$$
317 \operatorname{ch} 5[H]
$$

Convergence of a sequence of numbers
(el, 0,1$)$ $\left\{a_{n}: n=1,2, \ldots\right\}$ converges fo b as $n \rightarrow \infty$, written $a_{n} \rightarrow b$, as $n \rightarrow \infty$, or equivalently, $\lim _{n \rightarrow \infty} a_{n}=b$ if
$\forall \varepsilon>0, \exists n_{0}(\varepsilon)$, such that $\forall n>n_{0}(\varepsilon)$, we have

$$
\left|a_{n}-b\right|<\varepsilon
$$

Convergence almost surely (ire., with probebiilty 1) (Defu.5.2)
Definition 5.2 The sequence of random variables $\left\{Y_{n}: n=1,2, \ldots\right\}$ converges almost surely to μ, written

$$
Y_{n} \xrightarrow{a} \mu, \text { as } z \rightarrow \infty
$$

or equivalently, the sequence converges with probability 1 , written

$$
Y_{n} \longrightarrow \mu, \text { as } n \rightarrow \infty \text { w.p. } 1
$$

if

$$
\forall k>0, \mathbf{P}\left\{\lim _{i \rightarrow \infty}\left|Y_{n}-\mu\right|>k\right\}=0
$$

The $\mathbf{P}\{\ldots\}$ in the previous expression is over the set of sample paths. More precisely we might write

$$
\forall k>0, \mathbf{P}\left\{\omega: \lim _{n \rightarrow \infty}\left|Y_{n}(\omega)-\mu\right|>k\right\}=0
$$

I.e, sample poohs that do not converge to their mean be come venyrore.

Definition 5.3 The sequence of random variables $\left\{\mathrm{I}_{n}:{ }_{n}=1,2, \ldots\right\}$ converges in probability to μ, written

$$
Y_{n} \xrightarrow{P} \mu, \text { as } n \rightarrow \infty
$$

ii

$$
\forall k>0, \lim _{n \rightarrow \infty} \mathbf{P}\left\{\left|Y_{n}-\mu\right|>k\right\}=0
$$

The $\mathbf{P}\{\ldots\}$ in Definition 5.3 is over the set of possible sample paths, w. More precisely we might write

$$
\begin{equation*}
\forall k>0, \lim _{n \rightarrow \infty} \mathbf{P}\left\{\omega:\left|Y_{n}(\omega)-\mu\right|>k\right\}=0 \tag{5.1}
\end{equation*}
$$

It maybe no sample path converges in the limit, but the values that are different from the ween on eck sample path get rover and never, so that their total mass goes to zero

Example of convergence in probability from wikepchia http://en.wikipedia.org/wiki/Convergence_of_random_variables "Archer"
Suppose a person takes a bow and starts shooting arrows at a target. Let Xn be his score in n -th shot. Initially he will be very likely to score zeros, but as the time goes and his archery skill increases, he will become more and more likely to hit the bullseye and score 10 points. After the years of practice the probability that he hit anything but 10 will be getting increasingly smaller and smaller and will converge to 0 . Thus, the sequence $X n$ converges in probability to $X=10$.

Note that Xn does not converge almost surely however. No matter how professional the archer becomes, there will always be a small probability of making an error. Thus the sequence $\{\mathrm{Xn}\}$ will never turn stationary: there will always be non-perfect scores in it, even if they are becoming increasingly less frequent.

Examples of olmostsure convergence (equivalently,
convergma with probability 1) frow withopedin
http://en.wikipedia.org/wiki/Convergence of random variables
Consider an animal of some short-lived species. We record the amount of food that this animal consumes per day. This sequence of numbers will be unpredictable, but we may be quite certain that one day the number will become zero, and will stay zero forever after.

Consider a man who tosses seven coins every morning. Each afternoon, he donates one pound to a charity for each head that appeared. The first time the result is all tails, however, he will stop permanently.

Let $\mathrm{X} 1, \mathrm{X} 2, \ldots$ be the daily amounts the charity received from him.
We may be almost sure that one day this amount will be zero, and stay zero forever after that.
However, when we consider any finite number of days, there is a nonzero probability the terminating condition will not occur.
 ciom variables with mean $\mathbf{E}[X]$. Let

$$
S_{n}=\sum_{i=1}^{n} X \text { and } Y_{n}=\frac{S_{n}}{n} \text {. }
$$

\qquad
\qquad

7hen

$$
Y_{n} \xrightarrow{P} \mathbf{E}[X], \text { as }: \iota \rightarrow \infty .
$$

This is rad as " $Y_{.4}$ converges in probability to $\mathbf{E}[X]$," which is shorthand for the following:

$$
\succ_{k}>0, \lim _{n \rightarrow \infty} \mathbf{P}\{|Y-\mathbf{E}[X]|=k\}=0
$$

Comments on Exercise S.1. (Prove WLLNs)
Markno's inequality. Do example 4.15 [Trivedi]
If X is non-ngatiles then

$$
p\{x>t\} \leq \frac{E[x]}{t}, f t \geqslant 0
$$

Che by chev's inequality $\quad D_{0}$ Example 4.16 [Trivedi]

$$
P\{|x-E[x]| \geqslant t\} \leq \frac{\sigma_{x}^{2}}{t^{2}}
$$

complate proof of WLLNS.
Strong law of Large Numbers

Theorem 5.5 (Strong Law of Large Numbers) Let $X_{1}, X_{2}, X_{3}, \ldots$ be i.i.d random variables with mean $\mathrm{E}[X]$. Let

$$
S_{n}=\sum_{i=1}^{n} X_{i} \quad \text { and } \quad Y_{n}=\frac{S_{i i}}{n} .
$$

\qquad
\qquad
Then

$$
Y_{n} \xrightarrow{\text { ane. }} \mathbf{E}[X], \text { as } n \rightarrow \infty
$$

This is read as " Y_{u} converges almost surely to $\mathbf{E}[X]$ " or " Y_{n} converges to $\mathbf{E}[X]$ with probability 1, " which is shortiandfor the following:

$$
\forall k>0, \mathbf{P}\left\{\lim _{n \rightarrow \infty}\left|Y_{n}-\mathbf{E}[\mathbf{Y}]\right| \geq k\right\}=0
$$

Time Average vs, Ensemble Average Tim \& Enyo

Definition 5.6

$$
\bar{N}^{\text {Tume Avg }}=\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} N(v) d v}{t}
$$

Definition 5.7

$$
\bar{N}^{\text {Ensemble }}=\lim _{i \rightarrow \infty} \mathbf{E}[N(t)]=\sum_{i=0}^{\infty} i p_{i}
$$

where

$$
\begin{aligned}
p_{i} & =\lim _{t \rightarrow \infty} \mathbf{P}\{N(t)=i\} \\
& =\text { mass of sample paths with value } i \text { at time } t .
\end{aligned}
$$

\qquad

Definition 5.8 (restatement of 5.6) $\hat{N}^{\text {Time Arg }}(\omega)=\lim _{t \rightarrow \infty} \frac{\int_{0}^{t} N(v, \omega) d v}{t}$, whore $N(v, w)$ represents the cumber of foll in the system at time v under semph path w.

Equivalence of averages \& evgodicity

Theorem 5.9 Foran "ergodic" system (see Definition 5.10), the ensemble average e wrists and, with probability 1 ,

$$
\bar{N}^{\text {time. Avg }}=\bar{N}^{\text {Ensemble }}
$$

That is, for (almost) all sample paths, the time average along that sample path converges to the ensemble average.

Definition 5.10 An ergodic system is one that is positive recurrent, aperiodic, and inducible.

Fig. 5.7 Single Process Restarting Itself

- Simuletron
- Average Time ln Systam

