1 Introduction

Single-source shortest path problem:
- Input: A weighted directed graph G with no negative weights, stored as adjacency lists, and a start vertex s in G.
- Output: For each vertex v in G, a path in G from s to v that minimizes the total weight of edges crossed.

Key idea: Subpaths of shortest paths are also shortest paths.
- If $v_i \rightsquigarrow v_k \rightsquigarrow v_j$ is a shortest path from v_i to v_j,
- then $v_i \rightsquigarrow v_k$ is a shortest path from v_i to v_k,
- and $v_k \rightsquigarrow v_j$ is a shortest path from v_k to v_j.

2 Dijkstra’s algorithm

For each vertex v, keep track of:
- $v.d$: the length of the shortest known path from s to v
- $v.\pi$: a predecessor of vertex v on that path

Use a priority queue Q of vertices, keyed by their d values.
- Start with all nodes in Q. Start with each $v.d = \infty$, except at the start node.
- For the node v with the lowest d, consider each edge $v \rightarrow u$.
- If $v.d + w(v, u) < u.d$, update $u.d$ and $u.\pi$, then DECREASE_KEY on u.

3 Analysis of Dijkstra’s

With a simple array for the priority queue:
- Initialization: $O(V)$
- V EXTRACT_MIN operations: $O(V^2)$
- E DECREASE_KEY operations: $O(E)$
- Total: \(T(n) = O(V) + O(V^2) + O(E) = O(V^2) \)

With a binary heap:
- Initialization: (BUILD_MIN_HEAP): \(O(V) \)
- \(V \) EXTRACT_MIN operations: \(O(V \log V) \)
- \(E \) DECREASE_KEY operations: \(O(E \log V) \)
- Total: \(T(n) = O(V) + O(V \log V) + O(E \log V) = O(E \log V) \)

With a Fibonacci heap:
- Initialization (\(V \) INSERT operations): \(O(V) \)
- \(V \) EXTRACT_MIN operations: \(O(V \log V) \)
- \(E \) DECREASE_KEY operations: \(O(E) \)
- Total: \(T(n) = O(V) + O(V \log V) + O(E) = O(V \log V) + O(E) \)

4 **Shortest path trees**
The predecessor pointers form a **shortest path tree**.

5 **Be careful about negative-weight edges!**
Recall that we assumed that no edges have negative weights. What happens if this assumption is violated?
- Dijkstra’s algorithm may give incorrect results. When?
- The shortest path may not even be well-defined. When?

6 **Bellman-Ford algorithm**
For negative weights, use the Bellman-Ford algorithm instead.
BellmanFord(G, w, s)

for $v \in G.V$ do
 $v.d = \infty$
 $v.\pi = \text{NIL}$
end for

for $i = 1, \ldots, |G.V| - 1$ do
 for each edge (u, v) in $G.E$ do
 if $u.d + w(u, v) < v.d$ then
 $v.d = u.d + w(u, v)$
 $v.\pi = u$
 end if
 end for
end for

for each edge (u, v) in $G.E$ do
 if $u.d + w(u, v) < v.d$ then
 return "Negative weight cycle found."
 end if
end for