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Introduction
B-cell epitopes are special regions of antigens recognized by 

the binding sites of immunoglobulin molecules (Van Regenmortel, 
1993). These epitopes play an important role in vaccine design, 
disease diagnosis, and allergy research (Saha and Raghava, 2006). 
Although many experimental techniques have been widely used to 
detect B-cell epitopes, the process is both time-consuming and labor-
intensive. Consequently, it is indispensable to develop complementary 
computational methods for accurate prediction of B-cell epitopes.

B-cell epitopes can be classified as either continuous (linear) or 
discontinuous (conformational) epitopes. In the past twenty years, 
the computational methods mainly focused on the prediction of 
linear epitopes. Most of these methods were based on the physico-
chemical properties or propensity scales of amino acids, such as 
flexibility (Karplus and Schulz, 1985), accessibility (Emini et al., 
1985), hydrophilicity (Parker et al., 1986), antigenicity (Kolaskar and 
Tongaonkar, 1990), turns (Pellequer et al., 1993), amino acid pair 
antigenicity (Chen et al., 2007) and so on. Unfortunately, the prediction 
performances of these methods are not satisfying. However, compared 
with continuous epitopes, the prediction of discontinuous epitopes is 
even more challenging. So far, only a few computational methods have 
been proposed for this task. Kulkarni-Kale et al. (2005) first established 
the CEP server that utilized residue solvent accessibility to predict 
conformational epitopes. Subsequently, Haste Andersen et al. (2006) 
developed DiscoTope that linearly combined the structural proximity 
sum of epitope log-odds ratios and contact numbers to identify 
discontinuous B-cell epitopes. Based on Andersen et al.’s findings, 
Sweredoski and Baldi (2008) presented a new predictor, BEpro, which 
introduced the spatial attribute of half sphere exposure into DiscoTope. 
In addition, Ponomarenko et al. (2008) proposed Ellipro, a web-tool 
that combined the residue protrusion index and a residue clustering 
algorithm to predict epitope residues. Rubinstein et al. (2009) developed 
a naïve Bayesian method based on a large number of physico-chemical 
and structural-geometrical properties to recognize B-cell epitopes 
at a patch level. Sun et al. (2009) constructed a computational sever 
called SEPPA for spatial epitope prediction using a novel concept of 
‘unit patch of residue triangle’. Recently, Liang et al. (2009) proposed a 
consensus scoring method to identify the antigenic epitopes based on 
the unbound antigen structures. Although these prediction methods 

have achieved success at different levels, computational identification of 
discontinuous B-cell epitopes is still far from being resolved.

In this paper, we present a novel prediction method to identify 
discontinuous B-cell epitopes. Our prediction method chooses B-factor 
and relative accessible surface area (RASA) as structural features and 
takes into consideration the spatial environment for each residue. 
The prediction algorithm is based on the logistic regression model to 
distinguish epitope residues from the rest of antigen. As is well known, 
the B-factor reflects the fluctuation of atoms about their average 
positions,  which was previously proposed to predict linear epitopes 
by Karplus and Schulz (1985). However, at present, to the best of our 
knowledge, there are no studies that use this attribute as a structural 
feature to recognize discontinuous epitopes. Hence, following the 
steps of previous works, we implemented our method and evaluated 
its performance based on the discontinuous epitopes inferred from 
the structures of antigen-antibody complexes. By conducting five-
fold cross-validation on a representative dataset collected by Haste 
Andersen et al. (2006) and independent testing on Epitome database 
(Schlessinger et al., 2006), we found that in addition to the widely 
used RASA feature, B-factor can also be utilized to recognize epitope 
residues and the complementarity of these two features is useful to 
improve the prediction performance. Comparison with other existing 
approaches reveals that our method is equal or better for identification 
of discontinuous epitopes.

Materials and Methods
Data preparation

The representative dataset of 75 antigen–antibody complexes 
prepared by Haste Andersen et al. (2006) was used (http://www.cbs.
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dtu.dk/suppl/immunology/DiscoTope) in this study. These complexes 
were determined by X-ray crystallography with resolution better 
than 3Å. The corresponding coordinate files were obtained from the 
Protein Data Bank (PDB) (Berman et al., 2000). The 75 antigens had 
been divided into 25 groups with low homology among the groups. 
Following the definition of Haste Andersen et al. (2006) a residue 
in antigens was considered to be an epitope residue if the distance 
between any of its atoms and any atom of antibodies is less than 4Å. As 
a result, this dataset contains a total of 1203 epitope residues and 13239 
nonepitope residues.

Normalized B-factor

The B-factor reflects the local mobility of protein backbones and 
is available for structures solved by X-ray crystallography. Generally, 
the higher the B-factor value, the more flexible the corresponding 
region in protein, and vice versa. This attribute has been used to predict 
linear B-cell epitopes (Karplus and Schulz, 1985). Here, the B-factor 
of α-carbon was chosen to represent the flexibility of each residue and 
normalized by the following equation (Carugo and Argos, 1997):

r
norm,r

B < B >B =
(B)σ

−
                                                                                 (1)

where Br is the B-factor of residue r, <B> and σ(B) are the mean value 
and the standard deviation of the B-factors for the chosen antigen, 
respectively.

Relative accessible surface area (RASA)

The RASA is a measure of residue solvent accessibility. Several 
studies have evaluated the effectiveness of using RASA to predict 
discontinuous epitopes (Kulkarni-Kale et al., 2005; Haste Andersen 
et al., 2006). In our work, the accessible surface area (ASA) of each 
residue in unbound antigens was calculated using the DSSP program 
(Kabsch and Sander, 1983) and normalized by the following equation 
(Kuznetsov et al., 2006):

r
r

r

ASARASA =
max(ASA )                                                                           (2)

where ASAr is the ASA of residue r, max(ASAr) is the nominal maximum 
area of residue r (Rost and Sander, 1994).

Logistic regression model

Logistic regression is a well established statistical model suitable 
for probabilistic binary classification. In this study, we used the logistic 
regression model to differentiate whether a residue in antigens belongs 
to discontinuous epitope regions or not. Three logistic regression 
predictors were constructed using B-factor, RASA and the combination 
of these two features. Each predictor was input a structural window 
composed of a target residue and its N spatially nearest neighbors 
obtained by calculating the distances between the α-carbons of residues. 
The optimal value of N was determined by using different widow sizes as 
input for logistic regression model. Thus, each residue was represented 
by N+1 input vectors if a single feature was used and by 2×(N+1) input 
vectors if the combined features was used. Assuming yr∈{0, 1} and xr = { 
xr1 , xr2 ,…, xrj } are the class label and input vectors for a target residue r, 
the logistic regression predictors assigned a probability θr = P{ yr = 1|xr } 
to the target residue using the logit function:

…r
1 r1 2 r2 j rj

r

log( ) = x x x
1
θ

α β β β
θ

+ + + +
−                                          (3)

Where α, β1, β2 ,…, βj are the model parameters. The logistic regression 
predictors were implemented with the LR-TIRLS package (http://

komarix.org/ac/lr/#lr-tirls). Generally, the prediction threshold of 
standard logistic regression model was set to 0.5. However, in our study, 
the optimal threshold was determined when the predictor achieved the 
best Matthew’s correlation coefficient (MCC) value of cross-validation.

Training and testing

The five-fold cross-validation was performed to evaluate our 
predictors. The 25 nonhomologous groups of antigens had been divided 
into five subsets by Haste Andersen et al. (2006). For each run, one 
subset was left out for testing, while the remaining four subsets were 
used for training to estimate the parameters of the logistic regression 
model. This process was repeated until all subsets had been tested. The 
final performance was obtained by averaging the performances of the 
five subsets. To evaluate the prediction performance, we calculated 
recall (sensitivity), precision, specificity, accuracy and MCC using 
following equations:

= tpRecall
tp fn+                                                                                (4)

tpPrecision =
tp fp+                                                                              (5)

tnSpecificity =
tn fp+                                                                              (6)

tp tnAccuracy =
tp fn tn fp

+
+ + +                                                                 (7)

tp tn fp fnMCC =
(tp fn)(tp fp)(tn fp)(tn fn)

× − ×
+ + + +                                       (8)

where tp, tn, fp and fn denote the numbers of true positives, true 
negatives, false positives and false negatives, respectively. In addition, 
the receiver operating characteristic (ROC) curve was drawn by 
plotting the false positive rate (1-specificity) on the x-axis against the 
true positive rate (sensitivity) on the y-axis for different prediction 
thresholds. The area under the ROC curve (AUC) was also reported to 
assess the robustnesses of our predictors. A perfect predictor achieves 
an AUC value of 1, and a random predictor has an AUC value close to 
0.5.

Results and Discussion
Characteristics of discontinuous B-cell epitopes

Residues in the epitope and nonepitope groups from Haste 
Andersen et al.’s dataset were separately collected according to residue 
types. For each residue type, a t-test was conducted to assess whether 
there is a significant difference (p-value < 0.01) in a certain property 
(e.g., B-factor, RASA) between epitope and nonepitope residues. Figure 
1(a) shows the average B-factors of the epitope and nonepitope residues. 
It indicates that the flexibilities of 16 residue types of epitope regions are 
significantly weaker than those of nonepitope regions, except for Met, 
Cys, Leu and Trp. This phenomenon is as expected due to the fact that 
regions with lower B-factors in protein complexes are often associated 
with interfaces between subunits (Jones and Thornton, 1995). On the 
other hand, from Figure 1(b), we can see that the average RASAs of 
epitope groups are all higher than those of nonepitope groups. The 
differences of RASA values of 18 residue types (excluding Phe and Cys) 
are statistically significant, confirming that epitope residues are more 
exposed to facilitate their contact with antibodies (Novotny et al., 1986). 
The aforementioned analyses show that B-factor and RASA can reflect 
the differences between epitope regions and the rest of the antigen. This 
implies that these two features could be used to distinguish epitope 
residues from nonepitope residues.
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Determination of optimal window size

An optimal window size can lead to better prediction performance. 
In our experiments, the optimal window size was determined by 
testing different structural window sizes for the logistic regression 
predictor based on the combined features. The number of spatially 
nearest residues was tested from 5 to 20. From Table 1, we can notice 
that the best prediction performance was achieved when N=8. Namely, 
the optimal window size was 9. Therefore, in the following study, we 
arranged a structural window with size 9 as the default input for each 
residue.

Prediction results of fivefold cross-validation

To compare the performances of our three epitope residue predictors, 
five-fold cross-validations were conducted on Haste Andersen et al.’s 
dataset. As shown in Table 2, when a single feature was used, B-factor 
achieved better performance than RASA. The best MCC values of 
these two predictors were 0.195 and 0.154, respectively. The results 
demonstrate that B-factor and RASA can both be used to recognize 
discontinuous B-cell epitopes. More interestingly, when these two 
features were combined for prediction, the prediction performance was 
improved remarkably. The MCC value of the predictor with combined 
features was raised to 0.317. To further estimate the robustness of these 
three predictors, the ROC curves of them are displayed in Figure 2. 
The AUC values of the predictors based on B-factor, RASA and their 

combination were 0.694, 0.683 and 0.797, respectively. This indicates 
again that complementary nature of the B-factor and RASA features 
contributes to the improvement of the prediction performance of our 
logistic regression classifier to identify discontinuous B-cell epitopes.

Independent testing on epitome database

Epitome is a database composed of 105 antigen–antibody complexes 
collected by Schlessinger et al. (2006) (http://cubic.bioc.columbia.edu/
services/Epitome/), including a total of 140 antigens. In this database, 
there are 62 antigens that are also included in the dataset of  Haste 
Andersen et al. (2006). To further test our method, we used Haste 
Andersen et al.’s dataset to train our three predictors and predicted the 
discontinuous B-cell epitopes of all antigens and 78 unique antigens 
from Epitome database. Notably, Schlessinger et al. used 6Å as a distance 
cutoff to define the residues in antigens contacting with antibodies. In 

Figure 1: Characteristic comparison between epitope residues and nonepitope 
residues. (a) B-factor; (b) RASA. Asterisks represent statistically significant 
differences between epitope group and nonepitope group (p-value < 0.01, 
t-test).
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Figure 2: The ROC curves of our three predictors tested on Andersen et al.’s 
dataset.

N Threshold Recall (%) Precision (%) Accuracy (%) MCC
5 0.14 53.3 29.0 85.6 0.315
6 0.13 58.1 27.1 83.5 0.313
7 0.14 54.2 28.8 85.0 0.314
8 0.14 54.7 28.9 85.0 0.317
9 0.13 58.6 26.9 83.3 0.312

10 0.14 54.2 28.6 84.8 0.311
11 0.14 54.0 28.2 84.6 0.307
12 0.13 58.8 26.3 82.0 0.302
13 0.13 58.6 26.1 82.1 0.301
14 0.13 58.6 26.2 82.3 0.302
15 0.13 59.2 26.3 82.3 0.305
16 0.13 58.4 26.3 82.5 0.304
17 0.11 65.2 23.5 79.7 0.299
18 0.11 65.9 23.2 79.6 0.300
19 0.12 63.2 24.9 80.7 0.305
20 0.12 60.5 24.7 81.6 0.298

Table 1: The performance of different window sizes.

Feature Threshold Recall 
(%)

Precision 
(%)

Accuracy 
(%) MCC AUC

B-factor 0.11 55.6 18.6 71.8 0.195 0.694
RASA 0.07 84.8 11.4 46.9 0.154 0.683
B-factor+RASA 0.14 54.7 28.9 85.0 0.317 0.797

Table 2: The performance of fivefold cross-validation on Andersen et al.’s dataset.
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our study, we adopted Haste Andersen et al.’s definition to acquire the 
epitope residues of each antigen in Epitome database.

The prediction results of the independent testing on Epitome 
database are given in Table 3. It can be observed that the performance 
of the predictor based on combined features was much better than 
the performances of the predictors based on a single feature, not 
only for all antigens but also for unique antigens. The results were in 
agreement with those obtained by five-fold cross-validation on Haste 
Andersen et al.’s dataset. Interestingly, when we only used B-factor 
as the feature for prediction, the performance of independent testing 
was not as good as the performance achieved by the five-fold cross-
validation. We then statistically analyzed the distribution of B-factors 

of epitope residues from the 78 unique antigens in Epitome database. 
As shown in Figure 3(a), although the average B-factors of epitope 
residues were significantly lower than those of nonepitope residues, 
they were obviously higher than the mean values of epitope residues 
from Haste Andersen et al.’s dataset. For this reason, the predictive 
power of B-factor was weakened in independent testing. On the other 
hand, the comparison of RASAs given in Figure 3(b) shows that there is 
no remarkable difference between the distribution of epitope residues 
from the unqiue antigens and that from Haste Andersen et al.’s dataset, 
which results in more stable performance as RASA was used alone. 
However, when B-factor was incorporated as an additional feature to 
RASA, the MCC value of unique antigens was raised from 0.146 to 
0.238. This indicated that B-factor is helpful to improve the prediction 
performance of discontinuous B-cell epitopes. Additionally, Figure 4 
illustrates the ROC curves of our three predictors tested on all antigens 
and unique antigens in Epitome database, which further suggests that 
the proposed predictor with B-factor and RASA features is effective and 
robust.

Visualization of the prediction results for an example

To further illustrate the effectiveness of our predictors, we chose 
a complex 1VFB (PDB ID) from the unique set of Epitome database 
as an example to visualize its prediction results. This antigen–antibody 
complex is composed of hen egg lysozyme (HEL) and the Fv fragment 
of monoclonal antibody D1.3 (Fv D1.3) (Bhat et al., 1994). Figure 5 
shows that the logistic regression predictors based on a single feature 
can identify most of epitope residues in this complex, but results in 
many false positive predictions (especially when RASA is used as the 
feature alone). However, when B-factor and RASA were combined to 
identify the epitope residues, the number of true positives was kept 
and the number of false positives was reduced distinctly. The reduction 
of false positives by B-factor feature has been similarly observed 
in multiple other examples. Accordingly, we concluded that the 
substantial improvement of prediction performance of the predictor 
based on combined features was mainly due to the drastic reduction of 
false positive predictions. This capability is very useful to complement 
experimental techniques for detecting epitope residues.

Comparison with other methods

After reviewing existing methods, we found that DiscoTope 

Feature Threshold Recall 
(%)

Precision 
(%)

Accuracy 
(%) MCC AUC

B-factor 0.11 43.4a

(52.1)b
9.2

(11.7)
69.0

(69.3)
0.075

(0.124)
0.616

(0.659)

RASA 0.07 84.4
(86.0)

9.5
(10.3)

47.6
(47.3)

0.146
(0.156)

0.707
(0.707)

B-factor+RASA 0.14 44.9
(51.6)

21.0
(24.3)

85.7
(85.5)

0.238
(0.284)

0.752
(0.777)

aThe performance of independent testing on unique antigens
bThe performance of independent testing on all antigens

Table 3: The performance of independent testing on Epitome database.

Figure 3: Characteristic comparison between the epitope and nonepitope 
residues from unique antigens in Epitome database and the epitope residues 
from Andersen et al.’s dataset. (a) B-factor; (b) RASA.
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Figure 4: The ROC curves of our three predictors tested on Epitome database. 
Unique and all in parentheses denote that our predictors were tested on unique 
antigens and all antigens, respectively.
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(Haste Andersen et al., 2006) and BEpro (Sweredoski and Baldi, 2008) 
also used Haste Andersen et al.’s dataset to estimate their prediction 
performance. In their studies, the average AUC value for 75 antigens 
was used as the primary performance measure. Thus, we calculated the 
average AUC values of our logistic regression predictor with B-factor 
and RASA features and compared it with the results of two methods 
as reported by Sweredoski and Baldi (2008). The average AUC values 
of our method, DiscoTope and BEpro were 0.818, 0.726 and 0.754, 
respectively. In addition, when the average specificity value was set to 
95%, the average sensitivity value of our method was 34.3%, which was 
remarkably higher than the average sensitivity values, 18.7% and 20.9% 
of DiscoTope and BEpro. Similarly, we compared the performances 
of our method, DiscoTope and BEpro tested on the unique chains of 
Epitome database. The average AUC values of these three methods were 
76.1%, 71.7% and 73.6%, respectively. The average sensitivity values were 
24.3%, 14.2% and 15.4% when we used 95% as the average specificity 
value. The better performance achieved by our approach may be 
ascribed to the following three aspects. First, complementary to RASA 
feature, B-factor helps to reduce the false positive rate in identification 
of discontinuous B-cell epitopes. Second, we used a structural window 
as input for each residue, which may reflect the spatial environment of 
the target residue more adequately. Third, the logistic regression model 
used here could be more suitable to handle the binary classification 
of discontinuous epitopes than the linear combination model used in 
DiscoTope and BEpro. 

Conclusions
In this paper, we proposed a novel computational method for 

predicting discontinuous B-cell epitopes based on logistic regression 
model and two structural features B-factor and RASA. Cross-validation 
and independent testing showed that both B-factor and RASA can be 
used to identify discontinuous epitopes. Especially, the combination 
of these two features can significantly improve the prediction 
performance. Compared with other popular prediction methods, our 
approach showed better performance in terms of average AUC value 
and sensitivity. With the increase in structural data of antigen–antibody 
complexes, the proposed method will achieve further improvement 
in its prediction performance by incorporating more structural 
information.
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