
SECTION TITLE
Editors: Konrad Hinsen, hinsen@cnrs-orleans.fr | Konstantin Läufer, laufer@cs.luc.edu

92	 Computing in Science & Engineering	 1521-9615/17/$33.00 © 2017 IEEE	 Copublished by the IEEE CS and the AIP� September/October 2017

COMPUTING PRESCRIPTIONS
Editors: Francis Sullivan, fran@super.org | Ernst Mucke, ernst.mucke@gmail.com

What Is the Blockchain?

Massimo Di Pierro | DePaul University

T
he technology known as the blockchain was first re-
vealed by Satoshi Nakamoto in his paper “Bitcoin:
A Peer-to-Peer Electronic Cash System” (https://
bitcoin.org/bitcoin.pdf), which laid out the math-

ematical foundation for the bitcoin cryptocurrency. Although
this was a groundbreaking paper, it was never actually sub-
mitted to a traditional peer-reviewed journal, and the author’s
true identity is unknown. Blockchain technology is not only
at the foundation of all crytocurrencies, but it has found wide
application in the more traditional financial industry. It also
opened the door to new applications such as smart contracts.

It’s a Matter of Trust
The problem that Nakamoto solved with the blockchain
was that of establishing trust in a distributed system. More
specifically, the problem of creating a distributed storage of
timestamped documents where no party can tamper with the
content of the data or the timestamps without detection.

Note that this problem is orthogonal to the problems
of authentication, integrity, and nonrepudiation, which
are solved by digital signatures. If a party creates a digi-
tal signature for a document, it establishes only a verifiable
link between the party and the document. The existence
of a valid digital signature proves that the party indeed
intended to sign the document and that the document
hasn’t been altered. Yet the digital signature guarantees
nothing about the time when the document was signed:
the timestamp requires trust in the party that signed it. In
the case of financial transactions and other forms of legal
contracts, time is of the essence, and the order of those
financial transactions needs to be independently certified
to be auditable.

Consider the case of house sales. The owner can be de-
fined as the party to whom the house was last sold to, but
ownership can only be verified from the full paper trail
of all transactions related to the house, a paper trail that’s

www.computer.org/cise			 	� 93

usually kept and verified by title companies. Note this
system doesn’t completely prevent fraudulent transactions
(such as a person selling a house that he or she doesn’t
own or selling the same property to more than one party),
but fraudulent activities eventually get detected, and true
ownership is established. The same ownership verification
problem arises in financial transactions—for sure, in the
sale of cryptocurrency, but also in the sale of any other
traditional financial instrument. The problem is normally
solved by recording all transactions in a single trusted cen-
tralized ledger, but a ledger isn’t always a practical solu-
tion because it doesn’t scale to large numbers of frequent
transactions and because it requires all parties to trust the
ledger’s maintainer. In the same way you need to trust
your bank with your money (and bank employees stealing
customer funds is not unheard of). To address this, the
blockchain provides a distributed trust mechanism: mul-
tiple parties keep a record of transactions, and every party
can verify that the order and timestamps of the transac-
tions haven’t been tampered with.

A unit of bitcoin is nothing other than a number, but
only some numbers are valid bitcoins. These numbers are
solutions of a well-defined equation, and whoever finds a
new solution owns it (this process is called mining). Once
a bitcoin is discovered, it can be traded, with transactions
stored in a ledger. Transactions are digitally signed with
the credentials of the seller to avoid nonrepudiation. There
is no centralized ledger because users wouldn’t trust one
and because there are too many transactions to store them
all in one place. Hence bitcoin and other cryptocurren-
cies provide a distributed ledger in which every computer
involved in the transaction of a specific coin (or fraction
of a coin) keeps a copy of the history of that coin’s trans-
actions. The blockchain technology makes sure that no
party storing this history can tamper with it without be-
ing detected.

Hash Functions
Transactions are units of data containing the transaction
details plus a timestamp. Both can be represented as com-
puter numbers or strings. A blockchain can be thought of
as a table with three columns, where each row represents
a distinct transaction, the first column stores the transac-
tion’s timestamp, the second column stores the transac-
tion’s details, and the third column stores a hash of the
current transaction plus its details plus the hash of the pre-
vious transaction. When a new record is inserted into a
blockchain, the last computed hash is broadcasted to every
interested party. It isn’t necessary for every party to keep a
copy of the entire transaction history—it’s sufficient that
a few parties do. Because everyone knows the last hash,
anyone can verify that the data hasn’t been altered since
it would be impossible without obtaining a different and

thus invalid hash. The only way to tamper with the data
while preserving the hash would be to find a collision in
the data, and that’s computationally impossible. It would
require so much computing power that it’s practically
uneconomical.

A hash can be thought of as an encrypted version of
the original string from which it is impossible to derive the
original string. In fact, one way to compute the hash of a
string is by encrypting it and performing some scrambling
and xoring of the output bits. Mathematically, a hash is
produced by a hash function, f, which must have two im-
portant properties: the size of the input space and the out-
put space must be large; it must be practically impossible
to find collisions, that is, two inputs x1 and x2 that produce
the same output f(x1) 5 f(x2). A typical application of hash
functions is in password storage—when you register on a
website, you don’t want the site to store your password p
in its database, otherwise anyone with access to the data-
base could read it. The website should store the hash of the
password, f(p) 5 y. When you login, the input password p
is hashed again and compared with the stored value, f(p) 5
y. The probability of an incorrect password producing the
same hash value y as the actual password is zero for practi-
cal purposes.

Examples of hash functions are the Secure Hash
Algorithms (SHA1, SHA128, SHA512, and so on),
which are implemented in the standard Python module
hashlib. They can take any string as input and always
produce an output string that’s a hexadecimal representa-
tion of the output number of the function with a fixed
number of digits:

�>>> print hashlib.sha1(‘hello world’).hexdigest()
2aae6c35c94fcfb415dbe95f408b9ce91ee846ed

Let’s look at a simple implementation of a blockchain in
Python. First, we define a function that we call bhash that,
given the timestamp and details (a string or other serializ-
able object) of a new transaction along with the hash of the
previous transaction, computes a new hash using the SHA1
algorithm:

import hashlib, json, time

def bhash (timestamp, details, prev_hash):
 �token = json.dumps([timestamp, details, prev_hash])
 return hashlib.sha1(details).hexdigest()

Notice that we used the json serializer to combine the
elements together into a hashable string that we then pass
to the hash SHA1 hash function. Our choice of serializing
in json is an implementation detail and not the only way to
achieve the goal.

COMPUTING PRESCRIPTIONS

94	 � September/October 2017

Next we create a Blockchain class to encapsulate a list
of blocks:

class Blockchain(object):
 �def __init__(self, details=’new-chain’):
 �self.blocks = [(time.time(), details, ”)]
 �def record(self, details, timestamp = None):
 �timestamp = timestamp or time.time()
 �prev_hash = self.blocks[21] [2]
 �new_hash = bhash(timestamp, details, prev_hash)
 �self.blocks.append((timestamp, details, new_hash))

The class has a constructor, “init”, which creates a list
of blocks and stores the first block in the list. This first block
contains an initial timestamp and details but no hash. In
the case of a bitcoin, this would store information about the
discovery of a new unit and its owner.

The class also has a second method, “record”, that,
given the details of a new transaction and an optional
timestamp (otherwise automatically computed), stores
them in a new block. This is done by retrieving the hash
of the previous block from self.blocks[21][2],
calling the bhash function, and appending the trip-
let (timestamp, details, new_hash) to the list of
blocks. Notice that self.blocks[i][j] represents a
cell in the blockchain table where i is the row number
starting from 0, and j is the column number also start-
ing from 0.

We use our Blockchain class by creating an instance
of it, which we call “bc”, and recording transactions repre-
sented as self-descriptive strings:

>>> bc = Blockchain(‘A found $1’)
>>> bc.record(‘A gives $1 to B’)
>>> bc.record(‘B gives $1 to C’)
>>> bc.record(‘C gives $1 to D’)

Then we can print the blocks in the blockchain:

>>> print bc.blocks
 [(1495941516.704196, ‘A found $1’, ”),
 �(1495941516.704201, ‘A gives $1 to B’, ‘a75a9227f...’),
 �(1495941516.704277, ‘B gives $1 to C’, ‘ca911be27...’),
 �(1495941516.704290, ‘C gived $1 to D’, ‘cb462885e...’)]

The last hash is ‘cb462885e...’. For this technology
to work, we must make sure we broadcast the last hash and
that there a few copies of the full chain stored by different
parties. The parties in this context are the computing nodes
in the peer-to-peer network in charge of recording and stor-
ing the transactions. This is a network problem and beyond
this article’s scope.

It’s also important that every party can verify the
chain’s integrity. This can easily be done by using the func-
tion below:

def verify(blockchain):
 prev 5 blockchain.blocks[0]
 for block in blockchain.blocks[1:]:
 �new_hash = bhash(block[0], block[1], prev[2])
 if block[2] != new_hash: return False
 prev = block
 return True

In the code, above we loop over all the blocks starting
from the second one, recompute each hash, and then com-
pare it with the stored one in block[2], the third column.
If the code finds any hash that doesn’t match, it returns
False, or else it returns True. We can call this code on our
blockchain with

>>> print verify(bc)
True

From a technology viewpoint, there’s a lot more than
this to the bitcoin network. There are algorithms for data
distribution, for syncing nodes, for efficient storage and que-
rying, for conflict resolutions, and so on, yet the blockchain
technology is at the heart of it.

Cryptocurrencies and Beyond
It’s important to observe that different cryptocurrencies
run on different platforms and make different storage and
hashing choices. In addition, for the same type of crypto-
currency, for example, bitcoin, there are different implemen-
tations of the algorithm, even though they’re all compatible
and can communicate with each other. Moreover, for each
unit of coin, there’s one set of blocks (replicated in multiple
locations).

Its use for cryptocurrencies is the first and best-known
application of the blockchain, but it isn’t the only one, and
probably not the most important. Many companies provide
proprietary implementations of the blockchain technology
and sell their solutions to the financial industry, which uses
them to record various types of transactions. These propri-
etary solutions are integrated into the authentication infra-
structure of financial institutions and allow different agents
to record transactions in a distributed fashion, thereby al-
lowing different institutions (or parts of the same institu-
tion) to transact without reciprocal trust.

Because a transaction is basically a string, it can contain
arbitrary information. It should be evident to the reader at this
point that this technology can be used for any kind of nota-
rization, and not necessarily involving money. For example,

www.computer.org/cise			 	� 95

Chicago’s Cook County has been experimenting with using
the bitcoin network to record house titles (https://bitcoinmaga-
zine.com/articles/chicago-s-cook-county-to-test-bitcoin-block-
chain-based-public-records-1475768860). Similarly, someone
could store an idea for a patent in the blockchain to later prove
a first-to-invent claim. You could also store a promise to do
something at a later time, with the promise stored in the form
of code that would execute the promise in an automated man-
ner. This is what’s called a smart contract; for example, let’s
say we have this promise: “Alice promises to pay Bob $1 if on
1 January 2028 it rains in Chicago.” As long as the promise is
in the blockchain, and an API can check whether the condi-
tions are met, the system can automatically execute the trans-
action should the condition be fulfilled.

The bitcoin network was the first, but new ones are emerg-
ing all the time to trade and specifically handle smart

contracts, “applications that run exactly as programmed
without any possibility of downtime, censorship, fraud, or
third-party interference” (thereum.com).

On one hand, the idea of trading cryptocurrencies
might be nothing more than stamp collecting, but the oth-
er, the underlying technology has only started to revolution-
ize contracts and human interactions. It will displace many
white collar jobs the same way robots have displaced blue
collar ones. It will also create new jobs that we can’t even
imagine today. Only time will tell if cryptocurrencies can
soar and prosper because of the increasing trust people put
into blockchain technology.

Massimo Di Pierro is a professor in the School of Computing at
DePaul University and co-director of the MS program in com-
putational finance. Contact him at massimo.dipierro@depaul
.edu.

Take the
CS Library
wherever
you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society Digital
Library, and you can read them on any device that supports ePub.
For more information, including a list of compatible devices, visit

www.computer.org/epub

