This assignment covers material from the lectures on Chapters 9–13, preparation for Quiz 5.

(Note: Though this assignment is a bit longer than the previous ones, several of its questions should be fairly straightforward.)

Due: October 25, 11:35am

Pages 219–220: Exercise 9.2-3, 9.2-4
Page 223: Exercise 9.3-3
Page 224: Problems 9.1 (express the run time of each solution in terms of both n and i), 9.2b, 9.2c
Page 261: Exercises 11.2-2, 11.2-5, 11.2-6

Pages 268–269: Exercise 11.3-1

Not in textbook: Write pseudocode for an algorithm that uses a hash table to solve the **element uniqueness** problem:

- **Input:** An array A of n elements.
- **Output:** “True” if the elements of A are all distinct, or “False” if A contains at least one pair of duplicate elements.

How efficient is your algorithm in the worst case? How efficient is it under the simple uniform hashing assumption? Can you design a different algorithm, not based on hashing, that performs better?

Page 289: Exercise 12.1-1

Page 293: Exercises 12.2-1, 12.2-4

Page 314: Exercise 13.2.3, 13.2-4

Not in book: Figure 13.10 shows a treap variant called a min-treap, which differs from the version in the notes only because the priorities from a min-heap rather than a max-heap. Show the result of inserting the key ‘J’, with priority 8, into the min-treap shown in Figure 13.10f. Then show the result of inserting the key ‘J’, with priority 1, into the min-treap shown in Figure 13.10f. In each case, list the rotations performed by the insertion.