1 Selection

The objective of the selection problem is to find the \(k \)th smallest element in an array.

- **Input:** An array \(A \) of \(n \) distinct comparable elements, and an integer \(k \).
- **Output:** An element \(a \) from \(A \) that is greater than exactly \(k - 1 \) other elements of \(A \).

For example:
- \(k = 1 \): smallest
- \(k = n \): largest
- \(k = \lfloor n/2 \rfloor \): median

The output \(a \) is called the \(k \)th order statistic for \(A \).

2 Selection via sorting

One trivial way to solve the selection problem is to sort the entire array:

```plaintext
SELECTIONVIASORTING(A,k)
    HEAPSORT(A)
    return A[k]
```

This takes \(\Theta(n \log n) \) time. Can we do better?

3 QuickSelect

We can adapt QuickSort for the selection problem.

Key idea: Only recurse on the left side or the right, not both.
QUICKSELECT(A, p, r, k)
if $p = r$ then
 return $A[p]$
end if
$q \leftarrow \text{RANDOMIZEDPARTITION}(A, p, r)$
$m \leftarrow q - p + 1$
if $k = m$ then
 return $A[q]$
else if $k < m$ then
 return quickselect(A, $p + 1$, r, $k - m$)
else
 return quickselect(A, $q - 1$, $p - 1$, k)
end if

4 QuickSelect Analysis

Worst case: $T(n) = T(n-1) + \Theta(n) = \Theta(n^2)$ (just like QuickSort)

Worst case expected:

$$E(n) = \Theta(n) + \frac{1}{n} \sum_{q=1}^{n} \max \{ E(q), E(n-q-1) \}$$

$$= \Theta(n) + \frac{1}{n} \sum_{q=1}^{\lfloor n/2 \rfloor - 1} E(n-q-1) + \frac{1}{n} \sum_{q=\lfloor n/2 \rfloor}^{n} E(q)$$

$$= \Theta(n) + \frac{2}{n} \sum_{q=\lfloor n/2 \rfloor}^{n} E(q)$$

Show by substitution that $E(n) = \Theta(n)$. (CLRS 218–219.)

5 Deterministic Linear Time Selection

If we want to guarantee linear time, we can work harder to choose a good pivot, using the “median-of-medians”.

Algorithm:

- **Divide** the array into groups of 5 elements. (The last group may have less than 5.)
- **Find the median** of each group. (Sort, then return the third element.)
- Recursively **find the median** of these $\lceil n/5 \rceil$ medians.
- **Partition** the original array using the median-of-medians as the pivot.
- **Continue** as in QuickSelect. (Stop, or recurse on the left or right side as appropriate.)
6 Analysis: Part 1

Key question: How many elements are less than the pivot?

Answer: We know for sure that these elements are less than the pivot:

- The medians of roughly half of the groups.
- Within each of those groups, two other elements.

So the total number of elements less than the pivot is:

$$3 \left(\left\lfloor \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rfloor - 2 \right) \geq \frac{3n}{10} - 6$$

The number of groups is $\left\lceil \frac{n}{5} \right\rceil$. The “−2” comes from the fact that there are two groups for which we might have less than three elements less than the pivot:

1. The group containing the pivot itself.
2. The last group, which might not have 5 elements.

7 Analysis: Part 2

Key question: How many elements are greater than the pivot?

Answer: We know for sure that these elements are greater than the pivot:

- The medians of roughly half of the groups.
- Within each of those groups, two other elements.

So the total number of elements greater than the pivot is:

$$3 \left(\left\lfloor \frac{1}{2} \left\lceil \frac{n}{5} \right\rceil \right\rfloor - 2 \right) \geq \frac{3n}{10} - 6$$

8 Analysis: Part 3

The worst case run time is:

$$T(n) = T(n/5) + T(7n/10 + 6) + \Theta(n)$$

Show $T(n) \leq cn$ by substitution:

$$T(n) \leq \frac{cn}{5} + \frac{7cn}{10} + 6c + an$$
$$\leq \frac{9cn}{10} + 6c + an$$
$$\leq cn + \left(-\frac{cn}{10} + 6c + an \right)$$
$$\leq cn \quad [c \geq 20a, n \geq 120]$$
Therefore, \(T(n) = O(n) \).

9 Analysis: Part 4

For the last step on the previous slide, we need:

\[-cn/10 + 6c + an \leq 0\]

Solve for \(c \), and choose a sufficiently large \(n \):

\[
\begin{align*}
 c & \geq 10a \frac{n}{n - 60} & [n > 60] \\
 & \geq 20a & [n > 120]
\end{align*}
\]

10 What’s so special about 5?

The first step of the algorithm — “Divide into groups of 5” — comes out of nowhere. Why the mysterious value 5?

Intuition: We can show that for this recurrence:

\[T(n) = T(\alpha n) + T(\beta n) + \Theta(n), \]

if we have

\[\alpha + \beta < 1, \]

then the solution is

\[T(n) = \Theta(n). \]

In this case, we have (roughly) \(\alpha + \beta = 1/5 + 7/10 = 9/10 < 1. \)

(We need to perform a **constant fraction** less than \(n \) in recursive calls.)