1 4.1.2 - Pumping Lemma

Prove \(L = \{ x \in \{0, 1\}^* \mid x = w w^R \} \) is not regular Using the Pumping Lemma

Proof:

- **Suppose** \(L \) is regular then by the pumping lemma there exists a DFA that recognizes \(L \) with \(n \) states.

- **Define the string** \(w = 0^n 110^n \)

- **Consider a partitioning of** \(w = xyz \) that satisfies
 i - \(|y| > 0 \) and
 ii - \(|xy| \leq n \) of the pumping lemma.

- **Find an i such that** \(xy^i z \notin L \)

 - Since \(|xy| \leq n \) this implies \(xy \) is all zeroes.

 - If we choose \(i=0 \) then \(xy^i z = xez = xz \) and
 \(xz \) has a pair of ones with fewer than \(n \) ones before them and \(n \) ones after them.

- Thus \(xz \notin L \). This contradiction shows that \(L \) is not regular.