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I. Introduction 

Computational docking of ligands to protein structures is a 

key step in identifying potential drug candidates. The docking 

problem has been formulated into a ligand-protein binding 

energy optimization problem. Dozens of programs have been 

developed for molecular docking [1-9]. In any docking 

scheme, two requirements must be balanced: to get better 

precision with lower binding energy and to minimize the 

computational time. Recently, there is significant progress in 

computational protein docking [10]. The first type of new 

docking programs utilizes Fast Fourier Transformation (FFT) 

for efficient sampling of the conformation spaces [1;11-14].  

The second type of programs exploits biochemical knowledge 

of the docking process to improve the docking performance. 

These include docking algorithms that use shape or 

physicochemical complementarily information [4;15;16] and 

predicted binding site information [17]. Another category of 

new docking algorithms are focused on improving the 

energy/potential function used for docking [18-22]. Finally, 

since the first successful application of genetic algorithms for 

protein docking, there has been significant progress in the 

global optimization field. New optimization algorithms such 

as spider-search [23], hybrid GA [24;25], differential 

evolution [26] have all been successfully applied to a variety 

of engineering problems. This paper followed this trend to 

apply new sustainable genetic algorithms to the protein 

docking problem. 

One of the most widely used automated docking programs 

is AutoDock, which predicts how small molecules bind to a 

receptor of known 3D structure [27]. AutoDock uses three 

different conformation search algorithms: simulated 

annealing (SA), traditional genetic algorithm (GA), and 

Lamarckian genetic algorithm (LGA). However, all three 

search algorithms are subject to the local optima issue. And 

due to the stochastic nature of the search algorithm, users 

usually need to run multiple (such as 10-15) independent runs 

to get reasonable results. This practice thus significantly 

increases the computational time needed (10 times or more) 

for protein docking, which becomes a major issue for 

large-scale virtual screening experiments with millions of 

ligands to be docked to a given protein. To overcome these 

limitations of AutoDock and get better docking performance, 

we proposed to apply sustainable evolutionary algorithms 

[28;29], a new type of genetic algorithms, to protein docking. 

We integrated the ALPS sustainable evolutionary algorithm 

[28;30;31] into AutoDock and compared its performance with 

those of current algorithms using the lowest binding energy 

and computational time criteria. Our results showed that the 

main advantage of sustainable evolutionary algorithms is their 

capability to address the premature convergence problem 

typical in traditional genetic algorithms [32;33]: an 

evolutionary algorithm cannot improve the quality of the best 

identified solution after some number of evaluations or 

generations. Our experiments showed that sustainable 

evolutionary algorithms can help to address the premature 

convergence problem of traditional GAs and have achieved 

significantly better binding conformation using less running 

time. As the number of generations increases, sustainable 
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evolutionary algorithms are able to find better results while 

traditional genetic algorithms get stuck in local optima. 

According to a recent survey of protein docking algorithms 

[1], there are more than 50 protein-ligand docking softwares, 

most of which still used traditional GAs for conformation 

search optimization. Our experiments implied that other 

modern protein-ligand docking programs can also be 

potentially improved by the sustainable genetic algorithms. 

II. Background 

A.  Protein-Ligand Docking 

Protein docking is a method that predicts the bound 

conformation of one protein to another protein or a ligand. A 

docking algorithm aims to find the best orientation of these 

two molecules such that they have the minimum binding 

energy as scored by a predefined scoring function. There are 

two key components in a docking algorithm: a good scoring 

function with high selectivity and efficiency that distinguishes 

between correctly or incorrectly docked structures and a 

search algorithm that can efficiently do global minimization 

of the scoring function [34-36]. 

Protein-ligand docking algorithms can be classified into 

two methods. In early docking algorithms, both protein and 

ligand are considered as rigid bodies and they have only six 

degrees of translational and rotational freedom to search for 

best orientations. Since the number of degrees of freedom is 

large if the proteins are modeled as flexible, it is impractical to 

perform exhaustive conformational search. Most of current 

docking algorithms consider the flexibility of ligands to find 

the best binding position between small molecules (ligands) 

such as substrates or drug candidates and structurally known 

target proteins (see Figure 1).  Interaction between proteins 

produces no change in conformation. Flexibility of ligands 

comes from the rotatable bonds (also called torsions) of a 

ligand (see Figure 2). The number of optimization variables is 

composed of six degrees of freedom for rotation and 

translation plus the number of torsion angels. The ligand finds 

its position into the protein’s active site after a certain number 

of moves (searches) in its conformational space. Flexibility 

modeling allows the ligand to change its structure with the 

torsions angles.  Each move costs energy, and after moves are 

completed, total energy is computed by the system. Our goal 

is to minimize this binding energy to find the best 

conformation.  

 

 
 

Figure 1. An example of protein-ligand docking 

B. Search Algorithms in AutoDock 

AutoDock (Automated Docking Software for Predicting 

Optimal Protein-Ligand Interaction) is a suite of automated 

docking tools. AutoDock is widely used as a docking engine 

 
 

Figure 2. A ligand with rotatable bonds (torsions). 

in virtual screening [37-39] for predicting how small 

molecules bind to a receptor of known 3D structure. In 

AutoDock [40], a ligand and a protein are defined by a set of 

values describing the translation, orientation and 

conformation of the ligand with respect to the protein. The 

target protein is represented as a grid. This three dimensional 

grid surrounds all atoms of the protein.  Each atom in a protein 

has its own points in the space. The representation of a ligand 

consists of 3 coordinates of the location of the ligand        , 

followed by the 4 quaternion parameters            , which 

define the orientation of the small molecule, and followed by 

the number of torsions           , depending on how many 

rotatable bonds the ligand has [8] (see Figure 3). These are the 

state variables of the ligand, and each state variable 

corresponds to a gene. The ligand’s state corresponds to the 

genotype, and the atomic coordinates of the state corresponds 

to the phenotype [27]. 

 

 

 

Figure 3. Representation of a ligand as a vector 

 

Autodock implements three conformation search algorithms 

for docking including simulated annealing (SA), traditional 

genetic algorithm (GA), and Lamarckian genetic algorithm 

(LGA).  

1) Simulated Annealing 

In early versions of AutoDock, Simulated Annealing (SA) 

was used as the major optimization method [41-43]. 

Simulated annealing is a generic probabilistic method for 

global optimization. The algorithm starts from a random or 

specific state with an initial temperature parameter (T0) and a 

specific cooling scheme [41]. At each step of the simulation, 

the ligand explores the conformation space by adding a small 

random displacement in each degree of freedom and 

evaluating the binding energy for the new conformation, 

which is composed of the intermolecular energy between the 

protein and the ligand and the intra-molecular energy of the 

ligand. It repeatedly searches the neighborhood and selects a 

neighbor as a new state. New energy is compared to the 

energy of the previous step. If the new energy is lower, the 

step is accepted. Otherwise, if the new energy is higher, the 

decision is made probabilistically based on a temperature (T) 

parameter. Because simulated annealing is a kind of a Monte 

Carlo method, different runs may produce different solutions 
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[40]. However, it does not guarantee to find the global 

minimum conformation [41].  

2)  Genetic Algorithm 

A genetic algorithm is a population-based search technique 

used to find appropriate solutions to optimization and search 

problems. In Autodock, a random population of individuals is 

generated by initializing each individual as a vector composed 

of a set of uniformly distributed random values between the 

minimum and maximum x, y, and z values [27]. Also, the 

genes representing torsion angles are given random values 

between -180 and +180. The fitness value of an individual is 

the binding energy between ligand and the target protein [27]. 

Two-point crossover is used. Mutation operator is performed 

by adding a random real number that has a Cauchy 

distribution to the variable, where α and β are parameters that 

affect the mean and spread of the distribution. Elitism operator 

is used to keep top individuals in the population. 

3) Hybrid Global-Local Search Algorithm: Lamarckian 

Genetic Algorithm (LGA) 

Lamarckian genetic algorithm is the best search algorithm 

used in AutoDock so far. LGA in Autodock uses Solis-Wets 

local search after each generation of genetic algorithm search 

for energy minimization. The result of the local search is used 

to update the fitness value and its representation associated 

with an individual. Even though Solis and Wets local search 

operator searches through the genotypic space, it can still be 

qualified as Lamarckian, because any environmental 

adaptations of the ligand acquired during the local search will 

be inherited by its offspring [27]. 

C. Limitations of Current Search Algorithms in AutoDock 

The major limitation of the search algorithms in current 

version of Autodock is that they can get trapped in local 

optima when the number of torsion angles increases. For 

example, SA performs well with the ligands that have roughly 

8 rotatable bonds or less. But the algorithm becomes 

ineffective with ligands that have more than 8 rotatable bonds 

[27]. 

A common issue of genetic algorithms (for both traditional 

GAs and LGA used in AutoDock) is that after some 

generations, the algorithm is no longer able to improve the 

best fitness of the population. This problem is called 

premature convergence problem [28;33]. If a sub-optimal 

individual dominates the population, selection tends to keep it 

around and prevents further adaptation. This is because the 

average fitness of the population increases as the evolutionary 

process continues, and then only new individuals with similar 

genotype and similarly high fitness tend to survive. Very 

different new individuals usually have low fitness since their 

beneficial characteristics have not been expressed into fitness 

values until some exploration and exploitation. Thus, a 

traditional genetic algorithm tends to concentrate its search 

effort near one peak, thus getting stuck in local optimum [33].  

One possible approach to avoid from premature convergence 

may be to increase mutation rate or population size. 

Increasing mutation rate will keep diversity high and not 

allow loosing good individuals; however, it is just as likely as 

to replace good alleles and building blocks as bad ones. If the 

mutation rate is too large, mutation operator cannot create 

offspring near its parent. Increasing population size takes 

much longer time than necessary even for a single run [28].  

A common practice to address local optima issue is to run the 

above stochastic search algorithm multiple times (e.g. 10) and 

then select the best solution. This approach, however, 

significantly increases the running time. A recent sustainable 

evolutionary algorithm called HFC (Hierarchical Fair 

Competition) has been shown to be much more efficient than 

the multi-run method and can achieve significantly better 

solutions. 

III. Methods 

A. Sustainable Evolutionary Algorithms 

Evolutionary algorithms usually fall prey to the local optima 

problem. Recently, a new type of evolutionary algorithms has 

emerged focused on sustainability, which refers that the 

capability to make constant progress given more computation 

resource unless the optimum is reached.  

The first such algorithm is the HFC algorithm framework 

[29]. The main idea of HFC is to keep the diversity of the 

population and maintain a pipeline for generating individuals 

at all fitness or age levels. The pipeline structure of HFC 

refers to the hierarchical organization of the subpopulations 

by different fitness levels. HFC reduces the selection pressure 

within each subpopulation to encourage exploration while 

maintaining the global selection pressure to exploit good 

individuals. Because of its structure, HFC does not allow the 

convergence of the population to the vicinity of any set of 

sub-optimal solutions. HFC achieves sustainable searching by 

ensuring continuous supply and the incorporation of 

individuals in the hierarchical levels. HFC continually 

changes the populations of individuals of intermediate fitness 

levels. Another form of sustainable evolutionary algorithms 

similar to HFC uses a parameter ‘age’ instead of fitness value, 

to set up the hierarchy levels. 

B. ALPS – Age Layered Population Structure 

Another sustainable GA called Age-Layered Population 

Structure (ALPS) was recently proposed [28], which was 

shown to have better performance than HFC for some genetic 

algorithm test problems.  ALPS follows HFC algoriths’ 

hierarchical organization of individuals but defines a new 

attribute of an individual, age, which is used to restrict 

competition and breeding among individuals of the 

population. The ‘age’ refers to a measure of how long the 

individual has been in the population. ALPS segregates 

individuals into different layers according to their ages, and 

regularly replaces all individuals in the bottom layer with 

randomly generated ones. Thus, the genetic algorithm will 

never completely converge and is always examining new 

areas of the fitness landscape. This allows genetic algorithms 

to develop promising young individuals without being 

dominated them by older ones [28]. 

In ALPS, the population consists of a sequence of layers 

with increasing upper-limits on the maximum age of 

individuals that a layer can contain (Figure 4). ALPS uses two 

restrictions for evolution of individuals. First, individuals can 

only breed with individuals in their own layer or one layer 

below. Second, the last layer is replaced with randomly 
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generated individuals at regular intervals. New individuals 

start with the age of 0, since their genetic material has just 

been through the evolution process. Other individuals that are 

created by mutation or recombination get the age of their 

parents plus 1 since their genetic material comes from their 

parents. An individual’s age is incremented by 1 if it is used as 

a parent to create an offspring. If an individual is not used as a 

parent, its age will not be changed. Even if an individual 

produces offspring multiple times in one generation, its age 

still incremented by 1. 

 

 
 

Figure 4. ALPS algorithm in AutoDockX 

 

The population keeps individuals within age-layers to control 

competition and breeding. Each layer has a maximum age 

limit for individuals, only last level can have individuals of 

any age. Different schemes can be used for setting the 

age-limits for each age layer such as allocating equal number 

of individuals to each layer, or allocating more individuals to 

higher levels using polynomial or exponential distributed 

layer sizes. Then, these age-limits are multiplied by an 

age-gap parameter (Table 1). This allows younger individuals 

to be able to find and move into a good basin of attraction 

before they are pushed into next layer [28]. 

Table 1. Different age schemes with the age-gap 10 

 

C.  Integrating ALPS into AutoDock 

To integrate a new search algorithm into Autodock, we have 

modified the global search algorithm of Autodock package 

and replaced the default traditional GA with ALPS to create a 

new docking program called AutodockX. Parameters of 

ALPS are defined in a parameter file. Some of ALPS’s default 

parameters are defined in Table 2. 

 

Table 2. Default ALPS parameters 
 Age-Range of Layers 

Aging Scheme                     

Linear 0-10 11-20 21-30 31-40 41-50 

Fibonacci 0-10 11-20 21-30 31-50 51-80 

Polynomial (  ) 0-10 11-40 41-90 91-160 161-250 

Exponential (    0-10 11-40 41-80 81-160 161-320 

IV. Experimental Results 

A. Test Data Preparation 

We tested the search algorithms in Autodock with ALPS on 

three different proteins, pr, hsp90 and cox, from ZINC 

database. We tested 22 ligands for protein cox, 24 ligands for 

protein hsp90, and 27 ligands for protein pr. The ligands have 

different degrees of freedom and different types of atoms 

leading to different dimensions for global optimization by the 

search algorithms. 

All the algorithms were tested on Optimus which is one of 

the high performance computing systems of the University of 

South Carolina. The specifications of Optimus are: 64 nodes, 

dual CPU, 2.0 GHz Dual-Core AMD Opterons, totaling 256 

cores, 8GB RAM per node and 1 Terabyte of Storage in head 

node. 

B. Comparing Performance of ALPS versus GA and LGA 

To compare the docking performance of ALPS against 

traditional GA and Lamarckian GA, we calculated the 

docking energy of the best docking result for each algorithm 

for docking 22 ligands to cox protein. Figure 5 shows the 

binding energies of these docked conformations. It clearly 

shows that ALPS algorithm has achieved the lowest (best) 

docking energy over all 22 ligands. LGA works worse than 

ALPS but better than traditional GA, which sometimes 

obtained much worse results.  

 

 
 

Figure 5. Comparison of three algorithms of 22 ligands with 

protein cox docking process. The population size was 50; 

maximum number of generations was 16000 for 10 runs. 
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num_generations  Default Description 

num_evals  250000 No. of generations 

pop_size  200 Population size 

alps_number_layers 10 No. of layers 

alps_age_gap 3 Age gaps for migration 

alps_age_scheme 5 Age allocation scheme 

alps_elitism 5 No. of elitism individuals 

alps_tourn_size 5 Tournament selection size 

alps_prob_select_prev 0.25 Selection probability 

alps_recomb_prob 0.8 Crossover probability 

alps_rec_rand2_prob 1.0 mutation probability 
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To fully show that sustainable evolutionary algorithms such 

as ALPS can help to address the premature convergence 

problem of traditional GAs, we compared the performance of 

ALPS, GA, and LGA in docking ligands to 3 proteins using 

different numbers of evaluations. We set the population size 

to 50, and varied the number of generations as 500, 1000, 

2000, 4000, 8000, 16000, 32000, which makes the total 

number of evaluations 25000, 50000, 100000, 200000, 

400000, 800000,      , respectively. This allows testing 

whether a search algorithm can find better solutions given 

more computational time. The mutation rate was set to 0.02, 

crossover rate was set to 0.8 for GA and LGA. For ALPS, we 

set the number of layers to 10, age gap to 20, age scheme to 

exponential. Recombination probability was set to 0.8, 

probabilistic selective rate was set to 0.25 for ALPS. The 

number of runs for each experiment is set as 10. All three GAs 

used the same real-value crossover operator as defined in 

Autodock. 

At the end of a docking process, Autodock output multiple 

conformation solutions organized into clusters. For 

simplicity, we only consider the best solution (lowest binding 

energy) for each protein-ligand pair. For each protein, we 

calculated the average of the binding energy for the given set 

of ligands docked to that protein.  

 

 
Figure 6. Overall results of different algorithms on protein 

cox using fixed population size 50 and varying maximum 

number of generations. Each algorithm was run 10 times for 

each protein-ligand pair. The averages of the lowest binding 

energy for all protein-ligand pairs are then calculated. 

 

Figure 6 shows the results of 3 algorithms for docking 22 

ligands to cox protein using different number of maximum 

generations ranging from 500 up to 16000. Note that these are 

NOT the average binding energy of a single run. Instead, for 

each allowed max generation number, we restarted the 

docking algorithms and calculated the average of lowest 

binding energy. Figure 4 showed that for each given 

maximum generation number, ALPS always gives lower 

(better) binding energies than the traditional GA and 

Lamarckian GA and in general, LGA worked better than basic 

GA. We obtained similar conclusions for the other two 

docking experiments on protein pr and hsp90 even though the 

performance gap between ALPS and the other GAs varies. 

Due to the premature convergence issue, it shows that when 

the number of generations reaches 16000, doubling the 

generations to 32000 can only help GA and LGA obtain 

slightly better solutions, which are still worse than the 

solutions obtained by ALPS using only 500 generations or 

25,000 energy function evaluations. 

To check whether the population size biased to the ALPS 

algorithm, we did another set of experiments by fixing the 

maximum generation number to 10,000 while varying the 

population sizes for the three algorithms. Results in Figure 7 

showed that when the population size increases, the traditional 

GA has severe premature convergence problem leading to 

significantly worse (higher binding energy) results. Again, the 

ALPS algorithm gave the best result for all population sizes. 

 

 
 

Figure 7. Docking results of three algorithms with fixed 

generations and varying population sizes. We tested two 

ligands for protein cox, and got the average of the lowest 

binding energies. We set the number of generations to 10000, 

and varied the population size from 150 to 1000. 

C. Comparing Performance of ALPS, GA, LGA and SA 

In this experiment, we compared SA (Simulated Annealing) 

with ALPS and the other GAs of AutoDock. Because SA 

ONLY works well for ligands with 8 or less torsion angles, we 

have chosen the ligands with at most 8 torsions to be able to 

compare this algorithm with others. When we choose the 

ligands with 9 torsions, the SA algorithm always got stuck in 

local minima and cannot obtain reasonable binding energy. 

Thus, we have only evaluated this algorithm with one 

ligand-protein pair.   

One critical parameter of SA is the number of accept-reject 

steps for each temperature, which indirectly determine the 

total number of evaluations. Since it is not possible to predict 

how many accepted or rejected steps will be made at a given 

temperature, the number of evaluations will be different for 

different problems. In the past experiments [27] of SA search 

in Autodock, the range is between          and         , 

if the accepted and rejected steps initially set to 25000. The 

initial temperature is              . We use same 

termination criteria. For the other three algorithms, we set the 

population size to 50, and the maximum number of 

generations to 32000.  This means that the total number of 

evaluations will be approximately         for all three 

population-based search algorithms. Figure 8 shows the 

results of four algorithms on three different proteins. For all 

three proteins, sustainable ALPS achieved the lowest binding 

energies and simulated annealing is the worst. 

D. Robustness of AutoDockX 

Sustainable GA such as ALPS has a unique advantage which 

is their robust search performance –their search result depends 

much less on the starting random population and thus does not 

require multiple runs (e.g. 10) of GA and LGA as is usually 
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done by Autodock users. To show the robust docking 

performance, we run GA, LGA, and ALPS to dock the 

cox-ZINC00012342 pair each running 10 times. Table 3 

shows the lowest binding energies in each result cluster after 

10 runs for GA, LGA, and ALPS. A cluster is defined as the 

group of solutions that have a RMSD distance lower than a 

given threshold. Table 2 clearly indicates that GA and LGA 

obtained widely varying results for different runs, each run  

 
 

Figure 8. Comparison of binding energies of docked 

conformations for 4 algorithms: ALPS, GA, LGA, and SA. 

ALPS identified the lowest binding energy for all 3 target 

proteins. 

 

generating a different cluster. And thus they all need to run 

multiple times to find good docking conformations. For 

example, one run of GA obtained a binding energy of -0.11 

while another run gave 36.26.Lamarckian GA is more robust 

and obtained lower binding energy than GA but still much 

inferior to ALPS in terms of both binding energy and also the 

variation among the solutions of different runs. For ALPS’ 10 

runs, all runs generated binding energy superior to the best 

energy scores of both GA and LGA and the variance of these 

10 runs is extremely small. This means that for ALPS, we 

only need to run a single docking search instead of 10 runs of 

traditional Autodock search algorithms to get high-quality 

results. The running time efficiency of ALPS is thus much 

better than GA or LGA due to its robust search capability.  

GA and LGA generated 10 different clusters from 10 runs. 

ALPS generated 8 clusters with cluster 3 containing results of 

3 runs with very similar conformations (only the result of the 

lowest energy is shown for each cluster). 

 

Table 3. Docking results of GA, LGA, ALPS on 

cox-ZINC00012342 pair after 10 runs.  

 

Cluster 

Lowest 

Binding 

Energy by 

GA 

Lowest 

Binding 

Energy by 

LGA 

Lowest 

Binding 

Energy by 

ALPS 

1 -0.11 -6.19 -7.95 

2 3.15 -5.7 -7.77 

3 10.48 -5.17 -7.36 

4 13.91 -4.68 -7.29 

5 16.54 -4.56 -7.23 

6 18.02 -3.37 -7.14 

7 25.67 -3.01 -6.98 

8 28.01 -2.87 -6.75 

9 32.8 -2.45  

 

Finally, Figure 9 shows the energy ranges after 10 runs for 

three algorithms GA, LGA, ALPS. We calculated the mean 

energies and the standard deviations of 13 ligands with 

protein cox. Traditional genetic algorithms may give very 

different results for 10 runs. However; sustainable GA, ALPS 

always finds better and consistent solutions with much 

smaller quality variation. With AutodockX, there is no longer 

a need to run multiple times to get desired results.  
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Figure 9. Binding energy variations for 10 runs of three 

algorithms on 13 protein-ligand pairs. The middle mark 

shows the mean value. GA has the largest variation among 

different runs and ALPS has the lowest variation or highest 

robustness in terms of search quality for multiple runs. 

V. Conclusions 

We have developed a new docking program AutoDockX by 

integrating the sustainable genetic algorithm ALPS to 

AutoDock, one of the most used tools in protein-ligand 

docking. We tested the docking performances over three 

different proteins (pr, cox and hsp90) with more than 20 

candidate ligands for each protein. The results showed that 

our sustainable GA based AutodockX gives significantly 

better docking performance than all the existing search 

algorithms implemented in the latest version of AutoDock4. 

AutoDockX also has the benefits of less running time and 

higher robustness. A single run of AutoDockX gets better 

results than running traditional GA and LGA for multiple 

times (e.g. 10 runs). As a result, AutoDockX, has unique 

advantages in large-scale drug-candidate virtual screening in 

which millions of ligands need to be docked. 
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