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Abstract - Identification of differentially expressed genes 

(DEGs) from microarray datasets is one of the most important 

analyses for microarray data mining. Popular algorithms such 

as statistical t-test, fold change, and rank product can be 

improved by considering other features of differentially 

expressed genes. We proposed a parameter-free non-

dominated Pareto set based gene pruning algorithm for 

pruning non-differentially expressed genes before applying 

standard DEG identification algorithms. All genes are 

mapped to a feature space composed of average differences of 

gene expression and average expression levels and it is 

observed that differentially expressed genes tend to be located 

in boundary regions. Experiments on 17 Gene Omnibus 

Database (GEO) datasets showed that Pareto gene pruning 

can significantly improve popular algorithms such as t-test, 

rank product, and fold change in terms of prediction accuracy 

and AUC values with improvements ranging from 11% to 50% 

in terms of the number of identified true DEGs. 

Keywords: differentially expressed genes, Pareto set, 

microarray, gene pruning, gene ranking. 

1 Introduction  
Microarray based identification of differentially expressed 
genes (DEG) are now routinely used by biologists. There are 
two main categories of DEG identification algorithms. The 
first type includes single gene testing approaches such as fold 
change [1], rank product [2], t-test and its variants [3]. These 
methods are characterized by a single statistics score used to 
rank genes from significantly differentially expressed genes to 
no-change ones. The second type includes gene set testing 
approaches such as gene set enrichment analysis [4;5]. These 
methods are featured by exploiting externally determined 
functionally related gene sets to test the significance of 
differential expression of a group of genes. Despite increasing 
usage of gene set analysis methods [6], single-gene based 
DEG identification algorithms still dominate the practice of 
biological differential gene expression analysis [7-10]. This is 
partially due to their simplicity and less requirement on gene 
annotation. Thus improving single-gene DEG identification 
algorithms still has a lot of implication for DEG microarray 
analysis.   

 A major issue of current DEG microarray analysis is the 

limited number of samples in most biological studies, which 

makes many statistical test methods ineffective [11;12]. This 

issue has been addressed recently using a few strategies such 

as gathering information across similar genes (Bayes t-test 

approach [13], local pooled error algorithm [14], and the 

famous SAM algorithm [15] ) or using external information to 

improve variance estimation [16] [17].  

 Here we propose a Pareto set based gene pruning 

algorithm to improve DEG identification algorithms such as 

fold change, t-test, or rank product. Our pruning algorithm is 

based on patterns of true DEGs in the space composed of 

average difference of gene expression level between two 

classes and the average gene expression level. It is motivated 

by the observation that experimentally verified true DEGs for 

38 real-world datasets tend to also have high expression levels 

[18]. The first step is to prune non-DEGs from the whole gene 

list based on the characteristics of experimentally verified 

differentially expressed genes. In the second step, statistics-

based DEG identification algorithms such as t-test are applied 

to rank genes. The non-DEG pruning is able to enrich true 

DEGs in the remaining gene lists. This is especially desirable 

for small-size microarray datasets. It can also be used to 

greatly reduce the computational cost of DEG algorithms that 

search gene combinations [19] where all gene-pairs need to be 

ranked. Based on systematic evaluation on 17 real-world 

datasets with a total of 184 true DEGs applied to four existing 

DEG algorithms, we showed that the Pareto pruning can 

significantly improve the performance of these traditional 

algorithms. For example, the Pareto Pruning algorithm can 

prune 81% genes out of 22283 while keeping 87% true DEGs 

out of 184 for 17 datasets we tested. The enrichment of true 

DEGs in the pruned gene list is almost six times of the 

original list. Pareto pruning is also shown to improve the 

AUC score of rank product algorithm by up to 48% and helps 

it to find 47% (50) more true DEGs when the cutoff top 

K=550.  For fold change and t-test, it can find 24% (43) and 

10% (20) more true DEGs.  

2 Methods 
The main idea of Pareto pruning is that identification of DEGs 
can be improved by considering characteristics of 
experimentally verified DEGs. One such feature is that true 



DEGs tend to have high expression values [20]. Specifically, 
differentially expressed genes are usually located in the 
boundary region in the 2-D feature space of average gene 
expression (AG) versus average difference of gene expression 
(AD). Fig.1. shows the distribution of true DEGs in the 2D 
space for four microarray datasets:  GSE9499, GSE6342, 
GSE6740-1, and GSE6740-2 from GEO database [21].  It is 

found that true differentially express genes are located on the 
boundary regions with either high average expression 
difference or high expression levels. This motivates our idea 
to develop a Pareto gene pruning algorithm for pruning non-
DEG genes.  

Fig.1 Distribution of verified differentially expressed genes in the expression-average expression difference (AG-AD) space for 
four datasets from GEO database. Differentially expressed genes tend to be located in the boundary areas. 

 

2.1 Pareto gene pruning algorithm for DEG 
identification 

The main idea of Pareto gene pruning is to remove non-
DEGs that usually appear within the dense part of the AG-
AD space (Fig 1). Assume M is a microarray matrix with N 
genes (rows) and P conditions (columns). P1 profiles of P 
correspond to condition A and P2=P-P1 profiles correspond 
to condition B.  The average expression level (AG) of a 
gene  is defined as , where  and  are 
the average expression level (log-scaled) of gene under 

condition A and B. The average difference of gene 
expression of a gene  is defined as . Since the 
expression values are log-transformed, the average 
difference here essentially represents the expression ratios.  

 It is observed that true DEGs tend to dominate non-

DEGs in the AG-AD space. These non-dominated genes 

are called Pareto genes. A non-dominated gene is defined 

as one that there is no other genes which have greater 

values of both average gene expression level and average 

expression difference. The Pareto gene pruning algorithm 

works as follows. The input of Pareto gene pruning is the 

 
 

 
 



number of genes K to keep. First, each gene is mapped 

into the (AG, AD) feature space. Second, we compare each 

gene to remaining genes to check if there is any gene that 

dominates its (AG, AD) values, if not, it is added to the list 

of non-dominated genes. After first round of inspection of 

non-dominated genes, if the total non-dominated genes is 

less than K, these genes are removed from the pool and a 

next round of non-dominated gene screening is applied to 

generate second-level non-dominated genes until K non-

dominated genes are collected. A major feature of this 

method is that there is no extra parameter to specify except 

the number of potential DEG candidates. After Pareto gene 

pruning, K non-dominated genes can then be ranked by 

conventional DEG algorithms such as the fold change, rank 

product, and t-test as describe below. 

2.2 DEG Identification Algorithms 

We applied three popular DEG identification algorithms to 
the 17 datasets with or without Pareto pruning.  
 Fold Change (FC) is the most popular DEG algorithms 

among biologists. It ranks genes based on the ratio of 
average gene expression under two conditions.  
Usually a 2-fold change is regarded as significant in 
many biological studies. A major criticism of FC is that 
it doesn’t consider the case that genes with low 
expression level in both conditions but with small 
variances can be ranked high. As shown by Figure 1, 
most true DEGs tend to also have high gene expression 
levels.  

 Rank Product (RP) [22;23] ranks genes based on product 
of rank ratios for multiple A-B conditions. The results 
and simplicity of RP is similar to FC but overcomes its 
most significant limitations. It also provides a 
statistically rigorous estimation of significance. It was 
reported to have good performance for small datasets 
or noisy datasets. 

 T-statistics (tTest) is one of earliest and still popular 
method used in DEG identification. The major 
advantage is that it can consider the variation of genes 
in its ranking. The limitation is that for small datasets, 
the estimation of gene expression variances is not 
reliable which can lead to bad performance.   

3 Results 

3.1 Data set preparation 

We used 17 disease state or dose response analysis datasets 
of Homo sapiens out of the 36 GEO datasets collected by 
Kadota et al. [24] for comparing Weighted Average 
Difference (WAD) algorithm to other DEG algorithms. 
These datasets are provided with verified DEGs determined 
by real-time polymerase chain reaction (RT-PCR). These 
17 datasets have been normalized and transformed into log 
scale. Out of the 17 datasets, only 7 have more than 10 
samples for both conditions. Four datasets have less than 5 
samples per condition.  These datasets show that real-world 
GEO datasets, especially historical ones tend to have small 

sample sizes. The 17 Datasets cover a variety of biological 
or medical studies: GSE1462 (mitochondrial DNA 
mutations), GSE1615_1 (Valproic acid treatment), 
GSE1650 (chronic obstructive pulmonary disease), 
GSE2666_2(bone marrow Rho level effect), GSE3524 
(tumor of epithelial tissue), GSE3860 (Hutchinson–Gilford 
progeria syndrome), GSE4917 (breast cancer), GSE5667_1 
(atopic dermatitis), GSE6236 (Adult vs. fetal reticulocyte 
transcriptome comparison), GSE6344 (renal cell carcinoma 
disease), GSE6740_1 (HIV-infection), GSE6740_2 (HIV-
infection, disease state), GSE7146 (hyperinsulinaemic, does 
response), GSE7765 (dose response, DMSO or 100 nM 
Dioxin), GSE8441 (dietary intake response), GSE9574 
(breast cancer), and GSE9499 (hypomorphic germline 
mutations). The diversity of these datasets will ensure that 
performance of the proposed algorithms is not due to 
specific characteristics of the data.  

3.2 Bias of DEG identification algorithms 

Statistics based DEG identification algorithms such as t-test 
and fold change all have different bias in their ranking 
statistics. There are three factors in their ranking criteria:  

 where  is the difference of expression 
levels between two conditions;  is the overall gene 
expression level of the gene; and  is the variance of gene 
expression. T-statistics based methods may make false 
positive prediction for genes with low  because of small . 
Fold change method instead suffers from the fact that a 
gene with large variances tend to have larger fold changes. 
It is thus interesting to visualize the bias of different DEG 
algorithms in the  feature space. For simplicity, the 
variance  feature is neglected as it is not correlated to true 
DEGs as strong as  features. 

 In Fig1, we showed that most of true DEGs are 

located in the sparse boundary regions as outliers in the 

 space. A smaller portion of true DEGs are mixed 

with other non-DEGs in the dense regions and cannot be 

differentiated by the algorithms such as FC. To illustrate 

the bias of different DEG identification algorithms, for 

each algorithm, we showed in Fig. 2 true positive (TP), true 

negative (TN), false positive (FP), and false negative (FN) 

DEGs for dataset GSE9499 which has 77 DEGs.  Fig.2. (a) 

shows that fold change method missed most true DEGs that 

are located in the region below the cutoff and with high 

expression levels (see FN genes). This is because FC uses a 

fixed ratio as cutoff. It also made many false positives most 

in the region with low expression levels (see FP genes).  

Rank product (Fig.2.(b)) missed similar true DEGs with 

fold change but the false positive genes have different 

distribution.  Fig. 2 (c) shows the predicted DEGs of t-test. 

This method missed a lot of true DEGs that have high 

average difference between two conditions. Most of its 

false positives are located across the expression level with 

low average difference, reflecting the fact that it can be 

misled by genes with small variances.  

 



 

Fig.2. Bias of DEG identification algorithms: fold change (a), rank product (b), and t-test (c). Many of the false positive predictions are located 

in the dense regions, which can be easily removed using the proposed Pareto gene pruning algorithm.  

 

3.3 Improving DEG identification 
algorithms using Pareto gene pruning 

3.3.1 Effect of Pareto gene pruning of non-DEGs 

To test the enrichment of true DEGs after pruning, we 
applied the Pareto gene pruning algorithm to the 17 
microarray datasets each having 22283 genes. The idea is 
that by pruning those non-DEGs, true DEGs are more 
enriched in the remaining list and can be easier to be 
detected by other algorithms. The reduced search range of 
candidate DEGs can already greatly reduce computational 
cost for detecting combinatorial gene sets.  By applying 
Pareto pruning to 17 datasets, it is found that this procedure 
can prune more than ≥81% genes out of 22283 while 
keeping ≥87% out of 184 true DEGs. The enrichment of 
true DEGs in the pruned gene sets will significantly 
improve their accuracy. Note that we provide a binary 

search procedure to determine the parameters for keeping a 
user-specified number of candidate genes.  

3.3.3 Improving standard DEG algorithms using Pareto 
pruning 

To evaluate the improvement of prediction performance of 
DEG algorithms with Pareto pruning, we use the receiver 
operating characteristic (ROC), or simply ROC curve. It is 
a graphical plot of the fraction of true positives (TPR = true 
positive rate) vs. the fraction of false positives (FPR = false 
positive rate) as the K (the number of genes predicted to be 
DEGs) varies. We use the area under curve (AUC) value of 
the ROC curve as the criterion for comparison. To make the 
comparison relevant to real-world practice, we only plot 
and compare the AUC value with K varies from 1 to 1000 
rather than to K=22832 as done previously. The reason is 
that biologists rarely have the resources to check all 22832 
genes and usually only care about few top predicted DEGs 
for experimental verification.  
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 We calculate AUC values with K up to 1000 for four 

DEG algorithms with or without using Pareto gene pruning.  

The experiments are conducted on all 17 datasets with total 

284 true DEGs. Table 1 shows that Pareto gene pruning 

significantly improved the AUC values for all four popular 

DEG algorithms especially for fold change with 18.4% 

improvement and rank product algorithm with 48.1% 

increase of AUC score. To get a more concrete intuition of 

the effect of Pareto gene pruning, Table 2 shows the total 

numbers of true DEGs out of top K predictions identified 

by different algorithms for the 17 datasets with or without 

Pareto gene pruning. First, the results showed that rank 

product and fold change have worse performance than the 

tTest algorithm in terms of identifying experimentally 

verified true DEGs. For example, tTest can detect 132 true 

DEGs from the 17 datasets when K=150 predictions are 

allowed for each dataset. Instead, RP and FC can only 

detect 74 and 97 true DEGs respectively. When the no. of 

predictions K increases, all algorithms cover more true 

DEGs with the highest coverage by t-test algorithm which 

retrieves 222 out of 284 true DEGs when 550 genes are 

allowed to predict for each dataset.  A major observation of 

Table 2 is that all three algorithms can benefit from Pareto 

gene pruning with maximum benefit for tTest. In the case 

of RP, Pareto pruning helps RP to find 60 (nearly 56.6%) 

more true DEGs for K=550. For FC and tTest, 24% and 

10% more true DEGs are identified with the help of Pareto 

gene pruning.  

Table 1. Improvement of AUC values for DEG algorithms 
after Pareto pruning: Rp, Fc, and tTest. 

 Partial AUC Improvement 

Rp/Rp’ 0.0162/0.024 48.1% 

Fc/Fc’ 0.0245/0.029 18.4% 

tTest/tTest’ 0.0284/0.031 9.2% 
 

 

Table 2. Increase of No. of detected true DEGs out of top K predictions with or without Pareto pruning. Rp’, tTest’, FC’ are 

algorithms with Pareto pruning.  The total number of true DEGs of the 17 datasets is 284. 

 

 K=150 K=250 K=350 K=450 K=550 

Rp/Rp’ 74/78 81/97 92/118 98/143 106/166 

Fc/Fc’ 97/106 120/143 146/177 164/203 178/221 

tTest/tTest’ 132/138 163/173 179/193 191/211 202/222 

 

To further investigate the improvement of Pareto pruning 
over classic DEG algorithms, Fig 3(a)-(c) show the ROC 
curves of the algorithms with and without pruning with top 
K=1 to 1000. Fig 3(a) shows that t-test algorithm has the 
best performance and there exists dominance relationship of 
t-test>FC>RP. Fig 3(b) shows that after applying Pareto 
gene pruning, the performance of t-test, rank product, and 
fold change algorithms are all significantly improved. Fig 
3.(c) shows the complete comparison of the three DEG 
identification algorithms with or without Pareto gene 
pruning. It clearly demonstrates the Pareto pruning has 
significantly improved the AUC values with improvements 
across all K ranging from 1 to 1000. Compared to the 
improvements of ROC curves as shown by the variance 
estimation algorithms, our improvements are much more 
significant.  

4 Discussion 
We have proposed a Pareto gene pruning algorithm that can 
prune non-differentially expressed genes with high 
confidence from the total gene list. This pruning procedure 
can significantly improve the prediction accuracy for 

popular DEG identification algorithms such as fold change, 
t-test, and rank product. The main benefit of Pareto gene 
pruning is not reducing running time of DEG identification 
algorithm, but significant improvement of prediction 
precision and recall as shown in the ROC curves. The 
improvement of DEG prediction performance comes from 
the observation that DEGs tend to have high expression 
values. There are several further improvements following 
this pattern recognition based DEG identification method. 
One is to use external datasets to estimate gene expression 
levels and difference of gene expressions. Our preliminary 
experiments showed estimating gene expression level is 
straightforward and feasible but estimating difference of 
gene expression needs more study. Another improvement is 
that additional features of DEGs can be introduced, e.g. the 
variance of gene expressions across multiple datasets. For 
example, the variance estimation method using multiple 
datasets [25] can be combined with our Pareto pruning 
algorithm. Functional annotation information from gene 
ontology or pathways can also be integrated to help the 
pruning process.  
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Fig.3. Comparison of ROC curves of DEG algorithms with (b) or without (a) Pareto pruning. The improvements of prediction 

accuracy can be clearly observed in (c). It shows dramatic improvement on the prediction performance of rank product as well as 

t-test and fold change with the Pareto gene pruning 
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