
csce750 — Analysis of Algorithms
Fall 2019 — Lecture Notes: Amortized Analysis

This document contains slides from the lecture, formatted to be suitable for printing or individ-
ual reading, and with some supplemental explanations added. It is intended as a supplement
to, rather than a replacement for, the lectures themselves — you should not expect the notes to
be self-contained or complete on their own.

1 Introduction
CLRS 17

Amortized analysis is a technique for measuring the time needed to perform a sequence of opera-
tions on a data structure.

Your textbook describes three overlapping methods of amortized analysis:

• Aggregate method: Sum the total work across any sequence of n operations, and divide by
n.

• Accounting method: Add extra costs to early, less expensive operations, to “prepay” for
later, more expensive operations.

• Potential method: Define a “potential function” on the complete data structure, and sum
the actual cost with the change in potential.

We will focus only on the potential method, which is more powerful than the other two.

Key idea: Amortized analysis is intended to capture the idea that “expensive” operations are rare
enough to be acceptable, by analyzing sequences rather than individual operations.

2 Example data structure: Multipop Stack

Consider a stack-like data structure with the following operations:

• PUSH(x)

• POP()

• MULTIPOP(k) – try to pop k times, but stop if stack is empty.

Suppose we implement a data structure with these operations using a linked list.

How long does each operation take?

How long can a sequence of n operations take?

csce750 Lecture Notes: Amortized Analysis 1 of 4



3 Goal of amortized analysis

We want to assign an amortized cost to each operation.

Notation:

• Actual cost of operation i: ci

• Amortized cost of operation i: ĉi

We need to guarantee that, for any sequence of n operations,

n∑

i=1

ĉi ≥

n∑

i=1

ci.

4 Potential method

Let Di ∈ D denote a ‘snapshot’ of the data structure after operation i.

1. Define a potential function Φ that maps data structure snapshots to real numbers.

Φ : D → [0,∞)

Intuition: The potential should represent the amount of “prepayment” that has been done.

• Inexpensive, common operations generally increase the potential.

• Expensive but infrequent operations generally decrease the potential.

5 Valid potential functions

2. Verify that that potential function has these two properties:

• The initial data structure has zero potential:

Φ(D0) = 0

• The potential is never negative:
Φ(Di) ≥ 0 for all i

6 Computing amortized costs

3. Compute the amortized cost of operation i as the actual cost plus the change in potential:

ĉi = ci +Φ(Di)− Φ(Di−1)

csce750 Lecture Notes: Amortized Analysis 2 of 4



7 Why the potential method works

This process is useful because the sum telescopes:

∑

i

ĉi =
n∑

i=1

(ci +Φ(Di)− Φ(Di−1))

=
n∑

i=1

ci +Φ(Dn)− Φ(D0)

=
n∑

i=1

ci +Φ(Dn)

≥

n∑

i=1

ci

For any sequence of operations, the actual cost is less than or equal to the amortized cost.

8 Multipop Stack: Potential method

1. Choose a potential function:

Φ(S) = number of items in stack S

2. Verify that the potential function is valid:

• Do we have Φ(D0) = 0?

• Do we have Φ(Di) ≥ 0 for all i?

3. Compute amortized costs:

• PUSH: ĉi = ci +Φ(Di)− Φ(Di−1) = 1 + 1 = 2 = Θ(1)

• POP: ĉi = ci +Φ(Di)− Φ(Di−1) = 1− 1 = 0 = Θ(1)

• MULTIPOP:

ĉi = ci +Φ(Di)− Φ(Di−1) = min(k, s)−min(k, s) = 0 = Θ(1)

9 Example data structure: Dynamic tables

Consider an array-like data structure with these operations:

• INSERTATEND(k)

• LOOKUP(i)

Implement using arrays, and reallocating a new bigger array when needed.

csce750 Lecture Notes: Amortized Analysis 3 of 4



TABLEINSERT(x)

if T.size = 0 then
allocate T.table with 1 slot
T.size = 1

else if T.num = T.size then
allocate N with 2T.size slots
insert all items from T.table into N

free T.table
T.table = N

T.size = 2T.size
end if
insert x into T.table
T.num = T.num + 1

10 Dynamic tables: Potential method

1. Choose a potential function:
Φ(T ) = 2T.num − T.size

2. Verify that the potential function is valid:

• Do we have Φ(D0) = 0?

• Do we have Φ(Di) ≥ 0 for all i?

3. Compute amortized costs:

• INSERT (elementary): ci +Φ(Di)− Φ(Di−1) = 1 + 2 = 3 = Θ(1).

• INSERT (reallocation):

ĉi = ci +Φ(Di)− Φ(Di−1)

= ni + (2ni − si)− (2ni−1 − si−1)

= ni + 2ni − 2ni−1 − 2ni−1 + ni−1

= 3ni − 3ni−1 = 3 = Θ(1)

• LOOKUP: ci +Φ(Di)− Φ(Di−1) = 1 + 0 = 0 = Θ(1).

One way to understand this potential function is that we want some-
thing

• equal to the table size when the table is full, and

• zero right after the table is reallocated.

That captures the idea that simple insert operations should increase
the potential to ‘save up’ for the expensive reallocate step in the fu-
ture.
When computing the amortized costs, note that si−1 = ni−1 (since
the table was full), and ni − ni−1 = 1 (since we’ve inserted a single
item).

csce750 Lecture Notes: Amortized Analysis 4 of 4


