1 Can we sort by comparisons faster than $\Theta(n \log n)$? CLRS 8.1

We have seen two sorting algorithms that run in $\Theta(n \log n)$ time in the worst case. Can we do any better?

If the algorithm is based on comparisons between array elements, then the answer is: No.

(Chapter 8 describes a few sorting algorithms not based on comparisons that can be faster.)

2 Decision trees

Given a comparison-based algorithm and an input size n, we can build a decision tree.

- Internal nodes are labeled with comparisons.
- Edges show the algorithm’s progress based on the results of each comparison.
- Leaves represent final permutations of the elements.
- Other algorithm details are not shown in the decision tree.

Key idea: The height of the tree gives a lower bound on the run time of the algorithm.

3 Example: Sorting for $n = 3$

```
  a1 < a2?
  /    \
a2 < a3?      a1 < a3?
 |        |        |
(a1, a2, a3)  (a2, a1, a3)  (a2, a3, a1)
```

4 How short can a sorting decision tree be?

In any decision tree that correctly sorts n distinct elements:

- There must be at least $n!$ leaves, one for each permutation of the n elements.
- A binary tree with height h has at most 2^h leaves.
Therefore $n! \leq 2^h$, and we have

\[
T(n) \geq h \geq \log n! = \log \left(\prod_{i=1}^{n} i \right) \\
= \sum_{i=1}^{n} \log i \geq \sum_{i=\lceil n/2 \rceil}^{n} \log i \\
\geq \sum_{i=\lceil n/2 \rceil}^{n} \log \lceil n/2 \rceil \geq (n/2) \log(n/2) \\
= \Omega(n \log n)
\]

Therefore: Any correct comparison-based sorting algorithm takes $\Omega(n \log n)$ time.