
Carnegie Mellon University

Software Engineering Institute

Pyrite or gold?
It takes more than a pick and shovel

SEI/CERT -CyLab
Carnegie Mellon University

20 August 2004
John McHugh,
and a cast of thousands

Carnegie Mellon University

Software Engineering Institute

Pyrite or Gold?

Carnegie Mellon University

Software Engineering Institute

Failed promises

• Data mining and machine learning
techniques have been proposed as a
mechanism for detecting malicious activity
by examining a number of data streams
representing computer and network activity.

• Although some encouraging results have
been obtained, most systems do not deliver
in the field what they promised in the lab.

Carnegie Mellon University

Software Engineering Institute

Why is this?
• There are a number of reasons for this, but

the most likely one is the failure of the
developers of such systems to understand
what the systems have learned and to relate
it to the activity they are seeking to detect.
– Put simply there are too many serendipitous

detections, or
– The distinguishing behavior is insufficient to

establish either necessary or sufficient
conditions for maliciousness.

Carnegie Mellon University

Software Engineering Institute

Is this all?

• Probably
– At this point, you should know what you need

to do to fix the problem and I could go home,
but, to drive home the point, I’m going to give
some examples that may help to illustrate the
problem.

Carnegie Mellon University

Software Engineering Institute

If a tree falls in the forest …

• After some years of looking at the problem
of relating abnormal behavior to malicious
behavior, I am starting to realize that this is
probably not fruitful.
– Are there any necessarily normal behaviors?
– Are there any behaviors that are necessarily

both abnormal and malicious?
– Are there any descriptors that are sufficient to

identify either?

Carnegie Mellon University

Software Engineering Institute

Normal Program Behavior

• A number of suggestions have been made
for defining normal program behavior.
– Execution traces under normal conditions
– Execution traces by symbolic execution
– Formal specifications
– Domain and type enforcement

• We will consider the first two further

Carnegie Mellon University

Software Engineering Institute

Observed Execution Traces

• If we run a program long enough, in a
“typical” environment, we should collect a
definitive set of “normal” traces.

• Under some measure of similarity,
abnormal traces may indicate intrusive
activity.

• The work begun by Forrest is based on this
approach.

Carnegie Mellon University

Software Engineering Institute

Possible Execution Traces

• In theory, it is possible to determine all
possible execution traces for most uesful
programs. This could substitute for
observation, but

• What if the traces admit malicious behavior?
– We will see an example later.

• A trace ending with “exec” may or may not
be normal

Carnegie Mellon University

Software Engineering Institute

Problems

• System call traces, per se, are not a good
basis for detection.

• STIDE represents normal by a set of fixed
length subtraces.
– This is blind to minimal foreign subtraces

longer than the length chosen
– There are ways to modify attacks so as to be

missed (Tan, Maxion, Wagner)

Carnegie Mellon University

Software Engineering Institute

Example #1 -- Hiding in Normal:
Modifying the restore attack

•The restore attack manifests in the following sequence:
write,read,write,munmap,exit

•The read, write is due to the fact that the program used by restore
(created by the attacker) failed to connect to the remote computer, causing
restore to print an error and exit. Using the normal data as training
data and this attack as test data,we find the following two minimal
foreign sequences:
write,read,write, and write,munmap

•Since this attack contains a MFS of size 2, stide will detect this attack
with a window size of 2 or greater.

•We now need to find new ``stide-friendly'' means to achieve the same
goal.

Carnegie Mellon University

Software Engineering Institute

Example #1 (cont)
“Stide-friendly” Method

•What if the attacker's program did not fail to connect to a remote
computer, but performed the expected operations of the program normally
invoked by restore?

•We craft such a program to mimic the normal behavior of the program
normally invoked by restore (e.g. the secure shell) while still giving the
attacker root privileges.

•The attacker can modify the exploit to make the system program
restore run our ``normal-mimicking'' program instead. Now rather than
printing an error and exiting, restore executes successfully, as shown
in the manifestation of this attack:

write,read,read,read,...
•This manifestation contains no minimal foreign sequences, yet it still
bestows root privileges upon the attacker.

Carnegie Mellon University

Software Engineering Institute

Network data

• NIDS look at various representations of
network data.
– Whole packets
– Packet headers
– Network flows

• Ground truth (labeling) is difficult for real
data, artificial data presents other problems.

• Lets look at the Lincoln data.

Carnegie Mellon University

Software Engineering Institute

Context and Background
(with a hint of a research agenda)

• In the summer of 1999, shortly after I joined CERT, I
became involved in the production of a report on the state
of practice in intrusion detection. This led to an
investigation of efforts by MIT’s Lincoln Laboratory to
evaluate IDSs developed under DARPA’s research
programs.

• Critiques of the 1998 Lincoln work were presented and
published in several forums. The conclusion of these
efforts is that evaluating IDSs is very difficult under the
best of circumstances. The reasons range from
fundamental lack of theory to complex logistics.

Carnegie Mellon University

Software Engineering Institute

Why 1998?
• At the time this effort began, the 1998 evaluation was

complete, 1999 was about to begin.
• The public record associated with the 1998 effort indicated

a number of problems and left many questions
unanswered.

• It appeared likely that the 1999 evaluation would not
address many of these issues so that many of the questions
raised with respect to the 1998 evaluation would remain
relevant.

• A recent analysis of the 1999 data shows it has similar
problems

Carnegie Mellon University

Software Engineering Institute

Data Characterization

• Artificial data was used for the evaluation.
– Characterization of real environment

incomplete, sample size unknown
– The data is said to be based on typical traffic

seen at Air Force bases. The sample may be as
small as 1.

– The abstractions used to define “typical” are
not known except for word frequencies in
Email traffic.

Carnegie Mellon University

Software Engineering Institute

Data Characterization

• Artificial data was used for the evaluation.
– The criteria for background data generation are

not completely known - No pathologies?
– There is a lot of “crud” on the wire. Some of it

looks intrusive, but apparently isn’t. This is not
seen in the test data.

– As far as we know, there is no probe data in the
background data, but some things that look like
probing are normal and others are not the result
of malicious intent.

Carnegie Mellon University

Software Engineering Institute

Data Characterization

• Artificial data was used for the evaluation.
– The test data set has not been validated.

• No pilot studies or data evaluations were performed.
• Investigators complained of having to debug test

data while evaluating their systems
• False alarm characteristics critical to evaluation, but

not known to be realistic in test data

Carnegie Mellon University

Software Engineering Institute

Data Characterization

• Artificial data was used for the evaluation.
– Data rates appear low 10-50Kb/sec at border

• Contrast with university sites of similar size shows
10X or more difference.

– Attack mix unrealistic - attack rate may be also
• Minor role for probes
• Limited variety of attacks (more in ‘99)
• Attacks per day may be high

Carnegie Mellon University

Software Engineering Institute

Other data issues
• Comparison of the Lincoln data, with other similar

sources produces interesting results.
• BSM data shows very different conditional entropy

from real data observed by Forrest, et. al. Lee S&P
2001

• Clustering attempts on tcp dump data produce “linear”
clusters indicating low variability.

 Taylor NSPW 2001
• These are suspicious.
• Lets look in detail at the 1999 network data!

Carnegie Mellon University

Software Engineering Institute

1999 IDEVAL

Solaris SunOS Linux NT

Router

Simulated
Internet

Inside Sniffer201 Attacks

Outside Sniffer

BSM Audit Logs, Directory and File System Dumps

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

1999 IDEVAL Results
Top 4 of 18 systems at 100 false alarms

15/27 (55%)Forensics

41/102 (40%)Dmine

81/173 (47%)Expert 2

85/169 (50%)Expert 1

Attacks detected/in specSystem

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Problem Statement

• Does IDEVAL have simulation artifacts?
• If so, can we “fix” IDEVAL?
• Do simulation artifacts affect the evaluation

of anomaly detection algorithms?

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Simulation Artifacts?

• Comparing two data sets:
– IDEVAL: Week 3
– FIT: 623 hours of traffic from a university

departmental server
• Look for features with significant

differences

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

of Unique Values & % of Traffic

0.45%NoneIP fragmentation
0.02%NoneTCP checksum errors
0.1%NoneMalformed SMTP
1779TTL values
1031TCP SYN options
321SSH client versions
8075HTTP user agents
24,92429Client IP addresses
FITIDEVALInbound client packets

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Growth Rate in Feature Values

Number of
values observed

Time

IDEVAL

FIT

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Conditions for Simulation Artifacts

1. Are attributes easier to model in
simulation (fewer values, distribution
fixed over time)?

• Yes (to be shown next).
2. Do simulated attacks have idiosyncratic

differences in easily modeled attributes?
• Not examined here

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Exploiting Simulation Artifacts

• SAD – Simple Anomaly Detector
• Examines only one byte of each inbound

TCP SYN packet (e.g. TTL field)
• Training: record which of 256 possible

values occur at least once
• Testing: any value never seen in training

signals an attack (maximum 1 alarm per
minute)

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

SAD IDEVAL Results
• Train on inside sniffer week 3 (no attacks)
• Test on weeks 4-5 (177 in-spec attacks)
• SAD is competitive with top 1999 results

215TCP header size
424TTL
1671IP source fourth byte
4379/177 (45%)IP source third byte

False
Alarms

Attacks
Detected

Packet Byte Examined

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Suspicious Detections

• Application-level attacks detected by low-
level TCP anomalies (options, window size,
header size)

• Detections by anomalous TTL (126 or 253
in hostile traffic, 127 or 254 in normal
traffic)

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Mahoney & Chan Mix

• Mahoney and Chan mixed the IDEVAL 99
data with FIT data, taking care to modify
the mix (and IDS rules) to avoid developing
independent models for each component.

• They then tested the mix of a number of
anomaly detection algorithms.

Carnegie Mellon University

Software Engineering Institute

Mixed Traffic: Fewer Detections, but
More are Legitimate

Detections out of 177 at 100 false alarms

0

20

40

60

80

100

120

140

PHAD ALAD LERAD NETAD SPADE

Total

Legitimate

Thanks to Mahoney and Chan (RAID 2003)

Carnegie Mellon University

Software Engineering Institute

Affect on IDEVAL?
• If the results shown on the previous slides

hold up for the IDEVAL 99 systems, the
results of the DARPA program would be
only about half as good as previously
reported.

• It is known that a number of the systems
evaluated during the 99 trials had
difficulties when field deployments were
attempted

Carnegie Mellon University

Software Engineering Institute

Real data is complex

• We are working with data from a customer
network to characterize complexity and
normal behaviors.

• The following are a few illustrations:

Carnegie Mellon University

Software Engineering Institute

One Day of Inside to Outside

Carnegie Mellon University

Software Engineering Institute

The Week’s Out/In Surface

Carnegie Mellon University

Software Engineering Institute

Workstation?

Carnegie Mellon University

Software Engineering Institute

Mail Server?

Carnegie Mellon University

Software Engineering Institute

Web Server

Carnegie Mellon University

Software Engineering Institute

Scanner

Carnegie Mellon University

Software Engineering Institute

What does it mean

• There is a forensic component to anomaly
detection when it is used for detecting
intrusions.

• In evaluating an anomaly detector used this
way, it is incumbent on the evaluator to
show that the features on which the
detection is based are not serendipitous.
– In addition to the above, I have reviewed

numerous papers based on irrelevant detections.

Carnegie Mellon University

Software Engineering Institute

Consequences

• Artificial data such as the Lincoln data is
useful, but:
– Don’t take the results too seriously
– Good results on artificial data should

• Encourage you to see if the results hold up in the
wild (If you can’t do this was the idea really good?)

• Discourage you from seeking to publish, at least in
the intrusion detection literature

Carnegie Mellon University

Software Engineering Institute

Conclusions

• Anomalies are not necessarily benign or
malicious, they are just different or rare

• Just because an intrusion is associated with
an anomalous feature does not mean that it
has to be that way.

• If you don’t understand the forensics of
intrusions, you are likely to be part of the
problem, not part of the solution.

Carnegie Mellon University

Software Engineering Institute

Pyrite or Gold?

