1. (15) Bases
2. Short answer
(a) Compute an even parity-bit for 1110100
(b) $\overline{(X+Y+Z)}=$
(c) Distributive Laws:

$$
\begin{aligned}
& X \cdot(Y+Z)= \\
& X+Y Z=
\end{aligned}
$$

(d) What is the propagational delay for a 10 bit ripple carry adder?
(e) Express 8_{10} in excess-3
3. (15) Identify the following Circuits:
(a) 2-to-4 decoder figure 3-24
(b) 4-to-1 Mux figure 3-19
(c) Priority Encoder
(d) CMOS inverter
4. (15) Minimization
(a) Identify the prime implicants and the essential implicants.
(b) Simplify in Sums of Products form: $F(X, Y, Z)=\sum m(0,2,5,6,7)$
(c) Show how to implement $F(A, B, C)=A B+A \bar{C}+\bar{B} C$ using NAND gates
5. (15)
(a) Simplify $F(W, X, Y, Z)=\sum m(0,1,4,5,7,10,14,15)$
with don't care conditions $d(W, X, Y, Z)=\sum m(2,6,9,11,13)$.
(b) Simplify in Products of Sums form:
6. Show how to construct a 16 -to- 1 line multiplexer from five 4 -to- 1 line multiplexers
7. Analyze the CMOS Circuit
8. Construct a quad 9-to-1-line multiplexer with four single 8-to-1-line multiplexers and one quadruple 2 -to- 1 -line multiplexer. The multiplexers should be interconnected and inputs labeled so that the selection codes 0000 through 1000 can be directly applied without added logic.
9. Test 2
10. Since Test 2

- Memory
- Block diagrams etc
- VHDL / Xilinx
- PLA, PALs, ROMS

