
Robust and Efficient Genetic Algorithms with
Hierarchical Niching and a Sustainable Evolutionary

Computation Model

Jianjun Hu1, Erik Goodman2

1,2Genetic Algorithm Research and Application Group(GARAGe)
1Department of Computer Science and Engineering

2Department of Electrical and Computer Engineering
Michigan State University, East Lansing, MI, 48823

{Hujianju, Goodman}@egr.msu.edu

Abstract. This paper proposes a new niching method named hierarchical niching,
which combines spatial niching in search space and a continuous temporal niching
concept. The method is naturally implemented as a new genetic algorithm, QHFC,
under a sustainable evolutionary computation model: the Hierarchical Fair Competi-
tion (HFC) Model. By combining the benefits of the temporally continuing search
capability of HFC and this spatial niching capability, QHFC is able to achieve much
better performance than deterministic crowding and restricted tournament selection
in terms of robustness, efficiency, and scalability, simultaneously, as demonstrated
using three massively multi-modal benchmark problems. HFC-based genetic algo-
rithms with hierarchical niching seem to be very promising for solving difficult real-
world problems.

1. Introduction

Genetic algorithms are widely applied to challenging engineering problems today. How-
ever, there are still several undesirable properties with current genetic algorithms. The
first one is the lack of a quality guarantee of genetic search. For example, genetic algo-
rithms are usually sensitive to the population size in terms of their search capability. Un-
fortunately, it is difficult to estimate the required population size, despite the extant popu-
lation sizing theory [1,2]. Too large a population size leads to low efficiency, and one that
is too small may simply fail to achieve satisfactory results. The second undesirable prop-
erty is that once a genetic algorithm stagnates during a search, it usually loses most of its
search capability, and there is no good way to rejuvenate the run in an efficient manner.
Simple restart or strong mutations may waste the computations spent before by destroying
the building blocks in the population. Weak mutations may perturb the solutions a little
bit, but they cannot incur significant move in search space once the framework of the in-
dividual is established. The third problem of current genetic algorithms is the lack of ro-
bustness such as large variation of the performance of several runs due to the opportunis-
tic and convergent nature of current genetic algorithms.

In the past three decades, many niching techniques have been proposed, which have
greatly improved the scalability and robustness of genetic search for difficult multi-modal

problems [3]. However, due to the convergent nature of the current genetic algorithm
framework, these niching approaches still meet difficulty in many hard problems. Based
on a sustainable evolutionary computation framework and a hierarchical niching mecha-
nism, this paper proposes a new genetic algorithm, named QHFC, which can significantly
improve robustness, efficiency and scalability over that of a representative modern
niching approach.

The rest of the paper is organized as follows. In section 2, existing commonly used
niching techniques including temporal niching and spatial niching are surveyed, and their
three inherent difficulties are outlined. Section 3 then presents the ideas of the sustainable
evolutionary computation framework of HFC [4,5], which underlies the design of a new
genetic algorithm with hierarchical niching, QHFC to be described in Section 4. A set of
three well-known genetic algorithm benchmark problems are used to evaluate QHFC in
section 5 and the results are compared to genetic algorithms with deterministic crowding
and restricted tournament selection in terms of scalability, efficiency, and robustness. A
conclusion is then drawn in Section 6 along with future work to be done.

2. Related Work

The basic framework of genetic algorithms was laid down by John Holland in the 1960s,
as summarized in his book [6], following the Darwinian evolution theory of natural selec-
tion. Most of the early formulations of evolutionary computation employed the principle
of survival of the fittest. But it turned out that incautious keeping of the best individuals
leads to bad performance, as population diversity is critical to good evolutionary search.
The most widely used techniques to maintain diversity today are niching techniques, in-
cluding many well-known methods—for example, De Jong crowding [7], deterministic
crowding [8], fitness sharing [9], sequential niching [10] and restricted tournament selec-
tion [11]. Niching is useful for many application cases of genetic algorithms. It can be
used to maintain interim sub-solutions to find a single final solution or to find multiple fi-
nal solutions. It is also widely used as an effective mechanism to form and maintain diver-
sity in genetic algorithms to solve hard problems. Other methods like reducing selection
pressure, selection noise and operator disruption do not typically result in a GA with
strong niching behavior. Readers are referred to Mahfoud [3] for an excellent and almost
exhaustive review of niching methods.

Niching methods can be classified by their underlying mechanisms [3]. According to
the fitness functions employed, they can be categorized as single-environment approaches
(such as crowding and sharing) and multiple-environment approaches (such as implicit
fitness sharing [12], and multi-objective function optimization). Since multi-environment
approaches are usually specific to special types of problems, we are only interested in sin-
gle-environment niching approaches in this paper. According to whether niching is
achieved across space or over time, we have spatial niching and temporal niching. The
former includes the widely used crowding and sharing, which form and maintain multiple
niches within the space of a single population. The latter form and maintain multiple
niches over time. Only one temporal niching approach, called sequential niching [10], has
received attention in the literature to date.

Many experimental comparisons and analytical analyses have been conducted to evalu-
ate the advantages and disadvantages of existing niching methods [13, 14, 15]. Mahfoud
[13] showed that sequential niching is weak on easy problems and also incapable of solv-
ing hard problems due to its lack of cooperation of individuals in niches and the increasing
difficulty to find remaining optima. Fitness sharing is a widely used approach and is very
strong if used with intelligent scaling and appropriate setting of the sharing radius parame-
ters, both of which, however, are difficult to achieve; bad results have therefore been re-
ported [14,15]. An undesirable property of both sequential niching and fitness sharing is
that they modify the search landscape and thus may incur false optima and other unex-
pected search behaviors. It turns out that deterministic crowding is one of the best spatial
niching approaches. It is capable and easy-to-use and its performance has been confirmed
by several comparative studies [13, 14]. Compared to fitness sharing, deterministic crowd-
ing succeeds with smaller subpopulations and can often find global optima for hard prob-
lems [13]. Assuming the selection pressure for high-fitness leads to premature conver-
gence, Hutter [16] proposed a Fitness Uniform Selection Scheme (FUSS) to preserve
genetic diversity. However, this approach suffers from insufficient selective pressure for
exploitation and unbalanced fitness distribution of the search space. More detailed com-
parison of FUSS and other diversity maintaining mechanisms with HFC framework [4] is
described in [5].

However, there are several difficulties in applying genetic algorithms to practical real-
world problems, which lead to situations in which current spatial niching approaches tend
to fail miserably. The first constraint of using a genetic algorithm is that we can often use
only a very limited population size, at least relative to the size that various sizing methods
indicate is needed. However, as spatial niching methods work by spreading the population
out across much of the search space, and there are a huge number of local optima, an
enormous population size is usually needed to achieve a satisfactory search solution. This
has been proved by the population sizing theory associated with deterministic crowding
[3]. However, too large a population size leads to a large number of evaluations, which is
usually undesirable. This dependence on population size is even made worse by the fact
that each niche has to be supported by multiple individuals to search effectively around it.

As a result of the limited population size, spatial niching methods normally fail to
maintain a stable subpopulation at low-fitness area of the search space. For example, fit-
ness sharing tends to focus on several high-fitness niches during the later stages of search.
The consequence of the loss of low-fitness-level search is that the genetic algorithm may
lose the chance of discovering some essential building blocks or other beneficial genetic
material in later search stages, focusing instead on building blocks discovered during the
very limited sampling experiments in the early search stage. The reason is that the increas-
ingly high average fitness of the population makes it almost impossible to maintain effec-
tive search niches at very low fitness levels. This principle is can be interpreted in biologi-
cal terms as the cost of specialization, or adaptation limiting diversification: adaptation to
a specific niche (corresponding to high fitness in a genetic algorithm) theoretically con-
strains a population's ability to subsequently diversify into other niches [17]. It is in this
sense that the ordinary genetic algorithm model is convergent. The progress of fitness cor-
responds to an entrenching process; the more progress a genetic algorithm makes, the less
opportunity it has to find radically new, beneficial structures and then possibly better solu-
tions.

Another difficulty of current spatial niching methods is the uneven pace of progress in
the various niches in the early stages. It is often the case that some early-discovered niches
tend to attract most of the individuals of the population, while other niches with higher
fitness do not attract enough individuals to explore their search domains and expose their
potential.

To handle the three difficulties mentioned above—the limited population size, loss of
exportation capability, and unbalanced pace of progress of different niches—a new
niching approach is needed, based on a new evolutionary algorithm model. In the follow-
ing section, a new niching method, called hierarchical niching, is proposed. It combines
the benefits of both spatial niching and temporal niching, and is implemented in a new
sustainable evolutionary search model called the Hierarchical Fair Competition (HFC)
model.

3. Hierarchical Niching and the HFC Sustainable Evolutionary Search
Model

The basic idea of hierarchical niching is to introduce a continuous version of temporal
niching together with spatial niching to address the three difficulties outlined in the previ-
ous section. Hierarchical niching here refers to a type of niching technique that maintains
continuing search at all (absolute) fitness levels, each of which is subject to a spatial
niching technique. It is naturally implemented under a sustainable continuing evolutionary
computation model, Hierarchical Fair Competition [4,5,18].

HFC employs an assembly-line structure in which subpopulations are hierarchically or-
ganized into different fitness levels [4]. Offspring of a given level are exported to higher
levels if their fitness qualifies them for migration. The openings that create are filled by
individuals imported from lower levels or generated by mutating other individuals of the
same level. The bottom level continuously generates raw genetic material to explore for
new building blocks, which are eventually exported to higher fitness levels. The motiva-
tion of HFC is to maintain effective search at all fitness levels to sustain the search proc-
ess indefinitely and thus remove the problem of insufficient sampling and limited popula-
tion size. The continuing search capability of HFC is achieved by ensuring a continuous
supply and incorporation of genetic material in a hierarchical manner, and by culturing
and maintaining, but continually renewing, populations of individuals of intermediate fit-
ness levels. It also has the effect of reducing the selection pressure within each subpopula-
tion while maintaining the global selection pressure to help ensure exploitation of good
genetic material found. When each subpopulation (level) in an HFC algorithm is updated
by application of a spatial niching technique, the hierarchical niching is established.

Hierarchical niching handles the three difficulties mentioned in Section 2 as follows.
Since the available population size is too limited to accommodate all local optima simul-
taneously, hierarchical niching resorts to the continuing search at lower fitness levels to
ensure sequential identification of useful building blocks. This is different from sequential
niching in the fact that hierarchical niching only allows partial import of recently discov-
ered building blocks from lower levels, which promotes recombination of building blocks
discovered early and later. This is in sharp contrast to sequential niching. The issue of loss
of explorative capability is handled by the HFC model. In HFC, the lowest fitness level

can continuingly generate genetic diversity and export good building blocks to upper lev-
els, so the search power of the genetic algorithm is sustained, and it exhibits no tendency
to converge. And because of the mixing of late-discovered building blocks and early-
discovered building blocks, HFC works much better than other naïve sustainable search
strategies like restarting or multiple runs, in which random genetic material essentially just
perturbs current individuals by destroying its building blocks rather than discovering new
building blocks. The insufficient sampling and unbalanced pace of progress problems are
all handled by the continuing search capability of the HFC model, since lower-level
search may go on indefinitely if needed.

Based on hierarchical niching and the HFC model, we have developed a genetic algo-
rithm named QHFC (Q means “quick”), which can achieve significant performance im-
provement compared to a GA employing another state-of-the-art niching technique, de-
terministic crowding and restricted tournament selection. The spatial niching used in the
current version of QHFC is deterministic crowding, so the demonstration illustrates that
QHFC can improve significantly on deterministic crowding alone.

4. The QHFC Algorithm with Hierarchical Niching

QHFC algorithm is designed based on the HFC sustainable evolutionary computation
model, the hierarchical niching concept, and the adaptive breeding strategy. Like the
multi-population implementation of HFC, the whole population is divided into several
levels, each accommodating individuals with fitness within a certain fitness range, except
in special situations (to be explained in Table 1 at the end). The QHFC algorithm can be
viewed as a set of cooperating GA agents, each searching at a different fitness level, from
the lowest (base) level to the top level. Hierarchical niching is implemented as follows:
the top level works as a generational GA with deterministic crowding; all other levels up-
date as steady-state GAs with deterministic crowding.

Compared to previous HFC genetic algorithms, one of the most important innovations
of QHFC is the adaptive breeding strategy implemented using potency testing (discussed
next). It provides a generic mechanism to maintain automatically the balance of explora-
tion and exploitation. More specifically, it allows the algorithm to search as greedily as
possible, so long as the greedy strategy is sustainable. For easy problems, the top level
automatically gets more breeding opportunities and the search is very aggressive. For hard
problems where sustained diversity is a necessity, lower levels are automatically bred
more frequently to provide the needed influx of diverse individuals for higher levels.

Potency here is defined as the capability of a fitness level in HFC to produce offspring
with fitness high enough for export to higher HFC levels. This mechanism for maintaining
the potency of all but the top level works as follows: starting from the level just below the
top level, breeding is conducted successively in each level, moving toward the lower lev-
els, using steady-state breeding methods, while tracking the number of offspring produced
that are eligible for promotion (migration to the next-higher fitness level). If a given num-
ber of promotable offspring are not produced within a specified number of evaluations at a
given level, then a “catch-up” procedure is conducted: a specified fraction of that level’s
individuals is replaced by individuals taken from (and removed from) the next lower level,
and popsize genetic operations and evaluations are performed. (popsize is the size of the

population at the receiving fitness level.) Then, in turn, the openings created at the next
lower level are immediately filled with individuals removed from the level below that,
etc., until, at the lowest level, the openings are filled by new randomly generated indi-
viduals. However, except for the further genetic operations and evaluations performed at
the level where the "catch-up" procedure was initiated, further genetic operations and
evaluations are not performed as part of this “ripple down” filling of openings. This
“double loop” procedure assures that each level, before it next breeds, has either recently
produced individuals worthy of promotion to the next level or has received new individu-
als from the next lower level, thus ensuring its potency to export higher-level individuals.
This mechanism for sustaining the potency of search does not require evaluating any
measure of the distance among genotypes or phenotypes, and could also be applied to GP
and other sorts of problems.

The QHFC algorithm is summarized in Table 1 at the end. Compared with HFC-GP [4]
and AHFC-GP [5], QHFC has many fewer parameters to specify, and the admission
thresholds are automatically adjusted.

5. Experiments

As discussed in Section 2, we are interested in hard problems with a large number of local
optima, typically massively multimodal, with deception. These factors can often expose
the limitation of current niching methods if used with a conventional evolutionary compu-
tation model. Here, three widely-used massively multimodal and/or deceptive GA test
problems are used to evaluate the performance of QHFC with hierarchical niching, and
the performance is compared to the modern niching methods deterministic crowding [8]
and restricted tournament selection [11], whose performances have been deemed excellent
by several other researchers [13,14].

The three benchmark problems used here include:
1) f3deceptive: order-3 deceptive problem [19], with problem sizes n=60, 90, 120,

150, 180, 240, 300
This deceptive function is composed of separable building blocks of order 3 and has
one global optimum at 111…1 and a deceptive attractor at 000…0. There are many
local optima in the landscape of this function.
2) 6bipolar: order-6 bipolar deceptive problem [19], with problem sizes n=60, 90,

120, 150, 180, 240, 300
This deceptive function is composed of separable building blocks of order 6 and has
one global optimum at 111…1 and a deceptive attractor at 000…0. There are many
local optima in the landscape of this function.
3) trap5: order-5 trap problem [19], with problem sizes n=60, 90, 120, 150, 180,

240, 300
This deceptive function is composed of separable building blocks of order 5 and has
one global optimum at 111…1 and a deceptive attractor at 000…0. There are many
local optima in the landscape of this function.

We compared QHFC with one generational GA with deterministic crowding (DC), de-
scribed in [8], and one steady state GA with restricted tournament selection (RTS) [11].
Since it is difficult to find an appropriate scaling factor and niching radius, evaluation of

and comparison with fitness sharing is not reported. But since fitness sharing belongs to
the same category of spatial niching techniques and also lacks the capability of maintain-
ing low-level search at later evolutionary stages, we expect that hierarchical niching with
QHFC could also improve on the effectiveness of fitness sharing in the same way as it
improves deterministic crowding demonstrated below.

Three criteria are used to evaluate the performance of the genetic search:
• Scalability: within a given number of functional evaluations (1,000,000), what is

the maximum problem size it can solve to optimum in at least 85% (27) of the to-
tal 30 runs?

• Efficiency: for the problem sizes that both QHFC and DCGA can solve, what is
average number the evaluations needed to find the global optimum?

• Robustness: What is the fitness variation at the end of 1,000,000 evaluations and
what is the variance of the number of evaluations needed to find a global opti-
mum when it is possible (for simplicity, we assume that all failed runs will find
the global optima in the next evaluation and use 1,000,000 as the needed evalua-
tions to find a global optimum)? How many runs out of 30 have found the global
optimum solution?

The experimental parameters are set as follows:
For QHFC, in all the experiments, with different population sizes and different problem

sizes, a single set of parameters was used.
L: 5 γ : 0.8 breedTopFreq: 2 detectExportNo: 2
percentRefill: 0.25 catchupGen: 20 noprogressGen: 2

All three algorithms were tested with the same set of parameters for all problems and all
problem sizes. The population size for all experiments was 500. All experiments were al-
lowed a generous maximum of 1,000,000 evaluations, and each experiment was repeated
30 times. The per-bit mutation probability for the genetic algorithm with DC and RTS was
0.005, and was zero for QHFC. The window size of RTS was 20, and the tournament size
was 2. Note that by adaptive potency testing, QHFC achieves adaptive mutation implic-
itly. The results of the experiments are summarized in Fig. 1: a-f.

Fig. 1 (a)-(c) shows the average number of evaluations to find the global optimum or to
fail because of reaching the limit of 1,000,000 evaluations. It is clear that for all three
problems, QHFC found the global optimum with the fewest evaluations, the difference be-
ing especially significant in the case of large problem sizes. QHFC also won by having
the smallest variation in the number of evaluations needed to find the global optimum.
Fig. 1(d)-(f) presents the number of successful runs out of 30 for the three tested niching
techniques. The RTS method performed the worst, solving well only for problem size 60
for the three problems, and its performance degraded dramatically when the problem size
increased. The DC method was better, but also suffered severely from the limit of the
population size. When the problem size reached a threshold, the DC performance also de-
graded dramatically, as shown in (d-f). For the f3deceptive and 6bipolar problems of size
300, DC only achieved a success rate of 50%. None of the DC runs succeeded for trap5
with a problem size of 300. We also find that genetic algorithms with DC and RTS are
very sensitive to the mutation rates for the benchmark problems. When we set the bit mu-
tation probability as 0.00005, restricted tournament selection works much better than de-
terministic crowding, but both are still much worse than QHFC. It is extraordinary that for

all three problems, QHFC achieved excellent scalability and solved the problems reliably
even at a problem size of 300. Further experiments showed that the performance of QHFC

Minimum Evals to find global optimum or
fail to find within eval. limit.

Number of Successful runs out of 30

Evaluations vs. problem size for f3deceptive Problem

Problem size

60 90 120 150 180 240 300

 N
o.

 o
f e

va
lu

at
io

ns
 to

 fi
nd

 g
lo

ba
l o

pt
im

a
(o

r f
ai

l a
t e

va
lu

at
io

n
lim

it)

-2.0e+5

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

DC
RTS
QHFC

f3deceptive problem (a)

Success rate for f3deceptive problem

Problem size

60 90 120 150 180 240 300

S
uc

ce
ss

 ru
ns

 o
ut

 o
f 3

0

0

5

10

15

20

25

30

35

DC
RTS
QHFC

f3deceptive problem (d)

Evaluations vs. problem size for 6bipolar deceptive Problem

Problem size

60 90 120 150 180 240 300

N
o.

 o
f e

va
lu

at
io

ns
 to

 fi
nd

 g
lo

ba
l o

pt
im

a
(o

r f
ai

l a
t e

va
lu

at
io

n
lim

it)

-2.0e+5

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

DC
RTS
QHFC

6bipolar problem (b)

Success rate for 6bipolor problem

Problem size

0 50 100 150 200 250 300 350

S
uc

ce
ss

 ru
ns

 o
ut

 o
f 3

0

0

5

10

15

20

25

30

35

DC
RTS
QHFC

6bipolar problem (e)

Evaluations vs. problem size for trap5 deceptive Problem

Problem size

60 90 120 150 180 240 300

N
o.

 o
f e

va
lu

at
io

ns
 to

 fi
nd

 g
lo

ba
l o

pt
im

a
(o

r f
ai

l a
t e

va
lu

at
io

n
lim

it)

-2.0e+5

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

DC
RTS
QHFC

trap5 problem (c)

Success rate for trap5 problem

Problem size

0 50 100 150 200 250 300 350

Su
cc

es
s

ru
ns

 o
ut

 o
f 3

0

0

5

10

15

20

25

30

35

DC
RTS
QHFC

trap5 problem (f)

Fig. 1. Comparison of hierarchical niching (QHFC), deterministic crowding (DC), and re-
stricted tournament selection (RTS) in terms of scalability, robustness and efficiency. It is clear
that for simple problems or when the problem size is small enough for a population size of 500
is sufficient, DC and RTS work as well as QHFC. However, both DC and RTS suffer from the
limited population size and fail for more difficult problems. QHFC clearly has better scalability,
robustness, and efficiency.

in solving even larger problem sizes degraded very slowly. In fact, experiments (not pre-
sented in detail here for lack of space) showed that while DC needed a population size of
4000 to solve a 256-bit HIFF problem [20] with ½ success rate, QHFC solved it reliably
with a population size of only 200 for 27 runs out of 30.

We also compared the efficiency of QHFC with the Bayesian Optimization Algorithm
(BOA) [19]. For the f3deceptive problem of size 180, BOA needed 160,000 evaluations,
while QHFC took an average of 162,717 for 30 runs. For the 6bipolar problem of size
180, BOA took 150,000 evolutions while QHFC needed, on average, 134,966 evaluations.
For the trap5 problem of size 180, BOA required 220,000 evaluations, while QHFC took
only 145,700 evaluations. Remember that QHFC uses the simple two-point crossover,
while BOA explicitly learns the building blocks in these decomposable benchmark prob-
lems. It is clear that for decomposable problems with tight building blocks, QHFC with
simple crossover is very competitive with BOA. However, BOA works for arbitrary or-
dering of the variables, in which case the 2-point crossover used in QHFC simply fails,
even with the help of the hierarchical niching of QHFC. This demonstrates that the design
of representation, linkage learning, and operator design are critical to effective genetic
search. It also suggests the possibility of enhancing of BOA-type methods with a hierar-
chical niching mechanism.

6. Discussion and Conclusions

Robustness, efficiency and scalability are among the most desirable qualities of genetic
algorithms. This paper proposed a genetic algorithm, QHFC, which can significantly im-
prove these three performance criteria without significant additional computing effort.
The proposed hierarchical niching technique combines the ideas of spatial niching and
temporal niching to avoid the pitfalls of insufficient sampling, limited population size, and
loss of low-level search capability, all of which contribute to the limited search capability
of spatial niching techniques. It should be pointed out that hierarchical niching—the idea
of implementing spatial niching at each level of the HFC model—is very different from
another temporal niching method, sequential niching. The former achieves good search by
promoting the cooperation of niched individuals in all levels, while in the latter method,
individuals in the previous run stage cannot help and usually hinder the discovery of later
solutions. Compared to spatial niching, hierarchical niching here does not lose the search
capability at low fitness levels, while spatial niching methods such as fitness sharing and
deterministic crowding are strongly limited by population size and eventually lose search
capability at low fitness levels. Another feature of hierarchical niching is that the niching
technique used within each level could easily be some method other than the deterministic
crowding used in this paper.

The significant performance gain in terms of search sustainability, efficiency, and ro-
bustness of QHFC again demonstrates the usefulness of hierarchical niching and of the hi-
erarchical fair competition (HFC) model for sustainable evolutionary search. These algo-
rithms seem to be especially useful for large-scale long-term artificial evolution
experiments such as topologically opened synthesis of electric circuits, mechatronic sys-
tems, etc.

Our future work will include an experimental comparison study of QHFC with FUSS
[16] and fitness sharing with different parameter configurations such as the population
sizes. Although our previous work [21] shows that depending on large population size to

maintain diversity is not a scalable solution to premature convergence problem, more ex-
periments with more test problems would be helpful to further justify this hypothesis.

References

1 Goldberg, D.E: Sizing Populations for Serial and Parallel Genetic Algorithms, in J.D. Schaffer

(ed.), Proceedings of the Third International Conference on Genetic Algorithms, Kaufmann, San
Mateo, Calif. (1989)

2 Harik, G. R. and Lobo, F.G.: A parameter-less genetic algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference (1999).

3 Mahfoud, S.W.: Niching Methods for Genetic Algorithms, Ph.D. Thesis, University of Illinois at
Urbana-Champaign. (1995).

4 Hu, J., Goodman, E.D.: Hierarchical Fair Competition Model for Parallel Evolutionary Algo-
rithms. In Proceedings, Congress on Evolutionary Computation, CEC 2002, IEEE World Con-
gress on Computational Intelligence, Honolulu, Hawaii, May. (2002).

5 Hu, J., Goodman, E. D. and Seo, K.: Continuous Hierarchical Fair Competition Model for Sus-
tainable Innovation in Genetic Programming. In Genetic Programming Theory and Practice,
Kluwer, (2003), pp. 81-98.

6 Holland, J.H.: Adaptation in natural and artificial systems. Ann Arbor, MI: University of Michi-
gan Press. (1975).

7 De Jong, K.A.: An analysis of the behavior of a class of genetic adaptive systems. (Doctoral dis-
sertation, University of Michigan). Dissertation Abstracts International, 36(10),514B. (Univer-
sity Microfilms No. 76-9381). (1975).

8 Mahfoud, S. W. Crowding and preselection revisited. In Proc. Parallel problem Solving from Na-
ture, PPSN '92, Brussels, (1992).

9 Goldberg, D. E. and Richardson, J.: Genetic algorithms with sharing for multimodal function op-
timization. In Proceedings of the 2nd International Conference on Genetic Algorithms, J. J. Gre-
fenstette, Ed. Hillsdale, NJ: Lawrence Erlbaum, (1987). pp. 41--49.

10 Beasley, D., Bull, D. R. and R. R. Martin: A sequential niche technique for multimodal function
optimization. Evolutionary Computation, 1(2): (1993) pp. 101--125

11 Harik, G.: Finding multimodal solutions using restricted tournament selection. In Proceedings of
Sixth International Conference on Genetic Algorithms, (1995).

12 Darwen, P. and Yao, X.: Every niching method has its niche: Fitness sharing and implicit sharing
compared. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature-- PPSN IV, pages 398--407, Berlin, Springer. (1996).

13 Mahfoud, S.M. (1995): A Comparison of Parallel and Sequential Niching Methods. In Proceed-
ings of Genetic and Evolutionary Computation Conference, (1995) pp136--143.

14 Sareni, B., Krahenbuhl, L.: Fitness Sharing and Niching Methods revisited. IEEE Trans. on
Evolutionary Computation, 2(3), September (1998) pp. 97-106

15 Ursem, R.K: When Sharing Fails. In Proceedings of the Third Congress on Evolutionary Compu-
tation (CEC-2001), (2001)

16 Hutter, M. Fitness Uniform Selection to Preserve Genetic Diversity. In Proceedings of the 2002
Congress on Evolutionary Computation: 783—788 (CEC-2002), Hawaii, (2002)

17 Buckling, A. et al.: Adaptation limits diversification of experimental bacterial populations. Sci-
ence, December 19, 302, (2003) pp.2107-2109.

18 Hu, J., E. D. Goodman, K. Seo, Z. Fan, R. C. Rosenberg: HFC: a Continuing EA Framework for
Scalable Evolutionary Synthesis. In Proceedings of the 2003 AAAI Spring Symposium - Compu-
tational Synthesis: From Basic Building Blocks to High Level Functionality, Stanford, Califor-
nia, March, 24-26, (2003) pp. 106-113.

19 Pelikan, M, Goldberg, D.E. & Erick Cantú-Paz, E. BOA: The Bayesian optimization algorithm.
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), I, 525-532.

20 Watson, R. Analysis of recombinative algorithms on a nonseparable building block problem. In

Foundations of Genetic Algorithms 6, W. Martin and W. Spears, Eds., San Mateo, CA: Morgan
Kaufmann, (2001), pp. 69-89.

21 Hu, J., Goodman, E., Seo, K., Fan, Z., Rosenberg, R. The Hierarchical Fair Competition (HFC)
Framework for Sustainable Evolutionary Algorithms. Evolutionary Computation, 13(1), 2005
(To appear)

 Table 1 QHFC Genetic Algorithm with Hierarchical Niching
Procedure do_potency_testing (l)
l is the level for potency testing
catchup_evaluation ← 0
exportedIndividual ← 0
while catchup_evaluation < catchupGen* | |lP and exportedIndividual< detectExportNo

randomly pick two individuals from level l
crossover, mutate, and evaluate

if fitness of offspring > 1l
admf + ,

promote it (them) to level 1l + (replacing randomly any but the best individual or other
individuals just promoted) and call import_from_below to replace its (their) closest
parent(s)

exportedIndividual ← exportedIndividual +1
else
 do deterministic crowding with the 4-member family
endif
end while
if fail to promote detectExportNo individuals
return not success
else
return success
Procedure end

Procedure import_from_below (l, nImport, victimList)
l : the level into which to import new individuals from next lower level
nImport: the number of individuals to import from next lower level
victimList: a list of indices of individuals which will be replaced by the imported new
individuals
if l =0

randomly generate nImport new individuals and import into (lowest) level l
else

randomly choose nImport individuals from level 1l − to replace individuals in victimList .
If victimList is empty, randomly choose victim individual from current level. Put the
indices of the new immigrant individuals from level 1l − into the level 1l −
newVictimList, whose openings will eventually be filled with individuals from level

2l − (this assures the replacement of individuals removed from level 1l −)
call import_from_below (l -1, nImport, newVictimList)
Procedure end

 Parameters:

Total population size | |tP L: number of subpopulations (levels) of QHFC
γ : size factor parameter, the ratio of higher level archive size w.r.t next lower level archive

size 1| | | | .k kP P γ− =
breedTopFreq: number of generations to breed top level between potency testing of lower
levels (via breeding)
detectExportNo: number of individuals from a level that must be promoted for the level to be
considered potent
catchupGen: maximum evaluations in any but top level, normalized by level’s popsize, for
potency test
percentRefill: percentage of this level’s popsize to import from next lower level when there is
no progress in the top level, or when lower levels fail potency test (do not furnish

detectExportNo qualified immigrants within specified number of evaluations)
noprogressGen: maximum number of generations without any fitness progress in top level
before triggering importing of percentRefill individuals from next lower level
QHFC Main procedure
1. initialization

rancomly initialize and evaluate the HFC subpopulations
calculate the average fitness of the whole population and set it as the admission fitness of
the bottom level, minf , which is fixed thereafter

remove individuals with fitness less than minf , and equally distribute the rest of
the individuals among the levels, according to fitness, thereby determining the
admission threshold of each level

 generate random individuals to fill the openings in each archive
2. while termination_condition is false

breed the top level for breedTopFreq generations using generational deterministic
crowding and applying mutation after each crossover
if no progress on best fitness of the whole population for noprogressGen
generations, call import_from_below, but ensuring the best individual is not
replaced if average fitness of top level > 2 1L

admf − - 2L
admf − , adjust admission

thresholds by evenly allocating fitness range to each level:
 min max min() /k

admf f k f f L= + − for k=0 to L-1

where k
admf is the admission fitness of level k, maxf is the maximum fitness of the

whole population
 //potency testing

for each level from L-2 to 0
 call do_potency_testing
 if not succeed

call import_from_below to replace (at random) percentRefill percentage of the
current level, breed one generation at this level

 endif
 end for
end while
End Main

