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Network Based Prediction of Protein Localization Using Diffusion 

Kernel 
 

Abstract: We present NetLoc, a novel diffusion kernel-based logistic regression algorithm for predicting 

protein subcellular localization using four types of protein networks including physical PPI networks, 

genetic PPI networks, mixed PPI networks, and co-expression networks. NetLoc is applied to yeast protein 

localization prediction. The results showed that protein networks can provide rich information for protein 

localization prediction, achieving AUC score of 0.93. We also showed that networks with high connectivity 

and high percentage of co-localized PPI lead to better prediction performance. Investigation showed that 

NetLoc is a very robust approach which can produce good performance (AUC = 0.75) only using 30% of 

original interactions and capable of producing overall accuracy greater than 0.5 only with 20% annotation 

coverage. Compared to the previous network feature based prediction algorithm which achieved AUC 

scores of 0.49 and 0.52 on the yeast PPI network, NetLoc achieved significantly better overall performance 

with the AUC of 0.74. 
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1. Introduction 
 

Proper protein functions are closely influenced by its precise targeting to designated subcellular 

localization. Computational prediction of protein localizations can greatly help to infer protein functions. 

However, experimental determination of protein localization is costly (Huh et al., 2003, Kumar et al., 2002) 

and has been conducted for a few model organisms such as human, mouse, and yeast. In the past decade, 

many algorithms have been developed for computational prediction of protein subcellular locations 

(Casadio et al., 2008, Emanuelsson et al., 2007, Gardy and Brinkman, 2006, Lee et al., 2006b). These 

algorithms employ a variety of supervised machine learning techniques including neural networks (Shen et 

al., 2007, Emanuelsson et al., 2000), nearest neighbor classifier, Markov models, Bayesian networks (King 

and Guda, 2007, Bulashevska and Eils, 2006), expert rules, meta-classifiers (Jin et al., 2008, Liu et al., 

2007), and the support vector machines (Lorena and de Carvalho, 2007, Hua and Sun, 2001). While 

algorithm variation can tune up the prediction performance, the most critical factor for accurate prediction 

is to integrate different sources of data (information) to infer the subcellular location of a protein. Current 

prediction algorithms can be classified into four categories in terms of the evidences used: 1) algorithms 

based on targeting signals such as PSORT (Nakai and Horton, 1999) and TargetP (Emanuelsson et al., 

2000). However, due to limited experimental targeting signal data and the low coverage of targeting signal 

prediction algorithms, the performances of these approaches are not satisfactory; 2) algorithms considering 

the preference or bias in terms of amino acid composition (Nanni and Lumini, 2008, Yu et al., 2004) or 

protein domains (Chou and Cai, 2004, Shi et al., 2007, Mott et al., 2002) of the proteins in specific 

subcellular compartments. Using composition information has the disadvantage of losing sequence order 

information and is not specific enough for precise prediction; 3) algorithms using localization information 

from other annotated proteins with indirect relationships such as  functional annotation (Szafron et al., 

2004), phylogenetic profiling (Marcotte et al., 2000), homology (Yu et al., 2006), and protein-protein 

interaction (Zhang et al., 2008); 4) algorithms that integrate multiple sources of information. Drawid and 

Gerstein’s (2000) naïve Bayesian predictor uses signal motifs, gene expression patterns, and overall-

sequence properties. Scott et al.’s (2005) Bayesian network predictor  incorporates protein motifs, targeting 

signals, and protein-protein interaction data.  

Recently, protein-protein correlation (PPC) networks have been used for localization prediction.  Lee et 

al. (2008) used  PPI networks for localization prediction by deriving some network-specific features 

combined with other traditional features such as amino acid composition. This method however only used 

limited information (neighbor proteins) of the network. Mintz-Oron et al. (2009)  used metabolic networks  

for localization prediction using constraint-based models. However, it is difficult to incorporate other 
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information into the prediction model. In addition, genetic interaction networks and co-expression networks 

also carry information for localization prediction but remain unexplored.  It is also not clear what 

topological characteristics of networks affect their potential for localization prediction. 

Here we introduced a network (Srinivasan et al., 2007) based protein localization prediction algorithm 

NetLoc by combining diffusion kernel with logistic regression to build a prediction model.  It can be 

applied to a variety of protein-protein correlation networks such as physical or genetic PPI network, and co-

expression network. For all these networks, connected protein pairs tend to be localized in the same 

subcellular compartments. We applied NetLoc to genome wide yeast protein localization using PPI, and 

COEXP networks. In a cross-validation test of predicting known subcellular localization of 3804 proteins 

of Yeast, NetLoc is shown to achieve high accuracy with AUC values ranging from 0.71 to 0.93 for 

cytoplasm, ER, mitochondrion, nucleolus, nucleus, punctuate composite, and vacuole using only physical 

PPI network. We also found that the number of connected components and the co-localization degree of 

protein-pairs strongly affect the prediction performance using the proposed network prediction models. 

 

2. Diffusion kernel-based logistic regression for protein localization prediction 

 
2.1.  Motivation 

 

Most of current protein subcellular localization prediction algorithms are developed using feature based 

methods, which are derived either from protein sequences, or from external functional information such as 

gene ontology or physichemical properties. However, one apparent limitation of these methods is that it is 

not easy to exploit rich network information that naturally appears among proteins. For example, two 

proteins that interact physically will very likely be located within the same organelle. Thus protein-protein 

interaction networks are very informative for protein localization prediction. Another example is the gene 

co-expression network which describes whether two genes/proteins show similar gene expression behaviors 

indicating that they are regulated by the same set of transcription factors. So if two proteins are controlled 

by the same transcription factor, they are most likely to be involved in the same biological pathway and 

then likely to be located within the same compartment. It is thus interesting to explore non-feature based 

prediction algorithms for protein localization prediction. 

Another issue of current protein localization prediction algorithms is the lack of capability to predict 

multi-location proteins. Most researchers explicitly remove these proteins in their data preprocessing steps 

before training their prediction algorithms. An ideal prediction algorithm should be able to output 

probabilistic scores for all locations for each protein so that multi-location proteins can also be predicted 

with different confidence. 

The basic idea of our approach is to utilize the information of protein-protein correlation network 

structure in predicting the localization of un-annotated proteins. This network can be based on protein-

protein interaction, PFAM domain interaction, co-expressed gene interaction, genetic interaction, etc. For 

example, a protein-protein interaction (PPI) network provides a neighborhood structure among the proteins. 

If two proteins interact, they are neighbors of each other. The localizations of its neighbors carry some 

information about the localization of the un-annotated proteins. For example, if most of the neighbors of a 

protein have the same localization, it is more likely that the protein is localized to the same location. A 

confidence or probability about the fact that the protein is localized at a certain location will be determined. 

Finally, the localization labels will be assigned to un-annotated proteins based on some threshold on 

confidence value. 

The confidence of a protein to be localized at a specific location can be determined using two different 

approaches: a) considering only the localization information of the direct neighbors and b) considering the 

localization information of all the proteins in the network. First approach uses Markov Random Field 

(MRF) model to solve the problem. To solve the problem in second approach, diffusion kernel-based 

logistic regression (KLR) model is suitable. Literature shows that the KLR model performs better than 

MRF model (Lee et al., 2006a).  
 

2.2.  KLR logistic regression model 
 

We applied the diffusion kernel-based logistic regression (KLR) model (Lee et al., 2006a) to predict 

protein subcellular localization based on the locations of all other proteins within function linkage 
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networks. This method has the unique advantage of considering the subcellular location labels of all the 

related proteins. It is desirable because signaling peptides that direct proteins to different locations usually 

share some similarity, e.g. the signal peptides targeting outer membrane and plasma membrane share the N-

terminal secretary signals.  

The KLR model based subcellular prediction problem can be formulated as follows (Lee et al., 2006a). 

Given a protein-protein interaction network with N proteins         with   of them         with 

unknown subcellular locations. The task is to assign subcellular location labels to the   unknown proteins 

based on the location labels of known proteins and the protein-protein interaction network.  
 

Let                            ,                                 , and 

                                 ,  

Where        is the kernel function for calculating the distances between two proteins in the network that 

have the same localization. Then the KLR model is given by:  

   
                

                  
                 

which means that the logit of                 , the probability of a protein targeting a location L is 

linear based on the summed distances of proteins targeting to L or other location.  We then have: 

                 
 

                   
 

The parameters       can be estimated using the maximum likelihood estimation (MLE) method. Note 

that here only the annotated proteins are used in the estimation procedure. 

The KLR model has been successfully applied to protein function prediction. However, comparing with 

that application, KLR is especially suitable for protein localization prediction due to the following factors: 

1) there are much fewer locations than protein function categories and the correlation among the subcellular 

locations are much stronger than protein functions; 2) the location is a much broader classification than the 

protein function, which means that the network neighborhood topology may provide sufficient evidence for 

its inference.  

Figure-1 presents the schematic overview of the network-based framework for protein localization 

prediction using the KLR model and protein networks. Diffusion kernel type feature, which is a square 

matrix consists of 1 (interaction) and 0 (no interaction), is developed for each of the networks. Annotation 

matrix, which is an m by n matrix where m is the number of annotated proteins and n is the number of 

localizations, is developed from annotated proteins. KLR model is developed using kernel type features and 

annotation matrix using logistic regression. The KLR model produces confidence for each protein for a 

particular localization. Predictions are made for un-annotated proteins based on some threshold on 

confidence value.  

 

3. Experimental results 

 
3.1.  Dataset preparation 

 

Four protein networks for Saccharomyces cerevisiae are used in the present study: two networks, 

physical PPI network and genetic PPI network, are obtained from BioGRID (Stark et al., 2006), another 

PPI network is from MIPS (Guldener et al., 2006) and one co-expression network is from gene expression 

data of Stanford University (Spellman et al., 1998). In this study, the networks are named as physical PPI 

(PPPI), genetic PPI (GPPI), mixed PPI (MPPI) and COEXP respectively. PPPI contains only physical 

interactions whereas MPPI contains both physical and genetic interactions. MPPI has much less 

interactions due to its latest update is in 2006.  

NetLoc is applied to protein localization prediction of Saccharomyces cerevisiae proteins using the 

localization data of (Huh et al., 2003)  as the basis for annotation. They annotated 4160 proteins with 22 

distinct localizations. Out of these localizations, only 7 of them have more than 100 proteins with known 

subcellular localization annotation. These localizations are cytoplasm, ER (endoplasmic reticulum), 

mitochondrion, nucleolus, nucleus, punctuate composite and vacuole. We evaluated our network prediction 
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model based on these 7 localizations. The original dataset has 4160 unique proteins annotated with 5380 

localizations. Some proteins are annotated with multiple locations. We removed those proteins with 

ambiguous localization and 3923 proteins are left with 5191 localization annotations.  

 

Table 1 Datasets of protein correlation networks  

Property PPPI MPPI GPPI COEXP 

No. of proteins 5477 4319 5252 2004 

Edges 50997 11421  103631  11954 

Average  interactions per node 9.31 2.64  19.73  5.96 

 

Table 1 shows the summary of four network datasets used for this study. In terms of the number of 

interactions, GPPI is the largest network followed by PPPI, COEXP70 and MPPI. On the other hand, in 

terms of proteins, PPPI is the largest network followed by GPPI, MPPI and COEXP70. GPPI is the densest 

graph followed by PPPI, COEXP70 and MPPI.  
 

3.2.  Performance evaluation 
 

In the KLR logistic regression model, for each subcellular localization, all proteins are predicted with a 

confidence level which indicates how likely   a protein belongs to this location. If the threshold is set to 0.5, 

then a protein with higher than 0.5 confidence will be labeled as positive prediction –belonging to this 

location, otherwise, negative. Based on this cutoff value, the resulting prediction algorithm can have 

varying true positive and true negative rate, which makes the comparison difficult. For the present analysis, 

the AUC (Area Under the Curve) score was used to measure the prediction capability of the proposed KLR 

model using network information.  5-fold cross-validation was used to calculate the AUC values for the 

classifiers. 

 

3.3.  Localization prediction using co-expression network 
 

Co-expression network is prepared based on the gene expression patterns of Yeast. We first calculate the 

correlation coefficients of gene pairs in terms of their gene expression levels across several conditions.  

Then we derive a co-expression network given a threshold coefficient value. The motivation to use COEXP 

for localization prediction is that co-expressed proteins are expected to occur within the same subcellular 

compartment.  

Table 2 shows the properties of the co-expression networks derived with different cutoff coefficient.  

For each of the network, we ran our prediction algorithm and evaluated their performance in terms of the 

AUC scores using 5-fold cross-validation.  It can be observed that with larger cutoff threshold, less proteins 

and interactions remain in the network. The best prediction performance is achieved when the correlation 

coefficient threshold is set to 0.7 with considerable coverage of proteins. 

 

Table  2 Co-expression networks and classification accuracy on 7 localizations 

Item COEXP60 COEXP65 COEXP70 COEXP75 COEXP80 

Interactions  58988 26120 11954 4792 1528 

Proteins  4434 3180 2004 1122 567 

Average interactions per protein 13.30 8.21 5.96 4.27 2.69 

AUC 0.6928 0.7273 0.7489 0.7391 0.7444 
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3.4.  Localization prediction using PPPI, GPPI and MPPI networks compared to COEXP 

networks 
 

The prediction performance of NetLoc using individual networks for the selected 7 localizations is 

shown in Figure 2 and Table 3. For PPPI network, AUC varies between 0.71 and 0.93 among which 4 

classes have AUC > 0.80 and 1 class (nucleolus) has AUC > 0.90. For GPPI network, AUC varies between 

0.63 and 0.89 with 3 classes having AUC > 0.80 and none having AUC > 0.90. For MPPI network, AUC 

varies between 0.61 and 0.81 with 1 class (nucleolus) having AUC > 0.80 and none having AUC > 0.90. 

For COEXP70 network, AUC varies between 0.66 and 0.90 with 2 classes having AUC > 0.80 and 1 class 

(nucleolus) having AUC > 0.90. Overall AUC values for PPPI, GPPI, MPPI, and COEXP70 are 0.82, 0.75, 

0.75, and 0.69 respectively.  The prediction performance shows that the PPPI network gives the best result 

for localization prediction. 

The prediction performance of NetLoc is competitive compared to other localization prediction 

algorithms that only use single-protein features. For example, It was reported (Lee et al., 2008) that the 

single protein feature based methods achieved prediction performance of about 0.65 and 0.79 (AUC score) 

without or with feature selection on the same yeast dataset as used here. NetLoc achieved AUC score of 

0.82 for the 7 selected locations and AUC score of 0.85 for all 22 locations. Compared to Lee et al.’s 

(2008) network feature based method which achieved AUC score of 0.49 and 0.52 using two types of PPI 

network features (L and N features) from DIP dataset (Xenarios et al., 2000), NetLoc achieved AUC score 

of 0.74 on the same dataset.  

 
Table  3 Summary of performances with different PPC networks for selected 7 localizations 

 

Network 

Classes/Localizations 

AUC > 

0.60 

AUC > 

0.70 

AUC > 

0.80 

AUC > 

0.90 

PPPI 7 7 4 1 

GPPI 7 4 3 0 

MPPI 7 3 1 0 

COEXP70 7 5 2 1 

 

3.5.  Network topology versus localization prediction 
 

The performance of NetLoc depends on a variety of topological properties of the network such as graph 

connectivity, density of edges, and the co-localization ratio of protein pairs. Table 4 summarizes the 

topological properties of four PPC networks along with their prediction performance.  

 

Table  4 Summary of graphical structure for different protein networks 

Item PPPI GPPI MPPI COEXP70 

Nodes (Proteins) 5477 5252 4319 2004 

Edges (PPIs) 50997 103631 11421 11954 

Node Pairs 15m 13.7m 9m 2m 

Connected Component 1 1 75 136 

Nodes in Largest Comp 5477 5252 4158 1612 

% Nodes in Largest Comp 100% 100% 96.% 80.44% 

Performance 0.8525 0.7851 0.7132 0.6407 
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PPPI and GPPI networks have one connected component. COEXP70 has 136 connected components 

and MPPI has 75 connected components. In COEXP70, the largest component is composed of 80% of total 

nodes and in MPPI, the largest component is composed of 96% of total nodes. The performance on these 

four networks suggests that the number of connected component has direct impact on performance. In 

general, a network with only one connected component performs better than a network with more 

connected components. Another factor that also affects prediction performance is the percentage of PPIs 

going to the same location. While GPPI and MPPI networks have about same percent (30%) of PPIs going 

to the same location (Table 6), but GPPI produces better performance (0.7851) than MPPI (0.7132) because 

GPPI is composed of only one connected component and MPPI is composed of 75 connected components. 

 

3.6.  Effect of network connectivity on NetLoc performance 
 

In order to check the effect of connectivity on NetLoc performance, we removed 5%, 10%, 20%, 50%, 

and 70% edges from the original network and evaluated the resulting performance. For each removal, 10 

random sets of edges (PPIs) are removed, performance is evaluated with the remaining network after each 

set of removal and then the average of 10 performances is taken. Table 5 summarizes the network 

characteristics for PPPI network and the performance with different level of connectivity. It is found that 

the NetLoc performance for selected locations decreases from 0.81 to 0.75 when the percentage of edges 

decreased from 100% to 30%. This proves that networks with more connections/interactions in general 

produces better results in predicting protein localization. This also proves the hypothesis made earlier in 

section 3.5 that network with more connected components deteriorates NetLoc’s performance. 

Table  5 Network characteristics and NetLoc performance with different percent of edges (PPIs) in PPPI 

network. 

 

Edges in the Network 100% 95% 90% 80% 50% 30% 

# of Component 1 40 59 126 512 1027 

# of Nodes in Largest Component  5477 5438 5419 5351 4965 4435 

% Nodes in Largest Component 100.0 99.3 98.9 97.7 90.7 81.0 

Lowest Degree 1 0 0 0 0 0 

Highest Degree 2546 2422 2304 2032 1278 762 

AUC, Selected Locations 0.8116 0.8094 0.8065 0.8026 0.7768 0.7488 

 

3.7.  Annotation coverage on NetLoc performance 
 

A robust model for predicting protein localization based on PPI network should produce better performance 

if new annotations are added to the network. In the following experiments, we tested 1) the effect on 

prediction performance by adding additional annotations; 2) how the annotation coverage affects the 

prediction performance. The experiment is carried out with both low-resolution localization (5 locations) 

and high-resolution localization (22 locations). Five locations in low resolution localization are i) 

cytoplasm, ii) mitochondrion, iii) nucleus (consists of 3 locations: nucleus, nucleolus, and nuclear 

periphery), iv) secretory (consists of 9 locations: cell periphery, early Golgi, endosome, ER, ER to Golgi, 

Golgi, late Golgi, vacuolar membrane, and vacuole), and v) others (consists of 8 locations: actin, bud, bud 

neck, lipid particle, microtubule, peroxisome, punctate composition, and spindle pole) (Blum et al., 2009, 

Lodish et al., 2000).  
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Adding additional annotations improves NetLoc prediction performance 

The annotated proteins are divided into 5 mutually exclusive equal-sized groups (pseudo randomly) i.e., 

20% annotated proteins in each group. Then we left each annotated group out and for the remaining 4 

groups of annotated proteins, we compare their 10-fold cross validation prediction performance with that of 

the network with the left out 20% annotations. For example, one test set is composed of 3042 (80%) 

annotated proteins and 761 (20%) leave-out annotated proteins. We run 10-fold cross-validation on the 

3042 annotated proteins using the PPI network. The number of test proteins for one fold is 304 and the 

number of corresponding annotated proteins is 2738. First, localization predictions for 304 proteins are 

obtained using PPPI network and 2738 annotated proteins. Then, predictions for the same 304 proteins are 

obtained using PPPI network and 3499 (= 2738 + 761) annotated proteins. This procedure is repeated for 

each of the folds. Now we have two sets of prediction for 3042 proteins without and with 20% additional 

annotation. MCC (Matthews Correlation Coefficient) values are evaluated for these two sets of prediction 

by comparing with the actual experimental annotation. The whole procedure is repeated for 5 set of pairs 

and average of 5 sets are taken to eliminate the biasness of any set.  

Figure 3 presents the prediction performance results (MCC) for high-resolution localizations before and 

after adding new annotations. It is clear that adding new annotations does improve the performance for all 

locations. Similar results were observed with low-resolution localizations. These results showed the 

effectiveness and robustness of the network approach for protein localization prediction.  

 

Higher annotation coverage gives higher prediction performance 

Here we tested the influence of the annotation coverage on the prediction performance. Only low-

resolution localizations were included since many of the high-resolution locations have too few annotated 

proteins. Five sets of annotated proteins are created with varying degrees of annotation coverage 100%, 

80%, 60%, 40%, and 20%. Other than 100% coverage, annotated proteins are randomly selected for the 

required coverage for five times, which gives 5 different sets of annotated proteins of same size. 10-fold 

cross validation is carried out for each of the 5 sets of annotations. The average of the 5 sets is calculated to 

avoid sampling bias. The whole procedure is repeated for each annotation coverage level. 

Figure 4 and 5 show MCC values for the 5 low-resolution locations and the overall accuracy for 

different annotation coverage. It is clear that both MCC and overall accuracy are increased with the 

increase of annotation coverage as expected.  It is also noticeable that PPI network is capable of producing 

overall accuracy greater than 0.5 (non-random) with only 20% annotation coverage. This shows the 

effectiveness of network approach in predicting protein localization.  
 

4. Discussion 
 

This paper investigates the performance of the proposed diffusion kernel based logistic regression model 

for predicting protein localizations using only protein-protein correlation network information.  We have 

shown that the proposed NetLoc approach is robust, can achieve high prediction accuracy, and showed that 

network topological characteristics such as connectivity may affect the prediction performance.  

Another important factor that may affect the prediction performance is the correlation of interactions as 

regard to co-localization. Table 6 shows the percentages of protein pairs of which both proteins go to the 

same location along with the prediction performance (AUC score) using the networks. PPPI has the highest 

percentage of co-localized protein pairs: 41.95% of protein pairs co-localize. Together with the high 

connectivity, NetLoc has the best performance on the PPPI network (AUC = 0.8525).  GPPI network also 

has only one connected component, but its co-localized proteins only cover 30.18% of all protein pairs. So 

its performance (AUC = 0.7851) is lower than using PPPI network. Compared with GPPI network, both 

MPPI and COEXP70 networks have similar percentages of co-localized protein pairs, but they are 

distributed in much more disconnected patches with 75 connected components for MPPI and 136 

connected components for COEXP70. The prediction performances are thus inferior to that of PPPI 

network.  In general, the more protein pairs go to the same location, the better the prediction performance 

given equal number of connected components. 
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Table  6 Protein pairs targeting the same location and prediction performance 

 

 

 

 

 

 

 

 

Comparing the influence of network connectivity and co-localization percentage, the former seems to 

have a large effect. For example, the percentage of PPIs going to the same localization in COEXP70 is 

35.18%, which is greater than that of MPPI (30.65%), However, it has much more connected components 

(136) compared to MPPI (75). As a result, COEXP70 produces poor performance. 

 We found that NetLoc is a highly robust approach in predicting protein localization, which can produce 

good performance (AUC = 0.75) with only 30% of original interactions and is capable of producing overall 

accuracy greater than 0.5 only with 20% annotation coverage. 

Our experiments showed that diffusion kernel based network prediction model in NetLoc achieved 

better prediction performance than the method using network based features as used in previous work (Lee 

et al., 2008). N features of Lee et al. (2008) using weighted average of single-protein features was shown to 

be worse than the L features using weighted voting of neighbors within a certain distance. However, the 

weights are calculated from conditional probabilities. NetLoc used weighted voting of all proteins in the 

network in which the weights are optimized using logistic regression, which makes it exploits better the 

network information for localization prediction.  

The cross-validation results showed comparable performance of popular amino acid composition based 

features. However, a main advantage of the network method is that it has the capability of integrating 

multiple networks to make prediction. Our preliminary experiments showed that by combining two 

networks, PPPI and GPPI, we can further improve the prediction performance. Moreover, the diffusion 

kernel based prediction model can be used to determine the contribution of each of the protein-protein 

networks in protein localization.  Another ongoing work is to integrate NetLoc with other feature based 

methods to build an ensemble prediction algorithm. Since, in feature-based methods, it is very difficult to 

differentiate cytoplasmic proteins from nucleus proteins, our protein correlation network approach could be 

very helpful. 

 

5. Conclusion 
 

A diffusion kernel based logistic regression (KLR) model for protein subcellular localization prediction 

using protein-protein correlation networks has been proposed. Four types of networks including physical 

interaction, genetic interaction, mixed interaction, and co-expression network have been used for protein 

localization prediction of yeast. Results indicated that all these four networks carry protein co-localization 

information with their interactions (edges) and can thus be used for localization prediction. Experiments 

showed that the physical interaction network has the highest connectivity and highest percentage of co-

localized protein pairs, which leads to best prediction performance. Genetic interaction network has the 

second best localization prediction performance. Co-expression network has the least information for 

localization prediction due to its lower connectivity with many isolated patches. It was found that network 

topology strongly affects the NetLoc prediction performance. In particular, the number of connected 

components, the average degree of nodes, and the percentage of co-localized protein-pairs all play 

important role for the prediction performance. Our experiments showed that the proposed network 

approach is highly robust in predicting protein localization as regard to the network connectivity and 

annotation protein coverage.  

 

 

References
 

BLUM, T., BRIESEMEISTER, S. & KOHLBACHER, O. 2009. MultiLoc2: integrating phylogeny and Gene Ontology 

terms improves subcellular protein localization prediction. BMC Bioinformatics, 10, 274. 

Network Total PPI Connected Component PPI at Same Loc %PPI at Same Loc AUC 

PPPI 50997 1 21395 41.95 0.8525 

GPPI 103631 1 31279 30.18 0.7851 

MPPI 11421 75 3501 30.65 0.7132 

COEXP70 11954 136 4206 35.18 0.6407 



9 

 

BULASHEVSKA, A. & EILS, R. 2006. Predicting protein subcellular locations using hierarchical ensemble of 

Bayesian classifiers based on Markov chains. BMC Bioinformatics, 7, 298. 

CASADIO, R., MARTELLI, P. L. & PIERLEONI, A. 2008. The prediction of protein subcellular localization from 

sequence: a shortcut to functional genome annotation. Brief Funct Genomic Proteomic, 7, 63-73. 

CHOU, K. C. & CAI, Y. D. 2004. Predicting subcellular localization of proteins by hybridizing functional domain 

composition and pseudo-amino acid composition. J Cell Biochem, 91, 1197-203. 

DRAWID, A. & GERSTEIN, M. 2000. A Bayesian system integrating expression data with sequence patterns for 

localizing proteins: comprehensive application to the yeast genome. J Mol Biol, 301, 1059-75. 

EMANUELSSON, O., BRUNAK, S., VON HEIJNE, G. & NIELSEN, H. 2007. Locating proteins in the cell using 

TargetP, SignalP and related tools. Nat Protoc, 2, 953-71. 

EMANUELSSON, O., NIELSEN, H., BRUNAK, S. & VON HEIJNE, G. 2000. Predicting subcellular localization of 

proteins based on their N-terminal amino acid sequence. J Mol Biol, 300, 1005-16. 

GARDY, J. L. & BRINKMAN, F. S. 2006. Methods for predicting bacterial protein subcellular localization. Nat Rev 

Microbiol, 4, 741-51. 

GULDENER, U., MUNSTERKOTTER, M., OESTERHELD, M., PAGEL, P., RUEPP, A., MEWES, H. W. & 

STUMPFLEN, V. 2006. MPact: the MIPS protein interaction resource on yeast. Nucleic Acids Res, 34, D436-41. 

HUA, S. & SUN, Z. 2001. Support vector machine approach for protein subcellular localization prediction. 

Bioinformatics, 17, 721-8. 

HUH, W. K., FALVO, J. V., GERKE, L. C., CARROLL, A. S., HOWSON, R. W., WEISSMAN, J. S. & O'SHEA, E. 

K. 2003. Global analysis of protein localization in budding yeast. Nature, 425, 686-91. 

JIN, Y. H., NIU, B., FENG, K. Y., LU, W. C., CAI, Y. D. & LI, G. Z. 2008. Predicting subcellular localization with 

AdaBoost Learner. Protein Pept Lett, 15, 286-9. 

KING, B. R. & GUDA, C. 2007. ngLOC: an n-gram-based Bayesian method for estimating the subcellular proteomes 

of eukaryotes. Genome Biol, 8, R68. 

KUMAR, A., AGARWAL, S., HEYMAN, J. A., MATSON, S., HEIDTMAN, M., PICCIRILLO, S., UMANSKY, L., 

DRAWID, A., JANSEN, R., LIU, Y., CHEUNG, K. H., MILLER, P., GERSTEIN, M., ROEDER, G. S. & 

SNYDER, M. 2002. Subcellular localization of the yeast proteome. Genes Dev, 16, 707-19. 

LEE, H., TU, Z., DENG, M., SUN, F. & CHEN, T. 2006a. Diffusion kernel-based logistic regression models for 

protein function prediction. OMICS, 10, 40-55. 

LEE, K., CHUANG, H. Y., BEYER, A., SUNG, M. K., HUH, W. K., LEE, B. & IDEKER, T. 2008. Protein networks 

markedly improve prediction of subcellular localization in multiple eukaryotic species. Nucleic Acids Res, 36, 

e136. 

LEE, K., KIM, D. W., NA, D., LEE, K. H. & LEE, D. 2006b. PLPD: reliable protein localization prediction from 

imbalanced and overlapped datasets. Nucleic Acids Res, 34, 4655-66. 

LIU, J., KANG, S., TANG, C., ELLIS, L. B. & LI, T. 2007. Meta-prediction of protein subcellular localization with 

reduced voting. Nucleic Acids Res, 35, e96. 

LODISH, H., BERK, A. & ZIPURSKY, S. L. 2000. Molecular Cell Biology, New York. 

LORENA, A. C. & DE CARVALHO, A. C. 2007. Protein cellular localization prediction with Support Vector 

Machines and Decision Trees. Comput Biol Med, 37, 115-25. 

MARCOTTE, E. M., XENARIOS, I., VAN DER BLIEK, A. M. & EISENBERG, D. 2000. Localizing proteins in the 

cell from their phylogenetic profiles. Proc Natl Acad Sci U S A, 97, 12115-20. 

MINTZ-ORON, S., AHARONI, A., RUPPIN, E. & SHLOMI, T. 2009. Network-based prediction of metabolic 

enzymes' subcellular localization. Bioinformatics, 25, i247-52. 

MOTT, R., SCHULTZ, J., BORK, P. & PONTING, C. P. 2002. Predicting protein cellular localization using a domain 

projection method. Genome Res, 12, 1168-74. 

NAKAI, K. & HORTON, P. 1999. PSORT: a program for detecting sorting signals in proteins and predicting their 

subcellular localization. Trends Biochem Sci, 24, 34-6. 

NANNI, L. & LUMINI, A. 2008. Genetic programming for creating Chou's pseudo amino acid based features for 

submitochondria localization. Amino Acids, 34, 653-60. 

SCOTT, M. S., CALAFELL, S. J., THOMAS, D. Y. & HALLETT, M. T. 2005. Refining protein subcellular 

localization. PLoS Comput Biol, 1, e66. 

SHEN, H. B., YANG, J. & CHOU, K. C. 2007. Methodology development for predicting subcellular localization and 

other attributes of proteins. Expert Rev Proteomics, 4, 453-63. 

SHI, J. Y., ZHANG, S. W., PAN, Q., CHENG, Y. M. & XIE, J. 2007. Prediction of protein subcellular localization by 

support vector machines using multi-scale energy and pseudo amino acid composition. Amino Acids, 33, 69-74. 

SPELLMAN, P. T., SHERLOCK, G., ZHANG, M. Q., IYER, V. R., ANDERS, K., EISEN, M. B., BROWN, P. O., 

BOTSTEIN, D. & FUTCHER, B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast 

Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 9, 3273-97. 

SRINIVASAN, B. S., SHAH, N. H., FLANNICK, J. A., ABELIUK, E., NOVAK, A. F. & BATZOGLOU, S. 2007. 

Current progress in network research: toward reference networks for key model organisms. Brief Bioinform, 8, 

318-32. 



10 

 

STARK, C., BREITKREUTZ, B. J., REGULY, T., BOUCHER, L., BREITKREUTZ, A. & TYERS, M. 2006. 

BioGRID: a general repository for interaction datasets. Nucleic Acids Res, 34, D535-9. 

SZAFRON, D., LU, P., GREINER, R., WISHART, D. S., POULIN, B., EISNER, R., LU, Z., ANVIK, J., 

MACDONELL, C., FYSHE, A. & MEEUWIS, D. 2004. Proteome Analyst: custom predictions with explanations 

in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res, 32, W365-71. 

XENARIOS, I., RICE, D. W., SALWINSKI, L., BARON, M. K., MARCOTTE, E. M. & EISENBERG, D. 2000. DIP: 

the database of interacting proteins. Nucleic Acids Res, 28, 289-91. 

YU, C. S., CHEN, Y. C., LU, C. H. & HWANG, J. K. 2006. Prediction of protein subcellular localization. Proteins, 64, 

643-51. 

YU, C. S., LIN, C. J. & HWANG, J. K. 2004. Predicting subcellular localization of proteins for Gram-negative bacteria 

by support vector machines based on n-peptide compositions. Protein Sci, 13, 1402-6. 

ZHANG, S., XIA, X. F., SHEN, J. C. & SUN, Z. R. 2008. Eukaryotic protein subcellular localization prediction based 

on sequence conservation and protein-protein interaction. Progress in Biochemistry and Biophysics, 35, 531-535. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Protein localization prediction using the KLR model and protein networks. 

 

 

 

 
 

 

Figure 2 Performances of individual networks for selected 7 localizations with more than 100 proteins. 
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Figure 3 MCC values for 5 different locations for high-resolution localization before and after adding 

20% new annotations. Locations with less than 100 proteins are not included in the test set due to their 

low coverage. 
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Figure 4 MCC scores for low-resolution locations with different annotation coverage. 

 

 

 

 
 

 

Figure 5 Overall accuracy for different annotation coverage for PPPI network. 
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