CSCE 747 Software Testing and
Quality Assurance

Lecture 07 — Dataflow Testing

Lec 07 Dataflow Testing - 1 9/1/2013 CSCE 747 Eall 2013

Last Time Today
= Lecture 06 Slides 1-19 = Dataflow Testing

covered last time)
= Case Study Question after Ch 10, pp 151-167

class
= Path Testing continued
= Ch9pp131-149

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 2
A Craftsman Approach

CSCE 747 Fall 2013 °

MSYSGIT

% msysgit

Git for Windows

| ~Search pr
Project Home Downloads @ Wiki Source
Search Current downloads v for full installer official git Search
1.
Filename v Summary + Labels v Uploaded v ReleaseDate v Size v DownloadCouni
1 | Git-1.8.4-preview20130916.exe Full installer for official Git for Windows 3 hours ago 3 hours ago 14.9 MB 1
1.8.3 Featured Beta
| & | Git-1.8.3-preview20130601.exe Full installer for official Git for Windows ~ Jun 2 Jun 2 14.8 MB 822
1.8.3 Beta
. Git-1.8.1.2-preview20130201.exe Full installer for official Git for Windows Feb 2013 Feb 2013 14.7 MB 818
1.8.1.2 Beta
. Jorgensen, Paul C. Software Testin
Lec 07 Dataflow Testing - 3 & ' &

A Craftsman Approach CSCE 747 Fall 2013

Dataflow Testing

= Dataflow testing refers to forms of structural
testing that focus on:
* the points at which variables receive values and
= the points at which these values are used

= Dataflow testing serves as a reality check on
path testing;

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 4 A Craftsman Approach CSCE 747 Fall 2013

Forms of dataflow testing

= Two main forms of dataflow testing:

" One provides a set of basic definitions and a
unifying structure of test coverage metrics

" The other based on a concept called a program
slice.

= Start with program graph but move back
towards functional testing

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 5 A Craftsman Approach CSCE 747 Fall 2013

Define/Use of Variables

= Define/Use information
" X =y +3*z
= Define a new x; use variablesy and z
= Concordances that list statement numbers in
which variable names occur

= Define/reference anomalies:
= A variable that is defined but never used
= A variable that is used before it is defined
= A variable that is defined twice before it is used

Jorgensen, Paul C. Software Testing

A Craftsman Approach CSCE 747 Fall 2013

Lec 07 Dataflow Testing - 6

Static Analysis

= Static analysis: finding faults in source code
without executing it.

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 7 A Craftsman Approach CSCE 747 Fall 2013

Define/Use Testing

= define/use testing was done by
= Rapps and Weyuker, IEEE Transactions on
Software Engineering, Vol. SE-11, 1985

= Definitions: Given a program P
= G(P) — the program graph; single entry; single exit
= PATHS(P) — the set of all pathsin P

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 8 A Craftsman Approach CSCE 747 Eall 2013

“Definition” and “Usage” nodes for variable

= Definition: Node n € G(P) is a defining node of the variable
v €V, written as DEF(v, n)

= Definition: Node n € G(P) is a usage node of the variable v
€ V, written as USE(v, n)
= Definitions(n) — variables v that are defined in statement n
= Usage(n) — variables that are used in statement n
= Definitions(v) — statements that define v
= Usage(v) — statements that use v
* Next-Use(n, v) — list of statements following n that use v

* Node n: statement fragment x =y + z

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 9 A Craftsman Approach CSCE 747 Fall 2013

10.
11.
12.
13.

Example (Commission)

totalLocks = 0
totalStocks = 0
totalBarrels =0
Input(locks)

14. While NOT(locks = -1) ‘loop condition uses -1

15.
16.
17.
18.
19.
20.
21.

Lec 07 Dataflow Testing - 10

Input(stocks, barrels)
totalLocks = totalLocks + locks
totalStocks = totalStocks + stocks
totalBarrels = totalBarrels + barrels
Input(locks)

EndWhile

Output(“Locks sold: “, totalLocks)

Jorgensen, Paul C. Software Testing

A Craftsman Approach CSCE 747 Fall 2013

Predicate/Computation Use

= USE(v, n) can be ‘Step 2: Is A Triangle? Modified
classified as 6.t1=b+c
7.t2=a+c

= Predicate use (P-use)
8.t3=a+b

9.If (a<tl) AND (b <t2) AND(c < t3)
10. Then IsATriangle = True

11. Else IsATriangle = False
12. EndIf

= Computation use(C-use)
= USE(a, 7)?
= USE(a,9)?

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 11 A Craftsman Approach CSCE 747 Fall 2013

definition-use path

= Definition: A definition-use path with respect to a
variable v (denoted du-path) is a path in PATHS(P)
such that

= for somev €V, there are define and usage nodes
DEF(v, m) and USE(v, n) such that

= mand n are the initial and final nodes of the path.

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 12 A Craftsman Approach CSCE 747 Fall 2013

Definition-Clear Path

= Definition: A definition-clear path with respect to a
variable v (denoted dc-path) is a definition-use path
in PATHS(P)

= with initial and final nodes DEF (v, m) and USE (v, n)
such that no other node in the path is a defining node
of v

= Du-paths and dc-paths describe the flow of data
across source statements from points at which the
values are defined to points at which the values are
used.

" Du-paths that are not definition-clear are potential
trouble spots.

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 13 A Craftsman Approach CSCE 747 Fall 2013

Compilers Again: Register Allocation

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 14 A Craftsman Approach CSCE 747 Fall 2013

1. Program Commission (INPUT,OUTPUT)

2.Dim ...

7. lockPrice = 45.0

8. stockPrice = 30.0

9. barrelPrice = 25.0

10. totalLocks =0

11. totalStocks =0

12. totalBarrels =0

13. Input(locks)

14. While NOT(locks = -1)

15. Input(stocks, brrls)

16. totalLocks = totalLocks + locks
17. totalStocks = totalStocks + stocks
18. totalBarrels = totalBarrels + brrls
19. Input(locks)

20.EndWhile

21. Output(“Locks sold: “, totalLocks)
22. Output(“Stocks sold: “, totalStocks)

Lec 07 Dataflow Testing - 15

23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.

Output(“Barrels sold: “, totalBarrels)
lockSales = lockPrice * totalLocks
stockSales = stockPrice * totalStocks
barrelSales = barrelPrice * totalBarrels
sales = lockSales + stockSales + barrelSales
Output(“Total sales: “, sales)
If (sales > 1800.0)
Then
commission = 0.10 * 1000.0
commission = comm. + 0.15 * 800.0
comm. = comm. + .20 *(sales-1800.0)
Else If (sales > 1000.0)
Then
commission = 0.10 * 1000.0
comm=comm + .15 *(sales-1000)
Else
commission = 0.10 * sales
EndIf
EndIf
Output(“Commission is $”, commission)
End Commission

Jorgensen, Paul C. Software Testing

A Craftsman Approach CSCE 747 Fall 2013

DD-Paths in Figure 10.1

(previous slide)

= Table 10.1 DD-Paths in Figure 10.1
DD-Path Nodes

A 7,8,9,10,11,12,13
14
15, 16, 17, 18, 19,20
21, 22, 23, 24, 25, 26, 27, 28
29
30, 31, 32,33
34
35, 36, 37
38, 39
40
41, 42,43

x—=—IT 0O mpow

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 16 A Craftsman Approach CSCE 747 Fall 2013

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 17 A Craftsman Approach CSCE 747 Fall 2013

Figure 10.2 DD-
Path graph of
the commission
program.

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 18 A Craftsman Approach CSCE 747 Fall 2013

10.1.2 du-Paths for Stocks

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 19 A Craftsman Approach CSCE 747 Fall 2013

10.1.3 du-Paths for Locks

" pl=<13, 14>

" p2=<13, 14, 15, 16>

= p3 =<19, 20, 14>

= p4 =<19, 20, 14, 15, 16>

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 20 A Craftsman Approach CSCE 747 Fall 2013

10.1.4 du-Paths for Total-Locks

= p6 =<10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
14, 21>

=" p7 =<10, 11, 12, 13, 14, 15, 16,17, 18, 19, 20,
14, 21, 22, 23, 24>

= p7 =< p6, 22, 23, 24>
= pg =<16, 17, 18, 19, 20, 14, 21>
= p9 =<16, 17, 18, 19, 20, 14, 21, 22, 23, 24>

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 21 A Craftsman Approach CSCE 747 Fall 2013

Table 10.2 Define/Use Nodes for Variables in the
Commission Problem

Variable Defined at Node Used at Node
lockPrice 24
stockPrice 25
barrelPrice 26
totalLocks 10, 16 16, 21, 24
totalStocks 11,17 17,22, 25
totalBarrels 12,18 18, 23, 26
locks 13,19 14, 16
stocks 15 17
barrels 15 18
lockSales 24 27
stockSales 25 27
barrelSales 26 27

sales 27 28, 29, 33, 34, 37, 39

commission 31, 32, 33, 36, 37, 39 32,33,37,42

JUIETIIDTI, FAdul L. JuilLlwdiItT 10111y

Lec 07 Dataflow Testing - 22 A Craftsman Approach

CSCE 747 Fall 2013

10.1.5 du-Paths for Sales

= pl0=<27, 28>
" pll =<27, 28, 29>
" pl2 =<27, 28, 29, 30, 31, 32, 33>

= p13 = <27, 28, 29, 34>
= p14 = <27, 28, 29, 34, 35, 36, 37>
= p15 = <27, 28, 29, 34, 38,39>

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 23 A Craftsman Approach CSCE 747 Fall 2013

Lec 07 Dataflow Testing -

Table 10.3 Selected Define/Use Paths

Path (Beginning, End)

Variable Nodes Definition-Clear?
lockPrice 7,24 Yes
stockPrice 8, 25 Yes
barrelPrice 9, 26 Yes
totalStocks 11,17 Yes
totalStocks 11, 22 No
totalStocks 11, 25 No
totalStocks 17,17 Yes
totalStocks 17,22 No
totalStocks 17,25 No
locks 13, 14 Yes
locks 13,16 Yes
locks 19, 14 Yes
locks 19, 16 Yes
sales 27,28 Yes
sales 27,29 Yes
sales 27,33 Yes
sales 27,34 Yes
sales 27,37 Yes
sales 27,39 Yes

_E 747 Fall 2013

10.1.6 du-Paths for Commission

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 25 A Craftsman Approach CSCE 747 Fall 2013

Table 10.4 Define/Use Paths for Commission

Path (Beginning, End)

Variable Nodes Feasible? Definition-Clear?
commission 31, 32 Yes Yes
commission 31,33 Yes No
commission 31,37 No n/a
commission 31, 42 Yes No
commission 32,32 Yes Yes
commission 32,33 Yes Yes
commission 32,37 No n/a
commission 32,42 Yes No
commission 33,32 No n/a
commission 33,33 Yes Yes
commission 33,37 No n/a
commission 33,42 Yes Yes
commission 36, 32 No n/a
commission 36, 33 No n/a
commission 36, 37 Yes Yes
commission 36, 42 Yes No
commission 37,32 No n/a
commission 37,33 No n/a
commission 37,37 Yes Yes
commission 37,42 Yes Yes
commission 38, 32 No n/a
commission 38, 33 No n/a
commission 38, 37 No n/a

Lec 07 Dataflow Testing - 26 commission 38, 42 Yes Yes "Fall 2013

10.1.7 du-Path Test Coverage Metrics

= Definition: The set T satisfies the All-Defs criterion for the
program P iff for every variable v €V, T contains
definition-clear paths from every defining node of v to a
use of v.

= Definition: The set T satisfies the All-Uses criterion for the
program P iff for every variable v €V, T contains
definition-clear paths from every defining node of v to
every use of v, and to the successor node of each USE(v,
n).

* Definition: The set T satisfies the All-P-Uses/Some C-Uses
criterion for the program P iff for every variableveV, T
contains definition-clear paths from every defining node
of v to every predicate use of v;

= if a definition of v has no P-uses, a definition-clear path
leads to at least one computation use.

. Jorgensen, Paul C. Software Testing
Lec 07 Dataflow Testing - 27 A Craftsman Approach CSCE 747 Fall 2013

Rapps—Weyuker hierarchy of dataflow

Lec 07 Dataflow Testing - 28

coverage metrics.

All-Paths

All-DU-Paths

All-Uses

(All C-Uses/Some P-Uses) (All P-Uses/Some C-Uses)

All-Defs

All-P-Uses
All-Edges
All-Nodes

Jorgensen, Paul C. Software Testing

A Craftsman Approach CSCE 747 Fall 2013

= Definition: The set T satisfies the All-C-Uses/Some P-
Uses criterion for the program P iff for every variable
v €V, T contains definition-clear paths from every
defining node of v to every computation use of v;

= jf a definition of v has no C-uses, a definition-clear
path leads to at least one predicate use.

= Definition: The set T satisfies the All-du-paths
criterion for the program P iff for every variablev €V,
T contains definition-clear paths from every defining
node of v to every use of v and to the successor node
of each USE(v, n), and that these paths are either
single-loop traversals or cycle-free.

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 29 A Craftsman Approach CSCE 747 Fall 2013

10.2 Slice-Based Testing

" Program slices have surfaced and submerged in
software engineering literature since the early 1980s.

" They were originally proposed in Weiser (1988), used
as an approach to software maintenance in Gallagher
and Lyle (1991), and more recently

= used to quantify functional cohesion in Bieman and
Ott (1994)

= Part of this versatility is due to the natural, intuitively
clear intent of the program slice concept.

" Informally, a program slice is a set of program
statements that contributes to or affects a value for a
variable at some point in the program.

Jorgensen, Paul C. Software Testing

Lec 07 Dataflow Testing - 30 A Craftsman Approach CSCE 747 Fall 2013

