1 Selection

The objective of the selection problem is to find the kth smallest element in an array.

- **Input**: An array A of n distinct comparable elements, and an integer k.
- **Output**: An element a from A that is greater than exactly $k - 1$ other elements of A.

For example:
- $k = 1$: smallest
- $k = n$: largest
- $k = \lfloor n/2 \rfloor$: median

The output a is called the kth order statistic for A.

2 Selection via sorting

One trivial way to solve the selection problem is to sort the entire array:

```plaintext
SELECTIONViaSORTING(A, k)
HEAPSORT(A)
return A[k]
```

This takes $\Theta(n \log n)$ time. Can we do better?

3 QuickSelect

We can adapt QuickSort for the selection problem.

Key idea: Only recur on the left side or the right, not both.

```plaintext
QUICKSELECT(A, p, r, k)
if $p = r$ then
    return $A[p]$
end if
$q \leftarrow \text{RANDOMIZEDPARTITION}(A, p, r)$
$m \leftarrow q - p + 1$
if $k = m$ then
    return $A[q]$
else if $k < m$ then
    return QUICKSELECT($A, p, q - 1, k$
else
    return QUICKSELECT($A, q + 1, r, k - m$
end if
```
4 QuickSelect Analysis

Worst case: $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$ (just like QuickSort)

Worst case expected:

$$E(n) = \Theta(n) + \frac{1}{n} \sum_{q=1}^{n} \max \{ E(q), E(n-q-1) \}$$

$$= \Theta(n) + \frac{1}{n} \sum_{q=1}^{\lfloor n/2 \rfloor - 1} E(n-q-1) + \frac{1}{n} \sum_{q=\lfloor n/2 \rfloor}^{n} E(q)$$

$$= \Theta(n) + \frac{2}{n} \sum_{q=\lfloor n/2 \rfloor}^{n} E(q)$$

Show by substitution that $E(n) = \Theta(n)$. (CLRS 218–219.)

5 Deterministic Linear Time Selection

If we want to guarantee linear time, we can work harder to choose a good pivot, using the “median-of-medians”.

Algorithm:

- **Divide** the array into groups of 5 elements. (The last group may have less than 5.)
- **Find the median** of each group. (Sort, then return the third element.)
- Recursively **find the median** of these $\lceil n/5 \rceil$ medians.
- **Partition** the original array using the median-of-medians as the pivot.
- **Continue** as in QuickSelect. (Stop, or recur on the left or right side as appropriate.)

6 Analysis: Part 1

Key question: How many elements are less than the pivot?

Answer: We know for sure that these elements are less than the pivot:

- The medians of roughly half of the groups.
- Within each of those groups, two other elements.

So the total number of elements less than the pivot is:

$$3 \left(\left\lceil \frac{1}{2} \left\lfloor n/5 \right\rfloor \right\rceil - 2 \right) \geq \frac{3n}{10} - 6$$
The number of groups is $\lceil n/5 \rceil$. The “−2” comes from the fact that there are two groups for which we might have less than three elements less than the pivot:

1. The group containing the pivot itself.
2. The last group, which might not have 5 elements.

7 Analysis: Part 2

Key question: How many elements are greater than the pivot?

Answer: We know for sure that these elements are greater than the pivot:

- The medians of roughly half of the groups.
- Within each of those groups, two other elements.

So the total number of elements greater than the pivot is:

$$3 \left(\frac{1}{2} \left\lceil \frac{n}{5} \right\rceil - 2 \right) \geq \frac{3n}{10} - 6$$

8 Analysis: Part 3

The worst case run time is:

$$T(n) = T(n/5) + T(7n/10 + 6) + \Theta(n)$$

Show $T(n) \leq cn$ by substitution:

$$T(n) \leq \frac{cn}{5} + \frac{7cn}{10} + 6c + an$$
$$\leq \frac{9cn}{10} + 6c + an$$
$$\leq cn + \left(-\frac{cn}{10} + 6c + an \right)$$
$$\leq cn \quad [c \geq 20a, n \geq 120]$$

Therefore, $T(n) = O(n)$.

9 Analysis: Part 4

For the last step on the previous slide, we need:

$$-\frac{cn}{10} + 6c + an \leq 0$$

Solve for c, and choose a sufficiently large n:

$$c \geq 10a \frac{n}{n - 60} \quad [n > 60]$$
$$\geq 20a \quad [n > 120]$$
10 What’s so special about 5?

The first step of the algorithm — “Divide into groups of 5” — comes out of nowhere. Why the mysterious value 5?

Intuition: We can show that for this recurrence:

\[T(n) = T(\alpha n) + T(\beta n) + \Theta(n), \]

if we have \(\alpha + \beta < 1 \),

then the solution is

\[T(n) = \Theta(n). \]

In this case, we have (roughly) \(\alpha + \beta = 1/5 + 7/10 = 9/10 < 1 \).

(We need to perform a constant fraction less than \(n \) in recursive calls.)