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Abstract. This paper proposes a new niching method named hierarchical niching, 
which combines spatial niching in search space and a continuous temporal niching 
concept. The method is naturally implemented as a new genetic algorithm, QHFC, 
under a sustainable evolutionary computation model: the Hierarchical Fair Competi-
tion (HFC) Model. By combining the benefits of the temporally continuing search 
capability of HFC and this spatial niching capability, QHFC is able to achieve much 
better performance than deterministic crowding and restricted tournament selection 
in terms of robustness, efficiency, and scalability, simultaneously, as demonstrated 
using three massively multi-modal benchmark problems. HFC-based genetic algo-
rithms with hierarchical niching seem to be very promising for solving difficult real-
world problems. 

1. Introduction 

Genetic algorithms are widely applied to challenging engineering problems today. How-
ever, there are still several undesirable properties with current genetic algorithms. The 
first one is the lack of a quality guarantee of genetic search. For example, genetic algo-
rithms are usually sensitive to the population size in terms of their search capability. Un-
fortunately, it is difficult to estimate the required population size, despite the extant popu-
lation sizing theory [1,2]. Too large a population size leads to low efficiency, and one that 
is too small may simply fail to achieve satisfactory results. The second undesirable prop-
erty is that once a genetic algorithm stagnates during a search, it usually loses most of its 
search capability, and there is no good way to rejuvenate the run in an efficient manner. 
Simple restart or strong mutations may waste the computations spent before by destroying 
the building blocks in the population. Weak mutations may perturb the solutions a little 
bit, but they cannot incur significant move in search space once the framework of the in-
dividual is established. The third problem of current genetic algorithms is the lack of ro-
bustness such as large variation of the performance of several runs due to the opportunis-
tic and convergent nature of current genetic algorithms. 

In the past three decades, many niching techniques have been proposed, which have 
greatly improved the scalability and robustness of genetic search for difficult multi-modal 



problems [3]. However, due to the convergent nature of the current genetic algorithm 
framework, these niching approaches still meet difficulty in many hard problems. Based 
on a sustainable evolutionary computation framework and a hierarchical niching mecha-
nism, this paper proposes a new genetic algorithm, named QHFC, which can significantly 
improve robustness, efficiency and scalability over that of a representative modern 
niching approach.  

The rest of the paper is organized as follows. In section 2, existing commonly used 
niching techniques including temporal niching and spatial niching are surveyed, and their 
three inherent difficulties are outlined. Section 3 then presents the ideas of the sustainable 
evolutionary computation framework of HFC [4,5], which underlies the design of a new 
genetic algorithm with hierarchical niching, QHFC to be described in Section 4. A set of 
three well-known genetic algorithm benchmark problems are used to evaluate QHFC in 
section 5 and the results are compared to genetic algorithms with deterministic crowding 
and restricted tournament selection in terms of scalability, efficiency, and robustness. A 
conclusion is then drawn in Section 6 along with future work to be done. 

2. Related Work 

The basic framework of genetic algorithms was laid down by John Holland in the 1960s, 
as summarized in his book [6], following the Darwinian evolution theory of natural selec-
tion. Most of the early formulations of evolutionary computation employed the principle 
of survival of the fittest. But it turned out that incautious keeping of the best individuals 
leads to bad performance, as population diversity is critical to good evolutionary search. 
The most widely used techniques to maintain diversity today are niching techniques, in-
cluding many well-known methods—for example, De Jong crowding [7], deterministic 
crowding [8], fitness sharing [9], sequential niching [10] and restricted tournament selec-
tion [11]. Niching is useful for many application cases of genetic algorithms. It can be 
used to maintain interim sub-solutions to find a single final solution or to find multiple fi-
nal solutions. It is also widely used as an effective mechanism to form and maintain diver-
sity in genetic algorithms to solve hard problems. Other methods like reducing selection 
pressure, selection noise and operator disruption do not typically result in a GA with 
strong niching behavior. Readers are referred to Mahfoud [3] for an excellent and almost 
exhaustive review of niching methods.  

Niching methods can be classified by their underlying mechanisms [3]. According to 
the fitness functions employed, they can be categorized as single-environment approaches 
(such as crowding and sharing) and multiple-environment approaches (such as implicit 
fitness sharing [12], and multi-objective function optimization). Since multi-environment 
approaches are usually specific to special types of problems, we are only interested in sin-
gle-environment niching approaches in this paper. According to whether niching is 
achieved across space or over time, we have spatial niching and temporal niching. The 
former includes the widely used crowding and sharing, which form and maintain multiple 
niches within the space of a single population. The latter form and maintain multiple 
niches over time. Only one temporal niching approach, called sequential niching [10], has 
received attention in the literature to date.  



Many experimental comparisons and analytical analyses have been conducted to evalu-
ate the advantages and disadvantages of existing niching methods [13, 14, 15].  Mahfoud 
[13] showed that sequential niching is weak on easy problems and also incapable of solv-
ing hard problems due to its lack of cooperation of individuals in niches and the increasing 
difficulty to find remaining optima. Fitness sharing is a widely used approach and is very 
strong if used with intelligent scaling and appropriate setting of the sharing radius parame-
ters, both of which, however, are difficult to achieve; bad results have therefore been re-
ported [14,15]. An undesirable property of both sequential niching and fitness sharing is 
that they modify the search landscape and thus may incur false optima and other unex-
pected search behaviors. It turns out that deterministic crowding is one of the best spatial 
niching approaches. It is capable and easy-to-use and its performance has been confirmed 
by several comparative studies [13, 14]. Compared to fitness sharing, deterministic crowd-
ing succeeds with smaller subpopulations and can often find global optima for hard prob-
lems [13]. Assuming the selection pressure for high-fitness leads to premature conver-
gence, Hutter [16] proposed a Fitness Uniform Selection Scheme (FUSS) to preserve 
genetic diversity. However, this approach suffers from insufficient selective pressure for 
exploitation and unbalanced fitness distribution of the search space. More detailed com-
parison of FUSS and other diversity maintaining mechanisms with HFC framework [4] is 
described in [5]. 

However, there are several difficulties in applying genetic algorithms to practical real-
world problems, which lead to situations in which current spatial niching approaches tend 
to fail miserably. The first constraint of using a genetic algorithm is that we can often use 
only a very limited population size, at least relative to the size that various sizing methods 
indicate is needed. However, as spatial niching methods work by spreading the population 
out across much of the search space, and there are a huge number of local optima, an 
enormous population size is usually needed to achieve a satisfactory search solution. This 
has been proved by the population sizing theory associated with deterministic crowding 
[3]. However, too large a population size leads to a large number of evaluations, which is 
usually undesirable. This dependence on population size is even made worse by the fact 
that each niche has to be supported by multiple individuals to search effectively around it.  

As a result of the limited population size, spatial niching methods normally fail to 
maintain a stable subpopulation at low-fitness area of the search space. For example, fit-
ness sharing tends to focus on several high-fitness niches during the later stages of search. 
The consequence of the loss of low-fitness-level search is that the genetic algorithm may 
lose the chance of discovering some essential building blocks or other beneficial genetic 
material in later search stages, focusing instead on building blocks discovered during the 
very limited sampling experiments in the early search stage. The reason is that the increas-
ingly high average fitness of the population makes it almost impossible to maintain effec-
tive search niches at very low fitness levels. This principle is can be interpreted in biologi-
cal terms as the cost of specialization, or adaptation limiting diversification: adaptation to 
a specific niche (corresponding to high fitness in a genetic algorithm) theoretically con-
strains a population's ability to subsequently diversify into other niches [17]. It is in this 
sense that the ordinary genetic algorithm model is convergent. The progress of fitness cor-
responds to an entrenching process; the more progress a genetic algorithm makes, the less 
opportunity it has to find radically new, beneficial structures and then possibly better solu-
tions.  



Another difficulty of current spatial niching methods is the uneven pace of progress in 
the various niches in the early stages. It is often the case that some early-discovered niches 
tend to attract most of the individuals of the population, while other niches with higher 
fitness do not attract enough individuals to explore their search domains and expose their 
potential.  

To handle the three difficulties mentioned above—the limited population size, loss of 
exportation capability, and unbalanced pace of progress of different niches—a new 
niching approach is needed, based on a new evolutionary algorithm model. In the follow-
ing section, a new niching method, called hierarchical niching, is proposed.  It combines 
the benefits of both spatial niching and temporal niching, and is implemented in a new 
sustainable evolutionary search model called the Hierarchical Fair Competition (HFC) 
model. 

3. Hierarchical Niching and the HFC Sustainable Evolutionary Search 
Model 

The basic idea of hierarchical niching is to introduce a continuous version of temporal 
niching together with spatial niching to address the three difficulties outlined in the previ-
ous section. Hierarchical niching here refers to a type of niching technique that maintains 
continuing search at all (absolute) fitness levels, each of which is subject to a spatial 
niching technique. It is naturally implemented under a sustainable continuing evolutionary 
computation model, Hierarchical Fair Competition [4,5,18].  

HFC employs an assembly-line structure in which subpopulations are hierarchically or-
ganized into different fitness levels [4]. Offspring of a given level are exported to higher 
levels if their fitness qualifies them for migration. The openings that create are filled by 
individuals imported from lower levels or generated by mutating other individuals of the 
same level. The bottom level continuously generates raw genetic material to explore for 
new building blocks, which are eventually exported to higher fitness levels. The motiva-
tion of HFC is to maintain effective search at all fitness levels to sustain the search proc-
ess indefinitely and thus remove the problem of insufficient sampling and limited popula-
tion size.  The continuing search capability of HFC is achieved by ensuring a continuous 
supply and incorporation of genetic material in a hierarchical manner, and by culturing 
and maintaining, but continually renewing, populations of individuals of intermediate fit-
ness levels. It also has the effect of reducing the selection pressure within each subpopula-
tion while maintaining the global selection pressure to help ensure exploitation of good 
genetic material found. When each subpopulation (level) in an HFC algorithm is updated 
by application of a spatial niching technique, the hierarchical niching is established.  

Hierarchical niching handles the three difficulties mentioned in Section 2 as follows. 
Since the available population size is too limited to accommodate all local optima simul-
taneously, hierarchical niching resorts to the continuing search at lower fitness levels to 
ensure sequential identification of useful building blocks. This is different from sequential 
niching in the fact that hierarchical niching only allows partial import of recently discov-
ered building blocks from lower levels, which promotes recombination of building blocks 
discovered early and later. This is in sharp contrast to sequential niching. The issue of loss 
of explorative capability is handled by the HFC model. In HFC, the lowest fitness level 



can continuingly generate genetic diversity and export good building blocks to upper lev-
els, so the search power of the genetic algorithm is sustained, and it exhibits no tendency 
to converge. And because of the mixing of late-discovered building blocks and early-
discovered building blocks, HFC works much better than other naïve sustainable search 
strategies like restarting or multiple runs, in which random genetic material essentially just 
perturbs current individuals by destroying its building blocks rather than discovering new 
building blocks. The insufficient sampling and unbalanced pace of progress problems are 
all handled by the continuing search capability of the HFC model, since lower-level 
search may go on indefinitely if needed.  

Based on hierarchical niching and the HFC model, we have developed a genetic algo-
rithm named QHFC (Q means “quick”), which can achieve significant performance im-
provement compared to a GA employing another state-of-the-art niching technique, de-
terministic crowding and restricted tournament selection. The spatial niching used in the 
current version of QHFC is deterministic crowding, so the demonstration illustrates that 
QHFC can improve significantly on deterministic crowding alone.  

4. The QHFC Algorithm with Hierarchical Niching 

QHFC algorithm is designed based on the HFC sustainable evolutionary computation 
model, the hierarchical niching concept, and the adaptive breeding strategy. Like the 
multi-population implementation of HFC, the whole population is divided into several 
levels, each accommodating individuals with fitness within a certain fitness range, except 
in special situations (to be explained in Table 1 at the end).  The QHFC algorithm can be 
viewed as a set of cooperating GA agents, each searching at a different fitness level, from 
the lowest (base) level to the top level. Hierarchical niching is implemented as follows: 
the top level works as a generational GA with deterministic crowding; all other levels up-
date as steady-state GAs with deterministic crowding.  

Compared to previous HFC genetic algorithms, one of the most important innovations 
of QHFC is the adaptive breeding strategy implemented using potency testing (discussed 
next). It provides a generic mechanism to maintain automatically the balance of explora-
tion and exploitation. More specifically, it allows the algorithm to search as greedily as 
possible, so long as the greedy strategy is sustainable. For easy problems, the top level 
automatically gets more breeding opportunities and the search is very aggressive. For hard 
problems where sustained diversity is a necessity, lower levels are automatically bred 
more frequently to provide the needed influx of diverse individuals for higher levels.  

Potency here is defined as the capability of a fitness level in HFC to produce offspring 
with fitness high enough for export to higher HFC levels. This mechanism for maintaining 
the potency of all but the top level works as follows: starting from the level just below the 
top level, breeding is conducted successively in each level, moving toward the lower lev-
els, using steady-state breeding methods, while tracking the number of offspring produced 
that are eligible for promotion (migration to the next-higher fitness level). If a given num-
ber of promotable offspring are not produced within a specified number of evaluations at a 
given level, then a “catch-up” procedure is conducted: a specified fraction of that level’s 
individuals is replaced by individuals taken from (and removed from) the next lower level, 
and popsize genetic operations and evaluations are performed. (popsize is the size of the 



population at the receiving fitness level.)  Then, in turn, the openings created at the next 
lower level are immediately filled with individuals removed from the level below that, 
etc., until, at the lowest level, the openings are filled by new randomly generated indi-
viduals.  However, except for the further genetic operations and evaluations performed at 
the level where the "catch-up" procedure was initiated,  further genetic operations and 
evaluations are not performed as part of this “ripple down” filling of openings.  This 
“double loop” procedure assures that each level, before it next breeds, has either recently 
produced individuals worthy of promotion to the next level or has received new individu-
als from the next lower level, thus ensuring its potency to export higher-level individuals. 
This mechanism for sustaining the potency of search does not require evaluating any 
measure of the distance among genotypes or phenotypes, and could also be applied to GP 
and other sorts of problems.  

The QHFC algorithm is summarized in Table 1 at the end. Compared with HFC-GP [4] 
and AHFC-GP [5], QHFC has many fewer parameters to specify, and the admission 
thresholds are automatically adjusted.  

5. Experiments 

As discussed in Section 2, we are interested in hard problems with a large number of local 
optima, typically massively multimodal, with deception. These factors can often expose 
the limitation of current niching methods if used with a conventional evolutionary compu-
tation model. Here, three widely-used massively multimodal and/or deceptive GA test 
problems are used to evaluate the performance of QHFC with hierarchical niching, and 
the performance is compared to the modern niching methods deterministic crowding [8] 
and restricted tournament selection [11], whose performances have been deemed excellent 
by several other researchers [13,14].  

The three benchmark problems used here include: 
1) f3deceptive: order-3 deceptive problem [19], with problem sizes n=60, 90, 120, 

150, 180, 240, 300 
This deceptive function is composed of separable building blocks of order 3 and has 
one global optimum at 111…1 and a deceptive attractor at 000…0. There are many 
local optima in the landscape of this function. 
2) 6bipolar: order-6 bipolar deceptive problem [19], with problem sizes n=60, 90, 

120, 150, 180, 240, 300 
This deceptive function is composed of separable building blocks of order 6 and has 
one global optimum at 111…1 and a deceptive attractor at 000…0. There are many 
local optima in the landscape of this function. 
3) trap5: order-5 trap problem [19], with problem sizes n=60, 90, 120, 150, 180, 

240, 300 
This deceptive function is composed of separable building blocks of order 5 and has 
one global optimum at 111…1 and a deceptive attractor at 000…0. There are many 
local optima in the landscape of this function. 

We compared QHFC with one generational GA with deterministic crowding (DC), de-
scribed in [8], and one steady state GA with restricted tournament selection (RTS) [11]. 
Since it is difficult to find an appropriate scaling factor and niching radius, evaluation of 



and comparison with fitness sharing is not reported. But since fitness sharing belongs to 
the same category of spatial niching techniques and also lacks the capability of maintain-
ing low-level search at later evolutionary stages, we expect that hierarchical niching with 
QHFC could also improve on the effectiveness of fitness sharing in the same way as it 
improves deterministic crowding demonstrated below.  

Three criteria are used to evaluate the performance of the genetic search:   
• Scalability: within a given number of functional evaluations (1,000,000), what is 

the maximum problem size it can solve to optimum in at least 85% (27) of the to-
tal 30 runs? 

• Efficiency:  for the problem sizes that both QHFC and DCGA can solve, what is 
average number the evaluations needed to find the global optimum? 

• Robustness: What is the fitness variation at the end of 1,000,000 evaluations and 
what is the variance of the number of evaluations needed to find a global opti-
mum when it is possible (for simplicity, we assume that all failed runs will find 
the global optima in the next evaluation and use 1,000,000 as the needed evalua-
tions to find a global optimum)? How many runs out of 30 have found the global 
optimum solution? 

The experimental parameters are set as follows: 
For QHFC, in all the experiments, with different population sizes and different problem 

sizes, a single set of parameters was used. 
L: 5          γ : 0.8         breedTopFreq: 2       detectExportNo: 2 
percentRefill:  0.25       catchupGen: 20        noprogressGen: 2 

 
All three algorithms were tested with the same set of parameters for all problems and all 
problem sizes. The population size for all experiments was 500. All experiments were al-
lowed a generous maximum of 1,000,000 evaluations, and each experiment was repeated 
30 times. The per-bit mutation probability for the genetic algorithm with DC and RTS was 
0.005, and was zero for QHFC. The window size of RTS was 20, and the tournament size 
was 2. Note that by adaptive potency testing, QHFC achieves adaptive mutation implic-
itly. The results of the experiments are summarized in Fig. 1: a-f.  

Fig. 1 (a)-(c) shows the average number of evaluations to find the global optimum or to 
fail because of reaching the limit of 1,000,000 evaluations. It is clear that for all three 
problems, QHFC found the global optimum with the fewest evaluations, the difference be-
ing especially significant in the case of large problem sizes.  QHFC also won by having 
the smallest variation in the number of evaluations needed to find the global optimum. 
Fig. 1(d)-(f) presents the number of successful runs out of 30 for the three tested niching 
techniques. The RTS method performed the worst, solving well only for problem size 60 
for the three problems, and its performance degraded dramatically when the problem size 
increased. The DC method was better, but also suffered severely from the limit of the 
population size. When the problem size reached a threshold, the DC performance also de-
graded dramatically, as shown in (d-f). For the f3deceptive and 6bipolar problems of size 
300, DC only achieved a success rate of 50%. None of the DC runs succeeded for trap5 
with a problem size of 300. We also find that genetic algorithms with DC and RTS are 
very sensitive to the mutation rates for the benchmark problems. When we set the bit mu-
tation probability as 0.00005, restricted tournament selection works much better than de-
terministic crowding, but both are still much worse than QHFC. It is extraordinary that for 



all three problems, QHFC achieved excellent scalability and solved the problems reliably 
even at a problem size of 300. Further experiments showed that the performance of QHFC 

Minimum Evals to find global optimum or 
fail to find within eval. limit. 

Number of Successful runs out of 30 

Evaluations vs. problem size for f3deceptive Problem

Problem size

60 90 120 150 180 240 300

 N
o.

 o
f e

va
lu

at
io

ns
 to

 fi
nd

 g
lo

ba
l o

pt
im

a 
(o

r f
ai

l a
t e

va
lu

at
io

n 
lim

it)

-2.0e+5

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

DC
RTS
QHFC

f3deceptive problem (a) 

Success rate for f3deceptive problem

Problem size

60 90 120 150 180 240 300

S
uc

ce
ss

 ru
ns

 o
ut

 o
f 3

0

0

5

10

15

20

25

30

35

DC
RTS
QHFC

 
f3deceptive problem (d) 

Evaluations vs. problem size for 6bipolar deceptive Problem
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6bipolar problem (e) 

Evaluations vs. problem size for trap5 deceptive Problem
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trap5 problem (f) 

Fig. 1.  Comparison of hierarchical niching (QHFC), deterministic crowding (DC), and re-
stricted tournament selection (RTS) in terms of scalability, robustness and efficiency. It is clear 
that for simple problems or when the problem size is small enough for a population size of 500 
is sufficient, DC and RTS work as well as QHFC. However, both DC and RTS suffer from the 
limited population size and fail for more difficult problems. QHFC clearly has better scalability, 
robustness, and efficiency. 



in solving even larger problem sizes degraded very slowly. In fact, experiments (not pre-
sented in detail here for lack of space) showed that while DC needed a population size of 
4000 to solve a 256-bit HIFF problem [20] with ½ success rate, QHFC solved it reliably 
with a population size of only 200 for 27 runs out of 30.  

We also compared the efficiency of QHFC with the Bayesian Optimization Algorithm 
(BOA) [19]. For the f3deceptive problem of size 180, BOA needed 160,000 evaluations, 
while QHFC took an average of 162,717 for 30 runs. For the 6bipolar problem of size 
180, BOA took 150,000 evolutions while QHFC needed, on average, 134,966 evaluations. 
For the trap5 problem of size 180, BOA required 220,000 evaluations, while QHFC took 
only 145,700 evaluations. Remember that QHFC uses the simple two-point crossover, 
while BOA explicitly learns the building blocks in these decomposable benchmark prob-
lems. It is clear that for decomposable problems with tight building blocks, QHFC with 
simple crossover is very competitive with BOA. However, BOA works for arbitrary or-
dering of the variables, in which case the 2-point crossover used in QHFC simply fails, 
even with the help of the hierarchical niching of QHFC. This demonstrates that the design 
of representation, linkage learning, and operator design are critical to effective genetic 
search.  It also suggests the possibility of enhancing of BOA-type methods with a hierar-
chical niching mechanism. 

6. Discussion and Conclusions 

Robustness, efficiency and scalability are among the most desirable qualities of genetic 
algorithms. This paper proposed a genetic algorithm, QHFC, which can significantly im-
prove these three performance criteria without significant additional computing effort.  
The proposed hierarchical niching technique combines the ideas of spatial niching and 
temporal niching to avoid the pitfalls of insufficient sampling, limited population size, and 
loss of low-level search capability, all of which contribute to the limited search capability 
of spatial niching techniques. It should be pointed out that hierarchical niching—the idea 
of implementing spatial niching at each level of the HFC model—is very different from 
another temporal niching method, sequential niching. The former achieves good search by 
promoting the cooperation of niched individuals in all levels, while in the latter method, 
individuals in the previous run stage cannot help and usually hinder the discovery of later 
solutions. Compared to spatial niching, hierarchical niching here does not lose the search 
capability at low fitness levels, while spatial niching methods such as fitness sharing and 
deterministic crowding are strongly limited by population size and eventually lose search 
capability at low fitness levels. Another feature of hierarchical niching is that the niching 
technique used within each level could easily be some method other than the deterministic 
crowding used in this paper. 

The significant performance gain in terms of search sustainability, efficiency, and ro-
bustness of QHFC again demonstrates the usefulness of hierarchical niching and of the hi-
erarchical fair competition (HFC) model for sustainable evolutionary search. These algo-
rithms seem to be especially useful for large-scale long-term artificial evolution 
experiments such as topologically opened synthesis of electric circuits, mechatronic sys-
tems, etc. 

Our future work will include an experimental comparison study of QHFC with FUSS 
[16] and fitness sharing with different parameter configurations such as the population 
sizes. Although our previous work [21] shows that depending on large population size to 



maintain diversity is not a scalable solution to premature convergence problem, more ex-
periments with more test problems would be helpful to further justify this hypothesis. 
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 Table 1   QHFC Genetic Algorithm with Hierarchical Niching 
Procedure do_potency_testing ( l  )  
l  is the level for potency testing 
catchup_evaluation ← 0 
exportedIndividual ← 0 
while catchup_evaluation < catchupGen* | |lP  and exportedIndividual< detectExportNo 

randomly pick two individuals from level l  
crossover, mutate, and evaluate 

if fitness of offspring > 1l
admf + , 

promote it (them) to level 1l +  (replacing randomly any but the best individual or other 
individuals just promoted) and call import_from_below to replace its (their) closest 
parent(s) 

exportedIndividual ← exportedIndividual +1 
else  
 do deterministic crowding with the 4-member family 
endif 
end while 
if  fail to promote detectExportNo individuals 
return not success 
else  
return success 
Procedure end 
 
Procedure import_from_below ( l, nImport, victimList )  
l : the level into which to import new individuals from next lower level 
nImport: the number of individuals to import from next lower level 
victimList: a list of indices  of individuals which will be replaced by the imported new 
individuals 
if l =0   

randomly generate nImport new individuals and import into (lowest)  level l  
else 

randomly choose nImport individuals from  level 1l − to replace individuals in victimList . 
If victimList is empty, randomly choose victim individual from current level. Put the 
indices of the new immigrant individuals from level 1l − into the level 1l −  
newVictimList, whose openings will eventually be filled with individuals from level 

2l − (this assures the replacement of individuals removed from level 1l − ) 
call import_from_below ( l -1, nImport, newVictimList) 
Procedure end 

 



 
 Parameters: 

Total population size | |tP  L: number of subpopulations (levels) of QHFC 
γ : size factor parameter,  the ratio of higher level archive size w.r.t next lower level archive 

size 1| | | | .k kP P γ− =  
breedTopFreq: number of generations to breed top level between potency testing of lower 
levels (via breeding) 
detectExportNo: number of individuals from a level that must be promoted for the level to be 
considered potent 
catchupGen: maximum evaluations in any but top level, normalized by level’s popsize, for 
potency test 
percentRefill:  percentage of this level’s popsize to import from next lower level when there is 
no progress in the top level, or when lower levels fail potency test (do not furnish  

detectExportNo qualified immigrants within specified number of evaluations) 
noprogressGen: maximum number of generations without any fitness progress in top level 
before triggering importing of percentRefill individuals from next lower level 
QHFC Main procedure 
1. initialization 

rancomly initialize and evaluate the HFC subpopulations 
calculate the average fitness of the whole population and set it as the admission fitness of 
the bottom level, minf , which is fixed thereafter 

remove individuals with fitness less than minf , and equally distribute the rest of 
the individuals among the levels, according to fitness, thereby determining the 
admission threshold of each level 

    generate random individuals to fill the openings in each archive 
2. while  termination_condition is false 

breed the top level for breedTopFreq generations using generational deterministic 
crowding and applying mutation after each crossover 
if no progress on best fitness of the whole population for noprogressGen 
generations, call import_from_below,  but ensuring the best individual is not 
replaced if average fitness of top level > 2 1L

admf −  - 2L
admf − , adjust admission 

thresholds by evenly allocating fitness range to each level:  
 min max min( ) /k

admf f k f f L= + −   for k=0 to L-1 

where k
admf  is the admission fitness of level k, maxf is the maximum fitness of the 

whole population 
    //potency testing 

for each level from L-2 to 0 
   call do_potency_testing 
       if not succeed 

call import_from_below to replace (at random) percentRefill percentage of the 
current level, breed one generation at this level 

         endif 
  end for 
end while 
End Main  




