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Abstract 
 

Balanced structure and parameter search is 
critical to evolutionary design with Genetic 
programming (GP). Structure Fitness Sharing 
based on a structure labeling technique is 
proposed to maintain the structural diversity and 
prevent premature convergence of structures. 
SFS achieves balanced structure and parameter 
search by applying fitness sharing to each 
structure in a population to prevent takeover by 
the best structure and thereby maintain the 
diversity of both structures and parameters 
simultaneously. SFS does not require definition 
of a distance metric, and is thus very efficient 
compared to other fitness sharing methods in GP. 
The effectiveness of SFS is demonstrated on a 
real-world bond-graph-based analog circuit 
synthesis problem.  

1 INTRODUCTION  

Genetic Programming has been applied successfully to a 
rich variety of problems such as machine code evolution 
(Nordin, 1997), quantum algorithm design (Spector, 1999), 
cellular automaton rule discovery, and soccer-playing 
program evolution (Andre 1999). GP has been particularly 
effectively used as an efficient Darwinian Invention 
Machine that enabled Koza et al. to achieve 
human-competitive results in analog circuit design and in 
the transmembrane segment identification problem (Koza 
1999). Indeed, one of GP’s most significant features is the 
ability to simultaneously evolve both a structure and its 
parameters, opening up to GP promising applications in 
many real-world engineering design problems and in 
neural network design. In all of these problems, the 
objective is to search for an open-ended structure, together 
with its related parameters, to achieve several desired 
goals. Genetic programming – especially evolutionary 
design by genetic programming – is characterized as 
making a high demand on computational resources (Koza, 
1999). To some extent, this demand can be traced to the 
premature convergence problem, especially convergence 
of the structures in a GP population; it can be ameliorated 
using diversity-maintenance techniques for the population. 

Based on an analysis of the weak causality of GP, the new 
concept of Structure Fitness Sharing (SFS), based on a 
structure labeling technique, is proposed to achieve 
balanced structure and parameter search by maintaining 
the diversity of both structures and parameters at all times.  
This method does not require definition of a distance 
metric, and is thus very efficient compared to other fitness 
sharing methods. Its effectiveness is demonstrated on a 
real-world bond-graph-based analog circuit synthesis 
problem using GP. 

2 THE DIVERSITY PROBLEM IN 
EVOLUTIONARY DESIGN BY GP 

2.1 CATEGORIES OF EVOLUTIONARY 
DESIGN PROBLEMS 

Evolutionary design problems can be classified into three 
types: 

TYPE I: Fixed structure with fixed number of 
parameters. 

These problems are essentially parameter 
optimization problems, where the task is to optimize 
the parameter of a given structure. Genetic 
Algorithms, simulated annealing, evolutionary 
programming, evolution strategies, and even 
gradient-based optimization techniques are often 
used here.  

TYPE II: Variable structure with no parameters. 

This type includes problems such as algorithm 
design, program induction and logic design, where 
only structure search is needed. These problems are 
well suited for GP, which intrinsically manipulates 
the program structure, often represented as a tree. Of 
course, some of these problems can be solved with 
genetic algorithms, simulated annealing, and other 
techniques, by using a somewhat indirect 
representation of the structure.  

TYPE III: Variable structure with variable number of 
parameters 

Many of the most interesting evolutionary design 
problems belong to this category, in which a structure is 
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sought within a topologically open-ended space, but the 
fitness of a structure can often only be evaluated after 
parameters are assigned to key variables associated with 
the structures evolved.  Since the structure is varied 
during the search process, the number of parameters and 
their semantics change frequently. Such problems include 
analog circuit design (Koza, 1999), mechanical system 
design (Fonseca, 1993), and neural network design 
(Oliker, 1992). Although a GA with a variable length 
representation can be used here, GP, with its outstanding 
capability to search simultaneously for a good structure 
and for appropriate parameters, distinguishes itself as the 
most important tool for this kind of open-ended design 
problem. 

2.2 PREMATURE CONVERGENCE AND 
DIVERSITY IN THREE TYPES OF 
EVOLUTONARY DESIGN PROBLMES 

TYPE I problems are often described as parameter 
optimization problems, readily addressable by GA.  
Premature convergence in GA has been well studied.  
Common diversity maintenance techniques include 
crowding (DeJong, 1975), deterministic crowding 
(Mahfoud, 1992), and fitness sharing (Goldberg, 1989).  
The fitness derating method (Beasley, 1993), a 
multi-objective method, employs fitness sharing in a 
popular and effective way.  

The premature convergence problem when GP is applied 
to TYPE II problems has also been well studied. Most of 
the resulting methods are derived from GA, but with some 
specific consideration of the GP context. In 
multi-objective genetic programming, Rodriguez 
(Rodriguez-Vazquez, 1997) uses the MOGA approach 
with fitness sharing being performed in the fitness space, 
and extends it to genetic programming. Though easier to 
implement, it remains an open question whether diversity 
of fitness values is generally a true indicator of the 
diversity of a population – a measure which should 
actually be based on the parameter space.  De Jong et al. 
(DeJong, 2001) use the multi-objective method to 
explicitly promote diversity by adding a diversity 
objective. In their method, a distance measure defined as 
follows is used in the diversity objective. The distance 
between two corresponding nodes is zero if they are 
identical and one if they are not. The distance between 
two trees is the sum of the distances of the corresponding 
nodes – i.e., distances between nodes that overlap when 
the two trees are overlaid, starting from the root. The 
distance between two trees is normalized by dividing by 
the size of the smaller of the two trees. The diversity 
objective is defined as the average squared distance to 
other members of the population. An improved version of 
the above distance metric between two trees is proposed 
by Aniko Ekart and S.Z. Nemeth (Ekart, 2000) and used 
to do fitness sharing in GP. Their method includes the 
following three steps: 

1) The two GP trees to be compared are brought to 
the same tree-structure (only the contents of the 
nodes remain different). 

2) The distances between each pair of symbols 
situated at the same position in the two trees are 
computed. 

3) The distances computed in the previous step are 
combined in a weighted sum to form the 
distance of the two trees. 

The major improvement of this method is that it 
differentiates the types of corresponding nodes when 
calculating the distance of two nodes. It first divides the 
GP functions and terminals into several subsets. For nodes 
whose types belong to the same subset, it calculates the 
relative distance. For nodes whose types belong to 
different subsets, it use a defined function to make sure 
that the distance between nodes from different subsets is 
bigger than that between nodes of the same subset. It also 
considers the fact that a difference at some node closer to 
the root could be more significant than a difference at 
some node farther from the root, using a multiplier K to 
distinguish them.  Edit distance and phenotypic distance 
for fitness sharing for GP are also tested in their 
experiment. The former gets slightly better accuracy but 
with relatively high computational cost. The latter doesn’t 
provide much improvement over the original GP without 
fitness sharing.  

Implicit fitness sharing (McKay, 2001) has also been 
applied to GP. Instead of calculating the distance between 
the structures of GP trees, it is a kind of phenotypic 
(behavior-based) fitness sharing method. The fitness is 
“shared” based on the number of other individuals who 
have similar behaviors, capabilities or functions. Implicit 
fitness sharing provides selection pressure for each 
individual to make different predictions from those by 
other individuals. Population diversity of TYPE III 
problems in GP has not been investigated thoroughly. 
These problems are characterized by the need for 
simultaneous optimization of topology and parameters. In 
a GP population, structure diversity is needed to enable 
efficient topology exploration, which is the main objective, 
in most case, for discovery of innovative designs. At the 
same time, the goodness (or fitness) of a structure can 
only be evaluated with sufficient parameter exploration 
within the same structure. Thus, the parameter diversity of 
each structure also needs to be maintained. As a result, in 
the context of variable structure and parameter design by 
GP, the population diversity has some significant 
differences from that of a GA, in the following respects: 

• Number of peaks 

When applying fitness sharing in GA, two 
assumptions are made. One is that the number of 
peaks is known or can be estimated. Second is 
that the peaks are almost evenly distributed. In 
many problems of GA, a relatively limited 
number of peaks are expected to enable efficient 
use of fitness sharing. However, in TYPE III 
problems, each structure may have a huge 
number of peaks with respect to its parameter 
space, while in the structure space, each structure 
is a distinct peak, since the structure space is not 
a continuous space, but rather a highly nonlinear 
discrete space.  



• Continuity of search space 

In GA, many problems can be considered as 
defined in an approximately continuous space, 
although sometimes certain aspects have 
distinctly discrete behavior.  However, in TYPE 
III problems, GP deals with a highly discrete 
structure space that also has a huge continuous 
space (of parameter values), since for each 
structure, the search for appropriate parameters 
can be regarded as an instance of GA search.   

• Constraints 

In GA, only parameter constraints exist. 
However, in TYPE III problems, GP must deal 
with both structure constraints and parameter 
constraints. 

The demand for structure diversity as well as parameter 
diversity makes the existing fitness sharing methods 
inefficient for Type III problems. For fitness-space-based 
fitness sharing (Rodriguez-Vazquez, 1997) and the 
implicit fitness sharing (McKay, 2000) methods, 
significant parameter diversity is lost since they do not 
promote coexistence of  individuals with the same 
structure but with different parameters in order to enable 
efficient parameter search. Fitness sharing with the 
distance metric, as in (Ekart, 2000; KeJong, 2001), is also 
inefficient in this case.  First, the computational cost is 
still demanding, since in TYPE III problems, a complex 
structure and its parameters often require a big tree – 
perhaps 1000 - 2000 nodes in most of our experiments – 
especially when parameters are normally represented by a 
numeric subtree such as Koza uses (Koza, 1999). Second, 
but more importantly, the underlying assumption of the 
above distance metrics is that structural dissimilarity 
measured between two GP trees meaningfully reflects the 
dissimilarity in function between the two structures. 
However, as the structure space represented by a GP tree 
is a highly non-linear space, in most cases, a change of a 
single (non-parameter) node changes the behavior of the 
GP tree dramatically. This phenomenon can be traced to 
the weak causality of GP (Rosca, 1995), which means that 
small alterations in the underlying structure of a GP tree 
cause big changes in the behavior of the GP tree. So 
measuring a sort of "Hamming" distance between the 
structures of two GP trees to predict the difference of the 
behavior/function is not well founded, and thus inefficient. 
This makes a useful definition of a sharing radius hard to 
determine. It seems that distance metrics in the structure 
space and the parameter space and the association of a set 
of parameters with the structure to which they apply must 
be faithfully captured in order to most effectively 
maintain both structure diversity and parameter diversity 
and thereby to achieve efficient search.  Therefore, given 
the inherent difficulty of structure/function mapping, 
perhaps it is counterproductive to use any structural 
similarity measure beyond the most basic and completely 
faithful one – the identity mapping:  two structures are 
either identical, or they are not.  That is the structural 
distance measure used here.  While it is possible to 
define a broader relationship that still captures identity of 
function (for example, if swapping of the order of two 
children of a node has no effect on the function computed), 

such definitions depend on the semantics of the functions, 
and were not implemented here. 

3 BALANCED STRUCTURE AND 
PARAMETER SEARCH IN 
EVOLUTIONARY DESIGN BY GP 

In design problems involving both variable structure and 
variable parameters, search must be balanced between the 
structure and parameters. On one hand, each structure 
needs sufficient exploration of its parameters to develop 
its potential to some extent, which means that a 
reasonable number of individuals of the same structure 
must probably be kept in the population. On the other 
hand, no structure should dominate the population, or it 
would prevent sufficient future exploration of the 
structure space.  

Structure premature convergence in evolutionary design 
by GP is caused by negligence of the different role of 
structure and parameter search. In standard GP, crossover 
nodes and mutations nodes are selected randomly in the 
whole node set, structure operation nodes are then taken 
the same as the numerical nodes, (provided that numerical 
subtree are used to define the parameters of components, 
which is a standard way). This means that a circuit 
structure is often discarded by selection process if its 
fitness is low. The result is that usually, mundane 
structures with slightly better parameters often proliferate 
and dominate the population while good structure with 
bad parameters are discarded, which is called the structure 
premature problem. This phenomenon arises from the fact 
that promising good structures are often discarded just 
because its parameters are not adjusted well enough to 
demonstrate their potential. Ideally, a structure should be 
discarded only when it is demonstrated to be bad by 
adjusting its parameters well enough. In addition, since 
there is often much more numeric nodes than structure 
operating nodes, structure premature problem is even 
more severe, since there is few chance for a structure node 
to be selected to change the structure. 

In order to solve this problem, structure and parameter 
search must be controlled explicitly. In our work, a 
probabilistic method is firstly devised to decide whether 
GP does a structure operation (crossover or mutation on a 
structure operation node) or does parameter operation 
(crossover or mutation on a parameter operation node). 
Since structure changes have more fundamental effect 
than the parameter changes on performance of the system, 
the following probabilities are defined to keep the 
structure and its function stable and to allow parameter 
adjusted well enough to demonstrate the potential of 
structure sufficiently. 

We also use explicit control of the node selection process 
to achieve balanced parameter evolution for all parameters 
in a structure. During the parameter operation stage, we 
first establish a list for all variables whose value need to 
be established during evolution, and then we randomly 
select a variable as the current variable to be changed. We 
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then select a node in the numeric sub-tree of this variable 
and do crossover or mutation operation. In this way, each 
variable has equal opportunity to be changed during 
evolution. This improvement speeds the evolution process 
balanced numeric subtrees in GP trees are achieved. All 
variables have numeric sub-trees with similar.  

Even with above methods, the structure convergence is 
still often as some structures with good parameters 
quickly domintate the whole population. So we proposed 
the Structure Fitness Sharing (SFS) method to control the 
reproduction of high-fitness structures. Our assumptions 
are that fitness sharing can profitably be based on the 
number of individuals with the same structure, and that 
distance between the structures of two GP trees is not 
generally an adequate predictor of the differences between 
their behaviors. Thus, any “counting of positions where 
the trees differ” distance metric is not well founded.  
Instead, a simple labeling technique is used to distinguish 
structures.  

4 STRUCTURE FITNESSS SHARING 
(SFS)  

Structure Fitness Sharing is the application of fitness 
sharing to structures in GP. In contrast to the GA fitness 
sharing using a distance measure to identify peaks, in SFS, 
fitness sharing is based on the tree structures, treating 
each tree structure in GP as a peak in the space of 
parameters and structures.   

In SFS, each structure is uniquely labeled, whenever it is 
first created.  So long as GP operations on an individual 
do not change its structure, but only its parameters, the 
structure label of this individual is not changed.  
Parameter crossover and mutation, or replication of the 
individual, simply increase the number of individuals with 
this structure (label) in the population.  If structure 
operations are conducted on an individual that change the 
structure – for example, we change a Rep_C to a Rep_I 
node – then a new structure label (structureID) is created 
to label this new structure and is attached to this new 
individual. Our assumption is that the possibility that any 
particular structure-altering operation produces exactly the 
same structure possessed by other individuals in the 
current population is relatively low, so it is not necessary 
(or worthwhile) to check a new structure against all other 
existing structures to see if it is identical with one of them 
(and so could use its label). Furthermore, even in the case 
that some newly created individuals share the same 
structure with other individuals but are labeled with 
different structure labels, the algorithm is not strongly 
affected, as this occurs infrequently. 

In standard GP, individuals with certain structures will 
prosper while others will disappear because of their low 
fitness. If this process is allowed to continue without 
control, some good structures (usually one) tend to 
dominate the population and premature convergence 
occurs. To maintain diversity of structures, fitness sharing 
is applied to individuals of each structure. SFS decreases 
the fitness of the individual as follows:  SFS penalizes 
only those structures having too many individuals, 
according to the following fitness adjustment rule used for 

experiments in this paper: 

sN : Number of structures to be searched simultaneously 
s
spN : Expected number of search points (individuals) for 

each structure in the whole population.  

: Number of individuals of structure is to which 
individual iind belongs.  

For each individual iInd  

If  0.8 *
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With this method, each structure has a chance to do 
parameter search. Premature convergence of structures is 
limited, and we can still devote more effort to high-fitness 
structure search. 

4.1 LABELING TECHNIQUE IN SFS 

Another labeling technique is ever proposed for a genetic 
algorithm in (Spears, 1994), where tag bits are used for 
identifying different subpopulations. Spears’s result 
suggests that in crowding and fitness sharing of GA, we 
only need to decide if two individuals have the same label. 
The added precision of the distance metric for maintaining 
the diverse state of a subpopulation is often unnecessary. 
In SFS, the label is used only to decide if two individuals 
have the same label (structure) or not. We use simple 
integer numbers as labels rather than more complicated 
tag bits.   

4.2 HASH TABLE TECHNIQUE IN SFS 

In order to keep track of all individuals with each 
particular label, a hash table is used in this structure 
fitness sharing method -- this speeds up the access to the 
structure by each individual when we do crossover, 
mutation, and reproduction.  The size of the hash table is 
controlled to accommodate at most 500 structures in our 
experiments.  Each time the number of structures in the 
population exceeds 500, those structures in the current 
population with their numbers of individuals at zero or 
those with a low best fitness and a high age of structure 
(generations since label was created) are eliminated.  

4.3 THE STRUCTURE FITNESS SHARING 
ALGORITHM IN GP 

The following is the outline of the algorithm of SFS 
applied to GP: 
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Step 1: Initialize the population with randomly 
generated individuals. Initialize the structure hash 
table. 

Step 2: Assign each individual a unique label. Here a 
label is just an unassigned integer number 
incremented by one at each assignment. 

Step 3: Loop over generations 

3.1 Select the parents for a genetic operation 
according to their standard fitness 

3.2: If current operation is an operation that 
changes the structure from that of the parent(s), 
(including crossover and mutation at structure 
operator nodes of GP trees) 

Create a new label for each new structure 
created and add the new structure item to 
the structure hash table.  

3.3: If the current operation is a parameter 
operation (mutating the parameter nodes or 
crossing over at a parameter node) or only 
replication of an existing individual, do not 
create a new label. New individuals inherit the 
labels from their parents. Update information 
about the structure items in the hash table, 
including the best fitness of this structure, 
number of individuals, age, etc. 

3.4: If the maximum number of structures in the 
hash table is reached, purge individuals with the 
structure having the lowest best fitness or 
longest age, replacing them with new 
individuals formed by crossover or mutation. 

3.5: Adjust the fitness of each individual 
according to (1). 

Step 4:  If stopping criterion is satisfied, stop; else 
go to step 3. 

5 EXPERIMENTS  

5.1 PROBLEM DEFINITION 

GP with the SFS technique has been applied to a 
real-world analog circuit synthesis problem that was 
previously approached using GP without SFS (Seo, 2001). 
In this problem, an analog circuit is represented by a bond 
graph model (Fan, 2001) and is composed of inductors (I), 
resistors (R), capacitors (C), transformers (TF), gyrators 
(GY), and Sources of Effort (SE). The task is to 
synthesize a circuit, including its topology and sizing of 
components, to achieve a specified behavior. In this case, 
the objective is to evolve an analog circuit with response 
properties characterized by a pre-specified set of 
eigenvalues. By increasing the number of eigenvalues 
specified, we can define a series of synthesis problems of 
increasing difficulty, in which premature convergence 
problems become more and more significant when 
traditional GP methods are used. This problem of 
eigenvalue assignment has received a great deal of 
attention in control system design.  Control over 
eigenvalues in designing systems, in order to avoid 

instability and to provide particular response 
characteristics, is often an important and practical 
problem.  

Circuit synthesis by GP is a well-studied problem that 
generally demands large computational power to achieve 
good results.  Since both the topology and the parameters 
of a circuit affect its performance, it is easy to get stuck in 
the evolution process.  

5.2 EXPERIMENTAL SETUP  

In the example that follows, a set of target eigenvalues is 
given and a bond graph model with those eigenvalues is 
generated. The following three sets of 6, 8, and 10 target 
eigenvalues were used as targets for example genetic 
programming runs:  

The following sets of experiments  (total 12 = 3 
problems * 4 algorithms) were conducted, with each run 
repeated 10 times, all with different random seeds. 

The embryo model used is shown in Figure 1. It 
represents an embryo bond graph with three initial 
modifiable sites. Each dotted box represents an initial 
modifiable site.  In each case, the fixed components of 
the embryo are sufficient to allow definition of the system 
input and output, yielding a system for which the 
eigenvalues can be evaluated, including appropriate 
impedances. The construction steps specified in the GP 
tree are executed at that point. The numbers in 
parentheses represent the parameter values of the 
elements. 

 
 
 
 
 
 

Figure 1. The Embryo Bond Graph Model 
Three circuits with increasing difficulty are to be 
synthesized, with eigenvalue sets as specified above. 
Circuits were evolved with single-population GP, 
multiple-population GP with or without SFS. The GP 
parameter tableau for the single population method is 

TABLE 1.  TARGET EIGENALUES 

Problem 1:  6-eigenvalue problem 

-0 .1? .0 j, -1 .0? .0 j, -2 .0? .0 j  

Problem 2:  8-eigenvalue problem 

-0.1? .0j, -1.0? .0j, -2.0? .0j, -3.0 0.7j±  

Problem 3:  10-eigenvalue problem 

-0.1? .0j, -1.0? .0j, -2.0? .0j, -3.0 0.7j, -4.0 0.4j± ±  

 



shown in Table 2 below. 

First, it is important to notice that these problems exhibit a 
very high degree of epistasis, as a change in the placement 
of any pair of eigenvalues has a strong effect on the 
location of the remaining eigenvalues.  Eigenvalue 
placement is very different from “one-max” or additively 
decomposable optimization problems, and constitutes an 
increasingly difficult sequence of problems with the 
problem order.  The performance of each of the three GP 
approaches is reported in Figure 2, where the three GP 
methods are indicated by 

OneGP:  single population GP 

MulGP:  multi-population GP 

ONE.SFS: single population GP with SFS  

MULPOP.SFS: multi-population GP with SFS  

To observe the effect of structure fitness sharing, we 
monitor the number of distinct structures in the 
experiments with and without SFS techniques. From Fig 2, 
one can see that Structure Fitness Sharing can 
significantly improve the performance for single 
population GP and also does better in multi-population GP, 
though the difference is not as significant. The reason is 
that multi-population runs already provide an inherent 
diversity maintaining mechanism. We can also find that 
SFS can help probabilistic control of structure and 
parameter operation to maintain a stable number of search 
structures in the whole population.  

6 CONCLUSIONS 
  In this paper, Structure Fitness Sharing (SFS) is 
proposed to achieve balanced structure and parameter 
search in evolutionary design by Genetic Programming. 
SFS can effective prevent the dominance of any specific 
structure and when combined with probabilistic control of 
structure and parameter operation, SFS can maintain a 
stable number of structures for simultaneous search. Our 
labeling technique in SFS eliminates the necessity of 
computing the distance between two individuals, which 
saves a lot of computing effort that is largely wasted when 
attempting to measure GP structural similarity. The user 
parameters of the standard fitness sharing method are also 
eliminated (e.g. the sharing radius). All that must be done 
is to define the fitness adjustment scheme. – that is, 
exactly how to penalize the fitness of a structure when the 
number of individuals with that structure label grows 
large enough to threaten the diversity of the population. 
The hash table technique allows SFS to quickly update the 
structure information about the current population during 

Fitness vs Generation No. of Structures in Population 
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6-eigenvalue problem 
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6 eigenvalue problem 
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8-eigenvalue problem 
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8 eigenvalue problem 
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10-eigenvalue problem 
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10 eigenvalue problem 

 
FIGURE 2.  Fitness of Best Individual to Date vs. 
Generation & No. of Structures in Population 

Table 2 Parameter Settings for GP 

 

 

Parameters of 
Single Population 

GP 

Popsize: 1000 

init.method = half_and_half   

init.depth = 3-6    

max_nodes = 1000 

max_depth = 15 

crossover rate = 0.9  

mutation rate = 0.1 

max_generation = 1000 

Additional 
Parameters of  

Multi-Population 
GP 

Number of subpopulations  = 10; 

Size of subpop  = 100  

migration interval = 10 generations 

migration strategy: ring topology, 
migrate 10 best individuals to the 
next subpopulation in the ring to 
replace its 10 worst individuals 

SFS 
Parameters 

sN : 50 
s
spN : 20 = popsize/ sN  



evolution. More complicated balanced structure parameter 
search methods can be derived using the concept of 
structure diversity. For example, the authors intend to 
incorporate the elitist method of multi-objective 
evolutionary computation into SFS.  
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