1 Data Structures for Disjoint Sets

Data structures for disjoint sets support these operations:

- \text{MAKESET}(x) — create a new set containing only \(x \).
- \text{UNION}(x, y) — union the set containing \(x \) with the set containing \(y \).
- \text{FIND}(x) — return a unique representative of the set containing \(x \).

For analysis, we consider sequences of \(m \) total operations, of which \(n \) are calls to \text{MAKESET}.

2 Example Application: Connected components of a graph

![Graph Diagram]

(a)

(b)

<table>
<thead>
<tr>
<th>Edge processed</th>
<th>Collection of disjoint sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>initial sets</td>
<td>{a} {b} {c} {d} {e} {f} {g} {h} {i} {j}</td>
</tr>
<tr>
<td>(b,d)</td>
<td>{a} {b,d} {c} {e} {f} {g} {h} {i} {j}</td>
</tr>
<tr>
<td>(e,g)</td>
<td>{a} {b,d} {c} {e,g} {f} {h} {i} {j}</td>
</tr>
<tr>
<td>(a,c)</td>
<td>{a,c} {b,d} {e,g} {f} {h} {i} {j}</td>
</tr>
<tr>
<td>(h,i)</td>
<td>{a,c} {b,d} {e,g} {f} {h,i} {j}</td>
</tr>
<tr>
<td>(a,b)</td>
<td>{a,b,c,d} {e,g} {f} {h,i} {j}</td>
</tr>
<tr>
<td>(e,f)</td>
<td>{a,b,c,d} {e,f,g} {h,i} {j}</td>
</tr>
<tr>
<td>(b,c)</td>
<td>{a,b,c,d} {e,f,g} {h,i} {j}</td>
</tr>
</tbody>
</table>

Pseudocode: CLRS 563

3 A simple option: Linked lists

We can implement these operations using a linked list to represent each set:
4 Weighted unions

For each UNION, we need to update the pointers on each element of one of the two lists.

- Without this step, we could not do FIND in $O(1)$ time.
- If we always append the shorter list to the longer one, then the entire sequence of operations takes $O(m + n \lg n)$ time.

5 Disjoint Set Forests

We can do better than the linked list approach if we use trees instead of lists.

- Each element has a pointer to its parent.
- Elements do not keep track of their children.
- Root elements are their own parents.
- The root of each tree is its representative.
6 Disjoint set operations (Simple version)

MAKESET(a)
- a. parent ← a

FIND(a)
- if a ≠ a. parent then
 - return FIND(a. parent)
- else
 - return a
end if

UNION(a, b)
- FIND(a). parent ← FIND(b)

7 Speeding things up

To improve upon the linked list version, we need two enhancements to this basic idea.

- **Union-by-rank** — Each node keeps an upper bound, called its rank, on the height of its subtree. For UNION, make the lower-ranked tree a child of the higher-ranked one.
- **Path compression** — During each FIND, rewire the parent pointers to go directly to the root.

8 Disjoint set operations (Real version)

MAKESET(a)
- a. parent ← a
- a. rank ← 0

FIND(a)
- if a ≠ a. parent then
 - a. parent ← FIND(a. parent)
end if
- return a. parent

9 Disjoint set operations (Real version)

UNION(a, b)
- x ← FIND(a)
- y ← FIND(b)
- if x. rank > y. rank then
 - y. parent ← x
- else if x. rank < y. rank then
 - x. parent ← y
- else
 - x. parent ← y
 - y. rank ← y. rank + 1
end if
10 Analysis

In a disjoint set forest with union-by-rank and path compression, any sequence of \(m \) operations, including \(n \) MAKESETS, takes time \(O(m\alpha(n)) \), in which \(\alpha(n) \) is the inverse Ackermann function. (Details: CLRS 21.4)

If \(n < 16^{512} \approx 10^{616} \) then \(\alpha(n) \leq 4 \).

(Note: There are only about \(10^{80} \) atoms in the observable universe.)