CSCE 747 Software Testing and Quality Assurance

Lecture 06 – Path Testing Part II

Last Time

- JUnit-4 Vogel tutorial finish
- Wrapup Functional Testing
- Ch 8 pp 117-127
- **Testing Effort**
- **Testing Efficiency**
- **Testing Effectiveness**
- Guidelines
- **Case Study Insurance** Premium
- Slides 1-19 of this set were covered in class during Lec05
- Testing Overview Again
 - Definition of Testing
 - Verification vs Validation
- Path Testing
- Ch 9 pp 131-149

Today

- **Lecture 06 Slides 1-19** covered last time
- Case Study Question after class
- Path Testing continued
- Ch 9 pp 131-149

Exam = Wednesday, Dec 11 @ 9:00AM

- Email
 - I think we said it would be the earlier of two choices.
 - Again there were two choices since this is an APOGEE class and MW APOGEE classes follow the T-Th schedule.
 - So the two closest matches for MWF classes were:
- 1. Saturday, December 14 9:00 a.m.
- 2. Wednesday, December 11 9:00 a.m.

I have heard no complaints from the class about doing the exam on Wednesday, December 11 @ 9:00AM. So this is the exam time. MM

Test Coverage Metrics

```
    Metric - Description of Coverage
    C<sub>0</sub> - Every statement
    C<sub>1</sub> - Every DD-Path (predicate outcome)
    C<sub>1p</sub> - Every predicate to each outcome
    C<sub>12</sub> - C<sub>1</sub>1 -coverage + loop coverage
    C<sub>d</sub> - C<sub>1</sub>1 -coverage + every dependent pair of DD-Paths
    C<sub>MCC</sub> - Multiple condition coverage
    C<sub>ik</sub> - Every program path that contains up to k repetitions of a loop (usually k = 2)
    C<sub>stat</sub> - Statistically significant fraction of paths
    C<sub>∞</sub> - All possible execution paths
    Based on work of E.F. Miller (Miller, 1977)
```

Questions from last class

From Lec05 slide 24

Table 8.3 Decision Table Test Cases for the Insurance Premium Program

Age Is	16-25	16–25	25–35	25–35	35–45	35–45	45-60	45-60	60-100	60-100
Points	0	1–12	0-2	3-12	0-4	5-12	0-6	7–12	0-4	5–12
Age multiplier	2.8	2.8	1.8	1.8	1	1	0.8	0.8	1.5	1.5
Safe driving reduction	50	_	50	_	100	_	150	_	200	_

- Note that quite the usual lotti of pecision table.
- Conditions A1-A5, P1-P5
 - 10 conditions give 2¹⁰ =1024 rules
- So what is that 2¹⁰?

Lec07 slide 18 - Safe Driving Reduction Table Points cutoffs

Age Range	Age Multiplier	Points Cutoff	Safe Driving Reduction
16 ≤ age < 25	2.8	1	50
25 ≤ age < 35	1.8	3	50
35 ≤ age < 45	1.0	5	100
45 ≤ age < 60	0.8	7	150
$60 \le age < 100$	1.5	5	200

Note two cases for each age!

Decision Table for Case Study: Insurance Premium Program Ch08 1rst try

Woops!

512!=1024

Cond /Act s	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
A1?	Т	Т	F	F	F	F	F	F	F	F
A2?	-	-	Т	Т	F	F	F	F	F	F
A3?	-	-	-	-	Т	Т	F	F	F	F
A4?	-	-	-	-	-	-	Т	Т	F	F
A5?	-	-	-	-	-	-	-	-	Т	Т
P1?	T	F	-	-	-	-	-	-	-	-
P2?	F	Т	Т	F	-	-	-	-	-	-
P3?	-	-	F	Т	Т	F	-	-	-	-
P4?	-	-	-	-	F	Т	Т	F	-	-
P5?	-	-	-	-	-	-	F	Т	Т	F
Rule count	2 ⁷ 128	2 ⁷ 256	2 ⁶ 320	2 ⁶ 384	2 ⁵ 416	2 ⁵ 448	2 ⁴ 464	2 ⁴ 480	2 ⁴ 496	2 ⁴ 512
Act's										

Lec 06 Path Testing

Decision Table for Case Study: Insurance Premium Program Ch08 2nd try

3333

Cond /Act s	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10
A1?	T	Т	F	F	F	F	F	F	F	F
A2?	-	-	Т	Т	F	F	F	F	F	F
A3?	-	-	-	-	Т	Т	F	F	F	F
A4?	-	-	-	-	-	-	Т	Т	F	F
A5?	-	-	-	-	-	-	-	-	Т	Т
P1?	Т	F	-	-	-	-	-	-	-	-
P2?	F	Т	Т	F	-	-	-	-	-	-
P3?	-	-	F	Т	Т	F	-	-	-	-
P4?	-	-	-	-	F	Т	Т	F	-	-
P5?	-	-	-	-	-	-	F	Т	Т	F
Rule count	2 ⁷ 128	2 ⁷ 256	2 ⁶ 320	2 ⁶ 384	2 ⁵ 416	2 ⁵ 448	2 ⁴ 464	2 ⁴ 480	2 ⁴ 496	2 ⁴ 512
Act's										

Lec 06 Path Testing

- Why? Explanation ???
- Note ignored some errors!
 - Point cases that matter are different for different ages
 - This means that can't us induced equiv. classes on product A x P
 - But there are two equivalence classes for each A_j even though the P_i depends on A_j.

DD-Paths revisited

- Program graphs
- basic blocks = DD-paths ?
 - one entry=leader

 Miller's test coverage metrics are based on program graphs in which nodes are full statements, Most quality organizations now expect the C1 metric (DD-Path coverage) as the minimum acceptable level of test coverage.

Metric-Based Testing

- Metric-Based Testing
- Statement and Predicate Testing
- What's a statement anyway?
- \blacksquare S \rightarrow IF Condition THEN S1 ELSE S2
- predicate outcome coverage.
- Really better to use ideas from compilers
 - cover each basic block

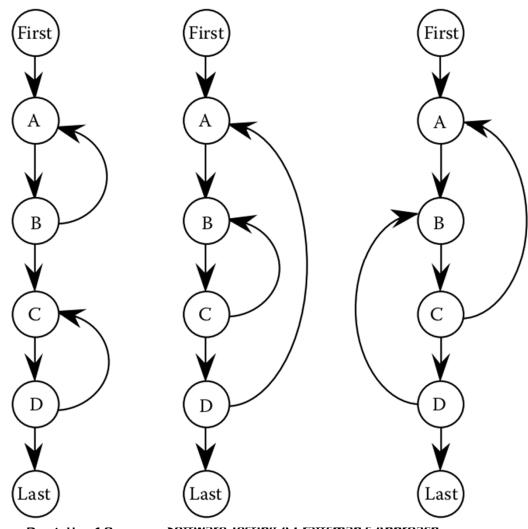
DD-Path Testing

- For if-then and if-then-else statements, this means that both the true and the false branches are covered (C1p coverage).
- For CASE statements, each clause is covered.

Dependent Pairs of DD-Paths

- C_d,
- the problem of infeasible paths.

Multiple Condition Coverage


- Look closely at the compound conditions in DD-Paths B and H.
- Instead of simply traversing such predicates to their true and false outcomes, we should investigate the different ways that each outcome can occur.
- One possibility is to make a truth table; a compound condition of three simple conditions would have eight rows, yielding eight test cases.
- Another possibility is to reprogram compound predicates into nested simple if-then-else logic, which will result in more DD-Paths to cover.
- We see an interesting trade-off: statement complexity versus path complexity.

Loop Coverage

 loops are a highly fault-prone portion of source code.

Beizer taxonomy

Loops: Concatenated, Nested, Knotted

Lec 06 Path Testing Part II - 19

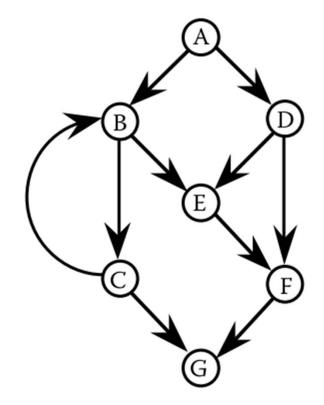
Software Testing A Craftsman's Approach

Jorgensen – 2008

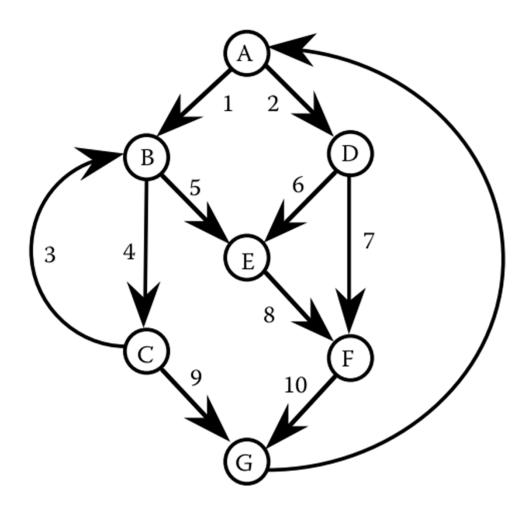
CSCE 747 Fall 2013

- Knotted loops cannot occur when the structured programming precepts are followed,
- but they can occur in languages like Java with try/catch.
- simple view of loop testing is that every loop involves a decision, and we need to test both outcomes of the decision:

9.2.2 Test Coverage Analyzers


Basis Path Testing

Recall vector spaces and basis


 "view a program as a vector space, then the basis for such a space would be a very interesting set of elements to test"

McCabe's Basis Path Method

- McCabe's control graph
- cyclomatic number
- V(G) = e n + 2p = 10 7

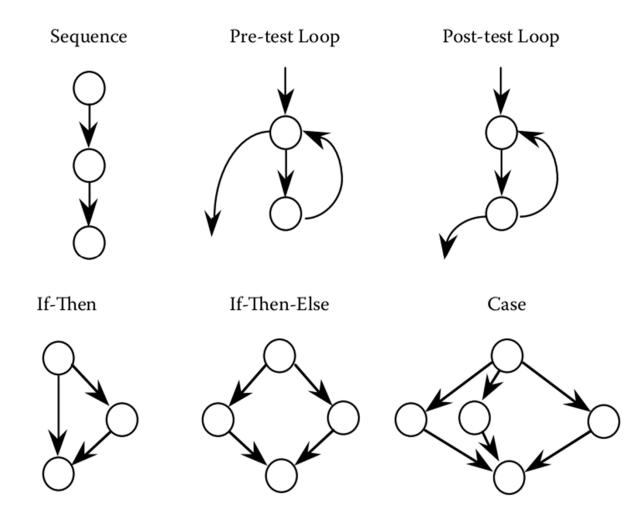
$$V(G) = e - n + p = 11 - 7 + 1 = 5$$

- The cyclomatic complexity of the strongly connected graph in Figure 9.7 is 5;
- thus, there are five linearly independent circuits.
- p1: A, B, C, G
- p2: A, B, C, B, C, G
- **p3:** A, B, E, F, G
- p4: A, D, E, F, G
- p5: A, D, F, G

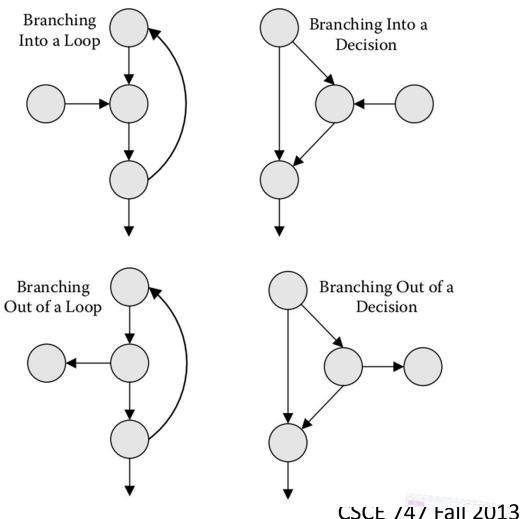
 Table 9.3
 Path/Edge Traversal

Path/Edges Traversed	1	2	3	4	5	6	7	8	9	10
p1: A, B, C, G	1	0	0	1	0	0	0	0	1	0
p2: A, B, C, B, C, G	1	0	1	2	0	0	0	0	1	0
p3: A, B, E, F, G	1	0	0	0	1	0	0	1	0	1
p4: A, D, E, F, G	0	1	0	0	0	1	0	1	0	1
p5: A, D, F, G	0	1	0	0	0	0	1	0	0	1
ex1: A, B, C, B, E, F, G	1	0	1	1	1	0	0	1	0	1
ex2: A, B, C, B, C, B, C, G	1	0	2	3	0	0	0	0	1	0

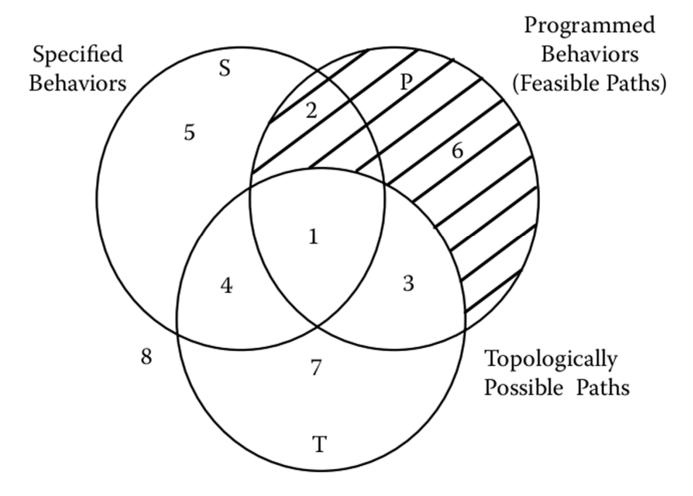
McCabe's baseline method


- McCabe's baseline method to determine a set of basis paths.
- 1. Select a baseline path, the "normal case"
- 2. Next the baseline path is retraced
- 3. in turn each decision is "flipped"

McCabe's Method on Triangle


Table 9.4 Basis Paths in Figure 9.4

Original	p1: A-B-C-E-F-H-J-K-M-N-O-Last	Scalene
Flip p1 at B	p2: A-B-D-E-F-H-J-K-M-N-O-Last	Infeasible
Flip p1 at F	p3: A-B-C-E-F-G-O-Last	Infeasible
Flip p1 at H	p4: A-B-C-E-F-H-I-N-O-Last	Equilateral
Flip p1 at J	p5: A-B-C-E-F-H-J-L-M-N-O-Last	Isosceles


Essential Complexity

Violations of structured programming

Lec 06 Path Testing Part II - 30

References

- McCabe, T.J., Structural Testing: A Software Testing Methodology Using the Cyclomatic Complexity Metric, 1982.
- Beizer, Boris, Software System Testing and Quality Assurance, 1984.