1 What is an algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, that is, for obtaining a required output for any legitimate input in a finite amount of time.

\[
\text{instance} \rightarrow \text{algorithm} \rightarrow \text{output}
\]

Analysis of algorithms is the quantitative study of the performance of algorithms, in terms of their run time, memory usage, or other properties.

2 What is this course about?

Most of the course will blend two parallel goals:

- **Techniques** for analyzing algorithms.
- **Applications** of those techniques to important algorithms and data structures.

3 Models of computation

We can make the idea of sequence of instructions precise by defining a model of computation.

One important early model of computation is the Turing machine which includes:

- A finite, non-empty set of **states** \(Q \).
- A finite, non-empty set of **tape symbols** \(\Gamma \).
- A **blank symbol** \(b \in \Gamma \).
- A finite set of **input symbols** \(\Sigma \).
- A **transition function** \(\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\} \),
- An **initial state** \(q_0 \in Q \) and a set of **final states** \(F \subseteq Q \).

Informally, we can think of a Turing machine as a finite state machine that reads and writes from an infinitely-long strip of tape. The main idea here is that, though the Turing machine model is very powerful and expressive, it is also cumbersome to use — essentially no one describes algorithms in it directly except in college classes on the theory of computation.
4 RAM model

Another, more manageable option:

Random-access machine (RAM) model (informal summary)

- Simple operations (arithmetic, comparison, conditional, etc.) each take the same, constant amount of time.
- Data stored in an infinite array of registers \((0, 1, 2, \ldots)\), each of which can hold \(c \log n\) bits.
 - \(n\) – problem size
 - \(c\) – some constant independent of \(n\)

In most cases, this level of detail is unnecessary for understanding how an algorithm works. However, it’s important to have a formal model behind the scenes; without this, it’s meaningless to try to prove anything about an algorithm or its performance.

5 Example: Sorting

Sorting is a problem is that practically important and useful for illustrating many recurring ideas in algorithms.

- **Input**: A sequence of numbers \(\langle a_1, \ldots, a_n \rangle\).
- **Output**: A reordering of those numbers, denoted \(\langle a'_1, \ldots, a'_n \rangle\), such that

\[
a'_1 \leq a'_2 \leq \cdots \leq a'_n.
\]

Note that the idea of “sorting” is not restricted to just numbers. As long as the elements are drawn from a totally ordered set, then the problem is still well defined. We’ll use numbers through this course because they make the intuition very easy.

6 Example: Insertion sort

\[
\text{INSERTION} \text{SORT}(A)
\]

\[
\begin{align*}
\text{for} & \ j = 2, \ldots, A.\text{length} \ \text{do} \\
& \ k = A[j] \\
& \ i = j - 1 \\
& \ \text{while} \ i > 0 \ \text{and} \ A[i] > k \ \text{do} \\
& \quad A[i + 1] = A[i] \\
& \quad i = i - 1 \\
& \ \text{end while} \\
& \ A[i + 1] = k \\
\end{align*}
\]
Example: Mergesort

\[
\text{MERGE}\text{SORT}(A, \ell, r)
\]
\[
\text{if } \ell < r \text{ then}
\]
\[
m = \lfloor (\ell + r)/2 \rfloor
\]
\[
\text{MERGE}\text{SORT}(A, \ell, m)
\]
\[
\text{MERGE}\text{SORT}(A, m + 1, r)
\]
\[
\text{MERGE}(A, \ell, m, r) \quad // \text{CLRS pg 31}
\]
\[
\text{end if}
\]

// CLRS pg 31