SOFTWARE
TESTING

A Craftsman’s Approach

THIRD EDITION

Paul C. Jorgensen

Auerbach Publications
/A\

Taylor & Francis Group
Boca Raton New York

Auerbach Publications is an imprint of the
Taylor & Francis Group, an informa business

Visual Basic, Visual FoxPro, and Windows are registered trademarks of Microsoft Corporation.
Java is a trademark of Sun Microsystems, Inc.

ColdFusion is a registered trademark of Adobe Systems Incorporated.

Auerbach Publications

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
1098765

International Standard Book Number-13: 978-0-8493-7475-3 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted
with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to
publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of
all materials or for the consequences of their use.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For orga-
nizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Jorgensen, Paul.
Software testing : a craftsman’s approach / Paul C. Jorgensen. -- 3rd ed.
p. cm.
Includes bibliographical references and index.
[SBN-13: 978-0-8493-7475-3 (hardcover : alk. paper)
ISBN-10: 0-8493-7475-8 (hardcover : alk. paper)
1. Computer software--Testing. 1. Title.

QA76.76.T48]67 2007
005.1'4--dc22 2007017469

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Anerbach Web site at
http://www.auerbach-publications.com

20 ® Software Testing: A Craftsman’s Approach

Triangle

Screen
Program

Keyboard

Prompts and
Triangle Types

Triangle Sides

Triangle
Sides

True/False

Prompts

Triangle

type

Figure 2.2 Dataflow diagram for a structured triangle program implementation.

/!
Program triangle2 ‘Structured programming version of simpler
specification
Dim a,b,¢ As Integer
Dim IsATriangle As Boolean
‘Step 1: Get Input
Output (“Enter 3 integers which are sides of a triangle”)
Input (a,b,c)
Output (“*Side A is *“,a)
Output (*Side B is “,Db)
Output (*Side C is “,c)

A}

ik
=
W

!—r_'-'

‘Step 2: Is A Triangle?

If (a < b +c) AND (b < a + c) AND (c < a + b)
Then IsATriangle = True
Else IsATriangle = False

e

)

EndIf

1

‘Step 3: Determine Triangle Type
If IsATriangle

Examples ® 21

Then If (a = b) AND (b = c)
Then Output (“Equilateral”)

Else If (a # b) AND (a # c) AND (b # c)
Then Output (“Scalene”)
Else Output (“*Isosceles”)
EndIf
EndIf
Else Output (“"Not a Triangle”)

EndIf

As

End triangle2

program triangle3 ‘Structured programming version of improved
specification
Dim a,b,c As Integer
Dim ¢l, c2, c¢3, IsATriangle As Boolean
‘Step 1: Get Input
Do
Output (“Enter 3 integers which are sides of a triangle”)
Input(a,b,c)
cl = (1 <= a) AND (a <= 200)

c2 = (1 <= b) AND (b <= 200)
c3 = (1 <= ¢) AND (¢ <= 200)
If NOT(cl)

Then Output(“Value of a is not in the range of
permitted values”)
EndIf
If NOT (c2)
Then Output(“Value of b is not in the range of
permitted values”)
EndIf
If NOT(c3)
Then Output (“Value of ¢ is not in the range of
permitted values”)
EndIf
Until ¢l AND c2 AND c3
Output (*Side A is “,a)
Output (*Side B is “,b)
Output (*Side C is “,c)
\
‘Step 2: Is A Triangle?
If (a < (b +c)) BAND (b < (a + c)) AND (c < (a + b))
Then IsATriangle = True
Else IsATriangle = False
EndIf

22 m Software Testing: A Craftsman’s Approach

‘Step 3: Determine Triangle Type
If IsATriangle
Then If (a = b) AND (b = c)
Then Output (“Equilateral”)
Else If (a # b) AND (a # ¢) AND (b = c)
Then Output (“Scalene”)
Else Output (“Isosceles”)
EndIf
EndIf
Else Output (“Not a Triangle”)
EndIf

Y

End triangle3

2.3 The NextDate Function

The complexity in the triangle program is due to relationships between inputs and correct outputs.
We will use the NextDate function to illustrate a different kind of complexity — logical relation-
ships among the input variables.

2.3.1 Problem Statement

NextDate is a function of three variables: month, day, and year. It returns the date of the day after the
input date. The month, day, and year variables have integer values subject to these conditions:

cl. 1 < month £ 12
c2. 1<day<3l
c3. 1812 < year < 2012

As we did with the triangle program, we can make our specification stricter. This entails defin-
ing responses for invalid values of the input values for the day, month, and year. We can also define
responses for invalid combinations of inputs, such as June 31 of any year. If any of conditions cl, c2,
or c3 fails, NextDate produces an output indicating the corresponding variable has an out-of-range
value — for example, “Value of month not in the range 1..12.” Because numerous invalid day-
month-year combinations exist, NextDate collapses these into one message: “Invalid Input Date.”

2.3.2 Discussion

Two sources of complexity exist in the NextDate function: the complexity of the input domain dis-
cussed previously, and the rule that determines when a year is a leap year. A year is 365.2422 days
long; therefore, leap years are used for the “extra day” problem. If we declared a leap year every fourth
year, a slight error would occur. The Gregorian calendar (after Pope Gregory) resolves this by adjust-
ing leap years on century years. Thus, a year is a leap year if it is divisible by 4, unless it is a century
year. Century years are leap years only if they are multiples of 400 (Inglis, 1961), so 1992, 1996, and
2000 are leap years, while the year 1900 is not. The NextDate function also illustrates a sidelight of
software testing, Many times, we find examples of Zipf’s law, which states that 80% of the activity

