
Structure Fitness Sharing (SFS) for Evolutionary Design by

Genetic Programming

Abstract

Balanced structure and parameter search is
critical to evolutionary design with Genetic
programming (GP). Structure Fitness Sharing
based on a structure labeling technique is
proposed to maintain the structural diversity and
prevent premature convergence of structures.
SFS achieves balanced structure and parameter
search by applying fitness sharing to each
structure in a population to prevent takeover by
the best structure and thereby maintain the
diversity of both structures and parameters
simultaneously. SFS does not require definition
of a distance metric, and is thus very efficient
compared to other fitness sharing methods in GP.
The effectiveness of SFS is demonstrated on a
real-world bond-graph-based analog circuit
synthesis problem.

1 INTRODUCTION

Genetic Programming has been applied successfully to a
rich variety of problems such as machine code evolution
(Nordin, 1997), quantum algorithm design (Spector, 1999),
cellular automaton rule discovery, and soccer-playing
program evolution (Andre 1999). GP has been particularly
effectively used as an efficient Darwinian Invention
Machine that enabled Koza et al. to achieve
human-competitive results in analog circuit design and in
the transmembrane segment identification problem (Koza
1999). Indeed, one of GP’s most significant features is the
ability to simultaneously evolve both a structure and its
parameters, opening up to GP promising applications in
many real-world engineering design problems and in
neural network design. In all of these problems, the
objective is to search for an open-ended structure, together
with its related parameters, to achieve several desired
goals. Genetic programming – especially evolutionary
design by genetic programming – is characterized as
making a high demand on computational resources (Koza,
1999). To some extent, this demand can be traced to the
premature convergence problem, especially convergence
of the structures in a GP population; it can be ameliorated
using diversity-maintenance techniques for the population.

Based on an analysis of the weak causality of GP, the new
concept of Structure Fitness Sharing (SFS), based on a
structure labeling technique, is proposed to achieve
balanced structure and parameter search by maintaining
the diversity of both structures and parameters at all times.
This method does not require definition of a distance
metric, and is thus very efficient compared to other fitness
sharing methods. Its effectiveness is demonstrated on a
real-world bond-graph-based analog circuit synthesis
problem using GP.

2 THE DIVERSITY PROBLEM IN
EVOLUTIONARY DESIGN BY GP

2.1 CATEGORIES OF EVOLUTIONARY
DESIGN PROBLEMS

Evolutionary design problems can be classified into three
types:

TYPE I: Fixed structure with fixed number of
parameters.

These problems are essentially parameter
optimization problems, where the task is to optimize
the parameter of a given structure. Genetic
Algorithms, simulated annealing, evolutionary
programming, evolution strategies, and even
gradient-based optimization techniques are often
used here.

TYPE II: Variable structure with no parameters.

This type includes problems such as algorithm
design, program induction and logic design, where
only structure search is needed. These problems are
well suited for GP, which intrinsically manipulates
the program structure, often represented as a tree. Of
course, some of these problems can be solved with
genetic algorithms, simulated annealing, and other
techniques, by using a somewhat indirect
representation of the structure.

TYPE III: Variable structure with variable number of
parameters

Many of the most interesting evolutionary design
problems belong to this category, in which a structure is

Jianjun Hu+, Kisung Seo+, Shaobo Li*, Zhun Fan+, Ronald C. Rosenberg#, Erik D. Goodman+
hujianju@cse.msu.edu

+Genetic Algorithms Research and
Applications Group (GARAGe)

Michigan State University
East Lansing, MI, 48824

*CAD Institute
Guizhou University of Technology

Guiyang, 550003, China

#Department of Mechanical engineering
Michigan State University
East Lansing, MI, 48824

sought within a topologically open-ended space, but the
fitness of a structure can often only be evaluated after
parameters are assigned to key variables associated with
the structures evolved. Since the structure is varied
during the search process, the number of parameters and
their semantics change frequently. Such problems include
analog circuit design (Koza, 1999), mechanical system
design (Fonseca, 1993), and neural network design
(Oliker, 1992). Although a GA with a variable length
representation can be used here, GP, with its outstanding
capability to search simultaneously for a good structure
and for appropriate parameters, distinguishes itself as the
most important tool for this kind of open-ended design
problem.

2.2 PREMATURE CONVERGENCE AND
DIVERSITY IN THREE TYPES OF
EVOLUTONARY DESIGN PROBLMES

TYPE I problems are often described as parameter
optimization problems, readily addressable by GA.
Premature convergence in GA has been well studied.
Common diversity maintenance techniques include
crowding (DeJong, 1975), deterministic crowding
(Mahfoud, 1992), and fitness sharing (Goldberg, 1989).
The fitness derating method (Beasley, 1993), a
multi-objective method, employs fitness sharing in a
popular and effective way.

The premature convergence problem when GP is applied
to TYPE II problems has also been well studied. Most of
the resulting methods are derived from GA, but with some
specific consideration of the GP context. In
multi-objective genetic programming, Rodriguez
(Rodriguez-Vazquez, 1997) uses the MOGA approach
with fitness sharing being performed in the fitness space,
and extends it to genetic programming. Though easier to
implement, it remains an open question whether diversity
of fitness values is generally a true indicator of the
diversity of a population – a measure which should
actually be based on the parameter space. De Jong et al.
(DeJong, 2001) use the multi-objective method to
explicitly promote diversity by adding a diversity
objective. In their method, a distance measure defined as
follows is used in the diversity objective. The distance
between two corresponding nodes is zero if they are
identical and one if they are not. The distance between
two trees is the sum of the distances of the corresponding
nodes – i.e., distances between nodes that overlap when
the two trees are overlaid, starting from the root. The
distance between two trees is normalized by dividing by
the size of the smaller of the two trees. The diversity
objective is defined as the average squared distance to
other members of the population. An improved version of
the above distance metric between two trees is proposed
by Aniko Ekart and S.Z. Nemeth (Ekart, 2000) and used
to do fitness sharing in GP. Their method includes the
following three steps:

1) The two GP trees to be compared are brought to
the same tree-structure (only the contents of the
nodes remain different).

2) The distances between each pair of symbols
situated at the same position in the two trees are
computed.

3) The distances computed in the previous step are
combined in a weighted sum to form the
distance of the two trees.

The major improvement of this method is that it
differentiates the types of corresponding nodes when
calculating the distance of two nodes. It first divides the
GP functions and terminals into several subsets. For nodes
whose types belong to the same subset, it calculates the
relative distance. For nodes whose types belong to
different subsets, it use a defined function to make sure
that the distance between nodes from different subsets is
bigger than that between nodes of the same subset. It also
considers the fact that a difference at some node closer to
the root could be more significant than a difference at
some node farther from the root, using a multiplier K to
distinguish them. Edit distance and phenotypic distance
for fitness sharing for GP are also tested in their
experiment. The former gets slightly better accuracy but
with relatively high computational cost. The latter doesn’t
provide much improvement over the original GP without
fitness sharing.

Implicit fitness sharing (McKay, 2001) has also been
applied to GP. Instead of calculating the distance between
the structures of GP trees, it is a kind of phenotypic
(behavior-based) fitness sharing method. The fitness is
“shared” based on the number of other individuals who
have similar behaviors, capabilities or functions. Implicit
fitness sharing provides selection pressure for each
individual to make different predictions from those by
other individuals. Population diversity of TYPE III
problems in GP has not been investigated thoroughly.
These problems are characterized by the need for
simultaneous optimization of topology and parameters. In
a GP population, structure diversity is needed to enable
efficient topology exploration, which is the main objective,
in most case, for discovery of innovative designs. At the
same time, the goodness (or fitness) of a structure can
only be evaluated with sufficient parameter exploration
within the same structure. Thus, the parameter diversity of
each structure also needs to be maintained. As a result, in
the context of variable structure and parameter design by
GP, the population diversity has some significant
differences from that of a GA, in the following respects:

• Number of peaks

When applying fitness sharing in GA, two
assumptions are made. One is that the number of
peaks is known or can be estimated. Second is
that the peaks are almost evenly distributed. In
many problems of GA, a relatively limited
number of peaks are expected to enable efficient
use of fitness sharing. However, in TYPE III
problems, each structure may have a huge
number of peaks with respect to its parameter
space, while in the structure space, each structure
is a distinct peak, since the structure space is not
a continuous space, but rather a highly nonlinear
discrete space.

• Continuity of search space

In GA, many problems can be considered as
defined in an approximately continuous space,
although sometimes certain aspects have
distinctly discrete behavior. However, in TYPE
III problems, GP deals with a highly discrete
structure space that also has a huge continuous
space (of parameter values), since for each
structure, the search for appropriate parameters
can be regarded as an instance of GA search.

• Constraints

In GA, only parameter constraints exist.
However, in TYPE III problems, GP must deal
with both structure constraints and parameter
constraints.

The demand for structure diversity as well as parameter
diversity makes the existing fitness sharing methods
inefficient for Type III problems. For fitness-space-based
fitness sharing (Rodriguez-Vazquez, 1997) and the
implicit fitness sharing (McKay, 2000) methods,
significant parameter diversity is lost since they do not
promote coexistence of individuals with the same
structure but with different parameters in order to enable
efficient parameter search. Fitness sharing with the
distance metric, as in (Ekart, 2000; KeJong, 2001), is also
inefficient in this case. First, the computational cost is
still demanding, since in TYPE III problems, a complex
structure and its parameters often require a big tree –
perhaps 1000 - 2000 nodes in most of our experiments –
especially when parameters are normally represented by a
numeric subtree such as Koza uses (Koza, 1999). Second,
but more importantly, the underlying assumption of the
above distance metrics is that structural dissimilarity
measured between two GP trees meaningfully reflects the
dissimilarity in function between the two structures.
However, as the structure space represented by a GP tree
is a highly non-linear space, in most cases, a change of a
single (non-parameter) node changes the behavior of the
GP tree dramatically. This phenomenon can be traced to
the weak causality of GP (Rosca, 1995), which means that
small alterations in the underlying structure of a GP tree
cause big changes in the behavior of the GP tree. So
measuring a sort of "Hamming" distance between the
structures of two GP trees to predict the difference of the
behavior/function is not well founded, and thus inefficient.
This makes a useful definition of a sharing radius hard to
determine. It seems that distance metrics in the structure
space and the parameter space and the association of a set
of parameters with the structure to which they apply must
be faithfully captured in order to most effectively
maintain both structure diversity and parameter diversity
and thereby to achieve efficient search. Therefore, given
the inherent difficulty of structure/function mapping,
perhaps it is counterproductive to use any structural
similarity measure beyond the most basic and completely
faithful one – the identity mapping: two structures are
either identical, or they are not. That is the structural
distance measure used here. While it is possible to
define a broader relationship that still captures identity of
function (for example, if swapping of the order of two
children of a node has no effect on the function computed),

such definitions depend on the semantics of the functions,
and were not implemented here.

3 BALANCED STRUCTURE AND
PARAMETER SEARCH IN
EVOLUTIONARY DESIGN BY GP

In design problems involving both variable structure and
variable parameters, search must be balanced between the
structure and parameters. On one hand, each structure
needs sufficient exploration of its parameters to develop
its potential to some extent, which means that a
reasonable number of individuals of the same structure
must probably be kept in the population. On the other
hand, no structure should dominate the population, or it
would prevent sufficient future exploration of the
structure space.

Structure premature convergence in evolutionary design
by GP is caused by negligence of the different role of
structure and parameter search. In standard GP, crossover
nodes and mutations nodes are selected randomly in the
whole node set, structure operation nodes are then taken
the same as the numerical nodes, (provided that numerical
subtree are used to define the parameters of components,
which is a standard way). This means that a circuit
structure is often discarded by selection process if its
fitness is low. The result is that usually, mundane
structures with slightly better parameters often proliferate
and dominate the population while good structure with
bad parameters are discarded, which is called the structure
premature problem. This phenomenon arises from the fact
that promising good structures are often discarded just
because its parameters are not adjusted well enough to
demonstrate their potential. Ideally, a structure should be
discarded only when it is demonstrated to be bad by
adjusting its parameters well enough. In addition, since
there is often much more numeric nodes than structure
operating nodes, structure premature problem is even
more severe, since there is few chance for a structure node
to be selected to change the structure.

In order to solve this problem, structure and parameter
search must be controlled explicitly. In our work, a
probabilistic method is firstly devised to decide whether
GP does a structure operation (crossover or mutation on a
structure operation node) or does parameter operation
(crossover or mutation on a parameter operation node).
Since structure changes have more fundamental effect
than the parameter changes on performance of the system,
the following probabilities are defined to keep the
structure and its function stable and to allow parameter
adjusted well enough to demonstrate the potential of
structure sufficiently.

We also use explicit control of the node selection process
to achieve balanced parameter evolution for all parameters
in a structure. During the parameter operation stage, we
first establish a list for all variables whose value need to
be established during evolution, and then we randomly
select a variable as the current variable to be changed. We

() 0.9
() 0.1

p structure operation
p parameter operation

=
=

then select a node in the numeric sub-tree of this variable
and do crossover or mutation operation. In this way, each
variable has equal opportunity to be changed during
evolution. This improvement speeds the evolution process
balanced numeric subtrees in GP trees are achieved. All
variables have numeric sub-trees with similar.

Even with above methods, the structure convergence is
still often as some structures with good parameters
quickly domintate the whole population. So we proposed
the Structure Fitness Sharing (SFS) method to control the
reproduction of high-fitness structures. Our assumptions
are that fitness sharing can profitably be based on the
number of individuals with the same structure, and that
distance between the structures of two GP trees is not
generally an adequate predictor of the differences between
their behaviors. Thus, any “counting of positions where
the trees differ” distance metric is not well founded.
Instead, a simple labeling technique is used to distinguish
structures.

4 STRUCTURE FITNESSS SHARING
(SFS)

Structure Fitness Sharing is the application of fitness
sharing to structures in GP. In contrast to the GA fitness
sharing using a distance measure to identify peaks, in SFS,
fitness sharing is based on the tree structures, treating
each tree structure in GP as a peak in the space of
parameters and structures.

In SFS, each structure is uniquely labeled, whenever it is
first created. So long as GP operations on an individual
do not change its structure, but only its parameters, the
structure label of this individual is not changed.
Parameter crossover and mutation, or replication of the
individual, simply increase the number of individuals with
this structure (label) in the population. If structure
operations are conducted on an individual that change the
structure – for example, we change a Rep_C to a Rep_I
node – then a new structure label (structureID) is created
to label this new structure and is attached to this new
individual. Our assumption is that the possibility that any
particular structure-altering operation produces exactly the
same structure possessed by other individuals in the
current population is relatively low, so it is not necessary
(or worthwhile) to check a new structure against all other
existing structures to see if it is identical with one of them
(and so could use its label). Furthermore, even in the case
that some newly created individuals share the same
structure with other individuals but are labeled with
different structure labels, the algorithm is not strongly
affected, as this occurs infrequently.

In standard GP, individuals with certain structures will
prosper while others will disappear because of their low
fitness. If this process is allowed to continue without
control, some good structures (usually one) tend to
dominate the population and premature convergence
occurs. To maintain diversity of structures, fitness sharing
is applied to individuals of each structure. SFS decreases
the fitness of the individual as follows: SFS penalizes
only those structures having too many individuals,
according to the following fitness adjustment rule used for

experiments in this paper:

sN : Number of structures to be searched simultaneously
s
spN : Expected number of search points (individuals) for

each structure in the whole population.

: Number of individuals of structure is to which
individual iind belongs.

For each individual iInd

If 0.8 *

i iInd s

si s
spNN

∈

> then

 where α =1.5

If 1 1.0k then k> =

With this method, each structure has a chance to do
parameter search. Premature convergence of structures is
limited, and we can still devote more effort to high-fitness
structure search.

4.1 LABELING TECHNIQUE IN SFS

Another labeling technique is ever proposed for a genetic
algorithm in (Spears, 1994), where tag bits are used for
identifying different subpopulations. Spears’s result
suggests that in crowding and fitness sharing of GA, we
only need to decide if two individuals have the same label.
The added precision of the distance metric for maintaining
the diverse state of a subpopulation is often unnecessary.
In SFS, the label is used only to decide if two individuals
have the same label (structure) or not. We use simple
integer numbers as labels rather than more complicated
tag bits.

4.2 HASH TABLE TECHNIQUE IN SFS

In order to keep track of all individuals with each
particular label, a hash table is used in this structure
fitness sharing method -- this speeds up the access to the
structure by each individual when we do crossover,
mutation, and reproduction. The size of the hash table is
controlled to accommodate at most 500 structures in our
experiments. Each time the number of structures in the
population exceeds 500, those structures in the current
population with their numbers of individuals at zero or
those with a low best fitness and a high age of structure
(generations since label was created) are eliminated.

4.3 THE STRUCTURE FITNESS SHARING
ALGORITHM IN GP

The following is the outline of the algorithm of SFS
applied to GP:

* (1)adj oldf f k=

i iInd s

siN
∈

Ind S

sp

i
i i

sN
k N

α

∈

−

=

Step 1: Initialize the population with randomly
generated individuals. Initialize the structure hash
table.

Step 2: Assign each individual a unique label. Here a
label is just an unassigned integer number
incremented by one at each assignment.

Step 3: Loop over generations

3.1 Select the parents for a genetic operation
according to their standard fitness

3.2: If current operation is an operation that
changes the structure from that of the parent(s),
(including crossover and mutation at structure
operator nodes of GP trees)

Create a new label for each new structure
created and add the new structure item to
the structure hash table.

3.3: If the current operation is a parameter
operation (mutating the parameter nodes or
crossing over at a parameter node) or only
replication of an existing individual, do not
create a new label. New individuals inherit the
labels from their parents. Update information
about the structure items in the hash table,
including the best fitness of this structure,
number of individuals, age, etc.

3.4: If the maximum number of structures in the
hash table is reached, purge individuals with the
structure having the lowest best fitness or
longest age, replacing them with new
individuals formed by crossover or mutation.

3.5: Adjust the fitness of each individual
according to (1).

Step 4: If stopping criterion is satisfied, stop; else
go to step 3.

5 EXPERIMENTS

5.1 PROBLEM DEFINITION

GP with the SFS technique has been applied to a
real-world analog circuit synthesis problem that was
previously approached using GP without SFS (Seo, 2001).
In this problem, an analog circuit is represented by a bond
graph model (Fan, 2001) and is composed of inductors (I),
resistors (R), capacitors (C), transformers (TF), gyrators
(GY), and Sources of Effort (SE). The task is to
synthesize a circuit, including its topology and sizing of
components, to achieve a specified behavior. In this case,
the objective is to evolve an analog circuit with response
properties characterized by a pre-specified set of
eigenvalues. By increasing the number of eigenvalues
specified, we can define a series of synthesis problems of
increasing difficulty, in which premature convergence
problems become more and more significant when
traditional GP methods are used. This problem of
eigenvalue assignment has received a great deal of
attention in control system design. Control over
eigenvalues in designing systems, in order to avoid

instability and to provide particular response
characteristics, is often an important and practical
problem.

Circuit synthesis by GP is a well-studied problem that
generally demands large computational power to achieve
good results. Since both the topology and the parameters
of a circuit affect its performance, it is easy to get stuck in
the evolution process.

5.2 EXPERIMENTAL SETUP

In the example that follows, a set of target eigenvalues is
given and a bond graph model with those eigenvalues is
generated. The following three sets of 6, 8, and 10 target
eigenvalues were used as targets for example genetic
programming runs:

The following sets of experiments (total 12 = 3
problems * 4 algorithms) were conducted, with each run
repeated 10 times, all with different random seeds.

The embryo model used is shown in Figure 1. It
represents an embryo bond graph with three initial
modifiable sites. Each dotted box represents an initial
modifiable site. In each case, the fixed components of
the embryo are sufficient to allow definition of the system
input and output, yielding a system for which the
eigenvalues can be evaluated, including appropriate
impedances. The construction steps specified in the GP
tree are executed at that point. The numbers in
parentheses represent the parameter values of the
elements.

Figure 1. The Embryo Bond Graph Model
Three circuits with increasing difficulty are to be
synthesized, with eigenvalue sets as specified above.
Circuits were evolved with single-population GP,
multiple-population GP with or without SFS. The GP
parameter tableau for the single population method is

TABLE 1. TARGET EIGENALUES

Problem 1: 6-eigenvalue problem

-0 .1? .0 j, -1 .0? .0 j, -2 .0? .0 j

Problem 2: 8-eigenvalue problem

-0.1? .0j, -1.0? .0j, -2.0? .0j, -3.0 0.7j±

Problem 3: 10-eigenvalue problem

-0.1? .0j, -1.0? .0j, -2.0? .0j, -3.0 0.7j, -4.0 0.4j± ±

shown in Table 2 below.

First, it is important to notice that these problems exhibit a
very high degree of epistasis, as a change in the placement
of any pair of eigenvalues has a strong effect on the
location of the remaining eigenvalues. Eigenvalue
placement is very different from “one-max” or additively
decomposable optimization problems, and constitutes an
increasingly difficult sequence of problems with the
problem order. The performance of each of the three GP
approaches is reported in Figure 2, where the three GP
methods are indicated by

OneGP: single population GP

MulGP: multi-population GP

ONE.SFS: single population GP with SFS

MULPOP.SFS: multi-population GP with SFS

To observe the effect of structure fitness sharing, we
monitor the number of distinct structures in the
experiments with and without SFS techniques. From Fig 2,
one can see that Structure Fitness Sharing can
significantly improve the performance for single
population GP and also does better in multi-population GP,
though the difference is not as significant. The reason is
that multi-population runs already provide an inherent
diversity maintaining mechanism. We can also find that
SFS can help probabilistic control of structure and
parameter operation to maintain a stable number of search
structures in the whole population.

6 CONCLUSIONS
 In this paper, Structure Fitness Sharing (SFS) is
proposed to achieve balanced structure and parameter
search in evolutionary design by Genetic Programming.
SFS can effective prevent the dominance of any specific
structure and when combined with probabilistic control of
structure and parameter operation, SFS can maintain a
stable number of structures for simultaneous search. Our
labeling technique in SFS eliminates the necessity of
computing the distance between two individuals, which
saves a lot of computing effort that is largely wasted when
attempting to measure GP structural similarity. The user
parameters of the standard fitness sharing method are also
eliminated (e.g. the sharing radius). All that must be done
is to define the fitness adjustment scheme. – that is,
exactly how to penalize the fitness of a structure when the
number of individuals with that structure label grows
large enough to threaten the diversity of the population.
The hash table technique allows SFS to quickly update the
structure information about the current population during

Fitness vs Generation No. of Structures in Population

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

generation

st
an

da
rd

 fi
tn

es
s

Standardized fitness of Best Individual of run

ONEPOP
ONE.SFS
MULPOP
MULPOP.SFS

6-eigenvalue problem

0 100 200 300 400 500 600
0

200

400

600

800

1000

generation

Nu
m

be
r o

f S
tru

ct
ur

es
 in

 th
e

w
ho

le
 P

op
ul

at
io

n

Control of structures in GP

ONEPOP
ONE.SFS
MULPOP
MULPOP.SFS

6 eigenvalue problem

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

generation

st
an

da
rd

 fi
tn

es
s

Standardized fitness of Best Individual of run

ONEPOP
ONE.SFS
MULPOP
MULPOP.SFS

8-eigenvalue problem

0 100 200 300 400 500 600
100

200

300

400

500

600

700

800

900

1000

generation

Nu
m

be
r o

f S
tru

ct
ur

es
 in

 th
e

w
ho

le
 P

op
ul

at
io

n

Control of structures in GP

ONEPOP
ONE.SFS
MULPOP
MULPOP.SFS

8 eigenvalue problem

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

generation

st
an

da
rd

 fi
tn

es
s

Standardized fitness of Best Individual of run

ONEPOP
ONE.SFS
MULPOP
MULPOP.SFS

10-eigenvalue problem

0 100 200 300 400 500 600
0

200

400

600

800

1000

generation

Nu
m

be
r o

f S
tru

ct
ur

es
 in

 th
e

w
ho

le
 P

op
ul

at
io

n

Control of structures in GP

ONEPOP
ONE.SFS
MULPOP
MULPOP.SFS

10 eigenvalue problem

FIGURE 2. Fitness of Best Individual to Date vs.
Generation & No. of Structures in Population

Table 2 Parameter Settings for GP

Parameters of
Single Population

GP

Popsize: 1000

init.method = half_and_half

init.depth = 3-6

max_nodes = 1000

max_depth = 15

crossover rate = 0.9

mutation rate = 0.1

max_generation = 1000

Additional
Parameters of

Multi-Population
GP

Number of subpopulations = 10;

Size of subpop = 100

migration interval = 10 generations

migration strategy: ring topology,
migrate 10 best individuals to the
next subpopulation in the ring to
replace its 10 worst individuals

SFS
Parameters

sN : 50
s
spN : 20 = popsize/ sN

evolution. More complicated balanced structure parameter
search methods can be derived using the concept of
structure diversity. For example, the authors intend to
incorporate the elitist method of multi-objective
evolutionary computation into SFS.

Acknowledgment

Thanks to Ahmad R Shahid for his discussion of the hash
table technique. This work was supported by the National
Science Foundation under contract DMI 0084934.

References:

P. Nordin, Evolutionary Program Induction of Binary
Machine Code and Its Application, PhD thesis, University
of Dortmund,Germany, 1997.

L. Spector, H.Barnum, and H.J.Bernstein, “Quantum
Computing Applications of Genetic Programming”,
Advances in Genetic Programming 3, L. Spector et al.,
eds., MIT Press, Cambridge, Mass., 1999, pp.135-160.

D.Andre and A.Teller, “Evolving Team Darwin United,"
RoboCup-98: Robot Soccer World Cup II. Lecture Notes
in Computer Science, M. Asada and H. Kitano, eds., Vol.
164, Springer-Verlag, Berlin, pp.346-352, 1999.

J.R.Koza et al., Genetic Programming III: Darwinian
Invention and Problem Solving, Morgan Kaufmann,
SanFrancisco, 1999.

Rodriguez-Vazquez, Katya, Fonseca, Carlos M. and
Fleming, Peter J., "Multiobjective Genetic Programming :
A Nonlinear System Identification Application," Proc.
Genetic Programming '97 Conference, pp. 207-212, 1997

Fonseca, C. M. and Fleming, P.J. "Genetic Algoritms for
multiobjective optimisation: formulation , discussion, and
generalization," Proceedings Fifth International
Conference on Genetic Algorithms, pp. 416-423, 1993.

S. Oliker, M. Furst, and O. Maimon, "A distributed
genetic algorithm for neural network design and training,"
Complex Systems, 6, pp. 459-477, 1992.

K. A. De Jong. An Analysis of the Behavior of a Class of
Genetic Adaptive Systems, PhD thesis. University of
Michigan. Dissertation Abstracts International 36(10),
5410B. (University Microfilms No. 76--9381), 1975.

De Jong, Edwin D., Watson, Richard A. and Pollack,
Jordan B., "Reducing Bloat and Promoting Diversity
using Multi-Objective Methods," Proc. GECCO-2001,
Morgan Kaufmann, San Francisco, pp. 11-18.

Mahfoud, S. W., "Crowding and Preselection Revisited,"
Proc. PPSN-92, Elsevier, 1992.

Goldberg, D. E., Genetic Algorithms in Search,
Optimization and Machine Learning, Addison Wesley,
1989.

D. Beasley, D.R. Bull, R.R. Martin, "A Sequential Niche
Technique for Multimodal Function Optimisation,"
Evolutionary Computation, 1, pp. 101-125. 1993.

A. Ekárt; S. Z. Németh, "A Metric for Genetic Programs
and Fitness Sharing," in R. Poli, W. Banzhaf, W. B.
Langdon, J. Miller, P. Nordin, T. Fogarty (eds.), Genetic
Programming, Proceedings of EUROGP'2000, Edinburgh,
15-16 April 2000, LNCS volume 1802, pp. 259-270.

McKay, R. I, "Fitness Sharing in Genetic Programming,"
Proc. GECCO-2000, Las Vegas, NV, Morgan Kaufmann,
San Francisco, July, 2000.

Justinian P. Rosca and Dana H. Ballard, "Causality in
Genetic Programming," in Larry J. Eshelman, ed., Proc.
Sixth International Conference on Genetic Algorithms,
Morgan Kaufmann, San Francisco, pp. 256-263, 1995.

Spears, William M., "Simple Subpopulation Schemes,"
Proc. Evolutionary Programming Conf., pp. 296-307,
1994.

K. Seo, E. Goodman, and R. Rosenberg, "First Steps
toward Automated Design of Mechatronic Systems Using
Bond Graphs and Genetic Programming," Proc. Genetic
and Evolutionary Computation Conf. - 2001, July 7-11,
Morgan Kaufmann Publishers, San Francisco, p. 189,
2001.

Z. Fan, J. Hu, K. Seo, E. Goodman, R. Rosenberg, and
B. Zhang, “Bond Graph Representation and GP for
Automated Analog Filter Design,” Genetic and
Evolutionary Computation Conference 2001 Late
Breaking Papers, ISGEC Press, San Francisco, pp.
81-86, 2001.

