
GPBG: A Framework for Evolutionary

Synthesis of Multi-domain Engineering

Systems

Jianjun Hu1, Zhun Fan4, Jiachuan Wang5, Kisung Seo7, Xiangdong Peng2,
Janis Terpenny6, Ronald Rosenberg3, and Erik Goodman2

1 MCB 403G, University of Southern California, Los Angeles, CA, 90089, USA.
jianjunh@usc.edu

2 Department of Electrical and Computer Engineering, Michigan State University,
East Lansing, MI 48824, USA. goodman@egr.msu.edu

3 Department of Mechanical Engineering, Michigan State University, East
Lansing, MI 48824 rosenber@egr.msu.edu

4 Department of Mechanical Engineering, Technical University of Denmark,
Building 404, DK-2800 Lyngby, DENMARK. zf@mek.dtu.dk

5 United Technologies Research Center, Systems Department, East Hartford,CT
06108, USA. wangj2@utrc.utc.com

6 Department of Engineering Education, Virginia Tech, Blacksburg, VA 24061,
USA. terpenny@vt.edu

7 Department of Electronics Engineering, Seokyeong University, Seoul, 136-704,
KOREA. ksseo@skuniv.ac.kr

Summary. This chapter presents a generic framework (GPBG) for evolutionary
design synthesis of multi-domain engineering systems by exploiting the open-ended
topological search capability of genetic programming and the multi-domain modeling
of bond graphs. In this framework, an engineering design problem is solved in four
steps, namely, design space definition, functional specification, evolutionary search,
and design implementation. We used four design problems to demonstrate the effec-
tiveness of this methodology, including synthesis of vibration absorbers, synthesis of
MEMS filters, and synthesis of suspension systems to illustrate the basic principles
of GPBG, the means to incorporate domain-knowledge into the evolutionary design
process, and the potential of GPBG for design innovation.

1 Introduction

Current engineering design is a multi-step process proceeding from conceptual
design to detailed design and to evaluation and testing. It is estimated that
60-70% of design decisions and most innovation occur in the conceptual design
stage, which may include conceptual design of function, operating principles,
layout, shape, and structure. However, few computational tools are available

2 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

to help designers to explore the design space and stimulate the product in-
novation process. As a result, product innovation is strongly constrained by
the designer’s ingenuity and experience, and a systmatic approach to product
innovation is strongly needed.

Many engineering design problems, such as mechatronic systems, can be
abstracted as a design space exploration problems in which a set of building
blocks or modules need to be assembled/connected together to compose a
system satisfying a set of given functional requirements. In many cases, such as
analog circuit design, it is relatively easy to simulate a product design model to
evaluate its functional performance via simulation software such as P-SPICE,
while it is extremely hard to come up with an innovative design solution out
of the almost unlimited number of design candidates of the topological design
space. An efficient topological search technique is needed to help to improve
this process.

In recent decades, evolutionary computation has emerged as an effective
and promising search/optimization technique that is suitable for large-scale
non-linear multi-modal engineering optimization problems. In particular, ge-
netic programming (GP) has been used as an attractive approach for engi-
neering design innovation in a variety of domains, including design of analog
circuits, digital circuits, chemical molecules, control systems, etc. [11]. Such
work employs GP as a topologically open-ended search technique for func-
tional design innovation – achieving given behaviors without pre-specifying
the design topology – and has achieved considerable success. While electrical
circuits and block diagrams are well suited for the design problems in ana-
log circuit design and controller synthesis, many engineering design problems
cover multiple domains, including, for example, mechanical, electrical, and
hydraulic subsystems. Since 2001, we have been developing a new framework,
called GPBG [16], for automated synthesis of multi-domain systems using ge-
netic programming and bond graphs, which are a well-established modeling
tool for multi-domain systems.

In this chapter, we will detail how an engineering design problem can be
solved under the GPBG framework using several design synthesis problems:
a vibration absorber, a MEMS filter design, and a controller design in sus-
pension systems. The rest of the chapter is organized as follows. Section 2
presents a survey of applications of evolutionary algorithms in engineering
design synthesis that are more than just parameter optimization. Section 3
introduces the GPBG framework, which exploits genetic programming and
bond graphs for automated synthesis of dynamic systems. In section 4, first,
the vibration absorber design problem is used to illustrate the basic approach
to mapping the engineering design problem into a topology space search prob-
lem using genetic programming. We then use a MEMS filter design problem
to show how expert domain knowledge can be incorporated into the evolution-
ary synthesis and greatly improve the efficiency of this approach. The third
application uses a different, direct-encoding GPBG approach for synthesizing

GPBG: A Framework for Evolutionary Synthesis 3

controllers of suspension systems. Finally, the conclusions and future research
are highlighted in Section 5.

2 Related Work

Automated synthesis of dynamic systems has been investigated intensively in
the past ten years. Most of that work is related to analog circuit synthesis, as
pioneered by Koza and his colleagues[9][11]. Their work in automated analog
circuit synthesis, including low-pass, high-pass, and asymmetric band-pass
filters, is described in [10] [9]. Lohn and Colombano [13] proposed a linear
representation approach to evolve analog circuits. Ando and Iba [1] suggested
another simple linear genome method to evolve low-pass and band-pass filters
with small numbers (<50) of components. In our previous work, we applied
GP to the lowpass analog filter design problem[2], MEMS [3], the printer
mechanism design, active-passive dynamic system design[17], all using bond
graphs as the modeling and simulation tool. Controllers, or dynamic systems
represented as block diagrams have also been synthesized automatically using
genetic programming by Koza et al. [12]. This work has led to the invention
of a patentable controller having better performance than a standard PID
controller.

3 The GPBG Framework for Evolutionary Design

In this section, we present a generic methodology for open-ended computa-
tional synthesis of multi-domain dynamic systems based on bond graphs [8]
and genetic programming–the GPBG approach = Genetic Programming+Bond
Graphs.

3.1 Genetic Programming

Genetic programming is a derivative of genetic algorithms that is charac-
terized by its capability to evolve programs. In typical GP, an individual is
represented as a syntax/GP tree composed of functions and terminals defined
by the user according to the problem. Each function has one or more inputs,
while terminals have no inputs. Both functions and terminals can be exe-
cuted to generate some output or do some processing such as inserting a new
component into a developing/growing analog circuit. Genetic programmingś
open-ended topological search capability has been widely applied to computa-
tional synthesis of analog circuits, controllers, mechatronic systems, quantum
circuits, etc.

4 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

3.2 Bond Graphs

The bond graph is a multi-domain modeling tool for analysis and design of
dynamic systems, especially hybrid multi-domain systems, including mechan-
ical, electrical, pneumatic, hydraulic, etc., components. Details of notation
and methods of systems analysis related to the bond graph representation
can be found in [8]. Fig. 1 illustrates a small bond graph that represents the
accompanying electrical system.

A typical simple bond graph model is composed of inductors (I), resis-
tors (R), capacitors (C), transformers (TF), gyrators (GY), 0-Junctions (J0),
1-junctions (J1), sources of effort (SE), and sources of flow (SF). In this chap-
ter, we are only concerned with linear dynamic systems and do not include
transformers and gyrators as components.

1

RS RL

(1)

Se 0 AC

GND

RS

RLevolved
circuit

Fig. 1. A bond graph and its equivalent circuit. The dotted boxes in the left bond
graph indicate modifiable sites at which further topological manipulations can be
applied (to be explained in the next section)

In the context of electric circuit design, a bond graph consists of the fol-
lowing types of elements:

• C, I, and R elements, which are passive one-port elements that contain no
sources of power, and represent capacitors, inductors, and resistors

• Power source elements including Se and Sf, which are active one-port el-
ements representing sources of voltage and current, respectively. In addi-
tion, when the current of a current source is fixed as zero, it can serve as
an ideal voltage gauge. Similarly, when the voltage of a voltage source is
fixed as zero, it can serve as an ideal current gauge

• Transformer (TF) and gyrator (GY), which are two-port elements. Power
(i.e., product of voltage and current) is conserved in these elements, but
the values of voltage and current may be changed in the elements

• 0-junctions and 1-junctions, which are multi-port elements for representing
series and parallel relationships among elements. They serve to intercon-
nect elements into subsystem or system models

• Bonds, which are used to connect any two elements in the bond graph

GPBG: A Framework for Evolutionary Synthesis 5

A unique characteristic of bond graphs is their use of 0- and 1-junctions to
represent the series and parallel relationships among components in circuits.
In fact, it is this concept that led to the foundation of the bond graph field
[14]. Junctions transform common circuits into a very clean structure with
few loops, which can otherwise make circuits appear very complicated. Figure
4.1 shows the comparison of a circuit diagram and a corresponding bond
graph. The evaluation efficiency of the bond graph model is further improved
due to the fact that analysis of causal relationships and power flow between
elements and subsystems can reveal certain system properties and inherent
characteristics. This makes it possible to discard infeasible design candidates
even before numerically evaluating them, thus reducing time of evaluation to
a large degree. In addition, as virtually all of the circuit topologies created
are valid, our system does not need to check validity conditions of individual
circuits to avoid singular situations that could interrupt the running of a
program evaluating them.

3.3 GPBG = GP + Bond Graphs

By combining the topological search capability of GP and the multi-domain
representation feature of bond graphs, GPBG provides an appealing approach
for open-ended synthesis of multi-domain systems. To map an engineering
design problem into the GPBG framework, the design space of target design
solutions must first be identified, including all component types, component
interfaces, and connection types. Then, depending on how we encode the
bond graphs using the GP tree, two types of approaches have been used
within GPBG framework. One is the developmental GPBG approach, similar
to Koza’s work on evolving analog filters, in which the bond graph phenotypes
are grown from an embryo bond graph by executing the GP tree program to
manipulate the topology. The other approach is the direct encoding GPBG, in
which the the GP trees directly encode the bond graph topology. This method
shares some similarity to the GP-based controller synthesis approach by Koza
[12].

Developmental GPBG

The problem of automated synthesis of bond graphs involves two basic
searches–the search for a good topology and the search for good parame-
ters for each topology–in order to be able to evaluate its performance. Based
on Koza’s work [9] on automated synthesis of electronic circuits, we created a
developmental GPBG system for synthesizing mechatronic systems, including:

1. An embryo bond graph with modifiable sites at which further topological
operations can be applied to grow the embryo into a functional system

6 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

2. A GP function set, composed of a set of topology manipulation and other
primitive instructions which will be assembled into a GP tree by the evo-
lutionary process (execution of this GP program leads to topological and
parametric manipulation of the developing embryo bond graph)

3. A fitness function to evaluate the performance of candidate solutions

We use the analog filter synthesis problem as an example to illustrate the
developmental GPBG approach[2]. In this problem, the design space consists
of bond graphs composed of capacitors (C), inductors (I), resistors (R), 1-
junctions (J1) and 0-junctions (J0) (we omitted transformers and gyrators
for the sake of simplicity). We have two types of elements in a bond graph.
One is the elements including C/I/R/J1/J0 which have one or more interface
ports. The second type of elements are two-port bonds. The applicable topo-
logical operations on node elements include replacing the component type (on
C/I/R/J1/J0), and adding a new C/I/R component (on J1/J0). The topo-
logical operations on bonds include inserting a new J1/J0. This operator set
will enable the GPBG to evolve a large number of bond graphs. Then we
develop an alternative, ”basic” GP function set for this problem, including
{Insert J0/J1, Add C/I/R, and Replace C/I/R}. Fig.2 and Fig.3 shows how
these topological manipulation GP functions work. Note that for Add C/I/R
functions, we can have one or more branches that accept numeric subtrees
to set the component parameters. More examples of developmental GP are
presented in Section 4.1 and Section 4.2.

The developmental GPBG framework enables us to do simultaneous topol-
ogy and parameter search. Compared to the direct encoding GPBG below, it
can evolve much more diverse topology types including those with loops and
has more flexibility during the evolutionary search process, but at the cost of
a less intuitive GP tree.

ERC or
+ / -

add_R

(1) (2) (3)

(1)

1

Modifiable Site (1) Modifiable Site (3)

R

1

Modifiable Site (2)

Modifiable Site (1)

Fig. 2. The add R function adds a resistor to a junction.

GPBG with direct encoding

One interesting observation of typical bond graphs is that most bond graphs
do not have loops and are themselves tree-structured. This makes it natural

GPBG: A Framework for Evolutionary Synthesis 7

(3)

(2) (1)

 insert_J0

(1)

Modifiable Site (2)

 Modifiable Site (1)

Modifiable Site (3)

0

R

1

Modifiable Site

1

R

Fig. 3. The Insert J0 inserts a new 0-junction into a bond

to use the GP trees themselves to represent/encode the bond graph structure.
We thus proposed the direct-encoding GPBG approach for evolving tree-type
bond graph models. In this approach, 1-junction and 0-junction are used as GP
functions with two input variables (ports). The capacitors/resistors/inductors
are all GP functions with one input that connects to a numeric subtree to
establish the component size (parameter value). We also have plus/minus
arithmetic operators in addition to ERC random terminals. One such function
set is shown in Table 1, which is used to synthesize controllers for a suspension
system in Section 4.3. Since there is a one-to-one correspondence of the GP
tree and bond graph topology, one can easily build a bond graph by following
the topologies in the GP trees.

Table 1. GP function set for suspension controller synthesis

Name and description Function arity

J0 - Junction (0) 2
J1 - Junction (1) 2
R Element (R) 1
C Element (C) 1
I Element (I) 1
Arithmetic + (+): add two ERCs 2
Arithmetic - (-): Subtract two ERCs 2
Ephemeral Random Constant (ERC) 0

With this encoding approach, each GP tree is a bond graph. Actually,
here, all GP trees are binary trees. Clearly, this can only represent a subset
of bond graphs compared to the developmental GPBG approach, but enjoys
simplicity in implementation. Since the standard GP needs to specify the arity
of the GP functions, this limits the number of ports of the junctions to be
three, which is a shortcoming of this approach. However, this disadvantage
can be ameliorated by defining a larger arity, (e.g., 8) and then definoing a
null-element terminal. In this way, we can evolve 6-arity GP trees in which
many of the ports are simply empty. Most real-world bond graph models have

8 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

fewer than 8 ports. One possible disadvantage maybe that this may greatly
increase the search space.

4 Case Studies of Evolutionary Synthesis Using GPBG

In this section, we applied GPBG to four real-world design problems, including
synthesis of a passive vibration absorber, a MEMS filter, a robust analog filter,
and a controller for a suspension system. The purpose of the first example is
to illustrate the basic principle of GPBG with practical design problems. The
second example aims to show how a designer can combine domain knowledge
with the evolutionary design process. The third example is to show how the
evolutionary design based on GPBG can provide solutions to unconventional
design problems such as design for robustness. Each problem will start with
the description of the design space and the configuration of GPBG, including
design embryo, GP function set, and fitness function.

4.1 Synthesis of Mechanical Vibration Absorber

Problem Description

Vibration absorbers are a class of dynamic systems, and can be modeled as
analog circuits, block diagrams, bond graphs, etc. One special characteristic
of these particular dynamic systems is that the building blocks usually have
a fixed number interface ports and may not be connected arbitrarily.

In this section, we are mainly interested in synthesizing passive vibra-
tion absorbers to reduce the vibration response of primary systems of various
configurations. Figure 4 shows a primary system and its corresponding bond
graph model. The design task is to attach some new components to the pri-
mary system such that the frequency response at the excitation frequency
ω be minimized. Figure 5 shows the first vibration absorber, invented by H.
Frahm in 1911, and its bond graph model. The frequency response of the
stand-alone primary system and the primary system with vibration absorber
is shown in Figure 6. It can be seen that the vibration absorber can significant
quench the response of the primary systems at the excitation frequency.

In this design problem, the objective is to synthesize a vibration absorber
such that the frequency response

fraw = |TF (jω)|ω=ω0
(1)

of the primary system mass (displacement) at the frequency ω of excitation
force f = f0∗sinωt is minimized. This problem is extracted from [7]. We want
to see if the GPBG system can reinvent the first patented vibration absorber,
shown in Figure 5. The parameters of the primary system are as follows:

mp = 5.77 kg; kp=251.132 *1e6 N/m; cp= 192.92 kg/s.
The parameters of the standard passive absorber solution are as follows:
ma = 0.227 kg; ka=9.81e6 N/m; ca= 355.6 kg/s

GPBG: A Framework for Evolutionary Synthesis 9

(a) (b)

Fig. 4. The bond graph structure of a primary system and its bond graph model
(a) The primary system under perturbation of excitation force F(t); (b)The bond
graph model of the embryo system.

Fig. 5. The bond graph structure of the first patented vibration absorber and its
bond graph model.

GPBG Configuration

The design space of passive vibration absorbers is composed of masses (R),
springs (C), and dampers, corresponding to Resistor(R), Capacitor (C) and
Inductor (I), respectively. Following the GPBG framework outlined before, we
used the bond graph embryo in Figure1 for this design problem. The modi-
fiable site is the 1-junction. Since it is not physically realistic to have many
masses attached to the primary structures, we limit the maximum number of
masses to 2 in all the experiments.

In our earliest work [2], a ”basic” GP function set was used for evolutionary
synthesis of analog filters. In that approach, the GP functions for topological
operation included {Insert J0/J1, Add C/I/R, and Replace C/I/R}, which
allowed evolution of a large variety of bond graph topologies. The shortcoming
of this approach is that it tended to evolve redundant and sometimes causally
ill-posed bond graphs [15]. Later, we used a causally well-posed modular GP

10 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

(a)
0 500 1000 1500 2000

−450

−400

−350

−300

−250
A

m
pl

itu
de

 (
dB

)

frequency (Hz) (b)
0 500 1000 1500 2000

−450

−400

−350

−300

−250

A
m

pl
itu

de

frequency (Hz)

Fig. 6. Frequency responses of the primary system under perturbation of excitation
force F(t), without and with a vibration absorber. (a) without vibration absorber
(b) with vibration absorber.

function set to evolve more concise bond graphs with much less redundancy
[6]. However, that encoding had a strong bias toward a chain-type topology
and thus may have limited the scope of topology search [5]. Here we have
improved the basic function set in [2] and developed the following hybrid
function set approach to reduce redundancy while enjoying the flexibility of
topological exploration:

F={ Insert J0E, Insert J1E, Add C/I/R, EndNode, EndBond, ERC}

where the Insert J0E, Insert J1E functions insert a new 0/1-junction into
a bond while attaching at least one and at most three elements (from among
C/I/R). EndNode and EndBond terminate the development (further topology
manipulation) at junction modifiable sites and bond modifiable sites, respec-
tively; ERC represents a real number (Ephemeral Random Constant) that can
be changed by Gaussian mutation. In addition, the number and type of ele-
ments attached to the inserted junctions are controlled by three ”flag” bits. A
flag mutation operator is used to evolve these flag bits, each representing the
presence or absence of the corresponding C/I/R component. Compared with
the basic function set approach, this hybrid approach can effectively avoid
adding many bare (and redundant) junctions. At the same time, Add C/I/R
still provides the flexibility needed for broad topology search. For any of the
three C/I/R components attached to each junction, there is a corresponding
parameter to represent the component’s value, which is evolved by a Gaus-
sian mutation operator in the modified genetic programming system used
here. This is different from our previous work in which the ”classical” nu-
meric subtree approach was used to evolve parameters of components. Fig. 9
shows a GP tree that develops an embryo bond graph into a complete bond
graph solution. Our comparison experiments [5] showed that this function set
was more effective on both an eigenvalue and an analog filter test problem.

GPBG: A Framework for Evolutionary Synthesis 11

Insert_J0E

OB: Old bond modifiable site

NJ1
NB

OB

NJ: New Junction modifiable site
NB:New bond modifiable site

OB

V1 V2 V3

Vi: ERC values for I/R/C

1 0

OB

1 0 0

OB NJ1 NB

I R C
V1V2V3

Fig. 7. The Insert J0E GP function inserts a new junction into a bond along with
a certain number of attached components

J

Add_C/I/R

OJ: old junction modifiable site

OJ NB

NB: new bond modifiable site

OJ

ERC

ERC: numeric value for C/I/R

OJ

C/I/RJ

OJ NB

(12.0)

Fig. 8. The Add C/I/R GP function adds a C/I/R component to a junction

The fitness function for candidate design evaluation is defined as:

fnorm =
NORM

NORM + fraw

(2)

where fraw is the frequency response as defined in Equation 1. NORM is
a normalization term aimed at adjusting the fnorm into the range of [0,1].
This process transforms the minimization of deviation from target frequency
response into a maximization of fitness process as used in our GP system. Since
tournament selection is used as the selection operator, the normalization term
can be an arbitrary positive number. Here NORM is set to 10, and the fitness
range is [0, 1].

According to Eq.1, we need to calculate the frequency response X1(s)
F (s) where

X1 is the displacement of the primary mass. However, we can only extract from
a bond graph the source effort signal

.

X (s). We use the following procedure
to get the fraw:

12 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

1

I
R

Tree_Root

EndNode Insert_J1E

Add_C

EndBond

EndNode

Add_I EndBond

(1)

(1)

010

Insert_J0E
001

0 RL

(1)
1Se
Rs

0 RL

(1)

1Se
Rs

CI

0

Fig. 9. An example of a GP tree, composed of topology operators applied to an
embryo, generating a bond graph after depth-first execution (numeric ERC nodes
are omitted). Note that the 010 and 001 are the flag bit sets showing the presence
or absence of attached C/I/R components

1)calculate A, B, C, D matrices from a given bond graph;
2)convert A, B, C, D into transfer function TFraw;

3)TFnorm = TFraw ∗ 1/s is equal to X1(s)
F (s) ;

4)convert TFnorm back to A’, B’, C’, D’ matrices and simulate its frequency
response with Matlab.

Design Experiments

Compared to the evolutionary synthesis of electrical circuits, a mechanical
vibration absorber usually has a much smaller number of components. So the
topological and parameter search can be greatly decreased. We used a bond
graph simulation engine and developed the GPBG platform based on Open
beagle GP framework by Christian Gagne[4]. Most of the experiments are
finished in less than an hour. Some of them take only a few minutes. Here
we set the maximum number of components to be 7. Other standard GP
parameters are summarized in Table 4.1.

Figure 10 shows an evolved single frequency vibration absorber and its
frequency response compared to the responses of the primary structure with-
out any absorber and with a standard passive absorber invented in 1912. It is
very interesting that the frequency response of the evolved vibration absorber
has a very deep spike at the excitation frequency to minimize the frequency
response at that single frequency. If the excitation frequency is relatively con-
stant with little shifting, our evolved absorber will achieve better performance
at that specific frequency. Our evolved vibration absorber utilizes one damper
(I) and several springs (C), sharing similarity to the original absorber in-
vention of 1912. We found the GPBG framework is very flexible for vibration
absorber synthesis. In addition to this single-frequency vibration absorber, we

GPBG: A Framework for Evolutionary Synthesis 13

Table 2. Experimental parameters for vibration absorber synthesis

Parameter Value Parameter Value

No. of subpopulations 5 Tournament Selection Size 7
Sub population size 400 pCrossover 0.4
Maximum evaluation 100000 pMutationStandard 0.05
Migration Interval 5 gen MutateMaxDepth 3
Migration Size 40 pMutationParameter 0.3
Init.MaxDepth 3 pSwitchBit 0.2
Init.MinDepth 2 pSwapSubtree 0.05
StronglyTyped True TreeMaxDepth 7

have also synthesized novel dual frequency and band-pass passive vibrators,
which will be reported elsewhere.

Input Signal

Se

R

I C C I

1 0 C1

C

0 C

0 500 1000 1500 2000
−450

−400

−350

−300

−250

A
m

pl
itu

de
 (

dB
)

frequency (Hz)

GP−VA
Primary system
1911 VA invention

Fig. 10. The evolved single-frequency vibration absorber and its performance com-
pared to a standard vibration absorber.

4.2 Synthesis of MEMS Filters: Knowledge Incorporation in

GPBG

Due to the complexity of real-world engineering design problems, hands-free
automated synthesis system can rarely provide entirely satisfactory solutions.
It may be that the computational demand is too high for current inexpensive
computing hardware or the design solutions are hard to implement using phys-
ical components or they violate some design constraints. It is thus strongly
desirable to incorporate expert/human knowledge into the evolutionary syn-
thesis process to create some kind of interactive evolutionary synthesis tools
that help human designers make better decisions and explore under-explored
design spaces.

14 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

Problem Description

In this section, we try to synthesize MEMS (micro-electro-mechanical systems)
band-pass filters to examine how domain knowledge can be conveniently in-
cluded into the evolutionary synthesis process. Due to its multi-domain and
intrinsically three-dimensional nature, MEMS design and analysis is very com-
plicated. However, the multi-domain property of MEMS models makes them
suitable for representation as bond graphs. In this MEMS filter synthesis prob-
lem, the goal is to automatically generate bond graph models of MEMS filters
to meet particular design specifications.

One distinct characteristic of MEMS filter design with vibration absorber
synthesis and analog filter design is that, due to manufacturing constraints,
MEMS filters are usually composed of a restricted and specialized set of com-
ponents. Two popular topologies for micromechanical band-pass filters, built
using surface micromachining, are topologically composed of a series or con-
catenation of Resonant Units (RUs) and Bridging Units (BUs), or RUs and
Coupling Units (CUs) [36][37]. Fig. 11 illustrates the layouts and correspond-
ing bond graph representations of two such filter topologies, labeled I and
II.

(a) (b)

Fig. 11. MEMS filter topologies. (a) Layout of filter topology I (b) Layout of filter
topology II.

From this figure, it is clear that here the building blocks of MEMS fil-
ter design are high-level modules that are tailored to a specific fabrication
process. Design solutions composed of arbitrary topologies of basic primitive
components will be difficult to manufacture.

GPBG: A Framework for Evolutionary Synthesis 15

GPBG Configuration

For this band-pass filter design problem, we use the bond graph model shown
in Fig.12 as the design embryo of the GPBG framework. The accompanying
block diagram indicates that this implementation will accept an electrical
voltage signal as input and produce a voltage signal as output, but the interior
components will be implemented as micromechanical elements.

Fig. 12. MEM filter design embryo in bond graph and block diagram forms.

To incorporate the domain knowledge of MEMS filters, we propose the
realizable GP function set concept, which manipulates topologies composed
of manufacturable modules by adding, removing, or replacing these modules
as units. We use the following GP function set in Table 4.2 as our modular GP
function set, which can impose domain knowledge of design constraints on the
final synthesis results for guaranteed manufacturability of the design under
current or anticipated manufacturing technology. By using only operators in
a realizable function set, we seek to guarantee that the evolved design is
physically realizable and has the potential to be manufactured. This concept
of realizability may include stringent fabrication constraints to be fulfilled in
some specific application domain.

Examples of operators, namely insert CU and insert RU, are illustrated in
Fig. 13. Examples of basic operators are available in our earlier work [2]. Fig-
ure 5.11 explains how the insert BU function works. A Bridging Unit (BU) is
a subsystem composed of three capacitors with the same parameters, attached
together with a 0-junction in the center and 1-junctions at the left and right
ends. After execution of the insert BU function, an additional modifiable site
(2) appears at the rightmost newly created bond. As illustrated in Figure 5.12,

16 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

Table 3. Realizable Function Set for MEMS Filter Synthesis

insert RU Insert a Resonator Unit
insert CU Insert a Coupling Unit
insert BU Insert a Bridging Unit
add RU Add a Resonator Unit
insert J01 Insert a 0-1-junction compound with elements
insert CIR Insert a special CIR compound
insert CR Insert a special CR compound
Add J Add a junction compound
+ Sum two ERCs
- Subtract two ERCs
endn End terminal for add functions
endb End terminal for insert functions
endr End terminal for replace functions
erc Ephemeral Random Constant (ERC)

a resonator unit (RU), composed of one I, R, and C component all attached
to a 1-junction, is inserted in an original bond with a modifiable site through
the insert RU function. After the insert RU function is executed, a new RU
is created and one additional modifiable site, namely bond (3), appears in
the resulting phenotype bond graph, along with the original modifiable site
bond (1). The newly-added 1-junction also has an additional modifiable site
(2). As components C, I, and R all have parameters to be evolved, the in-
sert RU function has three corresponding ERC-typed sites, (4), (5), and (6),
for numerical evolution of parameters.

Fig. 13. Two realizable GP functions for MEMS filter design. (left) Insert BU
(right) Insert RU

Filter performance is measured by the magnitude ratio of the frequency re-
sponse for the voltage across RL to the input voltage us. The desired frequency
response has unity magnitude ratio in the pass band (316Hz - 1000Hz), and
zero magnitude ratio outside the pass band. The frequency range of interest

GPBG: A Framework for Evolutionary Synthesis 17

is 0.1Hz - 100KHz. To evaluate fitness within the frequency range of interest,
100 points are sampled at equal intervals on a log scale. The magnitudes of
the frequency response at the sample points are compared with their desired
magnitudes. The differences are computed and the sum of all squared differ-
ences is taken as raw fitness. The normalized fitness is calculated according
to Equation 2.

Design Experiments

We used a strongly-typed version of lilgp to generate bond graph models. The
major GP parameters were as shown below.

Table 4. Experimental parameters for vibration absorber synthesis

Population size 500 in each of 13 subpopulations
Initial population half and half
Initial depth 4-6
Max depth: 50 Max nodes 5000
Selection Tournament (size=7)
Crossover: 0.9 Mutation: 0.3

Results of the experiments show the capability of the GPBG approach for
finding realizable designs for micro-electro-mechanical filters. Fig. 14(a) shows
the fitness improvement curve of a typical genetic programming run, in which
K is defined as the number of resonator units used in the MEM filter design.
It is shown that as evolution progresses, the fitness value undergoes continual
improvement. It is also observed that as fitness improves, the value of K also
becomes larger. This observation is supported by the reasoning that a higher-
order system with more resonator units has the potential of having better
system performance than its lower-order counterpart. The system frequency
responses at generations 27, 52, 117 and 183 are shown in Fig.14(b), with
increased K value and performance evaluation.

The use of realizable function sets can be made less rigid to assist the
designer in exploring more novel topologies for MEMS filter design. The de-
signer may use a function set in which not all elements are guaranteed to be
strictly realizable. Instead, a different set of design knowledge is incorporated
in the evolutionary process – i.e., a semi-realizable function set may be used
to relax the topological constraints with the purpose of finding new topologies
not discovered before but still usually realizable after careful interpretation.
Fig.15 gives an example of a novel topology evolved for a MEM filter design by
incorporating a special CIR component (in Table II) into the semi-realizable
function set.

The work presented in this section analyzes the promise of MEMS de-
sign synthesis at the system level using the GPBG approach. The basic GP

18 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

Fig. 14. (left) Fitness progress over generations (right) Frequency responses of
design candidates at different generations.

Fig. 15. A novel design topology using a semi-realizable function set.

function set imposes very few constraints on design, while the realizable func-
tion set used for MEMS design features relatively few but structurally more
complex devices in the component library. The use of a realizable function set
guarantees that the phenotypes generated can be built using existing or antic-
ipated manufacturing technology. Large-scale component reuse and assembly

GPBG: A Framework for Evolutionary Synthesis 19

of MEMS is expected to show more applicability and promise of this method
for MEMS design.

4.3 Synthesis of Suspension System Controllers

Problem Description

Suspension systems are important subsystems of most wheeled vehicles. From
a system design point of view, there are two main types of disturbances act-
ing on a vehicle, namely road and load disturbances. Road disturbances have
the characteristics of large magnitude in low-frequency disturbances (such
as hills) and small magnitude in high-frequency disturbances (such as road
roughness). Load disturbances include the variations of loads induced by ac-
celerating, braking and cornering. A good suspension design is concerned with
disturbance rejection from these disturbances to the outputs (e.g. vertical po-
sition of vehicle mass), the basis for evaluating performance. In general, a
suspension system needs to be ”soft” to insulate against road disturbances
and ”hard” to insulate against load disturbances.

(a)

zu

ms

mu

kt

Fs

u

Fr

zs

zr
 (b)

Fig. 16. (a) Quarter-car model in iconic diagram; (b)Quarter-car suspension control
with both road and load disturbances.

A quarter-car iconic model is illustrated in Fig. 16(a). The sprung mass
ms (kg), consists of the main vehicle body supported by the suspension. The
unsprung mass mu (kg), consists of hub, wheel and tire. The tire is modeled as
a spring with stiffness k t (N/m). z s, zu, and z r are the vertical positions of the
sprung mass, the unsprung mass and the road disturbance input, respectively.
Force Fs is the load force disturbance input. Force u represents any possible
suspension force.

20 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

From the point of view of a multi-port mechatronics network, the quarter-
car suspension system can be viewed externally as a two-port network [30],
with its corresponding mixed immittance matrix G defined as:

[

Fr

żs

]

=

[

G11 (s) G12 (s)
G21 (s) G22 (s)

] [

żr

Fs

]

(3)

F r represents the applied force from the tire to the road. The matrix G
can be obtained from the following equations of system motion, together with
specified suspension force u.

msz̈s = −u + Fs, (4)

muz̈u = u + kt (zr − zu) . (5)

When load disturbance is also considered, the suspension system needs to
be stiff to loads acting on the sprung mass. This requires in Eq. 3, G11(s) and
G21(s) be set ”soft” for road disturbance rejection while G12(s) and G22(s)
be set ”hard” for load disturbance rejection. For such design requirements,
the matrix G fails to be positive-real, which implies active energy input is
necessary for such suspension implementation [30].

There is one degree-of-freedom available for the response to each of the
road and load disturbances. They can be determined independently if two suit-
able measurements are available for feedback (e.g. suspension deflection and
sprung mass velocity). The suspension design with two measurements is shown

in Fig.16(b), with the control law taken to be: u = [k1 (s) k2 (s)]

[

zs − zu

szs

]

,

where k1(s) is collocated control, while k2(s) is non-collocated control.
In order to synthesize controller k1(s) and k2(s), desired performance re-

quirements for road and load disturbance rejection are specified. The desired
frequency response for road disturbance H1 (s) is specified in Eq.6. The de-
sired load disturbance frequency response H 2(s) is the frequency response
specification for G22 (s) in the immittance matrix in Eq.7. It is obtained by
choosing certain suitable parameters in another double skyhook configuration:
u = ks (zs − zu) + c1żs − c2żu, with a hard damper and spring configuration
with ks = 150000N/m, c1 = 12000Ns/m, c2 = 6000Ns/m. The desired H2 (s)
is calculated as:

H1 (s) = żs

żr

=
c2kts+kskt

msmus4+(c1mu+c2ms)s3+(ksmu+ksms+ktms)s2+c1kts+kskt

(6)

H2 (s) = żs

Fs

=

(mus2+c2s+kt+ks)s

msmus4+(c1mu+c2ms)s3+(ksmu+ksms+ktms)s2+c1kts+kskt

(7)

GPBG: A Framework for Evolutionary Synthesis 21

GPBG Configuration

The design space of the controllers is bond graphs composed of C/I/R com-
ponents and 1/0 junctions. We use the direct encoding formulation of the
GPBG framework as specified in Section 3.3. There need be no embryo or
modifiable site. The bond graphs are directly encoded by the GP trees. We
use the following GP function set in Table 1. In this function set, the J0 and
J1 functions have two inputs, meaning that in this encoding, the 1/0 junctions
in the represented bond graphs can only have three ports: two input ports and
one output port.

The fitness of a GP individual is evaluated by how accurately it approxi-
mates the desired frequency domain specification, to minimize

‖dTF (jω) − tTF (jω)‖2,
where dTF (jω) is the desired frequency response as specified by H1 (s)

and H 2(s), and tTF (jω)is the theoretical frequency response of an evolved
individual bond graph structure to be evaluated.

Design Experiments

Taking the desired road and load disturbance rejection responses H1 (s)and
H2 (s) as evaluation criteria, we used the following running setting for the
experiments:

The best run of genetic programming using the basic function set in Table
1 produced the results shown in Fig.17 for k1(s), and Fig.18 for k2(s).

k1 (s) = 2128s3+46680s2+1137000s+4792000
s2+16.08s+32.45

=
2128(s+5.011)(s2+16.93s+449.4)

(s+2.366)(s+13.71)

Fig. 17. Controller structure in bond graph form for k1(s)

k2 (s) = 10320s3+453300s2+40260000s+437000000
s3+172s2+5799s+15890

=
10320(s+12.04)(s2+31.89s+3517)

(s+3)(s+41.5)(s+127.5)

22 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

Table 5. Experiment Settings

Objective: Design a suspension system composed of two con-
trollers.

Test fixture and embryo: Two-input, two-output initial suspension system with
a sprung mass, an unsprung mass, and a spring.

Program architecture: Two result-producing GP species, k1 and k2, sharing
the following attributes.

Function set: For construction-continuing subtrees: Fccs−rpb−initial

= {f0, f1, R, C, I}.
For arithmetic-performing subtrees: Faps = {ADD,
SUB}.

Terminal set: For arithmetic-performing subtrees: Taps = {E}.

Fitness Cases: 41 frequency values in an interval of four decades of
frequency values between 0.1Hz and 1,000Hz.

Raw Fitness: Taking the desired road and load disturbance re-
jection responses as evaluation criteria, the raw fit-
ness of a combined solution including individuals
from both species is calculated as: Fitnessraw =
√

n
∑

i=1

(err1+err2)2

n

n is the number of logarithmically sampled frequency
points; err1 and err2 are the absolute differences of
magnitude between the evolved and the desired road
and load disturbance rejection frequency responses, re-
spectively.
err1 = ‖G12 (jω) − Gs

12 (jω)‖2;

err2 =
∥

∥G11 (jω) − Gh
11 (jω)

∥

∥

2

Normalized Fitness: Fitnessnorm = 1.0
Fitnessraw+1.0

Parameters: Each species: 10 subpopulations of 100 individuals;
Migration interval: 10 generations; Migration size: 2
individuals
Crossover rate: 0.85; Mutation rate: 0.15; initializing
tree depth: 2-4; maximum tree depth: 10-17

Result designation: Best-so-far individual from max fitness species and
matching individual from another species.

Termination: When either species reaches max fitness value 0.99.

The degree of a system can be determined by counting independent stor-
age elements present in the bond graph. The controllers obtained here are of
lower order than the controllers obtained in [31]. This shows that by applying
genetic programming to evolve bond graph control structures, there is po-
tential to discover good control strategies that may not be obtained through
conventional methods.

GPBG: A Framework for Evolutionary Synthesis 23

Fig. 18. Controller structure in bond graph form for k2(s)

Fig.19 shows the simulation results as MATLAB Bode diagrams comparing
desired responses (solid lines) with actual responses (dashed lines) realized by
active suspension control evolved from evolutionary computation. The left-
hand side shows the road disturbance rejection responses, and the right-hand
side shows the load disturbance rejection responses. It demonstrates that the
actual responses approximate the desired responses very well.

Fig. 19. Desired and actual responses of evolved suspension design Left (road dis-
turbance response) Right (load disturbance response)

In summary, using the GPBG framework, we have evolved an active sus-
pension system that has the ability to store, dissipate and to introduce energy
to the system, with extra flexibility to achieve improved design performance.
It should be noted that in this work, we have assumed that the sensor and the
actuator have perfect dynamics. The suspension design will be considerably
modified if such assumptions do not hold well.

24 Hu, Fan, Wang, Seo, Peng, Terpenny, Rosenberg, and Goodman

4.4 Automatic Generation of Robust Designs

Although the topic of design for robustness cannot be addressed in detail in
this chapter, application of GPBG for robust design has already been demon-
strated. In [18], three strategies for using GPBG to synthesize robust passive
analog filters were explored. The broadest conclusion was that filters of high
robustness to variation in the values of their parameters could be evolved
under GPBG, by introducing appropriate stochasticity during evolution of
the topology of the filters. It did not require many more filter evaluations to
evolve robust structures than to evolve those of similar nominal performance
without stochasticity. It was also shown that robustness of designs with com-
ponent values chosen from small, discrete sets could be improved by using only
the ”catalog” values during the evolutionary process, but adding stochastic
variation about their nominal values.

5 Conclusions and Future Work

This chapter applies genetic programming and bond-graph system modeling
– the GPBG approach – to topologically open-ended synthesis of engineering
systems. Four real-world design problems have been examined, including me-
chanical vibration absorbers, MEMS filters, and suspension system controllers.
Results illustrate that the GPBG framework is able to discover innovative de-
signs that differ from those produced by human designers.

References

1. S. Ando and H. Iba. Linear genome methodology for analog circuit design.
Technical report, Information and Communication Department, School of En-
gineering, University of Tokyo, 2000.

2. Z. Fan, J. Hu, K. Seo, E. D. Goodman, R. C. Rosenberg, and B. Zhang. Bond
graph representation and GP for automated analog filter design. In E. D.
Goodman, editor, 2001 Genetic and Evolutionary Computation Conference Late
Breaking Papers, pages 81–86, San Francisco, California, USA, 9-11 July 2001.

3. Z. Fan, K. Seo, J. Hu, R. C. Rosenberg, and E. D. Goodman. System-level
synthesis of MEMS via genetic programming and bond graphs. In E. Cantú-Paz,
J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter,
A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, editors, Genetic and
Evolutionary Computation – GECCO-2003, volume 2724 of LNCS, pages 2058–
2071, Chicago, 12-16 July 2003. Springer-Verlag.

4. C. Gagné and M. Parizeau. Open BEAGLE: A new versatile C++ framework
for evolutionary computation. In E. Cantú-Paz, editor, Late Breaking Papers at
the Genetic and Evolutionary Computation Conference (GECCO-2002), pages
161–168, New York, NY, July 2002. AAAI.

GPBG: A Framework for Evolutionary Synthesis 25

5. J. Hu and E. Goodman. Robust and efficient genetic algorithms with hierarchical
niching and sustainable evolutionary computation model. In Proc. 2004 Genetic
and Evolutionary Computing Conference, Lecture Notes in Computer Science,
Chicago, 6 2004. Springer.

6. J. Hu, E. Goodman, and R. Rosenberg. Topological search in automated mecha-
tronic system synthesis using bond graphs and genetic programming. In Proc.
of American Control Conference ACC 2004, Boston, 7 2004.

7. N. Jalili. A comparative study and analysis of semi-active vibration-control
systems. Journal of Vibration and Acoustics, 124:593, 10 2002.

8. D. Karnopp, D. L. Margolis, and R. C. Rosenberg. System Dynamics: Modeling
and Simulation of Mechatronic Systems.Third Edition. John Wiley & Sons, Inc.,
New York, 2000.

9. J. R. Koza, D. Andre, F. H. Bennett III, and M. Keane. Genetic Programming
3: Darwinian Invention and Problem Solving. Morgan Kaufman, Apr. 1999.

10. J. R. Koza, F. H. Bennett III, D. Andre, M. A. Keane, and F. Dunlap. Auto-
mated synthesis of analog electrical circuits by means of genetic programming.
IEEE Transactions on Evolutionary Computation, 1(2):109–128, July 1997.

11. J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza.
Genetic Programming IV: Routine Human-Competitive Machine Intelligence.
Kluwer Academic Publishers, 2003.

12. J. R. Koza, M. A. Keane, J. Yu, F. H. Bennett III, and W. Mydlowec. Automatic
creation of human-competitive programs and controllers by means of genetic
programming. Genetic Programming and Evolvable Machines, 1(1/2):121–164,
Apr. 2000.

13. J. Lohn and S. Colombano. A circuit representation technique for automated
circuit design. IEEE Transactions on Evolutionary Computation, 3(3):205–219,
1999.

14. H. M. Paynter. An epistemic prehistory of bond graphs. In P. C. Breedveld
and G. Dauphin-Tanguy (ed.), Bond Graphs for Engineers. Elsevier Science
Publishers, Amsterdam, 1991.

15. K. Seo, Z. Fan, J. Hu, E. D. Goodman, and R. C. Rosenberg. Dense and
switched modular primitives for bond graph model design. In E. Cantú-Paz,
J. A. Foster, K. Deb, D. Davis, R. Roy, U.-M. O’Reilly, H.-G. Beyer, R. Standish,
G. Kendall, S. Wilson, M. Harman, J. Wegener, D. Dasgupta, M. A. Potter,
A. C. Schultz, K. Dowsland, N. Jonoska, and J. Miller, editors, Genetic and
Evolutionary Computation – GECCO-2003, volume 2724 of LNCS, pages 1764–
1775, Chicago, 12-16 July 2003. Springer-Verlag.

16. K. Seo, Z. Fan, J. Hu, E. D. Goodman, and R. C. Rosenberg. Toward an
automated design method for multi-domain dynamic systems using bond graph
and genetic programming. Mechatronics, 13(8-9):851–885, 2003.

17. J. Wang and J. Terpenny. Integrated active and passive mechatronic system
design using bond graphs and genetic programming. In B. Rylander, editor,
Genetic and Evolutionary Computation Conference Late Breaking Papers, pages
322–329, Chicago, USA, 12–16 July 2003.

18. R. C. R. Xiangdong Peng, Erik D. Goodman. Comparison of robustness of
three filter design strategies using genetic programming and bond graphs. In
Genetic Programming Theory and Practice (IV), Springer.Riolo, R., Soule, T.
and Worzel, B. Eds., 2006.

