
CSCE 311

Spring 2017

Project # 3

Assigned: March 22, 2017

Due: April 11, 2017 (see due date/time in Dropbox)

Objective: To implement RESOURCES project (chapter 9) in the OSP2 simulator to

further your understanding of resource management. You are required to implement the

deadlock detection algorithm (see section 7.6 of the Silbershatz text) for managing

resources to detect deadlocks and recover when deadlocks are discovered.

Required to turn in: Follow all directions regarding hand-in procedures. Points will be

deducted if you do not follow directions precisely. You must submit an electronic copy of

the *.java files that comprise your solution (or your best try) via dropbox. Late

assignments will not be accepted. You must document your code and provide a one-page

explanation of how you accomplished the assignment (or what you have currently and

why you could not complete). You should describe your use, creation, and manipulation

of data structures to accomplish the assignment.

Building and executing the simulation

Download the archive file containing the files for this project.

For unix or linix or Mac: If you are using a unix or linix machine then you will

probably want to download the tar file: Resources.tar. Download the archive and extract

the files using the command tar -xvf Resources.tar

For a windows box: If you are using a windows box, then you will probably be happier

with a zipped folder: Resources.zip. Download the archive and then extract the files by

right-clicking on the file and selecting the "extract all…" option from the popup menu.

You should have extracted the following files:

Resources/Demo.jar

Resources/Makefile

Resources/Misc

Resources/OSP.jar

Resources/ResourceCB.java

Resources/ResourceTable.java

Resources/RRB.java

Resources/Misc/params.osp

Resources/Misc/wgui.rdl

As per the discussion in the OSP2 text, Makefile is for use in unix and linix systems.

The demo file Demo.jar is a compiled executable. The only files you should have to

modify are ResourceCB.java, ResourceTable.java, and RRB.java.

Modifying the other files will probably "break" OSP2.

Compile the program using the appropriate command for your environment

(unix/linix/windows).

(unix) javac –g –classpath .:OSP.jar: -d . *.java

(windows) javac –g –classpath .;OSP.jar; -d . *.java

 This will create an executable called OSP. Run the simulator with the following

command:
java –classpath .;OSP.jar osp.OSP

Resource Management in OSP

There are three classes involved in resource management that have methods that you are

required to implement:

ResourceTable – (section 9.4 page 156) this is by far the easiest class. All you need to

do is implement the constructor. For the purposes of this project, all you need do is call

super().

RRB – (section 9.5 pages157-160) this is a little more involved than the ResourceTable

class, but not much more. You must implement:

 1. RRB() - Simply call super() with the same arguments as RRB(). See page 158

of OSP2 text.

2. do_grant() – this method simply takes care of bookkeeping. In particular, you

should update the values of current resources and available resources to reflect the

granting of a resource request. How do you do this?

a) use getResource()(page 159) to retrieve the ResourceCB object. This

object is the resource for which the request was issued.

b) calculate the new value of Available for this resource by subtracting the

quantity requested (use getQuantity()) from the amount available (use

getAvailable())

c) update Available to the amount you calculated in step b using

setAvailable().

d) calculate the new value of Allocated similarly to what you did in step b

using getAllocated() and getQuantity(). See page 159 for the arguments to

these methods.

e) update Allocated to the amount you calculated in step d using

setAllocated().

f) use setStatus() to set the status of the RRB to Granted.

g) finally use notifyThreads() to resume the thread that was waiting on this

RRB.

ResourceCB – (section 9.6 pages 160-166) Ok, this is the tough one. Start by stocking up

on your favorite caffeinated beverage. You will need it. Actually there are only 4

methods (not including the constructor and init()) that you are required to implement and

one of them will be trivial and the other three won’t be so bad. However, since we are

doing deadlock detection, you will have to also implement the detection algorithm.

Carefully read the description of the ResourceCB class starting on page 160. Pay

particular attention to the discussion in the 2nd, 3rd, and 4th paragraphs on page 160 that

describe the need for a data structure like an array of hash tables instead of the 2D tables

that we used for the Banker’s algorithm in class. Since you may not have used hash tables

before I will tell you how to create and access this data structure. Use the declaration:
private static Hashtable<ThreadCB,RRB> threadRRBTable=new Hashtable<ThreadCB,RRB>();

to create the hashtable for this project. You will also need to have a null rrb object as a

place holder. Use the declaration:
 private static RRB nullRRB = new RRB(null,null,0);

The ResourceCB class in OSP contains a constructor, init() as well as four methods that

you are required to implement:

ResourceCB() – To implement this constructor, simply call super() with the same

argument that ResourceCB is invoked with.

init() – This method is called by the simulator before the simulation begins. You can

use this method to initialize any data structures that you have defined. You can leave the

body of this method empty if you do not require data structure initialization.

do_acquire() – Carefully read the description of this method on pages 161-162.

This method is called by OSP2 to simulate a request for resources by a thread. The first

thing you will need to do is to get the thread that is making the request. This is the

currently executing thread. You can get it by retrieving the current task through the

PTBR and then retrieving the task’s current thread:

The page table base register (PTBR) points to the page table of the current thread.

We can use this information to figure out which thread is running. The PTBR is

contained in the memory management unit (MMU)

a. The call MMU.getPTBR() returns the page table of the current thread.

Note: if no thread is running then this call will return null.

b. Applying the method getTask() to the page table returns the task that

owns the thread

c. Applying the method getCurrentThread() to the task returns the current

thread

d. Altogether: MMU.getPTBR().getTask().getCurrentThread()

e. If you attempt the statement in step d) you had better put it in a try-

catch construct to catch the potential NullPointerException

Next, verify that the quantity of resource being acquired + the amount allocated do not

exceed the total amount in the system (use methods getAllocated() (page 164)& getTotal()

(page 163)). If this test fails then return null.

Recall that we are using a hashtable to keep track of resource requests for threads. If the

requesting thread is not currently in the hashtable, then add it to the hashtable. Check if it

is in the hashtable using the method threadRRBTable.containsKey(t) where t

is the requesting thread. Place it in the hashtable if necessary using the method

threadRRBTable.put(t,nullRRB) where t is the requesting thread and

nullRRB is the null RRB we declared in the beginning of this class. Next create an

RRB object using the RRB constructor and the arguments: requesting thread, the current

ResourceCB object, and quantity, the argument to the do_acquire().

Next, check if the requested amount is available. If so, then grant the request by invoking

grant() and exiting. Otherwise, check the status of the thread. If it is NOT

ThreadWaiting then change the RRB object status to Suspended and suspend the

thread with the RRB object as the argument to the suspend method. Finally return the

RRB object.

do_release() – This method is called by OSP2 to simulate a thread relinquishing

resource. The formal argument to this method is the quantity of instances of that resource

to be released. Again, you must first get the current thread (same as for do_acquire()).

Then retrieve the quantity of the resource type in question that is currently allocated to

this thread. Make sure that you do not try to release more than what is currently allocated

to this thread. Update the amount left allocated to the thread after subtracting amount

being released using setAllocated(). Update the new amount of this resource type

available using setAvailable().

You should also check to see if any suspended RRBs can now be satisfied. You can get

these out of the hashtable using the following code:
Collection c = threadRRBTable.values();

Then create an iterator and iterate though this collection checking each RRB in turn to

see if the request can now be granted. Simply check if the requested amount is currently

available. If it can be granted, then set the status of the RRB to Granted using setStatus().

Verify that the thread status is not ThreadKill and grant the request by invoking grant().

Update the hashtable entry for this thread and RRB via threadRRBTable.put(t,nullRRB),

where t is the thread.

do_deadlockDetection() – since we are focusing on deadlock detection in this

project you will need to identify those threads that are in a deadlock and then perform

deadlock recovery to break the deadlock. There are three main goals that should be

accomplished in this method:

1) identify the threads involved in deadlocks

2) deadlock recovery

3) return the list of deadlocked threads

Let’s start first by discussing deadlock recovery (step 2) since this will affect how you

implement the functionality for identifying those threads involved in the deadlock (step

1). As per the discussion in the OSP manual, deadlock recovery is done by killing some

or all of the threads involved in a deadlock. Be aware that OSP will check each time you

kill a thread to see if it was involved in a deadlock. If you kill a thread and the deadlock

is resolved, OSP will complain if you continue killing threads. Consequently, after you

kill a deadlocked thread, you should again run your deadlock identification algorithm

(step 1 from above) to see if any threads are still deadlocked. This suggests two things: 1)

step 1 should be a separate method so that it is easy to call from different places in this

method and 2) that deadlock recovery (step 2) be set up as a loop where if there are

deadlocked threads, you kill a thread, then identify threads that are still deadlocked (step

1) and repeat until there are no more deadlocked threads.

Step 3 simply entails you returning original vector of deadlocked threads that you found

in Step 1.

Identifying threads involved in deadlock

So how do you identify the threads involved in a deadlock (step 1)? See section 7.6 of the

Silberschatz book for the outlines of the deadlock detection algorithm. Notice that it is

very similar to the Banker’s Algorithm. Start by copying the available amount of each

resource type into a Work[] array BEFORE you start making changes to these values.

Algorithm for identifying deadlocked threads:

As in the bankers algorithm you loop through the current threads looking for an order in

which you could execute the threads. When you are done, if there are any threads that

could not be executed, then those are the deadlocked threads. Unlike the Banker’s

Algorithm where we only cared whether we could execute all of the threads or not, here

we need to keep track of which threads we are unable to execute. We need a data

structure analogous to Finish[] array in section 7.6. You have been keeping track of

current threads with the hashtable threadRRBTable. Unfortunately, a hashtable is not a

practical data structure for iteration. The solution is to create an enumeration of threads

with the threads extracted from the hashtable. This can be accomplished by declaring an

Enumeration of keys from the hashtable

 Enumeration keys = threadRRBTable.keys()

Then loop through the enumeration looking for a thread to see if it can finish. Note: If the

rrb for a thread has quantity of zero, then the thread CAN NOT be in a deadlock. These

threads should be marked as “finished”. Threads whose request quantity is less than or

equal to available (Work[])should also be marked as “finished”.

Finally, the main body of the algorithm consists of looping through the enumeration of

threads looking for a thread such that REQUEST is <= Work[].

You need to keep looking through the enumeration of threads until either the enumeration

is empty, in which case there is no deadlock or you can not find any other threads from

which REQUEST <= Work[] in which case there is a deadlock and those threads with

REQUEST > Work[] are deadlocked. You should then create a vector containing those

threads that are participating in the deadlock. Return this vector when you exit this

method. In any case, don’t forget to restore the original values of the available amount of

each resource type before returning from this method.

do_giveupResources() – This method is called by OSP2 to cause all of the

resources held by the thread specified by the formal argument thread to be released.

After releasing all of the resources, you should attempt to satisfy pending requests as was

done for do_release(). Try to satisfy pending requests for all resource types that

were released for the process. Grant those that can be granted. Simply check if the

requested amount is currently available. Obviously, you should not try to satisfy a request

by the thread for which you have just given up resources since it is either being killed

or terminated. One way to avoid this is to remove the thread from the hashtable

AFTER you have released all of its resources and BEFORE your start looking for pending

RRBs. Suggestion: since both do_release() and do_giveupResources() try to

satisfy pending requests after freeing up resources, you should probably implement that

functionality as a separate method and have them call that method rather than duplicating

that code.

How do I get an A on this assignment?
This is very simple to do. Implement the methods as outlined above using the banker’s

algorithm to avoid deadlocks and hand in everything specified in the "Required to turn

in" section on time. Your solution must deal with resource allocation and deallocation

while avoiding deadlocks. It should also be well documented so the grader can

understand your implementation decisions. For an example of how a correct solution

might look, run Demo.jar selecting deadlock avoidance (as opposed to deadlock

detection). Your solution should complete successfully with no warnings or aborts of the

OSP2 simulator.

Turning in Your Assignment via dropbox
When you are satisfied that your implementation of the RESOURCES project works, use

dropbox to submit your project. Use dropbox to submit the following files:

1. ResourceCB.java (deadlock avoidance using the banker’s algorithm)

2. ResourceTable.java

3. RRB.java

4. One page write-up of how you accomplished the assignment (or what you have

currently and why you could not complete).

