- 1. (15) Bases
- 2. Short answer
 - (a) Compute an even parity-bit for 1110100
 - (b) $\overline{(X + Y + Z)} =$
 - (c) Distributive Laws:
 - $X \cdot (Y + Z) =$

X + YZ =

- (d) What is the propagational delay for a 10 bit ripple carry adder?
- (e) Express 8_{10} in excess-3
- 3. (15) Identify the following Circuits:
 - (a) 2-to-4 decoder figure 3-24
 - (b) 4-to-1 Mux figure 3-19
 - (c) Priority Encoder
 - (d) CMOS inverter
- 4. (15) Minimization
 - (a) Identify the prime implicants and the essential implicants.
 - (b) Simplify in Sums of Products form: $F(X, Y, Z) = \sum m(0, 2, 5, 6, 7)$
 - (c) Show how to implement $F(A, B, C) = AB + A\overline{C} + \overline{B}C$ using NAND gates
- 5. (15)
 - (a) Simplify $F(W, X, Y, Z) = \sum m(0, 1, 4, 5, 7, 10, 14, 15)$ with don't care conditions $d(W, X, Y, Z) = \sum m(2, 6, 9, 11, 13)$.
 - (b) Simplify in Products of Sums form:
- 6. Show how to construct a 16-to-1 line multiplexer from five 4-to-1 line multiplexers
- 7. Analyze the CMOS Circuit
- 8. Construct a quad 9-to-1-line multiplexer with four single 8-to-1-line multiplexers and one quadruple 2-to-1-line multiplexer. The multiplexers should be interconnected and inputs labeled so that the selection codes 0000 through 1000 can be directly applied without added logic.
- 9. Test 2
- 10. Since Test 2
 - Memory
 - Block diagrams etc
 - VHDL / Xilinx
 - PLA, PALs, ROMS