1 Heap definition

A max-priority queue is a data structure that supports these operations:

- \textsc{insert}(H, x) — insert element \(x \) into the queue
- \textsc{findMax}(H) — return the largest element in the queue
- \textsc{deleteMax}(H) — remove the largest element from the queue

We will use a data structure called a \textbf{binary max-heap} to implement these.

Everything we say about max-priority queues and max-heaps can be inverted to get min-priority queues and min-heaps.

You have likely seen heaps before. We’re covering them here for a few reasons:

- They’re a good example of how careful analysis can lead to better results than naive analysis.
- We’ll use priority queues in other algorithms later.
- We’ll also study an alternative implementation of the priority queue idea called a Fibonacci heap, and it will be useful to compare its performance to this standard ‘binary heap.’

2 Heap conditions

A heap physically stored as an array (starting at index 1), but we think of it as an essentially complete binary tree, stored top-to-bottom and left-to-right.

- parent\((i) = \lfloor i/2 \rfloor \).
- left\((i) = 2i \).
- right\((i) = 2i + 1 \).

Rule: For every \(i > 1 \), a max-heap has \(A[i] < A[\text{parent}(i)] \).
3 (Partially) Building a heap

Given an array A of length n and an index i, assume that the subtrees rooted at $\text{left}(i)$ and $\text{right}(i)$ are max-heaps, and turn the tree rooted at i into a max-heap:

\begin{verbatim}
MAXHEAPIFY(A, n, i)
 l = left(i)
 r = right(i)
 z = i
 if $l \leq n$ and $A[z] \leq A[l]$ then
 z = l
 end if
 if $r \leq n$ and $A[z] \leq A[r]$ then
 z = r
 end if
 if $z \neq i$ then
 swap $A[i]$ with $A[z]
 MAXHEAPIFY(A, n, z)
 end if
\end{verbatim}

(Idea: Let $A[i]$ ‘sink’ as far as it needs to.)

4 MaxHeapify analysis

Let h denote the height of the tree rooted at i.

The time for MAXHEAPIFY at i is $\Theta(h)$.

5 Building a heap

We can iterate this process to turn an unordered array into a heap.

\begin{verbatim}
BUILDMAXHEAP(A, n)
 for $i = \lfloor n/2 \rfloor, \ldots, 1$ do
 MAXHEAPIFY(A, n, i)
 end for
\end{verbatim}

Comments:

- The leaves (from $\lfloor n/2 \rfloor$ to n) are trivially heaps already. No need to MAXHEAPIFY them.
- Invariant: At the start of iteration i, each node $i + 1, i + 2, \ldots, n$ is the root of a heap.

6 BuildMaxHeap analysis: Trivial bound

$$T(n) = \sum_{i=1}^{\lfloor n/2 \rfloor} O(\lg n) = O(n \lg n)$$
7 BuildMaxHeap analysis: A better bound

\[T(n) = \sum_{h=0}^{\lfloor \log_2 n \rfloor} \left\lceil \frac{n}{2^h+1} \right\rceil O(h) \]

\[\leq cn \sum_{h=0}^{\lfloor \log_2 n \rfloor} \frac{h}{2^h} \leq cn \sum_{h=0}^{\infty} \frac{h}{2^h} \]

\[= cn \sum_{h=0}^{\infty} h \left(\frac{1}{2} \right)^h \]

\[= cn \frac{1/2}{(1 - 1/2)^2} = 2cn = O(n) \]

(See CLRS Eq A.8.)

The expression \(\left\lceil \frac{n}{2^h+1} \right\rceil \) tells us the number of nodes in the tree that are roots of subtrees with height \(h \). For example, for \(h = 0 \) there are \(\left\lceil \frac{n}{2} \right\rceil \) leaves. The \(O(h) \) is from our analysis of MAXHEAPIFY.

8 HeapSort

\[\text{HEAPSORT}(A, n) \]

\[\text{BUILDMAXHEAP}(A, n) \]

\[\text{for } i = n, \ldots, 2 \text{ do} \]

\[\text{swap } A[1] \text{ and } A[i] \]

\[\text{MAXHEAPIFY}(A, i - 1, 1) \]

\[\text{end for} \]

9 Priority queue operations

\[\text{INSERT}(H, x) \]

\[n = n + 1 \]

\[H[n] = x \]

\[i = n \]

\[\text{while } i > 1 \text{ and } A[\text{parent}(i)] < A[i] \text{ do} \]

\[\text{swap } A[i] \text{ and } A[\text{parent}(i)] \]

\[i = \text{parent}(i) \]

\[\text{end while} \]

\[\text{FINDMAX}(H) \]

\[\text{return } H[1] \]

\[\text{DELETEMAX}(H) \]

\[H[1] = H[n] \]

\[n = n - 1 \]

\[\text{MAXHEAPIFY}(H, n, 1) \]