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Abstract 

We examine two representation schemes for uncertain knowledge: the similarity network (Heck- 
erman, 1991) and the Bayesian multinet. These schemes are extensions of the Bayesian network 
model in that they represent asymmetric independence assertions. We explicate the notion of rel- 
evance upon which similarity networks are based and present an efficient inference algorithm that 
works under the assumption that every event has a nonzero probability. Another inference algo- 
rithm is developed that works under no restriction albeit less efficiently. We show that similarity 
networks are not inferentially complete-namely-not every query can be answered. Nonethe- 
less, we show that a similarity network can always answer any query of the form: “What is the 
posterior probability of an hypothesis given evidence?” We call this property diagnostic complete- 

IZESS. Finally, we describe a generalization of similarity networks that can encode more types of 
asymmetric conditional independence assertions than can ordinary similarity networks. 

1. Introduction 

Traditional probabilistic approaches to knowledge acquisition and inference for di- 
agnostic, classification, and pattern-recognition systems face a critical choice: either 
specify precise relationships between all relevant variables or make uniform indepen- 

dence assumptions throughout the model. The first choice is computationally infeasible 
except in very small domains, whereas the second choice is rarely justified and often 

yields inaccurate conclusions. Bayesian networks offer a compromise between the two 
extremes by encoding independence when possible and dependence when necessary. 
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They allow a wide spectrum of independence assertions to be considered by the model 
builder, so that a practical balance can be established between computational needs and 
the accuracy of conclusions. 

Although Bayesian networks considerably extend traditional approaches, they are 
not sufficiently expressive to encode every independence assertion that may facilitate 

knowledge acquisition or speed up inference. One deficiency is their inability to represent 
naturally asymmetric independence assertions. Such assertions state that variables are 
independent for some but not necessarily for all of their values. 

The similarity network is a probabilistic representation that addresses this deficiency 
for problems of diagnosis. The representation employs multiple Bayesian networks, and 

thereby allows the representation of asymmetric independence assertions. In practice, the 
representation has proved to be extremely useful, facilitating the construction of expert 
systems for the diagnosis of breast, lymph-node, intestine, ovary, skin, soft-tissue, testis, 

and thymus pathology [ 16,271, sleep disorders [ 281, eye diseases [ 131, and efficiency 
problems in gas turbines that generate electricity [2]. 

Heckerman [ 141 introduces the similarity network representation. In his work, he 
describes the representation from the perspective of the user, emphasizing the benefits 
of the representation for knowledge acquisition. The development does not concentrate 
on issues of probabilistic inference. In particular, Heckerman describes how a similarity 

network can be converted to a Bayesian network, and proposes that probabilistic infer- 
ence be performed using the Bayesian network rather than using the similarity network. 
The disadvantage of this approach is that, in the process of generating a Bayesian net- 
work from a similarity network, one encodes asymmetric independence in the numbers 

rather than in the topology of the Bayesian network. Consequently, these asymmet- 
ric assertions are not available to the inference algorithm to speed up computations. 

In addition, Heckerman’s developments are limited to models where (1) there exists 
an ordering over all variables that is consistent with every Bayesian network within 

the similarity network, and (2) no relationship among variables is deterministic. We 
overcome these constrains and also discuss more fully the situation when diagnostic 
hypotheses are not mutually exclusive or when the hypothesis variable is not a root 

node. 
Moreover, in this paper, we offer several enhancements to the similarity network rep- 

resentation. We present an efficient inference algorithm that works under the assumption 
that every event has a nonzero probability. Another inference algorithm is developed 
that works under no restriction albeit less efficiently. In the processes of developing the 

later algorithm we introduce another representation of asymmetric independence called 
a Bayesian multinet, describe an algorithm that converts a similarity network into a 

Bayesian multinet, and show how to perform inference using the Bayesian multinet 
obtained. 

We show that similarity networks are not inferentially complete-namely-not every 
query can be answered. Nonetheless, we show that every similarity network can an- 
swer any query of the form: “What is the posterior probability of an hypothesis given 
evidence?’ We call this property diagnostic completeness. Finally, we describe a gener- 
alization of similarity networks that can encode more types of asymmetric conditional 
independence assertions than can ordinary similarity networks. 
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Fig. I A Bayesian network for the diagnosis of sore throat. 

2. Bayesian networks: an overview’ 

2.1. Informal description 

The Bayesian network paradigm was introduced to the AI community by Pearl [ 3 1, 
321. It is best explained via a simple example: 

Age and weather influence whether a child gets a sore throat. There are five 

mutually exclusive and exhaustive types of a sore throat: viral pharyngitis, tonsillar 
cellulitis, mononucleosis, strep throat, and peritinsillar abscess. Several symptoms 
are associated with a sore throat, including fever, toxic appearance, abdominal 
pain, swollen glands, and voice quality. Most symptoms occur independently of 
each other in patients having a sore throat, except toxic appearance, which depends 
upon having fever or abdominal pain.* 

A Bayesian network representing this description is shown in Fig. 1. The network is 

constructed from cause-and-effect relationships by placing links from each cause to its 
direct consequences. For example, fever and pain are causes for toxic appearance, and 
disease is their common cause. 

’ This section is based on Geiger [S] 
* A modified example of Heckerman [ 141. 
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Each node represents a variable having a finite set of values. Continuous variables such 
as age and fever are made discrete. For example, the values of age can be partitioned 
into: infant, toddler, and school-age child, and the values of fever can be partitioned 

into: normal, moderately elevated, and markedly elevated. (Work on continuous variables 
without discretization can be found in [ 10,32,36] .) 

Each variable u is associated with a conditional distribution P ( u 1 n-(u) ), where n-(u) 
is the set of parents of u in the network. For example, P@ver 1 disease) is specified 
by fifteen numbers: one for each value combination of the variables disease and fever. 

When u has no parents, that is, when r(u) = 0, then u is associated with the marginal 
distribution P(u) . For example, P(age) is specified by three numbers depending upon 

the relative proportion of infants, toddlers, and school-age children among the intended 

patients. Such distributions are associated with each node in the network. 
From the chaining rule of probability, we know that 

P(Ul,... >u,T) =nP(UI 1 ~I3...v~i--I). (1) 

If P satisfies 

P(ZLj / 7T(Ui)) =P(Uj 1 UI,...,Ui-_I) 

for i = 1,. . . , n, then 

P(u,,... 3U,7) =nP(ui I r(W)). 

(2) 

(3) 

Each of the n equalities in Eq. (2) corresponds to an independence assertion stating 
that, given 7r( u;), u; is independent of (~1, . . . , Ui_l} \ T( ui) . (The symbol \ stands 

for set difference.) The structure of a Bayesian network represents these independence 
assertions, as well as all those assertions implied by them. Thus, according to Eq. (3), 
a Bayesian network and its associated distributions P(ui 1 I) determine the joint 
distribution over ut , . . . , u,,. 

According to Eq. (2), the network of Fig. 1 represents the assertion that age and 

weather conditions are independent-that is, P (age) = P (age I weather). This assertion 
appears reasonable. Nonetheless, if this assertion-or any other independence assertion 
encoded in the network-does not accurately reflect the beliefs of the constructor of the 
network, then additional nodes or links are drawn until a sufficiently accurate model is 

realized. For example, one may argue that the life span on the North pole is generally 
shorter than that in California where weather conditions are more benign, This depen- 
dency between age and weather conditions could be modeled by adding a new node 
called climate and making it the parent of both weather conditions and age. 

Another independence assertion implied by the network of Fig. 1 is that toxic ap- 
pearance is independent of disease, given the values for fever and abdominal pain. That 
is, 

P (toxic appearance / fever, pain, disease) 

= P( toxic appearance I fever, pain). 
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This assertion reflects the view that fever and pain are the only intervening mechanisms 
by which a disease related to a sore throat causes toxic appearance. If there are other 

intervening mechanisms beside pain and fever, then these mechanisms can be represented 
in the network by either adding new nodes or by adding a direct link between disease 
and toxic appearance that summarizes the effect of these mechanisms, while keeping 
them implicit. There are other assertions of independence implied by this graph. All of 
these assertions can be read directly from the graph (see Section 2.3). 

The network and the probability distribution that result from this judgemental process 

provide a model of a domain as conceived by an expert. Philosophical justifications 
for the use of probabilities to represent expert’s judgments are given in [ 7,24,34]. In 
addition, Bayesian networks can be constructed directly from data or from a combination 

of expert knowledge and data [ 3,5,6,15,25,33,37]. 

2.2. Notations and basic definitions 

Before we state the definition of Bayesian networks, we provide some notational 

conventions. Let (~1,. . . , un} be a finite set of variables each having a finite set of 
values, P be a probability distribution having the Cartesian product of these sets of 
values as its sample space, and ~1,. . . , u,, be arbitrary values for ~1,. . . , u,,, respectively. 
Throughout this article, we often say that P is a probability distribution over U, keeping 
the remaining details implicit. 

We use capital letters from the end of the alphabet (e.g., X, YZ) to denote sets 
of variables and the respective bold characters to denote their values. For example, if 

X = (141, ZQ}, then X = (~1, ~2) is a value of X. We use the notation P( X 1 Y) to 
denote the conditional probability P( X = X / Y = Y), and P( X 1 Y) = P(X) to denote 

P( X / Y) = P(X) for all values of X and Y such that P(Y) f 0. Also, we use P(X) 

to denote P(X I 0). 

Definition. Let P be a probability distribution over Cr. A directed acyclic graph D 
(i.e., a directed graph with no directed cycles) is a Buyesian network of P, if D is 
constructed from P by the following steps. Assign a construction order ~1,112, . . , CL,, 

to the variables of U and designate a node U; for each variable LL~. 3 For each variable 
II, in U, identify a set IT C (~1,. . . ,ui_l} such that 

(4) 

(for all values of ut , . . . , ui). Assign a direct link from every node in V( Ui) to node Ui. 
This network is minimal if for each Ui E U, no proper subset of r(Ui) satisfies Eq. (4). 

For example, if ut , . . . , us is a construction order, and if P satisfies, P( IQ 1 ~1) = 

P(4 1 [41,112), p(u4 1 u2,u3) = p(u4 1 uI>u2,u3), and p(uS / u4) = p(U5 1 u17u2, 

~3, ~14)~ then the network of Fig. 2 is a Bayesian network of P. 

’ We delibemtely denote with Ui the node that corresponds to variable ui. It will be immaterial or clear from 

the context whether we talk about a variable or its associated node. 
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Fig. 2. An abstract example of a Bayesian network. 

The number of parameters that a Bayesian network requires and the complexity of its 
topology depends on the construction order, which is not dictated by its definition. In 
practice, cause-and-effect and time-order relationships often suggest construction orders 
that yield simple networks. 

Definition. Let P be a probability distribution over U. Let X, Y, and Z be three disjoint 
subsets of U, and X, Y, and 2 be arbitrary respective values. Then X is conditionally 

independent of Y given 2, denoted by I (X, Y 1 2) , if 

P(X I Z,Y) = P(X I Z) or P(Z) =O. 

f (X, Y / Z) is called an independence assertion. 

Definition. A set X is conditionally independent of Y given Z, denoted by I (X, Y 1 Z), 
if I (X, Y ( Z) holds for every respective value of X, Y and Z. I( X, Y 1 Z) is called a 
symmetric independence assertion. 

Using the above notation, the Bayesian network depicted in Fig. 2 satisfies I( us, u2 I 
ui), I(u~,u~ I (u~,u~}), and I(u~,{u~,u~,u~} I 24). (For simplicity, we use ui to 
denote the singleton {u;}.) 

When I( X, Y I Z) holds for some but not all the values of the variables involved, 
then this independence assertion is called asymmetric. This term is adapted from the 
literature on decision analysis, where asymmetric independence corresponds to asym- 
metries in decision trees [ 191. Asymmetric independence assertions are not represented 
in the topology of Bayesian networks, whereas the representations described in this 
paper do explicitly encode such assertions. As we will see, this difference makes our 
new representations better suited for the representation and solving of diagnostic prob- 
lems. 
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2.3. Semantics of Bayesian networks 

The criteria of d-separation, defined below, characterizes all independence assertions 
implied by the topology of a Bayesian network. 

Definition. The underlying graph of a Bayesian network is an undirected graph obtained 
from the network by replacing every link with an undirected edge. 

Definition. A trail in a Bayesian network is a sequence of links that form a cycle-free 

path in the underlying graph. 

Definition (Pearl [32]). A node b is called a head-to-head node w.r.t. (with respect 
to) a trail t if there are two consecutive links a 4 b and b + c on t. 

For example, u2 + ~44 c u3 is a trail in Fig. 2 and UJ is a head-to-head node with 

respect to this trail. 

Definition (Pearl [ 321). A trail t is active w.r.t. a set of nodes 2 if ( 1) every head- 

to-head node w.r.t. t either is in Z or has a descendant in Z, and (2) every other node 
along t is outside Z. Otherwise, the trail is said to be blocked (or d-separated) by Z. 

In Fig. 2, for example, both trails between (~2) and {ug} are d-separated by Z = (~1); 
the trail r.42 + UI - CQ is d-separated by Z because node ~1, which is not a head-to- 
head node w.r.t. this trail, is in Z whereas the trail u2 -+ 2~4 t ug is d-separated by Z, 

because node u4 and its descendant ug are outside Z. The trail, u2 + u4 + 4, however, 

is not d-separated by Z’ = {UI , US}, because us is in Z’. 

Theorem 1. Let D be a Bayesian network of a probability distribution P over I/ and 

let X, x and Z be three disjoint subsets of U. Then: 
Soundness (Verma and Pearl [ 381): If all trails between a node in X and a node in 

Y are d-separated by Z, then X and Y are conditionally independent given Z in P. 
Completeness (Geiger and Pearl [ 111) : The criterion above lists all independence 

assertions holding in P that can be identifiedfrom the topology of D. 

This theorem is extremely useful. It implies, for example, that each variable is in- 

dependent of all its non-descendants, conditioned on its parents, because the parents 
of each node d-separates all trails between a node and its non-descendants.4 It also 
implies that each variable is independent, given its parents, children, and its children’s 
parents, of all other variables in the network [ 3 11. Such independence assertions are 

the cornerstone of efficient computations. A generalization of this theorem is given in 

[121. 

i This observation was first made by Howard and Matheson 1191, and then proven by Olmsted I29 I. 
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2.4. Buyesian networks and inference 

Several algorithms exist to compute posterior distributions given that the values of 
some variables are observed. These algorithms are collectively called inference algo- 

rithms and they all rely on independence relationships encoded in the network. For 
example, each of these inference algorithms can compute the posterior distribution for 
sore-throat diseases given that glands swollen and high fever are observed, based on the 
prior distribution, and the independence relationships encoded in Fig. 1. 

Pearl [ 301 and Kim and Pearl [ 231 developed inference algorithms for networks in 
which every two nodes are connected with at most one trail. Pearl [ 311 extended the 
algorithm to general networks. 

Another inference algorithm is that of Lauritzen and Spiegelhalter [ 261, which initially 
compiles a given network into a clique tree. Each node in a clique tree represents a 
cluster of variables that are collapsed into a single variable whose domain is the Cartesian 
product of its constituents. The algorithm minimizes as much as possible the size of the 

largest cluster. Computations of posterior probabilities are done using Kim and Pearl’s 
algorithm on the clique tree. Improvements to this algorithm are described in [ 21,221. 

Shachter [35] developed an inference algorithm based on two types of transforma- 
tions: node removal and arc reversal. Node removal is the elimination of a node that 
has no descendants from the network. This operation corresponds to summing over its 
possible values. Arc reversal refers to the reversal of a particular arc after the addition of 

other arcs. The parameters in the transformed network are computed via a simple closed- 
form formula based on Bayes rule. Both transformations preserve the joint distribution 

over the remaining variables and can therefore be applied repeatedly for inference [ 291. 
The time complexity of the above three algorithms is exponential, a fact that is not 

surprising since inference in Bayesian networks is NP-hard [4]. Nevertheless, these 
algorithms are efficient enough for many real-world applications [ 1,2,16]. 

3. Bayesian multinets 

3.1. Definition and representational advantages 

Although Bayesian networks considerably extend traditional approaches, they are still 
not expressive enough to encode every piece of information that may reduce compu- 
tations. The following example demonstrates the inadequacy of Bayesian networks for 
representing asymmetric independence: 

A guard of a secured building expects three types of persons to approach the 
building’s entrance: workers in the building, approved visitors, and spies. As a 
person approaches the building, the guard can note its gender and whether or not 
the person wears a badge. Spies are mostly men. Spies always wear badges in an 
attempt to fool the guard. Visitors don’t wear badges because they don’t have one. 

Female workers tend to wear badges more often than do male workers. The task 
of the guard is to identify the type of person approaching the building. 
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Fig. 3. A Bayesian network for the secured-building example. 

1 Spy/Visitor 1 1 Worker 

Fig. 4. A Bayesian multinet representation of the secured-building story. 

A Bayesian network that represents this story is shown in Fig. 3. Variable h in the 
figure represents the correct identification. It has three values worker, visitor, and spy. 
Variables g and b are binary variables representing, respectively, the person’s gender and 

whether or not the person wears a badge. The links from h to g and from h to b reflect 
the fact that both gender and badge worn are clues for correct identification. The link 
from g to b encodes the relationship between gender and badge worn. 

Unfortunately, the topology of this network hides the fact that gender and badge worn 
are conditionally independent, given that the person is a spy or a visitor (this assertion 

holds because, independent of gender, spies always wear badges, and visitors never do). 
The link between g and b is drawn only because gender and badge worn are related 

variables when the person is a worker. 
We can represent the independence assertions in this story more explicitly using the 

two Bayesian networks shown in Fig. 4. The first network represents the cases where the 
person approaching the entrance is either a spy or a visitor. In these two cases, badge 
worn depends only on the type of person approaching, and not on his or her gender. 
Consequently, nodes b and g are shown to be conditionally independent (node h blocks 
the trail between them). The links from h to b and from h to g in this network reflect 

the fact that badges and gender are relevant clues that help to discriminate spies from 
visitors. The second network represents the situation where the person is a worker, in 

which case gender and badge worn are related. 
Fig. 4 is a better representation of our story than is Fig. 3, because it shows the 

dependence of badge worn on gender only in the context in which such a relationship 
exists-namely, for workers. Moreover, the former representation requires 11 probabil- 
ities whereas the representation of Fig. 4 requires only 9 probabilities. This gain, due 
to the explicit representation of asymmetric independence, can be substantially larger 
for real-world problems, because the number of probabilities needed can grow exponen- 
tially in the number of variables, whereas the overhead of representing multiple networks 
grows linearly in the number of variables. 
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We call the representation scheme of Fig. 4 a Bayesian multinet. In the remainder of 
this paper, we often refer to h as the hypothesis variable; and we refer to the values of h 

as hypotheses. Furthermore, the variable h will be the focus of construction for Bayesian 

multinets and for similarity networks, and thus sometimes we call h the distinguished 
variable. We refer to other variables in a given domain as non-distinguished variables. 

Let Ai be a subset of the values of h and let the event [Ai] stand for “one of the 
hypotheses in Ai holds true”. 

Definition. Let P ( h, ~1, . . . , u,) be a probability distribution and Al, . . . , Ak be non- 
empty mutually disjoint sets whose union is equal to the set of all values of h (i.e., a 
partition of the domain of h). A directed acyclic graph Di is called a comprehensive local 

network of P associated with Ai if Di is a Bayesian network of P( h, ~1, . . . , u, 1 [IA;]). 

The set of k local networks is called a Bayesian multinet of P. When each Ai is a 
singleton, we say the Bayesian multinet is hypothesis-speci$c. 

In the secured-building example of Fig. 4, {{spy, visitor}, {worker}} is a partition 
of the values of the hypothesis node h, one local network is a Bayesian network of 
P( h, b, g 1 worker), and the other local network is a Bayesian network of P( h, b, g 1 
[spy, visitor]) where the conditioning event [spy, visitor] is a short-hand notation for 

saying that either h = spy or h = visitor. 

The fundamental concept associated with Bayesian multinets is that of conditioning; 
each local network represents a distinct situation where hypotheses are restricted to a 

specified subset. As a result of such conditioning, asymmetric independence assertions 
are encoded in the topology of the local networks. Consequently, savings in computations 
and memory requirements result. In our example, conditional independence between 

gender and badge worn is encoded as a result of conditioning on h. 
Conditioning may also destroy independence relationships rather then create them 

[ 321. Nonetheless, if the distinguished variable is a root node (i.e., a node with no 

incoming links), then, according to d-separation, conditioning on its values never de- 
creases and often increases the number of independence relationships. We address situ- 
ations where the hypothesis variable is not a root node and where more than one node 

represents hypotheses in Sections 3.3 and 5, respectively. 
The relationship between gender and badge worn is an example of hypothesis-specz$ic 

independence, wherein two variables are independent given some hypotheses ({spies, 

visitors}) but dependent given others (workers). In general, a hypothesis-specific inde- 
pendence assertion is represented in a Bayesian multinet whenever a link between two 
non-distinguished variables exists in some local networks but does not exist in other 
local networks. 

The following variation of the secured-building example demonstrates an additional 
type of asymmetric independence that can be represented by Bayesian multinets. 

The guard of the secured building now expects four types of persons to approach the 
building’s entrance: executives, regular workers, approved visitors, and spies. The 
guard can note gender, whether or not the person is wearing a badge, and whether 
or not the person arrives in a limousine (1). We assume that only executives arrive 
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Spy/Visitor Worker/Executive 

Fig. 5. A Bayesian multinet representation of the augmented secured-building story. 

in limousines and that male and female executives wear badges just as do regular 
workers (to serve as role models). 

This story is represented by the two local networks shown in Fig. 5. One network 
represents a situation where either a spy or a visitor approaches the building, and the 
other network represents a situation where either a worker or an executive approaches 

the building. The link from h to 1 in the latter network reflects the fact that arrival in 
a limousine is a relevant clue that helps to discriminate workers from executives. The 
absence of this link in the former network reflects the fact that arrival in a limousine 
does not help to discriminate spies from visitors. 

The relationship between arrival in limousines and the hypothesis variable h is an 
example of subset independence, wherein a non-distinguished variable (1) is independent 

of 11 given h draws its values from a subset of hypotheses {spy, visitor}. In general, 
a subset independence assertion is represented in a Bayesian multinet whenever a link 

between the hypothesis node and a non-distinguished variable exists in some local 
networks but not in all. The relationship between the set of variables {badge worn, 
gender} and h, when h is restricted to {worker, executive} is another example of subset 

independence. ’ 
The next theorem demonstrates that a Bayesian multinet always encodes the condi- 

tional distribution P(u), . . . , u, 1 h). Its proof provides us with an inference algorithm. 

Theorem 2. Let A4 be a Bayesian multinet of P( h, ~1,. . . , u,) based on a partition 

Al, . . , Al, of the values of h. Then, the distribution P( UI , . . . , u,, 1 h) can be computed 

from the parameters encoded in M. 

Proof. The distribution P( ui , . . . , u,,, h / [Ail) is encoded in the local network associ- 

ated with A, because according to the definition of a local network, 

where u is either h or some ui and T(U) are U’S parents. 
Let h be an hypothesis in Ai. The distribution P(ul, . . , ,u, j h, [Ail) is computed 

fromP(ui,...,u,, h I [Ai]). Moreover, the distribution P( ~1,. . . , u, / h, [Ai]) is equal 

to P(U],... , u,, I h) because the assertion “h is assigned the value h” logically implies 

5 Heckerman 1 14 1 coined the terms subset independence and hypothesis-specific independence. A hypothesis- 

specific Bayesian multinet is similar to hypothesis-specific similarity network defined in [ 141 except that it 

contains all the variables in U. 
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the assertion “h draws its value from Ai” whenever Ai includes h. Thus P( ut , . . . , u, 1 h) 
can be computed from the parameters of M. 0 

The parameters encoded in a Bayesian multinet can be used to compute the relative 
posterior probability between every pair of hypotheses within each Ai. In order to 
compute the absolute value of the posterior probability of each hypothesis, however, 
one must have information about the prior distribution P(h) in addition to the Bayesian 
multinet because P(h) cannot be computed from the parameters encoded in the local 

networks. 

3.2. Bayesian multinets and inference 

The proof of Theorem 2 and the comment that follows suggest an inference algorithm 
for computing the posterior distribution of h from a Bayesian multinet of P and from the 
prior distribution of h. The inference algorithm uses a procedure called INFER which 
has two parameters, one specifying a query of the form “compute P (X 1 Y)” and the 

second is a Bayesian network where X and Y are sets of variables that appear in the 
network and Y is a value of Y. As we have discussed in Section 2.4, there are many 

ways to realize INFER and we do not need to specify INFER’s operational details in 
order to demonstrate how this procedure is extended to operate on Bayesian multinets. 
The inference algorithm is described below. 

Algorithm (Bayesian multinet inference). 

Input: 

l A Bayesian multinet of P( h, ~1,. . . , u,,) based on a partition Al,. . , Ak of h’s 

values. The local network associated with Ai is denoted by Di. 
l A priori probability distribution P(h) . 

0 Instances u{, . . . , uir for a set of variables {u/1, . . . , &} C (~1, . , u,}. 
Output: The posterior probability distribution P( h 1 ~‘1, . . . , u;,). 

1 For each partition element Aj 

2 For each hypothesis h; E Al 

3 ai,,i=INFER( P(u{,...,u;, 1 hit[[A,i]), Dj) 

4 For each hi 
5 Compute P(hi 1 u~,...,u;,,) =P(hi) .ai,j/(CiP(hi) .c~i,j) 

Line 3 is the normal computation performed by an inference algorithm for Bayesian 
networks. Lines 4 and 5 encode Bayes rule together with the fact that the distribution 
P(u,, . . . , u,, 1 h;, [A,j]) is equal to P(ul,, . , u, I hi) which is computed on line 3 
and assigned to cri,,i. This equality follows from the fact that hi implies [iA,il whenever 
h; t Ai. 

The advantage of computing P (~1, . . , u,, I h) via this algorithm versus using INFER 

on a Bayesian network of P arises from the fact that independence assertions are repre- 

sented in some local networks, but not in the Bayesian network. For example, suppose 
the guard of our secured-building problem sees a person wearing a badge (b) approach 
the building but does not notice the person’s gender. Using the Bayesian network of 
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Fig. 3, INFER computes the posterior probability of each possible identification (worker, 
visitor, spy) as follows: 

P(h / b) = k.P(h) .cP(g / h) .l’(b) g, h) 

B 
(6) 

where k is the normalizing constant that makes P(h j b) sum to unity. Since the 
Bayesian network representing this problem does not encode any statement of conditional 

independence the above computation is done by any realization of INFER. 
Alternatively, our inference algorithm computes the posterior probability of each hy- 

pothesis more efficiently, using the Bayesian multinet of Fig. 4, as follows: 

P(SPJ ) g, b) = k. P(spy) . P(b 1 spy’), (7) 

P ( visitor / g, b) = k . P (visitor) . P (b 1 visitor), (8) 

P(worker/g, b)=k.P(worker).xP(gIworker).P(blg,worker). (9) 
g 

Eqs. (7) and (8) take advantage of hypothesis-specific independence. In particular, 
the two equations incorporate the fact that g and b are conditionally independent given 
h = spy and h = visitor, respectively. Thus, we do not have to sum over the variable 

gender as we do when using a Bayesian network (Eq. (6) ) . These savings are achieved 
by the inference algorithm for Bayesian multinets because the computations of line 3 
are done on the local network that encodes this independence information. If we were 
to use the same inference algorithm used by line 3 on the Bayesian network of Fig. 3, 
where this independence assertion is not displayed, then the more costly computation 
done by Eq. (6) would have been performed. 

3.3. Nonroot h_ypothesis variables 

The multinet approach described thus far is especially beneficial when the hypoth- 

esis variable can be modeled as a root node because, then, no new links are ever 
introduced by conditioning on the different hypotheses. Nonetheless, there are situa- 
tions where modeling the hypothesis node as a root node is awkward. For example, in 

the secured-building story, suppose there are two independent reports indicating possi- 
ble spying-say, for military and economical reasons. Such a priori factors for correct 

identification are best modeled as parent nodes of h, called-say-economics and mil- 

itary. The resulting subnetwork among these variables is economics + h + military, 

which represents the reasonable assertion that economics and military are marginally 
independent. 

When h assumes the value spy, however, an induced dependency is introduced be- 
tween its parents economics and military; For example, a military explanation for a 

confirmed spy makes less likely an economical explanation, because the former explains 
the presence of the spy. Consequently, a link must be drawn between the economics 
and r/~ilifa~ nodes in the local network for spies versus visitors. This link would not 
appear in the full Bayesian network because economics and military can reasonably be 
assumed independent. They only become dependent when conditioning on h = spy. The 
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Fig. 6. A Bayesian network where all trails between a priori factors r; and evidential clues fi pass through h. 

probability distributions associated with such induced links are difficult to assess (e.g., 

P( economics ) h, military). Thus, in this example, constructing a local network is harder 
than constructing the full network. 

One approach to handle this problem is as follows. First, construct a Bayesian network 
that represents only a priori factors that influence the hypotheses, ignoring any evidential 
variables (such as gender, badge worn, and arrival in limousine). In our example, this 
network would be economics -+ h + military. Then, use this network to revise the a 
priori probabilities of the different hypotheses. Finally, construct local networks ignoring 
a priori factors (as is done in Fig. 4) and use the resulting multinet with the revised 
priors of h to compute the posterior probability of h as determined by the evidential 
clues. This decomposition technique works best if a priori factors are independent of 
all evidential clues conditioned on the different hypotheses. That is, in situations that 

can be modeled with Bayesian networks of the form shown in Fig. 6, where all trails 

between a priori factors ri and evidential clues fi pass through h. 
When a network of this form cannot serve as a justifiable model, another approach can 

be used instead. First, compose a Bayesian multinet ignoring a priori factors, construct 

a Bayesian network from the local networks by taking the union of all their links (e.g., 
the union of all links in Fig. 4 yields the Bayesian network of Fig. 1) . Then, add a priori 
factors to the resulting network. This approach is described in [ 141. The disadvantage 
of this method is that in the process of generating a Bayesian network from a multinet, 

one encodes asymmetric independence in the parameters rather than in the topology 
of the Bayesian network. Consequently, these asymmetric assertions cannot speed up 
the computations of known inference algorithms. Nevertheless, this approach is still the 
best alternative for decomposing the construction of large Bayesian networks having 

topologies more complex than that of Fig. 6. 

4. Similarity networks 

4.1. De3nition and representational advantages 

In Bayesian multinets, we required that every variable be included in each local 
network. This requirement stands in contrast to the observation that in many domains 
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each measurement often helps to discriminate only a specialized class of hypotheses. 
Symptoms are often related to narrow classes of diseases, and systems’ faults often 
isolate a specific class of potential malfunctions. Assessing the dependence between two 
variables under assumptions unrelated to their semantics can present an insurmountable 
burden on the model builder. This difficulty was realized during the construction of 

an expert system for surgical pathology diagnosis [ 141. When the expert pathologist 
was asked by the model builder: Given a particular disease, does observing symptom x 
change your belief that you will observe symptom y? The pathologist would sometimes 

rep1 y : 

I’ve never thought about these two symptoms at the same time before. Symptom x 
is relevant to only one set of diseases, while symptom y is only relevant to another 
set of diseases. These sets of diseases do not overlap, and I never confuse the first 

set of diseases with the second. 

An erroneous solution to this difficulty is to include in each local network of a 

Bayesian multinet only those variables that help to discriminate among the hypotheses 
covered by that local network. In doing so, however, valuable information for correct 
identification may be lost. 

For example in the secured-building problem gender (g) and badge worn (6) do not 
help to discriminate workers from executives. If these variables would not have been 

depicted in the local network for {worker,executive} in the Bayesian multinet of Fig. 5 
then this multinet would have failed to represent the genuine relationship between badge 
worn and gender. 

As we will see, a correct solution to this difficulty is indeed to include in each local 
network only those variables that help to discriminate among the hypotheses covered by 

that local network, but also to construct additional local networks to compensate for lost 
information. The structure that results is called a similarity network [ 141. For example, 
the secured-building problem can be represented by a similarity network shown in Fig. 7. 
Whereas the Bayesian multinet of Fig. 5 contains two local networks, the similarity 
network contains three local networks: one local network helps to discriminate spies 

from visitors, another local network helps to discriminate visitors from workers, and a 
third local network helps to discriminate workers from executives. In each local network, 
we include only those variables that help to discriminate among the hypotheses covered 
by that local network. For example, in Fig. 7, the dependence between badge worn 
and gender is not included in the local network for workers versus executives. This 

dependence, however, is included in the local networks for visitors versus workers, 
because badge worn helps to discriminate between these two hypotheses. 

The main advantage of similarity networks, from the perspective of knowledge acqui- 
sition, is that a domain expert who provides the parameters of the network is not required 

to quantify the dependence between variables that are not related to the hypotheses under 
consideration. In order not to loose information needed for correct diagnosis we will see 

that the local networks must be based on a connected cover of hypotheses. 

Definition. A cover of a set of hypotheses H is a collection {Al, . . . , Ak} of nonempty 
subsets of H whose union is H. Each cover is a hypergraph, called a similarity hyper- 
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Fig. 7. A similarity network representation of the secured-building story. 

graph, where the Ai are hyperedges and the hypotheses are nodes. A cover is connected 

if the similarity hypergraph is connected. 

In Fig. 7, {spy, visitor}, {visitor, worker}, {worker, executive} is a cover of the 
hypotheses set. This cover is connected because it consists of the three links spy- 

visitor-worker-executive which form a connected hypergraph (as well as a connected 
graph). The set {spy, visitor}, {worker, executive} is also a cover but it is not connected. 

The set {worker, executive, visitor}, {visitor, spy} is an example of a connected cover 

that is a hypergraph but not a graph. 

Definition. Let P( h, ~1,. . . , u,,) be a probability distribution and Al,. . . , Ak be a con- 

nected cover of the values of h. A directed acyclic graph Di is called a local network 

of P associated with A; if Di is a Bayesian network of P( h, ~1,. . . , u,, 1 [[Ai]) where 
{cl, . , u,,,} is the set of all variables in (~1,. . . , u,} that “help to discriminate” the 
hypotheses in A;. The set of k local networks is called a similarity network of P. 

We define “help to discriminate” formally in the next section. 

The definition of similarity networks does not specify how to select a connected 
cover of hypotheses. Although any selection of a connected cover yields a valid simi- 

larity network, some selections yield similarity networks that display more asymmetric 
independence assertions than do other selections. An analogous situation exists when 
constructing a Bayesian network where some construction orders yield Bayesian net- 
works that display more symmetric independence assertions than do other Bayesian 
networks. The practical solution for constructing a Bayesian network is to choose a 
construction order according to cause-effect relationships. 6 This selection tends to max- 
imize the information about symmetric independence encoded in the resulting network. 

b Bayesian networks are often called causal nerworks. 
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The practical solution for constructing the similarity hypergraph is to choose a connected 
cover by grouping together hypotheses that are “similar” to each other by some acces- 
sible criteria (e.g., spies and visitors are outsiders). This choice tends to maximize the 
number of asymmetric independence Pssertions encoded in a similarity network. Hence 

the name for this representation. 
Similarity networks have another important advantage not mentioned so far: This 

representation helps to prevent the model builder from omitting relevant information. 
For example, suppose workers and executives often arrive at work with a smile, whereas 
spies and visitors often arrive at work without a smile. This information is likely to 
be forgotten when constructing the local networks for spies versus visitors and for 
visitors versus executives because it does not help to discriminate between these pairs of 

hypotheses. When constructing the similarity network of Fig. 7, however, the builder of 
the network is likely to recall the information about smile because he must compose a 
local network for discriminating visitors from workers-a task for which this information 

is important. In general, whenever the cover is connected, every variable that is useful 
for discriminating some pair of hypotheses will appear in at least one local network. 

This property of similarity network was called exhaustiveness by Heckerman [ 141. 

4.2. Relevance relations 

The definition of similarity networks is not complete without attributing a precise 

meaning to the utterance “helps to discriminate” used in the definition of a local network. 
Below we give several possibilities. 

Definition. Let P( ~1, . . , u,, / e) be a probability distribution where e is a fixed event. 
Variables 11; and u,, are unrelated given e if Ui and Uj are disconnected in every minimal 

Bayesian network of P (~1, . . . , u,, 1 e). Otherwise, Ui and Uj are related given e, denoted 

related( u;, u,i / e). 

This definition states that two variables ui an uj are unrelated given e if there exists no 
trail connecting them, i.e., there exists no sequence of variables ui, . . . , u,i such that every 
two consecutive variables in this sequence are connected with a link. The requirement 
that Iti and u,i be disconnected in every minimal network is not as strong as it may seem 
because if ui and u,j are disconnected in one minimal Bayesian network of P then Iii 
and lli are disconnected in every minimal Bayesian network of P [ 91. Furthermore, one 
can phrase the definition of relatedness as follows. 

Theorem 3 (Geiger and Heckerman [ 91) . Let P (~1, . , u, 1 e) be a probability dis- 

tribution over U = (~1,. . . , u,} and e be a jixed event. Then, ui and u,i are unrelated 

given e iff there exist a partition Ul, U2 of U such that ui E U, , uj E U2, and P( lJ1, U2 1 

e) = P(U, 1 e)P(U2 1 e).’ 

7 In 19 1, P ( U j e) is replaced with P (LI). Since e is it fixed event, this shift of notation does not alter this 

theorem’s proof. 
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An immediate consequence of this theorem is that the relation related is transitive, 
namely, for every three variables ui, u,i and Uk, 

(related( ui, u,i 1 e) and reZated( u,i, uk 1 e)) + related( ui, uk 1 e). (10) 

The second definition is the more appealing one from a knowledge engineering point 
of view. It states that two variables ui and Uj are unrelated if, in any context, knowing 
the value of one variable does not change the knowledge about the values of the other. 

Definition. Let P (~1, . . . , u, 1 e) be a probability distribution where e is a fixed event. 
Variables u; and u,i are painvise irrelevant given e if 

P(Uj 1 U,j,Ul E VI,... ,h E K,,e) =P(ui 1 UI E V,,.. .,%, E Vn,,e> 

Or 

P(Ol E v,,... , u,, E V,, I e) = 0 

for every subset of values V, , . . . , V,, for ~1,. . . , ulll, respectively, where (~1,. . . , u,,} is 

an arbitrary subset of (~1,. . . ,u,} \ {ui,u,i}. 

This definition states that Ui and u,i are pairwise irrelevant if they are independent 
given any possible context. That is, if Ui and U,i are independent given that the value 

of each Oi (i= l,..., m) is taken from a subset q of Ui’s domain and that ui and uj 

remain independent under each selection of variables ui , . . . , u,, and for each restriction 
of their values. 

When ~1,. . . , u,, are all binary variables, then the sets K are singletons, namely, a 
single specific assignment for Ui. In [9], we have shown that pairwise irrelevance and 
unrelatedness are equivalent when all variables are binary and when the distribution P 

is strictly positive. We conjecture that the equivalence between pairwise irrelevance and 
relatedness holds even when these restrictions are lifted. 

In the remainder of this paper we use the concept of relatedness for defining which 
variables are excluded from a local network. We do so by distinguishing one variable 
as the hypothesis variable (call it h) and defining the event e to be [[Ail, namely, a 
disjunction over a subset of the values of h. A variable x is then excluded from a local 

network for Ai iff x and h are unrelated given [Ai]. 

4.3. Inference using similarity networks 

Similarity networks are designed for the task of diagnosis or discrimination. In partic- 
ular, they are designed to compute the posterior probability of each possible hypothesis 
given a set of observations. In this section, we show that under reasonable assumptions, 
the computation of the posterior probability of each hypothesis can be done in each 
local network and then be combined coherently according to the axioms of probability 
theory. We analyze the complexity of our algorithm demonstrating its superiority over 
inference algorithms that operate on Bayesian networks. 

We assume that any instantiation of the variables in a similarity network of P has a 
nonzero probability to occur. Such a probability distribution is said to be strictly positive. 
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This assumption is reasonable for some domains of medical diagnosis, where given an 
arbitrary collection of clinical findings, the existence of each disease retains a nonzero 
probability. Subject to this assumption, we develop an inference algorithm that operates 
directly on similarity networks. We will remove this assumption later at the cost of 
higher complexity. 

The inference problem at hand can be stated as follows: Given a similarity network of 
P(h,ll,,. . . , ~4,~) that is based on a partition A = {Al,. . , Ak} of the values of h, and 
given a set of assignments VI,. . , u,,, for a set ut, . , u,, of variables that is a subset 
of (111,. . ,u,,} compute P(h,j 1 vi,. . . , u,,,)--the posterior probability of hi-for every 

4. 
In order to compute the posterior probability of each hj we use the procedure INFER. 

As in Section 3.2, this procedure has two parameters, one specifying a query of the 
form “compute P(X 1 Y)” and the second is a Bayesian network where X and Y are 

sets of variables that appear in the network and Y is a value of Y. As before we do not 
need to specify INFER’s operational details in order to demonstrate how this procedure 
is extended to operate on similarity networks. The new inference algorithm is described 

below. 
First, for each hi we identify a set of hypotheses A, E d to which hi belongs and com- 

pute the posterior probability of hypothesis hi under the additional assumption that one 
of the hypotheses in Al holds true. In other words, we compute P( h; 1 u] , . . . , ull,, [A,i]). 

Second, we compute the posterior probabilities P( hj 1 u] , . . . , u,,) from the probabilities 

P(h, / UI,...,~,,,, [Ail), by solving a set of linear equations: 

P(h, / UI,. . . ~~m)=f’(h.~ lu~,...,vnr>[IAi]). C f’(hj ~uI~.~.~u~) 

h, E.4 

that relate these quantities. We will see later that these equations have a unique solu- 
tion. 

It remains to show how to compute the query P( hi / ~1,. . . , u,,, [Aj]). It seems that 
one can merely call the procedure INFER to compute this query using the local network 
D,i which corresponds to Aj. The query P( hi I ~1,. . . ,u,,, [Aj]), however, may include 
variables that do not appear in D,i in which case INFER is not applicable. 

Fortunately, the following equality will be shown to hold: 

P(hi I u],... ,ul,[IAj]) =P(hi I w,...,u,,,,[Aj]> (11) 

where ul,... , u1 are the variables in {ut , . . . , u,,} that appear in Dj and ~1,. . , ul are 
their values. Thus to compute P( hi 1 u] , . . . , u,,, [Aj] ) we use the procedure INFER to 
compute the query P (hi I ~1, . . . , q, [Aj] ) using the network D,i. Eq. ( 11) tells us that 
the two computations yield identical answers. 

Eq. ( 1 1) states that ul+t, . . . , u,! are conditionally independent of h,i given every 
value of the variables ~1,. . . , u[ that appear in Dj where ul+t, . . , u, are the variables 

in { ~1,. . , L;,,,} that do not appear in Dj. If Eq. ( 11) does not hold, some of the variables 
in { L:,+I , . . , u,,} would appear in the local network D,i, contrary to our assumption that 
Di contains only 01,. . . , UI. 

This algorithm is summarized below. 
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Algorithm (Inference in similarity networks). 
Input: A similarity network of P (~1, . . . , u,, , h) based on a connected cover Al, . . . , Ak 

of h’s values. 
Output: P( h 1 ul, . . . , u,,) where VI, . . . , u,,, are values of variables UI, . . . , u,, and 

{PI,. ,L?,,,} is a subset of (~1,. . . ,u,}. 
Notation: D,i denotes the local network that corresponds to A, and t$ are the variables 

that appear in D,i. 

I For each Ai 

2 Let {ui,. . . , ul} be the variables in Vj fl {UI, . . , u,,} 
3 For each hi E Aj 

4 ai,,i :=INFER(P(hi 1 u],...u~,[AJ]),DJ) 

5 If ai,,i = 0, then Return “P is not strictly positive” 
6 Solve the following set of linear equations: 

7 For all iandj, P(hi 1 VI ,..., u,,,) =ai,,i.Ch,EAjP(hi IUI, . . . . u,,) 

8 CiP(hi I ‘I,..‘,‘,,) =’ 

9 Return P(h 1 UI,...,~,,) 

We have argued already that the solution to the equations listed in lines 7 and 8 
provide the desired posterior probability. It remains to show that there exists a unique 

solution. Let us examine a local network Dj that corresponds to Aj. Assume Aj consists 
of hi,. , h,. Since ui, . . . ,u,, remain fixed throughout the computations we denote 

P(h, / Ul,... , u,,, ) by Q (hi). Consider the following equations: 

Q(~I) =~IJ [Q(~I) +Q(b> +...+Q(hr)l 9 (12) 

Q(h) =~,,i [Q(~I) +Q(h) +...+Q(b>l t (13) 

Q ( hr 1 = w,.i [Q(h) +Q(hz) +...+Q(b>l. (14) 

These are the subset of the equations defined in line 7 which correspond to the local 
network D,i. By dividing every pair of consecutive equations, we obtain the following 
ratios: 

Q(h) = %Q(hr-,L 
r 9. 

Q(hr-1) = zQ(hr-dr 
r 3. (15) 

. , Q(h) = %Q(h,) 

Hence, the solution of these equations provides the ratios of the posterior probabilities 
between every pair of hypotheses in Aj. Since we repeat this process for every Al and 
since the cover defined by A 1,. . . Ak is connected, the ratio of every pair of hypotheses 

is established. To obtain the absolute values of each Q (hi), it remains to normalize their 
sum to one, using the equation on line 8 of the algorithm. 

Consequently we have proven the following theorem. 
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Theorem 4. Let P(h,ul,. . . , u,) be a strictly positive probability distribution and A = 
{Al,. . , Ak} be a partition of the values of h. Let S be a similarity network based on 

A. Let cl,. . . , o,,, be a subset of variables whose value is given. There exists a single 

solution for the set of equations defmed by lines 7 and 8 of the above algorithm and 
this solution determines uniquely the conditional probability P (h 1 ~1,. . . , u,,,). 

An important observation to make is that the equations on lines 7 and 8 are derived 
from a given probability distribution P( h, u] , . . . , u,) . Consequently, although some 
equations might be redundant, these equations are always consistent. When the set of 
local networks is constructed from expert judgments, as done in practice, consistency is 
not guaranteed. Heckerman [ 141 describes an algorithm that helps a user to construct a 

consistent set of local networks by prompting to his attention all probabilities that have 
already been assigned previously in another local network and verifying with him that 

these probabilities are acceptable. 
It remains to analyze the complexity of this inference algorithm. For simplicity, we 

assume that all variables are binary in which case the procedure INFER has a worst- 
case complexity of O(2”). In the worst case, the proposed inference algorithm may 
not perform more efficiently, because all n variables may appear in each local network. 
In practice, however, each local network contains a small percentage, say c, of the IZ 
variables because all other variables are irrelevant given the context of a specific local 
network. a If O(n) local networks are given, the worst-case complexity of applying 
INFER to these local networks is 0( n . 2”‘)) which is smaller than 0( 2”) obtained by 
applying INFER on a single Bayesian network generated from these local networks. The 
complexity of solving the equations on lines 7 and 8 is ignored because it is linear in 

n. Thus from a worst-case of 2”’ calculations, for example, we reduce the number of 

calculations to 100 ‘2”. 

4.4. Inferential and diagnostic completeness 

An important property of Bayesian networks is that their parameters encode the entire 

joint distribution through the product rule (Eq. (3) ). This property guarantees that any 
inference task can in principle be computed from the parameters encoded in a Bayesian 
network. Motivated by this observation we establish the following definition. 

Definition. A similarity network S for P (~1, . . . , u,, h) is inferentially complete if the 
distribution P (~1,. . . , u,, h) can be recovered from the parameters of S. 

Not all similarity networks are inferentially complete. For example, if P( ~11,. . , u,, h) 

factors into the product P( us )P( u:! . . . , u,,, h) then the variable UI will not be included 
in any local network. Therefore, it will be impossible to recover P(ul ) from the pa- 
rameters encoded in the similarity networks of P. The information about P(ul) that is 
lost in the process of producing a similarity network of P, however, is never needed 
in order to compute the posterior probability of any hypothesis. Evidently, inferential 

x An approximate number for c in the lymph-node pathology domain is 0.2. 
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completeness is too strong a requirement for the purpose of computing the posterior 
probability of each hypothesis. 

Definition. A similarity network S for P (h, ~1,. . . , u,) is diagnostically complete if 
the conditional distribution P(h 1 ~1,. . . , u,,~) can be recovered from the parameters of 
S for every subset (01,. . , u,,} of (~1,. . ,u,}. 

In the previous section, we showed that every similarity network of a strictly posi- 
tive probability distribution P is diagnostically complete (Theorem 4). The inference 
algorithm we presented shows how to compute P(h 1 ~1,. . . ,u,,) for every value of 

UI,. . 3 u,,,. If P is not strictly positive, then one can construct examples where the 

equations defined by lines 7 and 8 of our inference algorithm do not determine the 
probability P( h 1 VI,. . . , Y,,). Nevertheless, we will prove that, under minor restric- 
tions, every similarity network is diagnostically complete. 

Before proving diagnostic completeness we resort to an example where our infer- 
ence algorithm fails, and examine how the posterior probability can be computed in 

an alternative way. This computation highlights the general approach. Suppose S is a 
similarity network for P( h, y) where h has three values {ht , h2, h3) having equal a 

priori probability and suppose that y has two values +y, -y. Also assume that S is 
based on the cover {{hl,h2},{h2,h3}} and that P(+y 1 h2) =O. 

When we apply our algorithm to compute P( hi / +y), the algorithm generates 

three equations P( hl 1 +y, [h, , hz]) = 1, P(h2 ) +y, [hz, h3]) = 0, and P(hs I 
+y, [[hz, hjl]) = 1. From these three equations, we cannot compute the relative magnitude 
of the posterior probability of hl versus h3. All three equations merely show that P( h:! 1 
+y) is zero. 

Nonetheless, P( hi I +y) can be computed from the parameters that quantify S. These 

parameters include the following: P(hl I hl V hz), P(h;! I h2 V h3), P(hs I h:! V h3), 
and P(+y I hl,hl V h2), P(+y 1 h2,hl V h2) and P(+y I h3,hzV h3). From the 
first three parameters, P (hi), i = 1, . . . , 3, can be recovered provided none of the prior 

probabilities is zero. The restriction that all prior probabilities are nonzero is quite 
reasonable. If the prior probability of some hypothesis were zero, there would be little 

reason to include that hypothesis in the model. 

The other three parameters are equal to P (+y 1 hl ) , P (Sy I hz) , and P (+y j h3), 
respectively, because hi entails hi V hj. Thus P(hi I +y) can be computed by Bayes 

rule: 

P(h; I +Y) = 
P(+Y I h;)P(hi> 

C=, P(+Y I hj1PCh.j) 
This example suggests a general methodology for computing the posterior probability 

of each hypothesis. The general method is based on the proof of the following two 

theorems. 

Theorem 5 (restricted inferential completeness). Let S be a similarity network of 

P(h,u,,... , u,,) based on the connected cover Al,. . . , Ak of the values of h. Let 

{u,,..., u(} be a subset of variables in (~1,. , u,~} that satisfy related(vi, h). Then, 
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the distribution P( h, ~1, . . . , ~1) can be computed from the parameters encoded in S 
provided P (hi) # 0 for every value hi of h. 

Proof. To show that the distribution P( h, ~1,. . . , ul) can be computed from the pa- 

rameters of S, we will show how to compute P(h) and then we will show how to 
compute P (~11 , . . , us 1 h) . The product of these two probability distributions is equal 

to P(h,u ,,..., u/). 
For each hypothesis hi, let ai,,i equal ZNFER( P( hi 1 [IA,jl ) , Dj), where A,; contains 

hi and DJ is the local network corresponding to Aj. The prior probability of each h; is 

computed by solving the following set of linear equations: 

P(h;) =LY;,.~. C P(h;), CP(hi) = 1 

h,EA, I 

In the previous section, we solved these equations and showed that the solution 

(Eq. ( 15) ) is unique provided P(hi) # 0 for all hi. 
Due to the chaining rule, P( 01, . . . , us ) hi) can be factored as follows: 

P(u] ,..., c’/ / hi) =P(uI 1 hi).P(Uz /u,,hi)‘.‘P(~/ Iul,...,ul_l,hi). ( 16) 

Thus, it suffices to show that for each variable Uj, P( u,i I u], . , u,,-1 , hi) can be 
computed from the parameters encoded in S. Furthermore we can assume that the 
conditioning event is possible, namely, P( UI , . . , , ~1-1, hi) > 0, lest the entire product 

is zero and the equality holds. 
Let D; denote a local network in S, Ai be the hypotheses associated with Di, and 

hi be an hypothesis in Ai. Each variable u,i is depicted in some local network because 

it satisfies related(uj, h). Let A,, Ai+], . . . , A,, be a path in the similarity hypergraph 
where A,,, is the only hyperedge on this path associated with a local network that depicts 
c,~ as a node. Such a path exists because the similarity hypergraph is connected and L1.j 

is depicted in one of the local networks. If u,i is depicted in Ai (i.e., m = i) then 

P(r), 1 C], . ,U,j_], hi) can be computed from the local network that corresponds to A;. 

Suppose that m > i. Let Dk be the local network associated with Ak for k = i+l , . . . , m 

and let h;+l , hi+2,. . . , h,, be a sequence of hypotheses such that hk E Ak_1 fl Ak. Due 
to the definition of a similarity network, since Uj is not depicted in Dk where k < m, U,i 

is unrelated to h given [Ak]. Thus, 

P(0; / U], . ,V.j_], hk-] 9 [AkJJ) = P(uj I u],...,uj-],hk,uAkn). 

Since h implies [IAl whenever h E A it follows that 

P(Uj I VI,... tVj-t,hk-1) =f’(Vj I V~,...,V,j-l,hk). 

This equation holds for every k between i + 1 and m, thus we obtain, 

P(Vj / UI,. . . v,i-l>h;) =P(u,~ I VI,...V,~-I,~,,~. 

Furthermore, 

P(ui I u,,. . .ui_],h,,l) = P(v,; I vi,. . .v;, h,,) (17) 
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where vi,. . . , ui are the subset of variables of ~1,. . . , u.i-1 which are depicted in D ,,,. 
Eq. (17) holds lest reluted(o, uj 1 [[An!]) would hold, where u is some variable in 

(0,). . . , u,i_l} not appearing in D,,. However, together with r&ted( uj, h 1 [AR,] ) which 
holds because u,i is depicted in D,,, these two assertions would imply by transitivity 
that vefated( u, h / [[A,,,] ) holds too, contradicting the fact that u is assumed not to be 

included in D,,,. Finally, 

P(qi I &..~(,h,,,) =P(u.~ / u;,...u;,h,,,[An~~L (18) 

because h,,, logically implies the disjunction over all hypotheses in A,,. 

The latter probability can be computed using INFER on the local network D,,,. Thus, 
due to the equalities above, P( u,i 1 ~1, . . . , U,j_1, hi) can be computed as needed. 0 

The above theorem shows that similarity networks are inferentially complete subject 
to the restriction that only features that help to discriminate between some hypotheses 
are included in the model and that all hypotheses which are included in the model have 

a probability greater than zero. Consequently, diagnostic completeness is guaranteed too. 

Theorem 6 (diagnostic completeness). Let S be a similarity network of P( h, ul , . . . , 
u,,). Then the conditional distribution P( h I ~1, . . . , u,,,) can be computed from the 

parameters of S for every subset (~1, . . . , u,,} of (~1, . . . , u,} provided P( hi) # 0 for 

every value hi of h. 

Proof. TocomputeP(hIui ,..., u,,,)observethatP(hIul,..., u,)=P(hIui ,..., ui) 

where u{ , . , ui is the subset of variables in ui, . . . , u,, that are related to h. Theorem 5 

states that the joint distribution P( h,ui,. . . , ui) can be computed from the parameters 

of S. The conditional probability P( h I ui, . . . , u[) can be computed from this joint 

distribution. 0 

The above two theorems provide us with a naive computation of the posterior prob- 
ability of each hypothesis. This computation does not take into account the fact that 

P (h, u;, . . , ui> might be too large to be explicitly computed or stored as a table. More- 
over, the computation suggested by these proofs ignores the crucial observation that, in 

practice, all local networks are often constructed according to a common order, say 
11, c;, . . ) u;, which usually reflects cause-effect relations or time constrains. 

When such a common order exists some computations become much easier. In par- 
ticular, Eq. ( 18) can be further developed, that is, 

P(ci I Ui,. . .U(> hn, [Am]) = f'(Uj I nDn,(U,j), [I&]) (19) 

where ui, . . . , u( are the variables depicted in the local network D,, and ‘n-D,, (u,i) are the 

parents of u,~ in D,,,. Consequently, P( u,~ I ~‘1, . . . ui, h ,,,, [A,,,]) need not be computed 
using INFER as done in the proof. It is stored explicitly at node ui in the local network 

&. 
Eq. ( 19) defines a Bayesian network Mi of P( ~1,. . . , un, 1 hi) because, for each 

u,;, Z-M, is set to be u,~ parents’ set in D,, excluding h, and the parameters associated 
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with u,, in M; are merely those associated with Uj in D,. The collection of these local 
networks, one network for each hypothesis hi, forms an hypothesis-specific Bayesian 

network of P(h,ul,. . . , u,,). We can now use our inference algorithm developed for 

Bayesian multinets to compute the posterior probability of each hypothesis. 
The algorithm below summarizes this technique. Its first step uses arc-reversal trans- 

formations in order to reorient all local networks according to a common construction 
order. This step is given for the purpose of completeness, namely, to enable the al- 
gorithm to process similarity networks that are not constructed according to a com- 

mon construction order. In practice, however, this step is usually not needed because 

similarity networks are constructed according to a common order of all relevant vari- 

ables. 

Algorithm (Similarity network to Bayesian multinet conversion). 

Input: A similarity network S of P(h, ~1,. . . , u,) based on a connected cover 

Al,. , Ak of the values of h. 

Output: A hypothesis-specific Bayesian multinet of P( h, ~1,. . . , uj) where each ui is 
depicted in some local network of S. 

Notation: 

l M; is the comprehensive local network for hypothesis hi, 
l D; is the local network associated with Ai, 

l TG( u) are the parents of u in a graph G, 
l the probability associated with node u in Mi is PM,(u 1 %-M,(u), hi) and the 

probability associated with node u in D,,, is P,,,, (u 1 %-D,,, (u), h,,). 
1 Reorient all local networks in S according to a common construction order 
2 For each hi construct M; as follows 

3 For each u,i taken in order ut, . . . , u1 
4 Find a path Ai,. . , A,,, such that hi E Ai and u,, is depicted only in A,,, 

5 Set %t,(u;) to be rD.,(u.j) \ {h} 

6 Set PM, CU./ / TM, (u,i) t hi) to be PO,,, (Uj / TD,,, (0.i) 3 h,,) 

As an example, let us examine how the algorithm processes the similarity network S 

in Fig. 7. Because the node ordering h, g, b, 1 is common to all local networks of S, the 
algorithm performs no arc reversals. Suppose the algorithm first builds the comprehensive 
local network M, for the hypothesis executive. Because 1 appears in the local network 

for {worker, executive} with only h as a parent, the algorithm makes 1 a root note 
in M,, and sets PM, (1 1 executive) to be PWeVc( 1 1 executive), where w V e denotes 
the local network for {worker, executive}. The local network for {visitor, worker} is 
the closest neighbor to the local network for {worker, executive} that depicts g and 
0. Because the only parent of g in the local network for {visitor, worker} is h, the 

algorithm makes g a root node in M,. Because g and h are the parents of b in the 

local network for {visitor, worker}, the algorithm makes g a parent of b in M,. The 
algorithm sets PM,, (g I executive) to be P,.vVv(g 1 worker) and PM, (b I g, executive) to 
be P,.v,L,( b I g, worker), where u V w denotes the local network for {visitor, worker}. 

The algorithm constructs the comprehensive local networks for worker, visitor and spq’ 
similarly. 
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4.5. Similarity networks in the real world 

The practical use of similarity networks for constructing and reasoning with prob- 
abilistic models consists of a few straightforward steps. In particular, to construct a 

joint probability distribution for h, ~1,. . . , u,, a user ( 1) constructs a similarity hyper- 
graph for the values of h, (2) constructs a local network for each hyperedge in the 
hypergraph, and (3) assesses each local network. The inference algorithm described in 
Sections 4.2-4.4 can then compute the most likely hypothesis. The quality of a similarity 
network is strongly influenced by the first step, wherein the user identifies sets of similar 

hypotheses. 
In addition to the theoretical arguments in favor of the use of similarity networks, this 

representation has also proven itself in practice. As mentioned in the introduction, the 
similarity network representation has facilitated the construction of several real-world 
expert systems including Pathfinder-an expert system that assists pathologists with the 

diagnosis of lymph-node diseases [ 14,16,18]. Pathfinder reasons about over 60 diseases 
(2.5 benign diseases, 9 Hodgkin’s lymphomas, 18 non-Hodgkin’s lymphomas, and 10 

metastatic diseases) and over 140 features of disease, including morphologic, clinical, 
laboratory, immunological, and molecular biological findings. A formal evaluation of 

Pathfinder has demonstrated that its diagnostic accuracy is at least as good as that of 

the expert consulted to build it [ 171. 

5. Generalized similarity networks 

In previous sections we assume all hypotheses are mutually exclusive and are, there- 
fore, represented as values of a single hypothesis variable h. In this section, we outline 
a way to relax this assumption, introducing a representation that allows several variables 
to represent hypotheses. 

Definition. Let P be a probability distribution over {hl, . . . , h,., ul . . . u,} where H = 
{hi,. , h,} is a set of distinguished variables each representing a set of hypotheses. 
Denote the Cartesian product of the sets of values of the distinguished variables by 
domain(H). Let Al,. . . , Ak be a connected cover of domain(H). A directed acyclic 
graph Di is called a local network of P associated with Ai if Di is a Bayesian network 

of P( hl,. . , h,, 01,. . . ,u,, / [Ai]) where (~1,. . . ,u,,} is the set of all variables in 
{Cl,, . . . , u,} that “help to discriminate” the values of Ai. The set of k local networks is 

called a generalized similarity network of P. 

The generalized similarity network of Fig. 8, for example, represents the following 

problem: 

A pair of people approach the secured building and the guard tries to classify them 

as they approach. Each approaching person is either a worker (w), a visitor (v), 
or a spy (s) . Assume that only workers converse (c) and that workers often arrive 
with other workers (because they car-pool). 
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SPY Spy/Worker 

Fig. 8. A generalized similarity network with two hypothesis nodes. 

Note, H = {hl , h2) and domain(H) consists of nine elements (x, y) where both x and 

y are drawn from the set {worker, visitor, spy} whose elements we denote by {IV, U, s}. 

The connected cover of domain(H) corresponding to Fig. 8 is 

The absence of a link between ht and h:! in the top network encodes the fact that if 
the guard knew that one person is a spy or visitor, then this knowledge would not help 
him to decide whether the other person is a spy or a visitor. The existence of a link 
between ht and h2 in the middle network encodes the fact that workers come in pairs 
more often than do visitors. 

Node c should not have been included in the top local network, but it is drawn merely 
to highlight the independencies involving c. For the same reason, nodes gt and bt are 
drawn in the bottom local network. The remaining independence assertions encoded in 
Fig. 8 were described in previous sections or are obvious from the verbal description of 
the story. 

The relationship between the hypothesis variables ht and h2 in case of spies ver- 
sus visitors is an example of inter-hypothesis independence, wherein two distinguished 
variables are independent given some hypotheses, but dependent given others. An inter- 
hypothesis independence assertion is represented in a generalized similarity network 
whenever a link between two distinguished variables exists in some local networks, but 
does not exist in other local networks. Such asymmetric independence assertions cannot 
be encoded in a non-generalized similarity network. 

The results about similarity networks presented in the previous section can be extended 
in a straightforward manner to generalized similarity networks. An analogous definition 
for generalized Bayesian multinet is also self-evident. 
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6. Summary 

In this article, we provide several enhancements to the similarity network representa- 

tion originated by Heckerman [ 141. 
First, we introduced the Bayesian multinet. We showed how the representation uses 

multiple Bayesian networks to encode asymmetric independence assertions, and how we 
can use these assertions to decrease storage requirements and increase the efficiency 
of inference. Next, we offered a definition of similarity networks which emphasizes 
the advantages of similarity networks compared to Bayesian multinets for knowledge 
acquisition. Then, we introduced an algorithm that converts a similarity network into 
a Bayesian multinet, thereby providing a general inference algorithm for similarity 
networks. In addition, we described generalized similarity networks which facilitate 
the representation of non-mutually exclusive hypotheses. We hope that this work will 
encourage a line of research that strives to devise additional graphical representation 

schemes of salient types of asymmetric independence that further simplify knowledge 

acquisition and inference. 
Finally, we note that the computational advantages that result from sparse matrix 

manipulations, as suggested in [20], can also be combined with knowledge about 

asymmetric independence. In fact, we have argued that any inference algorithm for 
Bayesian networks can also be applied to a similarity network. One should emphasize, 
however, that these two sources of computational savings are disjoint since inference 

methods that rely on sparse matrices arise from the presence of zero probabilities 
whereas inference methods that rely on asymmetric independence constrains arise due 

to equalities between certain probabilities. 
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