/3 Fetch shadow price in solved state
transportation/4 Solve transportation problem
variable value/3 Fetch value of variable in solved state

SWI-Prolog 5.6 Reference Manual

316 APPENDIX D. SWI-PROLOG LICENSE CONDITIONS AND TOOLS

D.4.12 clpqr

entailed/1 Check if constraint is entailed
inf/2 Find the infimum of an expression
sup/2 Find the supremum of an expression
minimize/1 Minimizes an expression
maximize/1 Maximizes an expression
bb inf/3 Infimum of expression for mixed-integer problems
bb inf/4 Infimum of expression for mixed-integer problems
bb inf/5 Infimum of expression for mixed-integer problems
dump/3 Dump constraints on variables

D.4.13 prologxref

prolog:called by/2 (hook) Extend cross-referencer
xref built in/1 Examine defined built-ins
xref called/3 Examine called predicates
xref clean/1 Remove analysis of source
xref current source/1 Examine cross-referenced sources
xref defined/3 Examine defined predicates
xref exported/2 Examine exported predicates
xref module/2 Module defined by source
xref source/1 Cross-reference analysis of source

SWI-Prolog 5.6 Reference Manual

Bibliography

[Anjewierden & Wielemaker, 1989] A. Anjewierden and J. Wielemaker. Extensible objects. ESPRIT
Project 1098 Technical Report UvA-C1-TR-006a, University of
Amsterdam, March 1989.

[BIM, 1989] BIM Prolog release 2.4. Everberg, Belgium, 1989.

[Bowen & Byrd, 1983] D. L. Bowen and L. M. Byrd. A portable Prolog compiler. In
L. M. Pereira, editor, Proceedings of the Login Programming
Workshop 1983, Lisabon, Portugal, 1983. Universidade nova de
Lisboa.

[Bratko, 1986] I. Bratko. Prolog Programming for Artificial Intelligence.
Addison-Wesley, Reading, Massachusetts, 1986.

[Butenhof, 1997] David R. Butenhof. Programming with POSIX threads. Addi-
son-Wesley, Reading, MA, USA, 1997.

[Clocksin & Melish, 1987] W. F. Clocksin and C. S. Melish. Programming in Prolog.
Springer-Verlag, New York, Third, Revised and Extended edi-
tion, 1987.

[Demoen, 2002] Bart Demoen. Dynamic attributes, their hProlog implementa-
tion, and a first evaluation. Report CW 350, Department of Com-
puter Science, K.U.Leuven, Leuven, Belgium, oct 2002. URL =
http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW350.abs.html.

[Deransart et al., 1996] P. Deransart, A. Ed-Dbali, and L. Cervoni. Prolog: The Stan-
dard. Springer-Verlag, New York, 1996.

[Frühwirth,] T. Frühwirth. Thom Fruehwirth’s constraint han-
dling rules website. http://www.informatik.uni-
ulm.de/pm/mitarbeiter/fruehwirth/chr-intro.html.

[Frühwirth, 1998] T. Frühwirth. Theory and Practice of Constraint Handling Rules.
In P. Stuckey and K. Marriot, editors, Special Issue on Con-
straint Logic Programming, volume 37, October 1998.

[Graham et al., 1982] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick.
gprof: a call graph execution profiler. In SIGPLAN Symposium
on Compiler Construction, pages 120–126, 1982.

[Hodgson, 1998] Jonathan Hodgson. validation suite for con-
formance with part 1 of the standard, 1998,
http://www.sju.edu/˜jhodgson/pub/suite.tar.gz.

SWI-Prolog 5.6 Reference Manual

318 BIBLIOGRAPHY

[Holzbaur, 1990] Christian Holzbaur. Realization of forward checking in logic
programming through extended unification. Report TR-90-11,
Oesterreichisches Forschungsinstitut fuer Artificial Intelligence,
Wien, Austria, 1990.

[Kernighan & Ritchie, 1978] B. W. Kernighan and D. M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[O’Keefe, 1990] R. A. O’Keefe. The Craft of Prolog. MIT Press, Massachussetts,
1990.

[Pereira, 1986] F. Pereira. C-Prolog User’s Manual, 1986.

[Qui, 1997] Quintus Prolog, User Guide and Reference Manual. Berkham-
sted, UK, 1997.

[Sterling & Shapiro, 1986] L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, Cam-
bridge, Massachusetts, 1986.

SWI-Prolog 5.6 Reference Manual

	Introduction
	SWI-Prolog
	Books about Prolog

	Status
	Compliance to the ISO standard
	Should you be using SWI-Prolog?
	The XPCE GUI system for Prolog
	Release Notes
	Version 1.8 Release Notes
	Version 1.9 Release Notes
	Version 2.0 Release Notes
	Version 2.5 Release Notes
	Version 2.6 Release Notes
	Version 2.7 Release Notes
	Version 2.8 Release Notes
	Version 2.9 Release Notes
	Version 3.0 Release Notes
	Version 3.1 Release Notes
	Version 3.3 Release Notes
	Version 3.4 Release Notes
	Version 4.0 Release Notes
	Version 5.0 Release Notes
	Version 5.1 Release Notes
	Version 5.2 Release Notes
	Version 5.3 Release Notes
	Version 5.4 Release Notes
	Version 5.5 Release Notes
	Version 5.6 Release Notes

	Donate to the SWI-Prolog project
	Acknowledgements

	Overview
	Getting started quickly
	Starting SWI-Prolog
	Executing a query

	The user's initialisation file
	Initialisation files and goals
	Command-line options
	GNU Emacs Interface
	Online Help
	Command-line history
	Reuse of top-level bindings
	Overview of the Debugger
	Compilation
	During program development
	For running the result

	Environment Control (Prolog flags)
	An overview of hook predicates
	Automatic loading of libraries
	Garbage Collection
	Syntax Notes
	ISO Syntax Support

	Infinite trees (cyclic terms)
	Wide character support
	Wide character encodings on streams

	System limits
	Limits on memory areas
	Other Limits
	Reserved Names

	Initialising and Managing a Prolog Project
	The project source-files
	File Names and Locations
	Project Special Files
	International source files

	Using modules
	The test-edit-reload cycle
	Locating things to edit
	Editing and incremental compilation

	Using the PceEmacs built-in editor
	Activating PceEmacs
	Bluffing through PceEmacs
	Prolog Mode

	The Graphical Debugger
	Invoking the window-based debugger

	The Prolog Navigator
	Cross referencer
	Accessing the IDE from your program
	Summary of the iDE

	Built-in predicates
	Notation of Predicate Descriptions
	Character representation
	Loading Prolog source files
	Loading files, active code and threads
	Quick load files

	Listing and Editor Interface
	Verify Type of a Term
	Comparison and Unification or Terms
	Standard Order of Terms

	Control Predicates
	Meta-Call Predicates
	ISO compliant Exception handling
	Debugging and exceptions
	The exception term
	Printing messages

	Handling signals
	Notes on signal handling

	The `block' control-structure
	DCG Grammar rules
	Database
	Update view
	Indexing databases

	Declaring predicates properties
	Examining the program
	Input and output
	ISO Input and Output Streams
	Edinburgh-style I/O
	Switching Between Edinburgh and ISO I/O
	Write onto atoms, code-lists, etc.

	Status of streams
	Primitive character I/O
	Term reading and writing
	Analysing and Constructing Terms
	Non-logical operations on terms

	Analysing and Constructing Atoms
	Classifying characters
	Case conversion

	Representing text in strings
	Operators
	Character Conversion
	Arithmetic
	Special purpose integer arithmetic
	General purpose arithmetic

	Adding Arithmetic Functions
	Built-in list operations
	Finding all Solutions to a Goal
	Invoking Predicates on all Members of a List
	Forall
	Formatted Write
	Writef
	Format
	Programming Format

	Terminal Control
	Operating System Interaction
	Dealing with time and date
	Controlling the PLWIN.EXE console window

	File System Interaction
	User Top-level Manipulation
	Creating a Protocol of the User Interaction
	Debugging and Tracing Programs
	Obtaining Runtime Statistics
	Execution profiling
	Profiling predicates
	Visualizing profiling data
	Information gathering

	Memory Management
	Windows DDE interface
	DDE client interface
	DDE server mode

	Miscellaneous

	Using Modules
	Why Using Modules?
	Name-based versus Predicate-based Modules
	Defining a Module
	Importing Predicates into a Module
	Reserved Modules

	Using the Module System
	Object Oriented Programming

	Meta-Predicates in Modules
	Definition and Context Module
	Overruling Module Boundaries

	Dynamic Modules
	Module Handling Predicates
	Compatibility of the Module System
	Emulating meta_predicate

	Special Variables and Coroutining
	Attributed variables
	Special purpose predicates for attributes

	Coroutining
	Global variables
	Compatibility of SWI-Prolog Global Variables

	CHR: Constraint Handling Rules
	Introduction
	Syntax and Semantics
	Syntax
	Semantics

	CHR in SWI-Prolog Programs
	Embedding in Prolog Programs
	Constraint declaration
	Compilation

	Debugging
	Ports
	Tracing
	CHR Debugging Predicates

	Examples
	Backwards Compatibility
	Programming Tips and Tricks
	Compiler Errors and Warnings
	CHR Compiler Errors

	Multi-threaded applications
	Creating and destroying Prolog threads
	Monitoring threads
	Linux: linuxthreads vs. NPTL

	Thread communication
	Message queues
	Signalling threads
	Threads and dynamic predicates

	Thread synchronisation
	Thread-support library(threadutil)
	Debugging threads
	Profiling threads

	Multi-threaded mixed C and Prolog applications
	A Prolog thread for each native thread (one-to-one)
	Pooling Prolog engines (many-to-many)

	Multithreading and the XPCE graphics system

	Foreign Language Interface
	Overview of the Interface
	Linking Foreign Modules
	What linking is provided?
	What kind of loading should I be using?

	Dynamic Linking of shared libraries
	Using the library shlib for .DLL and .so files
	Static Linking

	Interface Data types
	Type term_t: a reference to a Prolog term
	Other foreign interface types

	The Foreign Include File
	Argument Passing and Control
	Atoms and functors
	Analysing Terms via the Foreign Interface
	Constructing Terms
	Unifying data
	BLOBS: Using atoms to store arbitrary binary data
	Exchanging GMP numbers
	Calling Prolog from C
	Discarding Data
	Foreign Code and Modules
	Prolog exceptions in foreign code
	Catching Signals (Software Interrupts)
	Miscellaneous
	Errors and warnings
	Environment Control from Foreign Code
	Querying Prolog
	Registering Foreign Predicates
	Foreign Code Hooks
	Storing foreign data
	Embedding SWI-Prolog in other applications

	Linking embedded applications using plld
	A simple example

	The Prolog `home' directory
	Example of Using the Foreign Interface
	Notes on Using Foreign Code
	Memory Allocation
	Compatibility between Prolog versions
	Debugging Foreign Code
	Name Conflicts in C modules
	Compatibility of the Foreign Interface

	Generating Runtime Applications
	Limitations of qsave_program
	Runtimes and Foreign Code
	Using program resources
	Predicates Definitions
	The plrc program

	Finding Application files
	Passing a path to the application

	The Runtime Environment
	The Runtime Emulator

	The SWI-Prolog library
	lists: List Manipulation
	Set Manipulation

	ordsets: Ordered Set Manipulation
	assoc: Association lists
	ugraphs: Unweighted Graphs
	nbset: Non-backtrackable set
	gensym: Generate unique identifiers
	check: Elementary completeness checks
	debug: Some reusable code to help debugging applications
	readutil: Reading lines, streams and files
	netscape: Activating your Web-browser
	registry: Manipulating the Windows registry
	url: Analysing and constructing URL
	clp/bounds: Integer Bounds Constraint Solver
	Constraints
	Constraint Implication and Reified Constraints
	Example 1: Send+More=Money
	Example 2: Using tuples_in for a train schedule
	SICStus clp(FD) compatibility

	clpqr: Constraint Logic Programming over Rationals and Reals
	Solver predicates
	Syntax of the predicate arguments
	Use of unification
	Non-linear constraints

	clp/clp_distinct: Weak arc consistent `all_distinct' constraint
	Example 1
	Example 2
	Example 3

	simplex: Solve linear programming problems
	Example 1
	Example 2
	Example 3

	prologxref: Cross-reference data collection library
	Extending the library

	Hackers corner
	Examining the Environment Stack
	Intercepting the Tracer
	Adding context to errors: prolog_exception_hook
	Hooks using the exception predicate
	Hooks for integrating libraries
	Hooks for loading files
	Readline Interaction

	Glossary of Terms
	SWI-Prolog License Conditions and Tools
	The SWI-Prolog kernel and foreign libraries
	The SWI-Prolog Prolog libraries

	Contributing to the SWI-Prolog project
	Software support to keep track of license conditions
	Library predicates
	check
	lists
	ordsets
	ugraphs
	www_browser
	readutil
	registry
	url
	clp/bounds
	clp/clp_distinct
	clp/simplex
	clpqr
	prologxref

