1 What is an algorithm?

An algorithm is a sequence of unambiguous instructions for solving a problem, that is, for obtaining a required output for any legitimate input in a finite amount of time.

\[\text{instance} \rightarrow \text{algorithm} \rightarrow \text{output} \]

Analysis of algorithms is the quantitative study of the performance of algorithms, in terms of their run time, memory usage, or other properties.

2 What is this course about?

Most of the course will blend two parallel goals:

- Techniques for analyzing algorithms.
- Applications of those techniques to important algorithms and data structures.

3 Models of computation

We can make the idea of sequence of instructions precise by defining a model of computation.

One important early model of computation is the Turing machine which includes:

- A finite, non-empty set of states \(Q \).
- A finite, non-empty set of tape symbols \(\Gamma \).
- A blank symbol \(b \in \Gamma \).
- A finite set of input symbols \(\Sigma \).
- A transition function \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \),
- An initial state \(q_0 \in Q \) and a set of final states \(F \subseteq Q \).
Informally, we can think of a Turing machine as a finite state machine that reads and writes from an infinitely-long strip of tape. The main idea here is that, though the Turing machine model is very powerful and expressive, it is also cumbersome to use — essentially no one describes algorithms in it directly except in college classes on the theory of computation.

4 RAM model

Another, more manageable option:

Random-access machine (RAM) model (informal summary)

- Simple operations (arithmetic, comparison, conditional, etc.) each take the same, constant amount of time.
- Data stored in an infinite array of registers \((0, 1, 2, \ldots)\), each of which can hold \(c \log n\) bits.
 - \(n\) – problem size
 - \(c\) – some constant independent of \(n\)

In most cases, this level of detail is unnecessary for understanding how an algorithm works. However, it’s important to have a formal model behind the scenes; without this, it’s meaningless to try to prove anything about an algorithm or its performance.

5 Example: Sorting

Sorting is a problem that is practically important and useful for illustrating many recurring ideas in algorithms.

- **Input**: A sequence of numbers \(\langle a_1, \ldots, a_n \rangle\).
- **Output**: A reordering of those numbers, denoted \(\langle a'_1, \ldots, a'_n \rangle\), such that
 \[
 a'_1 \leq a'_2 \leq \cdots \leq a'_n.
 \]

Note that the idea of “sorting” is not restricted to just numbers. As long as the elements are drawn from a totally ordered set, then the problem is still well defined. We’ll use numbers through this course because they make the intuition very easy.
6 Example: Insertion sort

\[
\text{INSERTIONSORT}(A) \\
\text{for } j \leftarrow 2, \ldots, A\text{.length do} \\
\quad k \leftarrow A[j] \\
\quad i \leftarrow j - 1 \\
\quad \text{while } i > 0 \text{ and } A[i] > k \text{ do} \\
\quad \quad A[i + 1] \leftarrow A[i] \\
\quad \quad i \leftarrow i - 1 \\
\quad \text{end while} \\
\quad A[i + 1] \leftarrow k \\
\end{for}
\]

7 Example: Mergesort

\[
\text{MERGESORT}(A, \ell, \, r) \\
\text{if } \ell < r \text{ then} \\
\quad m \leftarrow \lfloor (\ell + r)/2 \rfloor \\
\quad \text{MERGESORT}(A, \ell, m) \\
\quad \text{MERGESORT}(A, m + 1, r) \\
\quad \text{MERGE}(A, \ell, m, r) \quad \text{// CLRS pg 31}
\end{if}
\]