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Abstract 
 

Recent study shows that protein-protein interaction 

network based features can significantly improve the 

prediction of protein subcellular localization. However, it 

is unclear whether network prediction models or other 

types of protein-protein correlation networks would also 

improve localization prediction. We present NetLoc, a 

novel network based algorithm for predicting protein 

subcellular localization using four types of protein 

networks including physical protein-protein interaction 

(PPPI) network, genetic interaction network (GPPI), and 

co-expression network (COEXP). Diffusion kernel-based 

logistic regression (KLR) is used to develop the prediction 

model. We applied NetLoc to yeast protein localization 

prediction. The results showed that protein networks can 

provide rich information for protein localization 

prediction, achieving prediction performance up to AUC 

score of 0.93. We also showed that networks with high 

connectivity and high percentage of interacting protein 

pairs targeting the same location lead to better prediction 

performance. In terms of localization prediction 

performance, PPPI is better than GPPI which is better than 

COEXP. The classification performance (AUC) with PPPI 

network ranges between 0.71 and 0.93 for 7 locations. The 

overall balanced performance is 0.82 which is significantly 

better than the performance (0.49 and 0.57) of the previous 

network feature based classification algorithm evaluated 

on the same yeast dataset using leave-one-out cross-

validation.   
 

 

1. Introduction 
 

Proper protein functions are closely influenced by its 

precise targeting to designated subcellular localization. 

Computational prediction of protein localizations can 

greatly help to infer protein functions. However, 

experimental determination of protein localization is costly 

[1;2] and has been conducted for a few model organisms 

such as human, mouse, and yeast. In the past decade, many 

algorithms have been developed for computational 

prediction of protein subcellular locations [3-7]. These 

algorithms employ a variety of supervised machine 

learning techniques including neural networks [8-10], 

nearest neighbor classifier, Markov models, Bayesian 

networks [11;12], expert rules, meta-classifiers [13;14], and 

the support vector machines [15-17]. While algorithm 

variation can tune up the prediction performance, the most 

critical factor for accurate prediction is to integrate 

different sources of data (information) to infer the 

subcellular location of a protein. Current prediction 

algorithms can be classified into three categories in terms 

of the evidences used: 1) algorithms based on targeting 

signals such as pSORT [18] and TargetP [10]. However, 

due to limited experimental targeting signal data and the 

low coverage of targeting signal prediction algorithms, the 

performances of these approaches are not satisfactory; 2) 

algorithms considering the preference or bias in terms of 

amino acid composition [19;20] or protein domains [21-23] 

of the proteins in specific subcellular compartments. Using 

composition information has the disadvantage of losing 

sequence order information and is not specific enough for 

precise prediction; 3) algorithms using localization 

information from other annotated proteins with indirect 

relationships such as  functional annotation [24], 

phylogenetic profiling [25], homology [26], and protein-

protein interaction [27]; 4) algorithms that integrate 

multiple sources of information. Drawid et al’s naïve 

Bayesian predictor [28] uses signal motifs, gene expression 

patterns, and overall-sequence properties. Scott et. al.’s 

Bayesian network predictor [29] incorporates protein 

motifs, targeting signals, and protein-protein interaction 

data.  

Recently, protein-protein correlation (PPC) networks 

have been used for localization prediction.  Lee et al. [30] 

used  PPI networks for localization prediction by deriving 
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some network-specific features combined with other 

traditional features such as amino acid composition. This 

method however only used limited information (neighbor 

proteins) of the network. Mintz-Oron et al. [31]  used 

metabolic networks  for localization prediction using 

constraint-based models. However, it is difficult to 

incorporate other information into the prediction model. In 

addition, genetic interaction networks and co-expression 

networks also carry information for localization prediction 

but remain unexplored.  It is also not clear what topological 

characteristics of networks affect their potential for 

localization prediction. 

Here we introduced a network [32;33] based protein 

localization prediction algorithm NetLoc by combining 

diffusion kernel with logistic regression to build a 

prediction model.  It can be applied to a variety of protein-

protein correlation networks such as physical or genetic PPI  

networks, and co-expression networks. For all these 

networks, connected protein pairs tend to be localized in 

the same subcellular compartments. We applied NetLoc to 

genome wide yeast protein localization using PPI, and 

COEXP networks. In a cross-validation test of predicting 

known subcellular localization of  3807 proteins of Yeast, 

NetLoc is shown to achieve high accuracy with AUC 

values ranging from 0.77 to 0.93 for cytoplasm, ER, 

mitochondrion, nucleolus, and nucleus using only physical 

PPI network. We also found that the number of connected 

components and the co-localization degree of protein-pairs 

strongly affect the prediction performance using the 

proposed network prediction models. 

 

2. Diffusion kernel-based logistic regression 

for protein localization prediction 

 
2.1. Motivation 

 

Most of current protein subcellular localization 

prediction algorithms are developed using feature based 

methods, which are derived either from protein sequences, 

or from external functional information such as gene 

ontology or physichemical properties. However, one 

apparent limitation of these methods is that it is not easy to 

exploit rich network information that naturally appears 

among proteins. For example, two proteins that interact 

physically will very likely be located within the same 

organelle. Thus protein-protein interaction networks are 

very informative for protein localization prediction. 

Another example is the gene co-expression network which 

describes whether two genes/proteins show similar gene 

expression behaviors indicating that they are regulated by 

the same set of transcription factors. So if two proteins are 

controlled by the same transcription factor, they are most 

likely to be involved in the same biological pathway and 

then likely to be located within the same  compartment. It is 

thus interesting to explore non-feature based prediction 

algorithms for protein localization prediction. 

Another issue of current protein localization prediction 

algorithms is the lack of capability to predict multi-location 

proteins. Most researchers explicitly remove these proteins 

in their data preprocessing steps before training their 

prediction algorithms. An ideal prediction algorithm should 

be able to output probabilistic scores for all locations for 

each protein so that multi-location proteins can also be 

predicted with different confidence. 

The basic idea of our approach is to utilize the 

information of protein-protein correlation network structure 

in predicting the localization of un-annotated proteins. This 

network can be based on protein-protein interaction, PFAM 

domain interaction, co-expressed gene interaction, genetic 

interaction, and etc. For example, a protein-protein 

interaction (PPI) network provides a neighborhood 

structure among the proteins. If two proteins interact, they 

are neighbors of each others. The localizations of its 

neighbors carry some information about the localization of 

the un-annotated proteins. For example, if most of the 

neighbors of a protein have the same localization, it is more 

likely that the protein is localized to the same location. A 

confidence or probability about the fact that the protein is 

localized at a certain location will be determined. Finally, 

the localization labels will be assigned to un-annotated 

proteins based on some threshold on confidence value. 

The confidence of a protein to be localized at a specific 

location can be determined using two different approaches: 

a) considering only the localization information of the 

direct neighbors and b) considering the localization 

information of all the proteins in the network. First 

approach uses Markov Random Field (MRF) model to 

solve the problem. To solve the problem in second 

approach, diffusion kernel-based logistic regression (KLR) 

model is suitable. Literature shows that the KLR model 

performs better than MRF model [34].  
 

2.2.  KLR logistic regression model 
 

We applied the diffusion kernel-based logistic 

regression (KLR) model [34] to predicting protein 

subcellular localization based on the locations of all other 

proteins within function linkage networks. This method has 

the unique advantage of considering the subcellular 

location labels of all the related proteins. It is desirable 

because signaling peptides that direct proteins to different 

locations usually share some similarity, e.g. the signal 

peptides targeting outer membrane and plasma membrane 

share the N-terminal secretary signals. 

The KLR model based subcellular prediction problem 

can be formulated as follows [34]. Given a protein-protein 

interaction network with N proteins         with n  of 

them         with unknown subcellular locations. The 

task is to assign subcellular location labels to the n
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unknown proteins based on the location labels of known 

proteins and the protein-protein interaction network.  
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The  parameters 
, ,  

can be estimated using the 

maximum likelihood estimation (MLE) method. Note that 

here only the annotated proteins are used in the estimation 

procedure. 

The KLR model has been successfully applied to protein 

function prediction. However, comparing with that 

application, KLR is especially suitable for protein 

localization prediction due to the following factors: 1) there 

are much fewer locations than protein function categories 

and the correlation among the subcellular locations are 

much stronger than protein functions; 2) the location is a 

much broader classification than the protein function, 

which means that the network neighborhood topology may 

provide sufficient evidence for its inference.  
 

 

Figure 1. Protein localization prediction using the KLR 

model and protein networks 

 

Figure-1 presents the schematic overview of the  

network-based framework for protein localization 

prediction using the KLR model and protein networks. 

Diffusion kernel type feature, which is a square matrix 

consists of 1 (interaction) and 0 (no interaction), is 

developed for each of the networks. Annotation matrix, 

which is an m by n matrix where m is the number of 

annotated proteins and n is the number of localizations, is 

developed from annotated proteins. KLR model is 

developed using kernel type features and annotation matrix 

using logistic regression. The KLR model produces 

confidence for each protein for a particular localization. 

Predictions are made for un-annotated proteins based on 

some threshold on confidence value.  

 

3. Experimental results 

 
3.1.  Dataset preparation 

 

Four protein networks for Saccharomyces cerevisiae are 

used in the present study: two networks, physical PPI 

network and genetic PPI network, are obtained from 

BioGRID [35], another PPI network is from MIPS [36] and 

one co-expression network is from gene expression data of 

Stanford University [37]. In this study, the networks are 

named as physical PPI (PPPI),  genetic PPI (GPPI), mixed 

PPI (MPPI) and COEXP respectively. PPPI contains only 

physical interactions whereas MPPI contains both physical 

and genetic interactions. MPPI has much less interactions 

due to its latest update is in 2006.  

NetLoc is applied to protein localization prediction of 

Saccharomyces cerevisiae proteins using the localization 

data of Huh et al.  [1] as the basis for annotation. They 

annotated 4160 proteins with 22 distinct localizations. Out 

of these localizations, only 7 of them have more than 100 

proteins with known subcellular localization annotation. 

These localizations are cell periphery, cytoplasm, ER 

(endoplasmic reticulum), mitochondrion, nucleolus, 

nucleus, and punctate composite. We evaluated our 

network prediction model based on these 7 localizations. 

The original dataset has 4160 unique proteins annotated 

with 5380 localizations (some proteins are annotated with 

multi-locations). We removed those proteins with 

ambiguous localization and 3923 proteins are left with 

5191 localization annotations.  

Table1 shows the summary of four network datasets 

used for this study. In terms of the number of interactions, 

GPPI is the largest network followed by PPPI, COEXP70 

and MPPI. On the other hand, in terms of proteins, PPPI is 

the largest network followed by GPPI, MPPI and 

COEXP70. GPPI is the densest graph followed by PPPI, 

COEXP70 and MPPI. 

 
Table 1. Datasets of protein correlation networks  

Property PPPI MPPI GPPI COEXP 

No. of 

proteins 
5477 4319 5252 2004 

Edges 50997 11421  103631  11954 

Average  

interactions 

per node 

9.31 2.64  19.73  5.96 
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3.2.  Performance evaluation 
 

In the KLR logistic regression model, for each 

subcellular localization, all proteins are predicted with a 

confidence level which indicates how likely   a protein 

belongs to this location. If the threshold is set to 0.5, then a 

protein with higher than 0.5 confidence will be labeled as 

positive prediction –belonging to this location, otherwise, 

negative. Based on this cutoff value, the resulting 

prediction algorithm can have varying true positive and true 

negative rate, which makes the comparison difficult. For 

the present analysis, the AUC (Area Under the Curve) 

score was used to measure the prediction capability of the 

proposed the KLR model using network information.  5-

fold cross-validation was used to calculate the AUC value 

for the classifiers. 

 

3.3.  Localization prediction using co-expression 

network 
 

Co-expression network is prepared based on the gene 

expression patterns of Yeast. We first calculated the 

correlation coefficients of gene pairs in terms of their gene 

expression levels across several conditions.  Then we can 

derive a co-expression network given a threshold 

coefficient value. The motivation to use COEXP for 

localization prediction is that co-expressed proteins are 

expected to occur within the same subcellular  

compartment.  

Table  2 shows the properties of the co-expression 

networks derived with different cutoff coefficient.  For 

each of the network, we ran our prediction algorithm and 

evaluated their performance in terms of the AUC scores 

using 5-fold cross-validation.  It can be observed that with 

larger cutoff threshold, less proteins and interactions 

remain in the network. The best prediction performance is 

achieved when the correlation coefficient threshold is set as 

0.7 with considerable coverage of proteins. 

 
Table  2. Co-expression networks and classification 

accuracy on 7 localizations 

Item COEXP

60 

COEXP

65 

COEXP

70 

COEXP

75 

COEXP

80 

Interactions  58988 26120 11954 4792 1528 

Proteins  4434 3180 2004 1122 567 

Average 

interactions 

per protein 

13.30 8.21 5.96 4.27 2.69 

AUC 0.6928 0.7273 0.7489 0.7391 0.7444 

 

3.4.  Localization prediction using PPPI, GPPI and 

MPPI Networks compared to COEXP 

networks 
 

The prediction performance of NetLoc using individual 

networks for the selected 7 localizations is shown in Figure 

2 and Table 3. For PPPI network, AUC varies between 0.71 

and 0.93 among which 4 classes have AUC > 0.80 and 1 

class (nucleolus) has AUC > 0.90. For GPPI network, AUC 

varies between 0.63 and 0.89 with 3 classes having AUC > 

0.80 and none having AUC > 0.90. For MPPI network, 

AUC varies between 0.61 and 0.81 with 1 class (nucleolus) 

having AUC > 0.80 and none having AUC > 0.90. For 

COEXP70 network, AUC varies between 0.66 and 0.90 

with 2 classes having AUC > 0.80 and 1 class (nucleolus) 

having AUC > 0.90. Overall AUC values for PPPI, GPPI, 

MPPI, and COEXP70 are 0.82, 0.75, 0.75, and 0.69 

respectively.  The prediction performance shows that the 

PPPI network gives the best result for localization 

prediction. 

The prediction performance of NetLoc is competitive 

compared to other localization prediction algorithms that 

only use single-protein features. For example, It was 

reported [30] that the single protein feature based methods 

achieved prediction performance of about 0.65 and 0.79 

(AUC score) without or with feature selection on the same 

yeast dataset as used here. NetLoc achieved AUC score of 

0.82 for the 7 selected locations and AUC score of 0.85 for 

all 22 locations. Compared to Lee et al.’s [30] network 

feature based method which achieved AUC score of 0.49 

and 0.52 using two sets of PPI network (MPPI) features (L 

and N features) from DIP dataset [38] , NetLoc achieved 

AUC score of 0.7 on the same dataset.  
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Figure 2. Performances of individual networks for selected 

7 localizations with more than 100 proteins. 

 
Table  3. Summary of performances with different PPC 

networks for selected 7 localizations 

 

Network 

Classes/Localizations 

AUC > 

0.60 

AUC > 

0.70 

AUC > 

0.80 

AUC > 

0.90 

PPPI 7 7 4 1 

GPPI 7 4 3 0 

MPPI 7 3 1 0 

COEXP70 7 5 2 1 

 

3.5.  Network topology versus localization 

prediction 
 

The performance of NetLoc depends on a variety of 

topological properties of the network such as the graph 

connectivity, density of edges, as well as the co-localization 

ratio of protein pairs. Table-4 summarizes the topological 

properties of the four PPC networks along with their 

prediction performance. PPPI and GPPI Networks have one 

connected component. COEXP70 has 136 connected 

components and MPPI has 75 connected components. In 

COEXP70, the largest component is composed of 80% of 

total nodes and in MPPI, the largest component is 

composed of 96% of total nodes. The performance on these 

four networks suggests that the number of connected 

component has direct impact on performance. A network 

with only one connected component performs better than 

the network with more than one connected component. For 

the same percentage of PPIs going to the same location, the 

network with only one connected component gives better 

results than the network with more than one connected 

components. For example, GPPI and MPPI have about 

same percent (30%) of PPIs going to the same location, but 

GPPI produces better performance (0.7851) than MPPI 

(0.7132) because GPPI is composed of only one connected 

component and MPPI is composed of 75 connected 

components. 
 

Table  4. Summary of graphical structure for different 

protein  networks 

Item PPPI GPPI MPPI COEXP70 

Nodes 

(Proteins) 
5477 5252 4319 2004 

Edges (PPIs) 50997 103631 11421 11954 

Node Pairs 15m 13.7m 9m 2m 

Connected 

Component 
1 1 75 136 

Nodes in 

Largest Comp 
5477 5252 4158 1612 

% Nodes in 

Largest Comp 
100% 100% 96.% 80.44% 

Performance 0.8525 0.7851 0.7132 0.6407 

 

4. Discussion 
 

This paper investigates the performance of the proposed 

diffusion kernel based logistic regression model for 

predicting protein localizations using only protein-protein 

correlation network information.  We have shown that the 

proposed NetLoc approach can achieve high prediction 

accuracy and showed that network topological 

characteristics such as connectivity may affect the 

prediction performance.  

Another important factor that may affect the prediction 

performance is the correlation of interactions as regard to 

co-localization. Table 5 shows the percentages of protein 

pairs of which both proteins go to the same location along 

with the prediction performance (AUC score) using the 

networks. PPPI has the highest percentage of co-localized 

protein pairs: 41.95% of protein pairs co-localize. Together 

with the high connectivity, NetLoc has the best 

performance on the PPPI network (AUC = 0.8525).  GPPI 

network also has only one connected component, but its co-

localized proteins only cover 30.18% of all protein pairs. 

So its performance (AUC = 0.7851) is lower than using 

PPPI network. Compared with GPPI network, both MPPI 
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and COEXP70 networks have similar percentages of co-

localized protein pairs, but they are distributed in much 

more disconnected patches with 75 connected components 

for MPPI and 136 connected components for COEXP70. 

The prediction performances are thus inferior to that of 

PPPI network.  In general, the more protein pairs go to the 

same location, the better the prediction performance given 

equal number of connected components. 

 
Table  5. Protein pairs targeting the same location and 

prediction performance 

 

Comparing the influence of network connectivity and co-

localization percentages, the former seems to have a large 

effect. For example, the percentage of PPIs going to the 

same localization in COEXP70 is 35.18%, which is greater 

than that of MPPI (30.65%), However, it has much more 

connected components (136) compared to MPPI (75). As a 

result, COEXP70 produces poor performance. 

Our experiments showed that diffusion kernel based 

network predication model in NetLoc achieved better 

prediction performance than the method using network 

based features as used in previous work [30]. N features of 

Lee et al. [30] using weighted average of single-protein 

features was shown to be worse than the L features using 

weighted voting of neighbors within a certain distance. 

However, the weights are calculated from conditional 

probabilities. NetLoc used weighted voting of all proteins 

in the network in which the weights are optimized using 

logistic regression, which makes it to better exploit the 

network information for localization prediction.  

The cross-validation results showed comparable 

performance of popular amino acid composition based 

features. However, a main advantage of our network 

method is that it has the capability of integrating multiple 

networks to make prediction. Our preliminary experiments 

showed that by combining two networks, PPPI and GPPI, 

discussed here, we can further improve the prediction 

performance. Moreover, the diffusion kernel based 

prediction model can be used to determine the contribution 

of each of the protein-protein network in protein 

localization.  Another ongoing work is to integrate NetLoc 

with other feature based methods to build an ensemble 

prediction algorithm. Since feature based method  is very 

difficult to differentiate cytoplasmic proteins from nucleus 

proteins, our protein correlation network approach could be 

very helpful. 

 

5. Conclusion 
 

A diffusion kernel based logistic regression (KLR) 

model for protein subcellular localization prediction using 

protein-protein correlation networks has been proposed. 

Four types of networks including physical interaction, 

genetic interaction, and co-expression network have been 

used for localization prediction of yeast. Results indicated 

that all these four networks carry protein co-localization 

information with their interactions (edges) and can thus be 

used for localization prediction. Experiments showed that 

the physical interaction network has the highest 

connectivity and highest percentage of co-localized protein 

pairs, which leads to the best prediction performance. 

Genetic interaction network has the second best 

localization prediction. Co-expression network has the least 

information for localization prediction due to its lower 

connectivity with many isolated patches. The network 

topology strongly affects the NetLoc prediction 

performance. In particular, the number of connected 

components, the average degree of nodes, and the 

percentage of co-localized protein-pairs all  play important 

role for the prediction performance.  
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