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Figure 2.2 Dataflow diagram for a structured triangle program implementation.
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Program triangle2 ‘Structured programming version of simpler
specification
Dim a,b,¢ As Integer
Dim IsATriangle As Boolean
‘Step 1: Get Input
Output (“Enter 3 integers which are sides of a triangle”)
Input (a,b,c)
Output (“*Side A is *“,a)
Output (*Side B is “,Db)
Output (*Side C is “,c)

A}

ik
=
W

!—r_'-'

‘Step 2: Is A Triangle?

If (a < b +c) AND (b < a + c) AND (c < a + b)
Then IsATriangle = True
Else IsATriangle = False
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EndIf

1

‘Step 3: Determine Triangle Type
If IsATriangle
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Then If (a = b) AND (b = c)
Then Output (“Equilateral”)

Else If (a # b) AND (a # c) AND (b # c)
Then Output (“Scalene”)
Else Output (“*Isosceles”)
EndIf
EndIf
Else Output (“"Not a Triangle”)

EndIf

As

End triangle2

program triangle3 ‘Structured programming version of improved
specification
Dim a,b,c As Integer
Dim ¢l, c2, c¢3, IsATriangle As Boolean
‘Step 1: Get Input
Do
Output (“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)
cl = (1 <= a) AND (a <= 200)

c2 = (1 <= b) AND (b <= 200)
c3 = (1 <= ¢) AND (¢ <= 200)
If NOT(cl)

Then Output(“Value of a is not in the range of
permitted values”)
EndIf
If NOT (c2)
Then Output(“Value of b is not in the range of
permitted values”)
EndIf
If NOT(c3)
Then Output (“Value of ¢ is not in the range of
permitted values”)
EndIf
Until ¢l AND c2 AND c3
Output (*Side A is “,a)
Output (*Side B is “,b)
Output (*Side C is “,c)
\
‘Step 2: Is A Triangle?
If (a < (b +c)) BAND (b < (a + c)) AND (c < (a + b))
Then IsATriangle = True
Else IsATriangle = False
EndIf
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‘Step 3: Determine Triangle Type
If IsATriangle
Then If (a = b) AND (b = c)
Then Output (“Equilateral”)
Else If (a # b) AND (a # ¢) AND (b = c)
Then Output (“Scalene”)
Else Output (“Isosceles”)
EndIf
EndIf
Else Output (“Not a Triangle”)
EndIf

Y

End triangle3

2.3 The NextDate Function

The complexity in the triangle program is due to relationships between inputs and correct outputs.
We will use the NextDate function to illustrate a different kind of complexity — logical relation-
ships among the input variables.

2.3.1 Problem Statement

NextDate is a function of three variables: month, day, and year. It returns the date of the day after the
input date. The month, day, and year variables have integer values subject to these conditions:

cl. 1 < month £ 12
c2. 1<day<3l
c3. 1812 < year < 2012

As we did with the triangle program, we can make our specification stricter. This entails defin-
ing responses for invalid values of the input values for the day, month, and year. We can also define
responses for invalid combinations of inputs, such as June 31 of any year. If any of conditions cl, c2,
or c3 fails, NextDate produces an output indicating the corresponding variable has an out-of-range
value — for example, “Value of month not in the range 1..12.” Because numerous invalid day-
month-year combinations exist, NextDate collapses these into one message: “Invalid Input Date.”

2.3.2 Discussion

Two sources of complexity exist in the NextDate function: the complexity of the input domain dis-
cussed previously, and the rule that determines when a year is a leap year. A year is 365.2422 days
long; therefore, leap years are used for the “extra day” problem. If we declared a leap year every fourth
year, a slight error would occur. The Gregorian calendar (after Pope Gregory) resolves this by adjust-
ing leap years on century years. Thus, a year is a leap year if it is divisible by 4, unless it is a century
year. Century years are leap years only if they are multiples of 400 (Inglis, 1961), so 1992, 1996, and
2000 are leap years, while the year 1900 is not. The NextDate function also illustrates a sidelight of
software testing, Many times, we find examples of Zipf’s law, which states that 80% of the activity



