1 Heap definition

A **max-priority queue** is a data structure that supports these operations:

- **INSERT**(H, x) — insert element x into the queue
- **FINDMAX**(H) — return the largest element in the queue
- **DELETEMAX**(H) — remove the largest element from the queue

We will use a data structure called a **binary max-heap** to implement these.

Everything we say about max-priority queues and max-heaps can be inverted to get min-priority queues and min-heaps.

You have likely seen heaps before. We're covering them here for a few reasons:

- They're a good example of how careful analysis can lead to better results than naive analysis.
- We'll use priority queues in other algorithms later.
- We'll also study an alternative implementation of the priority queue idea called a Fibonacci heap, and it will be useful to compare its performance to this standard 'binary heap.'

2 Heap conditions

A heap physically stored as an array (starting at index 1), but we think of it as an essentially complete binary tree, stored top-to-bottom and left-to-right.

- parent(i) = $\lfloor i/2 \rfloor$.
- left(i) = $2i$.
- right(i) = $2i + 1$.

Rule: For every $i > 1$, a max-heap has $A[i] < A[\text{parent}(i)]$.
3 (Partially) Building a heap

Given an array A of length n and an index i, assume that the subtrees rooted at $\text{left}(i)$ and $\text{right}(i)$ are max-heaps, and turn the tree rooted at i into a max-heap:

$$\text{MAXHEAPIFY}(A, n, i)$$

\begin{verbatim}
 l ← left(i)
 r ← right(i)
 z ← i
 if $l \leq n$ and $A[z] \leq A[l]$ then
 z ← l
 end if
 if $r \leq n$ and $A[z] \leq A[r]$ then
 z ← r
 end if
 if $z \neq i$ then
 swap $A[i]$ with $A[z]$
 MAXHEAPIFY(A, n, z)
 end if
\end{verbatim}

(Idea: Let $A[i]$ ‘sink’ as far as it needs to.)

4 MaxHeapify analysis

Let h denote the height of the tree rooted at i.

The time for MAXHEAPIFY at i is $\Theta(h)$.

5 Building a heap

We can iterate this process to turn an unordered array into a heap.

$$\text{BUILDMAXHEAP}(A, n)$$

\begin{verbatim}
 for $i ← \lfloor n/2 \rfloor, \ldots, 1$ do
 MAXHEAPIFY(A, n, i)
 end for
\end{verbatim}

Comments:

- The leaves (from $\lceil n/2 \rceil$ to n) are trivially heaps already. No need to MAXHEAPIFY them.
- Invariant: At the start of iteration i, each node $i + 1, i + 2, \ldots, n$ is the root of a heap.

6 BuildMaxHeap analysis: Trivial bound

$$T(n) = \sum_{i=1}^{\lfloor n/2 \rfloor} O(\lg n) = O(n \lg n)$$
7 BuildMaxHeap analysis: A better bound

\[T(n) = \sum_{h=0}^{\lfloor \lg n \rfloor} \left(\left\lceil \frac{n}{2^{h+1}} \right\rceil \right) O(h) \]

\[\leq cn \sum_{h=0}^{\lfloor \lg n \rfloor} \frac{h}{2^h} \leq cn \sum_{h=0}^{\infty} \frac{h}{2^h} \]

\[= cn \sum_{h=0}^{\infty} h \left(\frac{1}{2} \right)^h \]

\[= cn \frac{1/2}{(1-(1/2))^2} = 2cn = O(n) \]

(See CLRS Eq A.8.)

The expression \(\left\lceil \frac{n}{2^h} \right\rceil \) tells us the number of nodes in the tree that are roots of subtrees with height \(h \). For example, for \(h = 0 \) there are \(\left\lfloor \frac{n}{2} \right\rfloor \) leaves. The \(O(h) \) is from our analysis of MAXHEAPIFY.

8 HeapSort

```plaintext
HEAPSORT(A,n)
BUILDMAXHEAP(A,n)
for i ← n, . . . , 2 do
    swap A[1] and A[i]
    MAXHEAPIFY(A,i−1,1)
end for
```

9 Priority queue operations

```plaintext
INSERT(H,x)
n ← n + 1
H[n] ← x
i ← n
while i > 1 and A[parent(i)] < A[i] do
    swap A[i] and A[parent(i)]
    i ← parent(i)
end while

FINDMAX(H)
return H[1]

DELETEMAX(H)
H[1] ← H[n]
n ← n − 1
MAXHEAPIFY(H,n,1)
```