Instructions

. No Calculators!!

- Make sure your exam is complete. There should be 9 pages including this cover sheet and a collection of figures.
- No Calculators, cell phones, or other electronic devices.
- All questions are equally weighted.
- Answer in the space provided if at all possible.
- If a question is unclear please ask early in the test.
- There is a Take Home question. It will be emailed today.
- Some Boolean Algebra Theorems are given in figures
- Good Luck!

1. (a) Convert Octal 657.2_{10} to hexadecimal (to two "decimal" places)
(b) Convert 173.745_{8} to hexadecimal.
(c) Convert $A 3.1 A B_{16}$ to decimal using no calculator, leave your answer as an expression.
(d) Convert $00001111111100001111111100000000_{2}$ to decimal. Express your answer as an expression that is a sum of terms of the form 2^{k}.
2. Signed Numbers
(a) Represent 84 as an unsigned integer using eight bits.
(b) Represent 84 in signed-magnitude using eight bits.
(c) Represent -84 in signed-magnitude using eight bits.
(d) Represent 84 in two's complement using sixteen bits.
(e) Represent -84 in two's complement using sixteen bits.
(f) If x has two's complement representation [x$]$ what is the number that is represented by two's complement of $[\mathrm{x}]$.
(g) What is the main advantage of two's complement over signed magnitude?
3. Simplify boolean functions
(a) Simplify $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(0,2,3,7)$ in sums-of-products form.
(b) What is a non-essential implicant set? Give an example?
(c) Simplify $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Pi(3,6,7,9,11)$ in sums-of-products form, with don't care $\mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\sum(10,12,13,14,15)$
4. (a) Simplify using Axioms $F=A^{\prime} \bullet B^{\prime} \bullet C \bullet D+A^{\prime} \bullet B^{\prime} \bullet C \bullet D^{\prime}+A^{\prime} \bullet B \bullet C \bullet D+A^{\prime} \bullet B \bullet$ $C \bullet D^{\prime}+A \bullet C \bullet D^{\prime}+A \bullet B^{\prime} \bullet C \bullet D^{\prime}$
(b) Why would a function have don't care conditions? Give an example.
5. (a) Draw a 4 to 1 multiplexer
(b) Show how to implement $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(0,4,6,7)$ using a decoder.
6. Carry Lookahead
(a) In a 14 pin package what are usually connected to pins 7 and 14 ?
(b) Give the formula for G_{i}
(c) Give the formula for P_{i}
(d) In a 5 bit carry look ahead unit what is the formula for $G_{b l o c k}$?
(e) On figure F , show how to wire up G_{i} and P_{i}
7. Identify from the collection of figures (extra handout)
(a) A.
(b) B.
(c) C
8. Show how to build a 11 to 1 multiplexer from 4 to 1 multiplexers.
9. (a) Explain how a transistor is turned on by placing a charge on the gate. Provide a drawing.
(b) Analyze the CMOS Circuit in figure D on the collection of figures but just for the one set of inputs asked for on the figure!!!!
(c) Draw a CMOS three input NOR
10. VHDL
(a) Give an VHDL entity section for a 1 to 4 demultiplexer
(b) Give a VHDL specification for Full Adder
